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Abstract: The SUSY SO(10) GUT is in severe tension with the experimental bounds on

proton partial lifetimes because proton decay mediated by colored Higgsinos (dimension-

five proton decay) is too rapid. In this paper, we pursue the possibility that a texture of

the Yukawa coupling matrices in a renormalizable SUSY SO(10) GUT model suppresses

dimension-five proton decay. We focus on a general renormalizable SUSY SO(10) GUT

model which contains 10 + 126 + 126 + 120 representation fields and where the Yukawa

coupling matrices of the 16 matter fields with the 10, 126, 120 fields, Y10, Y126, Y120,

provide the quark and lepton Yukawa couplings and Majorana mass of the singlet neutri-

nos. We find that if components in certain flavor bases, (Y10)uRdR
, (Y126)uRdR

, (Y10)uRsR
,

(Y126)uRsR
, (Y10)uLdL

, (Y126)uLdL
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, (Y10)uLuL

, (Y126)uLuL
, are all on

the order of the up quark Yukawa coupling, dimension-five proton decay can be suppressed

while the Yukawa coupling matrices still reproduce the realistic quark and lepton masses

and flavor mixings. We numerically obtain specific Yukawa coupling matrices satisfying the

above conditions, calculate proton partial lifetimes from them and evaluate how dimension-

five proton decay is suppressed when these conditions are met.
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1 Introduction

The SO(10) grand unified theory (GUT) [1, 2] is a viable extension of the Standard Model

(SM) for its attractive features such as the embedding of the SM gauge groups into an

anomaly-free group, the unification of one generation of the matter fields into a 16 repre-

sentation field, and the automatic realization of the seesaw mechanism [3–6] that naturally

explains the tiny neutrino mass. The supersymmetric (SUSY) SO(10) GUT can further

alleviate the gauge hierarchy problem, and achieve the gauge coupling unification without

intermediate scale. A drawback of the SUSY SO(10) GUT is that proton decay mediated

by colored Higgsinos (dimension-five proton decay) [7, 8] is too rapid to be consistent with

the current experimental bounds on proton partial lifetimes. In particular, since the unifi-

cation of the top and bottom quark Yukawa couplings implies tan β ∼ 50, the contribution

of EcU cU cDc operators [9] to the p → K+ν̄τ decay is enhanced, and since simultaneous

cancellations of EcU cU cDc and QQQL operators’ contributions to p → K+ν̄τ , and QQQL
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operators’ contributions to p → K+ν̄µ are difficult to realize, the SUSY SO(10) GUT is in

severe tension with the experimental bound on the p → K+ν̄ partial lifetime [10].

However, there is a possibility that a texture of the Yukawa coupling matrices sup-

presses the troublesome dimension-five proton decay, because the decay amplitudes are

proportional to bi-products of Yukawa couplings. In this paper, we pursue the above

possibility and find conditions for a texture of the Yukawa coupling matrices suppressing

dimension-five proton decay. We further obtain specific Yukawa coupling matrices that

satisfy the conditions. We focus on a general renormalizable SO(10) GUT model which

contains 10 + 126 + 126 + 120 representation fields from which the Higgs fields of the

minimal SUSY SM (MSSM) originate (a broader class of renormalizable SUSY SO(10)

GUT models have been studied in refs. [11]–[37]). In the model, the 16 matter fields have

Yukawa couplings with the 10,126,120 fields, which provide the quark and lepton Yukawa

couplings and Majorana mass of the singlet neutrinos. Note that the Yukawa couplings

with the 10,126,120 fields are most general, since 16 × 16 = 10 + 126 + 120 and they

are the only allowed renormalizable couplings involving a pair of 16 matter fields.

In the main body of the paper, we identify those components of the Yukawa coupling

matrices that are involved in dimension-five proton decay and that can be on the order

of the up quark Yukawa coupling without contradicting that they give the realistic quark

and lepton Yukawa couplings. Here the up quark Yukawa coupling is considered as the

smallest scale of the components of the Yukawa coupling matrices because it is a specially

small Yukawa coupling in the SUSY SO(10) GUT where tanβ ∼ 50. That the components

identified above be on the order of the up quark Yukawa coupling, is the desired conditions

for a texture suppressing dimension-five proton decay. Next, we obtain specific Yukawa

coupling matrices satisfying these conditions, by fitting the experimental data of quark and

lepton masses and flavor mixings with the Yukawa coupling matrices of the 10,126,120

fields under the constraint that the components identified above be on the order of the

up quark Yukawa coupling. Then we calculate proton partial lifetimes from these Yukawa

coupling matrices, and compare them with those calculated from Yukawa coupling matrices

that do not necessarily satisfy the conditions. Thereby we evaluate how dimension-five

proton decay is suppressed owing to the conditions.

Previously, suppression of dimension-five proton decay by a texture of the Yukawa

coupling matrices in the SUSY SO(10) GUT has been studied in refs. [23, 25, 37]. Those

papers deal with the case when the active neutrino mass is dominated by the contribution

of the Type-2 seesaw mechanism coming from a tiny VEV of the SU(2)L-triplet component

of the 126 field. However, the dominance of the Type-2 seesaw contribution is not a general

situation, since it requires a fine-tuning of a mass term, coupling constants and VEVs of

GUT-breaking fields [37, 38] so as not to spoil the gauge coupling unification. Thus, the

present paper considers the case when the active neutrino mass is generated solely by the

Type-1 seesaw mechanism, with singlet neutrinos coming from the 16 matter fields and

their Majorana mass from the GUT-breaking VEV of the 126 field.

This paper is organized as follows: in section 2, we review the general renormalizable

SUSY SO(10) GUT model containing 10 + 126 + 126 + 120 fields, and write the formulas

for partial widths of dimension-five proton decay. In section 3, we derive conditions for a
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texture of the Yukawa coupling matrices suppressing dimension-five proton decay. It will

turn out that not only the texture of the Yukawa coupling matrices, but also a certain

texture of the colored Higgs mass matrix is needed to suppress dimension-five proton de-

cay. The latter texture is studied in section 4. In section 5, we numerically obtain specific

Yukawa coupling matrices satisfying the conditions found in section 3. We further calcu-

late proton partial lifetimes from them and evaluate how dimension-five proton decay is

suppressed when these conditions are met. Section 6 summarizes the paper.

2 General renormalizable SUSY SO(10) GUT model

2.1 Model description

We consider a SUSY SO(10) GUT model that contains single 10, single pair of 126 + 126,

single 120 fields, denoted by H,∆ + ∆,Σ, respectively. The matter fields of MSSM and a

singlet neutrino of each generation are unified into a 16 representation field, denoted by

16i with i being the flavor index. The Yukawa couplings are given by

W = (Ỹ10)ij 16iH16j + (Ỹ126)ij 16i∆16j + (Ỹ120)ij 16iΣ16j , (2.1)

where Ỹ10, Ỹ126, Ỹ120 are Yukawa coupling matrices in the flavor space, and Ỹ10, Ỹ126 are

complex symmetric and Ỹ120 is complex antisymmetric. The quark and lepton Yukawa

couplings are assumed to arise solely from eq. (2.1).

Additionally, we introduce single 210 and single 45 fields, denoted by Φ, A, respec-

tively. The Φ, A develop vacuum expectation values (VEVs) to break SU(5) subgroup of

the SO(10) while ∆ + ∆ develop VEVs to break U(1) subgroup.

When the SO(10) is broken into the SM gauge groups SU(3)C × SU(2)L × U(1)Y ,

the (1,2,±1
2) components of H,∆,∆,Σ,Φ yield the Higgs fields of MSSM. Accordingly,

Ỹ10, Ỹ126, Ỹ120 give the up-type quark, down-type quark, charged lepton and neutrino Dirac

Yukawa coupling matrices, Yu, Yd, Ye, YD, as

Weff = (Yu)ij QiHuU
c
j + (Yd)ij QiHdD

c
j + (Ye)ij LiHdE

c
j + (YD)ij LiHuN

c
j , (2.2)

where the Yukawa coupling matrices satisfy at a GUT breaking scale µGUT the following

relations:

Yu = Y10 + r2 Y126 + r3 Y120, (2.3)

Yd = r1 (Y10 + Y126 + Y120) , (2.4)

Ye = r1 (Y10 − 3Y126 + re Y120) , (2.5)

YD = Y10 − 3r2 Y126 + rD Y120, (2.6)

where Y10 ∝ Ỹ10, Y126 ∝ Ỹ126, Y120 ∝ Ỹ120, and r1, r2, r3, re, rD are complex numbers

determined from the mass matrix of the (1,2,±1
2) components. Hereafter we perform a

phase redefinition of fields to make r1 real positive.

The GUT-breaking VEV of ∆, denoted by vR, provides the singlet neutrinos with

Majorana mass as

WMajorana =
1

2
(MN )ij N

c
i N

c
j , MN ∝ Ỹ126 vR. (2.7)
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Integrating out N c
i ’s, we get the Weinberg operator

Weff =
1

2
(Cν)ij LiHuLjHu, (2.8)

where the Wilson coefficient Cν satisfies at the scale of the singular values of MN ,

Cν = −YDM
−1
N Y T

D . (2.9)

Eq. (2.8) gives rise to the Type-1 seesaw contribution to the active neutrino mass. In this

paper, we assume that the VEV of the (1,3, 1) component of ∆ is so small that the Type-2

seesaw contribution is negligible compared to the Type-1 seesaw one.

2.2 Dimension-five proton decay

The (3,1,−1
3) + (3,1, 1

3) components of H, ∆, ∆, Σ, Φ, which we call colored Higgs fields

and denote by HA
C , H

B
C (A,B are labels), induce dimension-five operators responsible for

proton decay. After the GUT breaking, the colored Higgs fields have GUT-scale mass MHC

and Yukawa couplings with matter fields as

WcoloredHiggs=
∑

A,B

H
A
C(MHC

)ABH
B
C (2.10)

+
∑

A

1

2
(Y A

L )ijQiH
A
CQj+(Y

A
L)ijQiH

A
CLj+(Y A

R )ijE
c
iH

A
CU

c
j +(Y

A
R)ijU

c
i H

A
CD

c
j .

Here Y A
L , Y

A
L , Y

A
R , Y

A
R ∝ Y10 whenHA

C , H
A
C are components ofH, and they are proportional

to Y126 when HA
C , H

A
C are components of ∆. When HA

C , H
A
C are components of Σ, Yukawa

couplings Y
A
L , Y

A
R , Y

A
R are proportional to Y120 while Y A

L vanishes because Y A
L must be

symmetric. In the other cases, all the Yukawa couplings vanish. By integrating out the

colored Higgs fields, we obtain dimension-five operators responsible for proton decay

W5 = −1

2
Cijkl

5L (QkQl)(QiLj) − Cijkl
5R Ec

kU
c
l U

c
i D

c
j , (2.11)

where isospin indices are summed in each bracket in the first term. The Wilson coefficients

satisfy at the scale of the singular values of MHC
,

Cijkl
5L =

∑

A,B

(M−1
HC

)AB

{
(Y A

L )kl(Y
B
L )ij − 1

2
(Y A

L )li(Y
B
L )kj − 1

2
(Y A

L )ik(Y
B
L )lj

}
, (2.12)

Cijkl
5R =

∑

A,B

(M−1
HC

)AB

{
(Y A

R )kl(Y
B
R)ij − (Y A

R )ki(Y
B
R)lj

}
. (2.13)

We write the partial widths of the p → K+ν̄τ , p → K+ν̄µ, p → K+ν̄e, p → K0µ+, p →
K0e+ decays induced by dimension-five operators (other decay modes will be commented

on in the last paragraph of section 3). The partial widths read, for β = e, µ, [39]

Γ(p → K+ν̄τ ) =
mN

64π

(
1−

m2
K

m2
N

)2 ∣∣∣∣βH(µhad)
1

fπ

{(
1+

D

3
+F

)
Csτ ud

LL (µhad)+
2D

3
Cdτ us

LL (µhad)
}

+αH(µhad)
1

fπ

{(
1+

D

3
+F

)
Cud τs

RL (µhad)+
2D

3
Cus τd

RL (µhad)
}∣∣∣∣

2

, (2.14)
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Γ(p → K+ν̄β) =
mN

64π

(
1−

m2
K

m2
N

)2 ∣∣∣∣βH(µhad)
1

fπ

{(
1+

D

3
+F

)
Csβ ud

LL (µhad)+
2D

3
Cdβ us

LL (µhad)
}∣∣∣∣

2

, (2.15)

Γ(p → K0β+) =
mN

64π

(
1−

m2
K

m2
N

)2 ∣∣∣∣βH(µhad)
1

fπ

(1−D +F )C
uβ us

LL (µhad)

∣∣∣∣
2

, (2.16)

where the Wilson coefficients of dimension-six operators CRL, CLL, CLL satisfy,1 for α =

e, µ, τ ,

Cud τs
RL (µhad) = ARL(µhad, µSUSY)

µH

m2
t̃R

1

16π2
F ′(V ckm

ts )∗ ytyτ C
udτt
5R |µ=µSUSY

, (2.17)

Cus τd
RL (µhad) = ARL(µhad, µSUSY)

µH

m2
t̃R

1

16π2
F ′(V ckm

td )∗ ytyτ C
usτt
5R |µ=µSUSY

(2.18)

Csα ud
LL (µhad) = ALL(µhad, µSUSY)

M
W̃

m2
q̃

1

16π2
F g2

2

(
Csα ud

5L − Cuα ds
5L

)
|µ=µSUSY

, (2.19)

Cdα us
LL (µhad) = ALL(µhad, µSUSY)

M
W̃

m2
q̃

1

16π2
F g2

2

(
Cdα us

5L − Cuα ds
5L

)
|µ=µSUSY

, (2.20)

C
uβ us
LL (µhad) = ALL(µhad, µSUSY)

M
W̃

m2
q̃

1

16π2
F g2

2

(
−Cuβ us

5L + Csβ uu
5L

)
|µ=µSUSY

, (2.21)

and the Wilson coefficients of dimension-five operators satisfy

Cudτt
5R (µSUSY) = Aτt

R (µSUSY,µGUT)
∑

A,B

(M−1

HC
)AB

{
(Y A

R )τt(Y
B

R)ud −(Y A
R )τu(Y

B

R)td

}∣∣∣
µ=µGUT

, (2.22)

Cusτt
5R (µSUSY) = Aτt

R (µSUSY,µGUT)
∑

A,B

(M−1

HC
)AB

{
(Y A

R )τt(Y
B

R)us −(Y A
R )τu(Y

B

R)ts

}∣∣∣
µ=µGUT

, (2.23)

Csα ud
5L (µSUSY)−Cuα ds

5L (µSUSY)

= Aα
L(µSUSY,µGUT)

∑

A,B

(M−1

HC
)AB

3

2

{
(Y A

L )ud(Y
B

L )sα −(Y A
L )ds(Y

B

L )uα

}∣∣∣
µ=µGUT

, (2.24)

Cdα us
5L (µSUSY)−Cuα ds

5L (µSUSY)

= Aα
L(µSUSY,µGUT)

∑

A,B

(M−1

HC
)AB

3

2

{
(Y A

L )us(Y
B

L )dα −(Y A
L )ds(Y

B

L )uα

}∣∣∣
µ=µGUT

, (2.25)

Cuβ us
5L (µSUSY)−Csβ uu

5L (µSUSY)

= Aβ
L(µSUSY,µGUT)

∑

A,B

(M−1

HC
)AB

3

2

{
(Y A

L )us(Y
B

L )uβ −(Y A
L )uu(Y

B

L )sβ

}∣∣∣
µ=µGUT

, (2.26)

where µhad denotes a hadronic scale, µSUSY a soft SUSY breaking scale and µGUT a

GUT- breaking scale. Here αH , βH denote the hadronic matrix elements, D,F are pa-

rameters of the baryon chiral Lagrangian, and CLL, CLL, CRL are the Wilson coeffi-

cients of the effective Lagrangian where the SUSY particles are integrated out, −L6 =

Cijkl
LL (ψuLkψdLl)(ψdLiψνLj)+C

ijkl
LL (ψuLkψdLl)(ψuLiψeLj)+Cijkl

RL (ψνLkψdLl)(ψuc
R

iψdc
R

j) (ψ de-

note SM Weyl spinors, and spinor indices are summed in each bracket). In eqs. (2.17)–

(2.21), yt, yτ , g2 denote the top quark Yukawa, tau lepton Yukawa and weak gauge couplings

1By writing Csα ud
5L , we mean that Qi is in the flavor basis where the down-type quark Yukawa coupling

is diagonalized and that the down-type quark component of Qi is exactly s quark. Likewise, Qk is in the

flavor basis where the up-type quark Yukawa coupling is diagonalized and its up-type component is exactly

u quark, and Ql is in the flavor basis where the down-type quark Yukawa coupling is diagonalized and its

down-type quark component is exactly d quark. The same rule applies to other Wilson coefficients.
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in MSSM, respectively, and V ckm
ij denotes (i, j)-component of CKM matrix. F ′,F are loop

functions defined as F ′ = 1
x−y

( x
1−x

log x− y
1−y

log y) and F = 1
z−w

( z
1−z

log z− w
1−w

logw) +
1

z−1( z
1−z

log z + 1), where x = |µH |2/m2
t̃R

, y = m2
τ̃R
/m2

t̃R
, z = |M

W̃
|2/m2

q̃ , w = m2
ℓ̃α
/m2

q̃ ,

and µH ,mt̃R
,mτ̃R

,M
W̃
,mℓ̃α

,mq̃ denote the pole masses of Higgsinos, isospin-singlet top

squark, isospin-singlet tau slepton, Winos, isospin-doublet slepton of flavor α, and 1st and

2nd generation isospin-doublet squarks, respectively. ALL, ARL account for corrections

from renormalization group (RG) evolutions in SM from scale µSUSY to µhad. Here RG

corrections involving SM Yukawa couplings other than the top quark one are neglected and

thus ALL, ARL are flavor-universal. Aτt
R , A

α
L account for corrections from RG evolutions in

MSSM from scale µGUT to µSUSY.

We rewrite the flavor-dependent part of eqs. (2.22)–(2.26) with the GUT Yukawa

coupling matrices Y10, Y126, Y120 as (α = e, µ, τ ; β = e, µ)

∑

A,B

(M−1

HC
)AB

{
(Y A

R )τt(Y
B

R)ud −(Y A
R )τu(Y

B

R)td

}

=
1

MHC

[a{(Y10)τRtR
(Y10)uRdR

−(Y10)τRuR
(Y10)tRdR

}+b{(Y10)τRtR
(Y126)uRdR

−(Y10)τRuR
(Y126)tRdR

}

+c{(Y10)τRtR
(Y120)uRdR

−(Y10)τRuR
(Y120)tRdR

}

+d{(Y126)τRtR
(Y10)uRdR

−(Y126)τRuR
(Y10)tRdR

}+e{(Y126)τRtR
(Y126)uRdR

−(Y126)τRuR
(Y126)tRdR

}

+f {(Y126)τRtR
(Y120)uRdR

−(Y126)τRuR
(Y120)tRdR

}

+g {(Y120)τRtR
(Y10)uRdR

−(Y120)τRuR
(Y10)tRdR

}+h{(Y120)τRtR
(Y126)uRdR

−(Y120)τRuR
(Y126)tRdR

}

+j {(Y120)τRtR
(Y120)uRdR

−(Y120)τRuR
(Y120)tRdR

}] , (2.27)
∑

A,B

(M−1

HC
)AB

{
(Y A

R )τt(Y
B

R)us −(Y A
R )τu(Y

B

R)ts

}
= (Above expression with exchange dR ↔ sR), (2.28)

∑

A,B

(M−1

HC
)AB

{
(Y A

L )ud(Y
B

L )sα −(Y A
L )ds(Y

B

L )uα

}

=
1

MHC

[a{(Y10)uLdL
(Y10)sLαL

−(Y10)dLsL
(Y10)uLαL

}+b{(Y10)uLdL
(Y126)sLαL

−(Y10)dLsL
(Y126)uLαL

}

+c{(Y10)uLdL
(Y120)sLαL

−(Y10)dLsL
(Y120)uLαL

}

+d{(Y126)uLdL
(Y10)sLαL

−(Y126)dLsL
(Y10)uLαL

}+e{(Y126)uLdL
(Y126)sLαL

−(Y126)dLsL
(Y126)uLαL

}

+f {(Y126)uLdL
(Y120)sLαL

−(Y126)dLsL
(Y120)uLαL

}] , (2.29)
∑

A,B

(M−1

HC
)AB

{
(Y A

L )us(Y
B

L )dα −(Y A
L )ds(Y

B

L )uα

}
= (Above expression with exchange dL ↔ sL), (2.30)

∑

A,B

(M−1

HC
)AB

{
(Y A

L )us(Y
B

L )uβ −(Y A
L )uu(Y

B

L )sβ

}

=
1

MHC

[a{(Y10)uLsL
(Y10)uLβL

−(Y10)uLuL
(Y10)sLβL

}+b{(Y10)uLsL
(Y126)uLβL

−(Y10)uLuL
(Y126)sLβL

}

+c{(Y10)uLsL
(Y120)uLβL

−(Y10)uLuL
(Y120)sLβL

}

+d{(Y126)uLsL
(Y10)uLβL

−(Y126)uLuL
(Y10)sLβL

}+e{(Y126)uLsL
(Y126)uLβL

−(Y126)uLuL
(Y126)sLβL

}

+f {(Y126)uLsL
(Y120)uLβL

−(Y126)uLuL
(Y120)sLβL

}] , (2.31)

where MHC
is the scale of the singular values of MHC

, and a, b, c, d, e, f, g, h, j are O(1)

numbers determined from MHC
as ref. [40]–[45]. Here (Y10)τRtR

denotes the component of

Y10 in the term (Y10)ij ΨiHΨj that involves the right-handed tau lepton component of Ψi

and the right-handed top quark component of Ψj . Other symbols are defined analogously.
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3 Conditions for a texture of the Yukawa coupling matrices suppressing

dimension-five proton decay

We identify those components of the Yukawa coupling matrices Y10, Y126, Y120 that are

involved in dimension-five proton decay, namely, appear in eqs. (2.27)–(2.31), and that can

be on the order of the up quark Yukawa coupling yu. Here the up quark Yukawa coupling is

considered as the smallest scale of the components of the Yukawa coupling matrices because

it is a specially small Yukawa coupling in the SUSY SO(10) GUT where tan β ∼ 50. That

the components identified above be on the order of the up quark Yukawa coupling, is the

desired conditions for a texture suppressing dimension-five proton decay.

• We focus on the first term in each {. . . } of eqs. (2.27), (2.28). Components (Y10)τRtR

and (Y126)τRtR
are almost (3, 3)-components of the symmetric matrices Y10, Y126 and

hence always on the order of the top quark Yukawa coupling yt. For other compo-

nents, at most two of (Y10)uRdR
, (Y126)uRdR

, (Y120)uRdR
and at most two of (Y10)uRsR

,

(Y126)uRsR
, (Y120)uRsR

can be on the order of the up quark Yukawa coupling yu.

However, all of them cannot be so because of the following equalities that result from

eq. (2.4):

(Y10)uRdR
+ (Y126)uRdR

+ (Y120)uRdR
=

1

r1
(Yd)uRdR

(3.1)

≃ yt

yb
yd × (dL-uR part of the mixing matrix),

(Y10)uRsR
+ (Y126)uRsR

+ (Y120)uRsR
=

1

r1
(Yd)uRsR

(3.2)

≃ yt

yb
ys × (sL-uR part of the mixing matrix),

where r1 is estimated to be yb/yt so that the ratio of the top and bottom quark Yukawa

couplings is reproduced. dL-uR part of the mixing matrix is estimated to be about 1

and we get (Y10)uRdR
+(Y126)uRdR

+(Y120)uRdR
≃ yt

yb
yd, which is much greater than yu.

Also, sL-uR part of the mixing matrix is estimated to be the Cabibbo angle λ = 0.22

and hence we get (Y10)uRsR
+ (Y126)uRsR

+ (Y120)uRsR
≃ 0.22 × yt

yb
ys, which is much

greater than yu. Therefore, to make the entire eqs. (2.27), (2.28) proportional to yu,

we have to tune the colored Higgs mass matrix such that some of a, b, c, d, e, f, g, h, j

are much smaller than 1. The most economical choice is to tune the colored Higgs

mass matrix to make

c = f = 0 (3.3)

and at the same time consider the following texture:

(Y10)uRdR
= O(yu), (Y126)uRdR

= O(yu), (Y120)uRdR
≃ yt

yb
yd, (3.4)

(Y10)uRsR
= O(yu), (Y126)uRsR

= O(yu), (Y120)uRsR
≃ 0.22 × yt

yb
ys. (3.5)

The terms j(Y120)τRtR
(Y120)uRdR

and j(Y120)τRtR
(Y120)uRsR

appear to be not propor-

tional to yu. However, since Y120 is antisymmetric in the flavor space, (Y120)τRtR
,
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being a nearly diagonal component, is so small that the above terms are suppressed

compared to the other remaining terms. Note that (Y120)τRtR
is not exactly 0 because

the flavor basis of the isospin-singlet charged leptons (eR, µR, τR) is not identical with

that of the isospin-singlet up-type quarks (uR, cR, tR). However, these flavor bases

are close and thus (Y120)τRtR
is suppressed.

• We focus on the second term in each {. . . } of eq. (2.27). Each term is estimated

to be sin2 θckm
13 y2

t (θckm
13 is the (1, 3)-mixing angle of CKM matrix), since each term

contains two 1st-3rd generation flavor mixings. The value of sin2 θckm
13 y2

t is numeri-

cally close to yu yt. Thus, these terms are always on the same order as first terms

(Y10)τRtR
(Y10)uRdR

, (Y10)τRtR
(Y126)uRsR

, (Y126)τRtR
(Y10)uRdR

, (Y126)τRtR
(Y126)uRsR

with the texture of eq. (3.4).

Likewise the second term in each {. . . } of eq. (2.28) is estimated to be

sin θckm
13 sin θckm

23 y2
t . These terms contribute to the proton decay amplitude al-

ways by a similar amount to the second terms in {. . . }’s of eq. (2.27) because

they enter the proton decay amplitude in the form V ckm
ts (YA)τRuR

(YB)tRdR
and

V ckm
td (YA)τRuR

(YB)tRsR
and the CKM matrix components satisfy |V ckm

ts | ∼ sin θckm
23

and |V ckm
td | ∼ sin θckm

13 .

• We proceed to eqs. (2.29), (2.30). It is impossible to suppress (YA)sLαL
, (YA)dLαL

,

(YA)uLαL
for all flavors α = e, µ, τ to the order of yu. Therefore, we do not consider

a texture where some of them are O(yu). For other components, at least one of

(Y10)uLsL
, (Y10)dLsL

, (Y126)uLsL
, (Y126)dLsL

is on the order of |V ckm
cd | yt

yb
ys because of

two equalities below,

(Y10)sLcL
+(Y126)sLcL

+(Y120)sLcL
≃ yt

yb

ys×(cL-sR part of the mixing matrix), (3.6)

(Y10)dLsL
+(Y126)dLsL

−V ckm
ud {(Y10)uLsL

+(Y126)uLsL
}

=V ckm
cd {(Y10)cLsL

+(Y126)cLsL
}+V ckm

td {(Y10)tLsL
+(Y126)tLsL

}, (3.7)

and by the facts that cL-sR part of the mixing matrix is about 1 because cL and

sR are 2nd generation flavors, and that (Y120)sLcL
is suppressed compared to

(Y10)cLsL
, (Y126)cLsL

because it is nearly (2, 2)-component of the antisymmetric ma-

trix Y120.2 As a result, at least one of (Y10)uLsL
, (Y10)dLsL

, (Y126)uLsL
, (Y126)dLsL

cannot be on the order of yu. Still, it is possible to make the entire eqs. (2.29), (2.30)

proportional to yu by tuning the colored Higgs mass matrix such that a, b, d, e satisfy

a (Y10)dLsL
+ d (Y126)dLsL

= 0, b (Y10)dLsL
+ e (Y126)dLsL

= 0 (3.8)

and at the same time considering the following texture:

(Y10)uLsL
= O(yu), (Y126)uLsL

= O(yu). (3.9)

2The situation that the term V ckm
td {(Y10)tLsL

+ (Y126)tLsL
} cancels the term

V ckm
cd {(Y10)cLsL

+ (Y126)cLsL
} is incompatible with the correct quark Yukawa couplings.
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• Finally, we focus on eq. (2.31). The only components that do not appear in

eqs. (2.29), (2.30) are (Y10)uLuL
, (Y126)uLuL

, and there is no obstacle in consider-

ing the following texture:

(Y10)uLuL
= O(yu), (Y126)uLuL

= O(yu). (3.10)

To summarize, dimension-five proton decay is suppressed if the components below are

all on the order of the up quark Yukawa coupling yu,

(Y10)uRdR
, (Y126)uRdR

, (Y10)uRsR
, (Y126)uRsR

,

(Y10)uLdL
, (Y126)uLdL

, (Y10)uLsL
, (Y126)uLsL

, (Y10)uLuL
, (Y126)uLuL

, (3.11)

and at the same time the colored Higgs mass matrix is tuned such that a, b, c, d, e, f, g, h, j

in eqs. (2.27)–(2.31) satisfy

c = f = 0, (3.12)

a (Y10)dLsL
+ d (Y126)dLsL

= 0, b (Y10)dLsL
+ e (Y126)dLsL

= 0. (3.13)

That the components of eq. (3.11) be on the order of the up quark Yukawa coupling, is the

desired conditions for a texture of the Yukawa coupling matrices suppressing dimension-five

proton decay.

For reference, below we summarize the estimates on crucial Yukawa coupling compo-

nents involved in dimension-five proton decay other than eq. (3.11),

(Y10)τRtR
∼ (Y126)τRtR

∼ yt, (Y120)τRtR
≪ yt,

(Y120)uRdR
∼ yt

yb
yd, (Y120)uRsR

∼ λ
yt

yb
ys,

(YA)τRuR
∼ (YA)tRdR

∼ yt sin θckm
13 for A = 10, 126, 120,

(Y10)dLsL
∼ (Y126)dLsL

∼ λ
yt

yb
ys, (3.14)

where λ = 0.22 and sin θckm
13 = 0.004.

We comment on nucleon decay modes other than eqs. (2.14)–(2.16). The partial widths

of the N → πβ+ and p → ηβ+ decays (β = e, µ) involve the same Yukawa coupling

components as the p → K0β+ except that sL is replaced by dL. Hence, once we consider

the texture where (Y10)uLuL
, (Y126)uLuL

are on the order of the up quark Yukawa coupling,

the N → πβ+ and p → ηβ+ decays are also suppressed. Constraints on the rest of the

decay modes are relatively weak [46] and are not in tension with the SUSY SO(10) GUT.

4 Texture of the colored Higgs mass matrix

We present a texture of the colored Higgs mass matrix that gives c = f = 0 and a/d = b/e.

Here a/d = b/e is a necessary condition for eq. (3.13). We utilize the result of ref. [42],

and use the same notation of fields, coupling constants and VEVs except that 120 field is

written as Σ in our paper. The definitions of the couplings, coupling constants and masses

are summarized in appendix A.
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The desired texture of the colored Higgs mass matrix is obtained from the following

relations of the coupling constants and VEVs:

λ18 = 0, λ20 = 0,
λ21

λ19
= 3

λ17

λ16
,

i A1 = −1

6

λ21

λ19
Φ3, i A2 = −

√
3

6

λ21

λ19
Φ2. (4.1)

The above relations are obtained by fine-tuning, which is natural at the quan-

tum level thanks to the non-renormalization theorem. The VEV configuration of

eq. (4.1) can be consistent with the F -flatness conditions of the six SM-gauge-

singlet components Φ1,Φ2,Φ3, A1, A2, vR when six model parameters, for example

λ5/λ2, λ6/λ2, λ7/λ2, m1,m2,m4, are tuned appropriately.

When eq. (4.1) holds, the colored Higgs mass matrix has the following texture:

WcoloredHiggs ⊃
(
H(3,1, 1

3
) ∆

(3,1, 1

3
)

(6,1,1) ∆
(3,1, 1

3
)

(6,1,1) ∆
(3,1, 1

3
)

(10,1,3)
Φ(3,1, 1

3
) Σ

(3,1, 1

3
)

(6,1,3) Σ
(3,1, 1

3
)

(10,1,1)

)
MHC




H(3,1,− 1

3
)

∆
(3,1,− 1

3
)

(6,1,1)

∆
(3,1,− 1

3
)

(6,1,1)

∆
(3,1,− 1

3
)

(10,1,3)

Φ(3,1,− 1

3
)

Σ
(3,1,− 1

3
)

(6,1,3)

Σ
(3,1,− 1

3
)

(10,1,1)




,

(4.2)

where

MHC
=




m3
λ3Φ2√

30
− λ3Φ1√

10
− λ4Φ1√

10
− λ4Φ2√

30
−

√
2

15λ4Φ3
λ4vR√

5
0 0

λ4Φ2√
30

− λ4Φ1√
10

m2 + iλ21

λ19

λ6Φ2

30
√

2
0 0 0 0 0

− λ3Φ1√
10

− λ3Φ2√
30

0 m2 − iλ21

λ19

λ6Φ2

30
√

2
λ2Φ3

15
√

2
− λ2vR

10
√

3
0 0

−
√

2
15λ3Φ3 0 λ2Φ3

15
√

2
m66 − λ2vR

5
√

6
0 0

λ3vR√
5

0 − λ2vR

10
√

3
− λ2vR

5
√

6
m77 0 0

−λ17
Φ3√

3
0 λ21

Φ3

6
√

5
λ21

Φ2

3
√

5
λ21vR

2
√

15
m22

2λ15Φ3

9

−
√

2
3λ17Φ2 0 λ21

Φ2

3
√

10
λ21

Φ3

3
√

10
λ21vR

2
√

15
2λ15Φ3

9 m33




(4.3)

m66 =m2 +λ2

(
Φ1

10
√

6
+

Φ2

30
√

2

)
− i

λ21

λ19

λ6Φ2

30
√

2
(4.4)

m77 =m1 +λ1

(
Φ1√

6
+

Φ2

3
√

2
+

2Φ3

3

)
− i

λ21

λ19

√
2λ7Φ2

15
(4.5)

m22 =m6 +
1

3

√
2

3
λ15Φ1 (4.6)

m33 =m6 +

√
2

9
λ15Φ2. (4.7)

The dimension-five operators responsible for proton decay eq. (2.11) satisfy at the scale of
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the colored Higgs mass,

W5 = −
(
(Ỹ10)ij 0 (Ỹ126)ij (Ỹ126)ij 0 (Ỹ120)ij (Ỹ120)ij

)
M−1

HC




(Ỹ10)kl

(Ỹ126)kl

0

0

0

(Ỹ120)kl

(Ỹ120)kl




Ec
iU

c
jU

c
kD

c
l

−
(
(Ỹ10)ij 0 (Ỹ126)ij (Ỹ126)ij 0 0 0

)
M−1

HC




(Ỹ10)kl

(Ỹ126)kl

0

0

0

(Ỹ120)kl

(Ỹ120)kl




(QiQj)(QkLl), (4.8)

where the inverse of the colored Higgs mass M−1
HC

has the following properties resulting

from eq. (4.3):

• The upper-right 5 × 2 part of M−1
HC

is zero because the upper-right 5 × 2 part of

MHC
is zero. Thus, the coefficients proportional to (Ỹ10)ij(Ỹ120)kl or (Ỹ126)ij(Ỹ120)kl

are zero, namely, we get c = f = 0 in eqs. (2.27)–(2.31).

• The upper-left 5 × 5 part of M−1
HC

is given by the inverse of the upper-left 5 × 5

part of MHC
, since the upper-right 5 × 2 part of MHC

is zero. Then the equalities

(MHC
)32 = (MHC

)42 = (MHC
)52 = 0 lead to the relation (M−1

HC
)11 : (M−1

HC
)31 :

(M−1
HC

)41 = (M−1
HC

)12 : (M−1
HC

)32 : (M−1
HC

)42. Since the coefficients proportional to

(Ỹ10)ij(Ỹ10)kl, (Ỹ10)ij(Ỹ126)kl, (Ỹ126)ij(Ỹ10)kl or (Ỹ126)ij(Ỹ126)kl are given by

(M−1
HC

)11 (Ỹ10)ij(Ỹ10)kl +
{

(M−1
HC

)31 + (M−1
HC

)41

}
(Ỹ126)ij(Ỹ10)kl

+ (M−1
HC

)12 (Ỹ10)ij(Ỹ126)kl +
{

(M−1
HC

)32 + (M−1
HC

)42

}
(Ỹ126)ij(Ỹ126)kl, (4.9)

the equality (M−1
HC

)11/
{

(M−1
HC

)31 + (M−1
HC

)41

}
=

(M−1
HC

)12/
{

(M−1
HC

)32 + (M−1
HC

)42

}
leads to the desired relation a/d = b/e in

eqs. (2.27)–(2.31).

We still have to check that eq. (4.1) is consistent with the situation that a/d satis-

fies a (Y10)dLsL
+ d (Y126)dLsL

= 0, that only one pair of (1, 2, ±1
2) fields (corresponding

to the MSSM Higgs fields) have almost zero mass compared to the GUT scale, and that

r1, r2, r3, re, rD take values that reproduce the realistic quark and lepton masses and fla-

vor mixings. With eq. (4.1), and with the tuning of λ5/λ2, λ6/λ2, λ7/λ2, m1,m2,m4 to

satisfy the F -flatness conditions, the colored Higgs mass matrix and the mass matrix of

the (1,2,±1
2) components still have free parameters Φ1,Φ2,Φ3, vR, m3, λ21/λ19, λ21/λ2,

λ1/λ2, λ3/λ2, λ4/λ2, λ15/λ2, λ17/λ2. These free parameters are sufficient to make one pair

of (1, 2, ±1
2) fields nearly massless and realize any values of a/d, r1, r2, r3, re, rD.
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5 Yukawa coupling matrices satisfying the conditions

5.1 Procedures of the analysis

We will obtain specific Yukawa coupling matrices Y10, Y126, Y120 which give the realistic

quark and lepton masses and flavor mixings and which satisfy the conditions found in

section 3 that the components of eq. (3.11) be on the order of the up quark Yukawa coupling

yu. To this end, we fit the experimental values of the quark and lepton masses and flavor

mixings with Y10, Y126, Y120 and numbers r1, r2, r3, re, rD based on eqs. (2.3)–(2.9) and at

the same time minimize the following quantity:

1

y2
u

∑

A=10,126

|(YA)uRdR
|2 + |(YA)uRsR

|2 + |(YA)uLdL
|2 + |(YA)uLsL

|2 + |(YA)uLuL
|2 . (5.1)

The procedures are as follows: we adopt the following experimental values of the quark

and charged lepton masses, quark flavor mixings and gauge coupling constants: we use

the results of lattice calculations of the individual up and down quark masses, the strange

quark mass, the charm quark mass and the bottom quark mass in MS scheme reviewed

in ref. [47], which read mu(2 GeV) = 2.14(8) MeV, md(2 GeV) = 4.70(5) MeV [48, 49],

ms(2 GeV) = 93.40(57) MeV [48, 50–52], mc(3 GeV) = 0.988(11) GeV [48, 50, 52–54],

mb(mb) = 4.203(11) GeV [48, 52, 55–58]. We use the top quark pole mass measured by CMS

in ref. [59], which reads Mt = 170.5(8) GeV. We calculate the CKM mixing angles and CP

phase from the Wolfenstein parameters in ref. [60]. The lepton pole masses and W , Z, Higgs

boson pole masses are taken from Particle Data Group [46], and the QCD and QED gauge

coupling constants in 5-quark-flavor QCD×QED theory are fixed as α
(5)
s (MZ) = 0.1181

and α(5)(MZ) = 1/127.95. The above data are translated into the values of the quark and

lepton Yukawa coupling matrices and gauge coupling constants at scale µ = MZ in MS

scheme with the help of the code [61] based on refs. [62]–[68].

We calculate the two-loop RG equations [69]–[71] of SM from scale µ = MZ to the soft

SUSY breaking scale µSUSY. The results are matched to the Yukawa coupling matrices and

gauge couplings of MSSM in DR scheme. Here the one-loop threshold corrections of SUSY

particles, which are important for the down-type quark and charged lepton Yukawa cou-

plings as tan β is large, are included as ref. [72]. Then we calculate the two-loop RG equa-

tions of MSSM from scale µSUSY to the GUT scale µGUT. We assume a degenerate SUSY

particle mass spectrum where the pole masses of SUSY particles and tan β are given by

msfermion = mH0 = mH± = mA = 1500 TeV,

|Mg̃| = |M
W̃

| = |µH | = 1500 TeV, tan β = 50 (5.2)

and all the A-terms are 0. We set µSUSY = 1500 TeV and µGUT = 2·1016 GeV. The values of

the Yukawa coupling matrices at scale µ = µGUT are shown in table 1, in the form of the sin-

gular values of the matrices and the parameters of the CKM matrix at this scale. The errors

of the quark Yukawa couplings, propagated from the experimental errors of the correspond-

ing masses, and the maximal errors of the CKM parameters, obtained by assuming maximal

correlation of the experimental errors of the Wolfenstein parameters, are also displayed.
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Value with eq. (5.2)

yu 2.81(11)×10−6

yc 0.001433(16)

yt 0.4722(58)

yd 0.0003141(33)

ys 0.006243(38)

yb 0.3557(16)

ye 0.0001261

yµ 0.02662

yτ 0.5095

cos θckm
13 sin θckm

12 0.22500(24)

cos θckm
13 sin θckm

23 0.04171(70)

sin θckm
13 0.00367(20)

δkm (rad) 1.148(33)

Table 1. The singular values of the Yukawa coupling matrices and the CKM mixing angles and

CP phase in MSSM at µ = µGUT = 2 · 1016 GeV. Also shown are the errors of the quark Yukawa

couplings, propagated from the experimental errors of the corresponding masses, and the maximal

errors of the CKM parameters, obtained by assuming maximal correlation of the experimental

errors of the Wolfenstein parameters.

Also, we evaluate one-loop RG corrections to the Wilson coefficient of the Weinberg

operator. We write the Weinberg operator in MSSM as eq. (2.8) and that in SM as

−L = 1
2(C ′

ν)ij ψLi
ψLj

HH where ψLi
denote the lepton doublets and H the Higgs field. We

express the one-loop RG corrections in MSSM and SM as Cν(µ) = R(µ)Cν(µSUSY)RT (µ),

C ′

ν(µ) = R′(µ)C ′

ν(MZ)R′T (µ), respectively, and perform the matching as Cν(µSUSY) =

C ′

ν(µSUSY), since tan β ≫ 1. We solve the one-loop RG equations and calculate the product

of R(µGUT) and R′(µSUSY). Here we approximate the scale of the Majorana mass (MN )ij

to be µGUT. The product of R(µGUT) and R′(µSUSY) in the flavor basis where the lepton

doublets have a diagonal Yukawa coupling matrix, is calculated as

R(µGUT)R′(µSUSY) =




1.09 0 0

0 1.09 0

0 0 1.14


 . (5.3)

We fit the quark and charged lepton Yukawa couplings and the CKM parameters

at µ = µGUT in table 1 with the Yukawa coupling matrices Y10, Y126, Y120 and numbers

r1, r2, r3, re based on eqs. (2.3)–(2.5). Also, we calculate the neutrino mass matrix up to

the overall constant, which is proportional to C ′

ν(MZ), from Y10, Y126, Y120 and r2, rD using

eqs. (2.6)–(2.9), (5.3), and with it we fit the neutrino oscillation data in NuFIT 5.1 [73, 74].

Meanwhile, we minimize eq. (5.1).

We restrict the parameter space to the region with r3 = 0, since it is easier to minimize

eq. (5.1) when r3 = 0. This is because when r3 = 0, Yu = Y10 + r2Y126 holds and we get

|(Y10)uLi + r2(Y126)uLi| = |(Yu)uLi| ≤ yu and |(Y10)uRi + r2(Y126)uRi| = |(Yu)uRi| ≤ yu for
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any flavor index i. Under the restriction of r3 = 0, we parametrize the Yukawa coupling

matrices as follows: we go to the flavor basis where the isospin-doublet down-type quark

components of 16i matter fields have a diagonal Yukawa coupling matrix. Since Yu =

Y10 + r2Y126 is symmetric, Yu in this basis can be written as

Yu = V T
CKM



yu 0 0

0 yc e
2i d2 0

0 0 yt e
2i d3


VCKM, (5.4)

where VCKM denotes the CKM matrix and d2, d3 are undetermined phases. In the same

flavor basis, Yd can be written as

Yd =



yd 0 0

0 ys 0

0 0 yb


VdR, (5.5)

where VdR is an undetermined unitary matrix. From eqs. (2.3)–(2.6), Ye and YD are written

in terms of Yu, Yd as

1

r1
Ye = Yu − (3 + r2)Y126 + re

1

r1

1

2

(
Yd − Y T

d

)
, (5.6)

YD = Yu − 4r2Y126 + rD
1

r1

1

2

(
Yd − Y T

d

)
(5.7)

with

Y126 =
1

1 − r2

{
1

r1

1

2

(
Yd + Y T

d

)
− Yu

}
. (5.8)

The Majorana mass eq. (2.7) is found to satisfy

MN ∝ Y126. (5.9)

The analysis of fitting and minimization proceeds with the above parameterization as

follows: we fix yu, yc, yt and the parameters of the CKM matrix at the central values in

table 1. Then we randomly generate yd/r1, ys/r1, yb/r1, phases d2, d3, unitary matrix VdR,

and complex numbers r2, re, rD, and calculate the singular values of 1
r1
Ye. We determine

r1 by requiring that the smallest singular value of Ye equal the value of ye in table 1. Then

we require that the values of yd, ys, yb be within the 3σ ranges in table 1, and the first

and second largest singular values of Ye respectively be within ±0.1% ranges of the values

of yτ , yµ.3 Because the active neutrino mass matrix Mν is proportional to C ′

ν(MZ), we

calculate Mν up to the overall constant as

Mν ∝
(
R(µGUT)R′(µSUSY)

)
−1
YDY

−1
126Y

T
D

(
R(µGUT)R′(µSUSY)

)T −1
. (5.10)

Then we calculate from eq. (5.10) the three neutrino mixing angles sin2 θ12, sin2 θ23, sin2 θ13

and the ratio of the neutrino mass squared differences ∆m2
21/∆m

2
31, and require them to be

3Since the experimental errors of the charged lepton Yukawa couplings are negligibly small, here we

loosen the fitting criteria.
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within the 3σ ranges of NuFIT5.1 results (with SK atmospheric data). Here we assume the

normal mass hierarchy, because it is almost impossible to realize the inverted mass hierarchy

from YD, Y126 as these matrices have hierarchical structures. Finally, we select sets of values

of yd/r1, ys/r1, yb/r1, d2, d3, VdR, r2, re, rD that meet the above fitting criteria, calculate

eq. (5.1) from the sets, and minimize the value of eq. (5.1).

5.2 Result

From the analysis of section 5.1, we have obtained the values of the Yukawa coupling

matrices Y10, Y126, Y120 and numbers r1, r2, re, rD in appendix B. There, components of

Y10, Y126 satisfy

|(Y10)uRdR
|/yu = 1.4, |(Y126)uRdR

|/yu = 1.9, |(Y10)uRsR
|/yu = 2.0, |(Y126)uRsR

|/yu = 2.0,

|(Y10)uLdL
|/yu = 1.9, |(Y126)uLdL

|/yu = 1.8, |(Y10)uLsL
|/yu = 0.33, |(Y126)uLsL

|/yu = 0.34,

|(Y10)uLuL
|/yu = 0.45, |(Y126)uLuL

|/yu = 0.87. (5.11)

Clearly, the conditions that the components of eq. (3.11) be on the order of the up quark

Yukawa coupling are satisfied.

We evaluate how dimension-five proton decay is suppressed when the conditions are

met. To this end, we compare “minimal proton partial lifetimes” calculated from the

Yukawa coupling matrices of appendix B, with those calculated from results of “fitting

without minimizing eq. (5.1)” where we only fit the quark and charged lepton Yukawa

couplings, CKM parameters and neutrino oscillation data as section 5.1 but do not minimize

eq. (5.1) so that the conditions are not necessarily satisfied. Here the “minimal proton

partial lifetimes”, 1/Γmax(p → K+ν̄), 1/Γmax(p → K0µ+), 1/Γmax(p → K0e+), are defined

as (β = e, µ)

Γmax(p→K+ν̄) =
mN

64π

(
1−m2

K

m2
N

)2

(5.12)

×
(
|Amax(p→K+ν̄τ )|2 + |Amax(p→K+ν̄µ)|2 + |Amax(p→K+ν̄e)|2

)
,

Γmax(p→K0β+) =
mN

64π

(
1−m2

K

m2
N

)2

|Amax(p→K0β+)|2, (5.13)

where

Amax(p → K+ν̄τ ) = |Amax(p → K+ν̄τ )from C5R
| + |Amax(p → K+ν̄τ )from C5L

| (5.14)
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and

Amax(p→K+ν̄τ )from C5R
=αH(µhad)

1

fπ

ARL(µhad,µSUSY)
µH

m2

t̃R

1

16π2
F ′ytyτ Aτt

R (µSUSY,µGUT)
1

MHC

×max
A,B

{∣∣∣
(

1+
D

3
+F

)
(V ckm

ts )∗((YA)τRtR
(YB)uRdR

−(YA)τRuR
(YB)tRdR

)

+
2D

3
(V ckm

td )∗((YA)τRtR
(YB)uRsR

−(YA)τRuR
(YB)tRsR

)
∣∣∣
}

, (5.15)

Amax(p→K+ν̄τ )from C5L
=βH(µhad)

1

fπ

ALL(µhad,µSUSY)
M

W̃

m2
q̃

1

16π2
F g2

2 Aτ
L(µSUSY,µGUT)

1

MHC

× max
A′,B′

{∣∣∣
(

1+
D

3
+F

)
(YA′ )uLdL

(YB′ )sLτL
+

2D

3
(YA′ )uLsL

(YB′ )dLτL

∣∣∣
}

, (5.16)

Amax(p→K+ν̄β)=βH(µhad)
1

fπ

ALL(µhad,µSUSY)
M

W̃

m2
q̃

1

16π2
F g2

2 Aβ
L(µSUSY,µGUT)

1

MHC

× max
A′,B′

{∣∣∣
(

1+
D

3
+F

)
(YA′ )uLdL

(YB′ )sLβL
+

2D

3
(YA′ )uLsL

(YB′ )dLβL

∣∣∣
}

, (5.17)

Amax(p→K0β+)=βH(µhad)
1

fπ

ALL(µhad,µSUSY)
M

W̃

m2
q̃

1

16π2
F g2

2 Aβ
L(µSUSY,µGUT)

1

MHC

×(1−D+F ) max
A′,B′

{|(YA′ )uLsL
(YB′ )uLβL

−(YA′ )uLuL
(YB′ )sLβL

|}, (5.18)

where A,B in eq. (5.15) run as (A,B) = (10, 10), (10,126), (126,10), (126,126), (120,10),

(120,126), (120,120), and A′, B′ in eqs. (5.16)–(5.18) run as (A′, B′) = (10, 10), (10,126),

(126,10), (126,126). We assume the SUSY particle spectrum of eq. (5.2) and take MHC
=

2 ·1016 GeV in the calculation. Note that eqs. (5.15)–(5.18) take into account the texture of

the colored Higgs mass matrix satisfying eqs. (3.12), (3.13). An implication of eqs. (5.14)–

(5.18) is that we estimate the maximal values of the amplitudes without specifying the O(1)

numbers a, b, d, e, g, h, j in eqs. (2.27)–(2.31) and the relative phase between the Higgsino

mass and Wino mass. The “minimal proton partial lifetimes” calculated from the Yukawa

coupling matrices of appendix B are4

1/Γmax(p → K+ν̄) = 7.4 × 1033 years, (5.19)

1/Γmax(p → K0µ+) = 1.0 × 1037 years, (5.20)

1/Γmax(p → K0e+) = 3.6 × 1039 years. (5.21)

On the other hand, the “minimal proton partial lifetimes” calculated from multiple results

of “fitting without minimizing eq. (5.1)” are distributed as figure 1.

In figure 1, we overlay the values calculated from the Yukawa coupling matrices of

appendix B in eqs. (5.19)–(5.21). Also, the current bounds on the p → K+ν̄ [10], p →
K0µ+ [78], p → K0e+ [79] partial lifetimes, and the 3σ discovery reach of 2 years running

of Hyper-Kamiokande [80] are shown.

Comparing eqs. (5.19)–(5.21) with figure 1, we see that the proton partial lifetimes

calculated from the Yukawa coupling matrices of appendix B are on the upper edge of the

distributions of proton partial lifetimes calculated from results of “fitting without minimiz-

ing eq. (5.1)”. This confirms that the texture of the Yukawa coupling matrices satisfying the

4These values are consistent with the current experimental bounds on the p → K+ν̄ partial lifetime [10]

and on the p → K0µ+/e+ partial lifetimes [78, 79], which justifies our choice of the benchmark SUSY

particle mass spectrum eq. (5.2).
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Figure 1. Distributions of the “minimal proton partial lifetimes” calculated from multiple re-

sults of “fitting without minimizing eq. (5.1)”. The upper two panels show the distribution of

1/Γmax(p → K+ν̄), where the upper-right panel magnifies the right tail of the upper-left one.

The blue dot-dashed line indicates the current bound on the p → K+ν̄ partial lifetime [10], the

red solid line the value of 1/Γmax(p → K+ν̄) calculated from the Yukawa coupling matrices of

appendix B in eq. (5.19), and the blue dashed line the 3σ discovery reach of 2 years running of

Hyper-Kamiokande [80]. The lower-left panel shows the distribution of 1/Γmax(p → K0µ+), where

the blue dot-dashed line indicates the current bound on the p → K0µ+ partial lifetime [78] (part

of the line is hidden behind the histogram), and the red solid line the value of 1/Γmax(p → K0µ+)

calculated from the Yukawa coupling matrices of appendix B in eq. (5.20). The lower-right panel

shows the distribution of 1/Γmax(p → K0e+), where the blue dot-dashed line indicates the current

bound on the p → K0e+ partial lifetime [79], and the red solid line the value of 1/Γmax(p → K0e+)

calculated from the Yukawa coupling matrices of appendix B in eq. (5.21).

conditions that the components of eq. (3.11) be on the order of the up quark Yukawa cou-

pling, contributes to suppressing dimension-five proton decay. Specifically, the benchmark

SUSY particle mass spectrum eq. (5.2), where the SUSY particle masses are all at 1500 TeV

and tan β = 50, is consistent with all the experimental bounds on proton partial lifetimes

if the above conditions are satisfied. On the other hand, if these conditions are not met,

this benchmark almost always violates the bound on the p → K+ν̄ partial lifetime. We

also see that for this benchmark mass spectrum, when the above conditions are satisfied,

we expect to discover the p → K+ν̄ decay with 2 years running of Hyper-Kamiokande.
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In addition to the texture of the Yukawa coupling matrices, we have required that the

colored Higgs mass matrix be tuned such that eqs. (3.12), (3.13) hold. Now we examine

the degree of tuning of the colored Higgs mass matrix necessary to suppress dimension-five

proton decay. To this end, we consider non-zero c, f and deviations of a/d and b/e from the

relations of eq. (3.13), and evaluate maximum values of |c|, |f | and maximum deviations of

a/d and b/e that reduce 1/Γmax(p → K+ν̄) from eq. (5.19) by at most 20% (with the same

Yukawa coupling matrices). Here the phases of c, f, a/d, b/e are chosen such that they

reduce 1/Γmax(p → K+ν̄) maximally, and the contributions of c, f , a/d, b/e are studied

separately. We numerically find that the maximum values of |c|, |f | are

|c| = 0.14, |f | = 0.14, (5.22)

and the maximum deviations of a/d and b/e are

∣∣∣∣∣a+ d
(Y126)dLsL

(Y10)dLsL

∣∣∣∣∣ = 0.0097,

∣∣∣∣∣b+ e
(Y126)dLsL

(Y10)dLsL

∣∣∣∣∣ = 0.011. (5.23)

Interestingly, the requirement of c = f = 0 is not so severe, while the conditions of

a (Y10)dLsL
+ d (Y126)dLsL

= 0 and b (Y10)dLsL
+ e (Y126)dLsL

= 0 must be satisfied with

1% precision. For the other decay modes, the deviations of a/d and b/e do not affect

1/Γmax(p → K0µ+) and 1/Γmax(p → K0e+). Non-zero c, f whose absolute values are below

eq. (5.22) do not alter 1/Γmax(p → K0µ+) and 1/Γmax(p → K0e+) because the products of

Yukawa coupling components associated with c or f in eq. (2.31) are numerically smaller

than 0.14 times the largest product of Yukawa coupling components in eq. (2.31).

We comment that the Yukawa coupling matrices and coefficients in appendix B give a

prediction on poorly or not measured neutrino parameters, which are the Dirac CP phase

of the neutrino mixing matrix, the sum of the neutrino mass, and the effective neutrino

mass for neutrinoless double β decay. The prediction is shown in appendix C.

We comment on other nucleon decay modes. The N → πβ+ and p → ηβ+ decays are

subdominant compared to the p → K0β+ decays, because the amplitudes of N → πβ+ and

p → ηβ+ involve the same Yukawa coupling components as those of p → K0β+ except that

sL is replaced by dL. Nevertheless, observation of N → πβ+ and p → ηβ+ along with p →
K0β+ may provide an experimental clue to the texture of the Yukawa coupling matrices.

Hence, we present in appendix D the “minimal partial lifetimes” of these modes calculated

from the Yukawa coupling matrices of appendix B through the formulas in ref. [39].

6 Summary

We have pursued the possibility that dimension-five proton decay is suppressed by a tex-

ture of the Yukawa coupling matrices in the general renormalizable SUSY SO(10) GUT

model where Yukawa coupling matrices of 16 representation matter fields with 10,126,120

fields Y10, Y126, Y120 give the quark and lepton Yukawa couplings and Majorana mass of the
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singlet neutrinos. We have derived conditions for a texture of the Yukawa coupling ma-

trices suppressing dimension-five proton decay, which state that components (Y10)uRdR
,

(Y126)uRdR
, (Y10)uRsR

, (Y126)uRsR
, (Y10)uLdL

, (Y126)uLdL
, (Y10)uLuL

, (Y126)uLuL
, (Y10)uLsL

,

(Y126)uLsL
should be all on the order of the up quark Yukawa coupling yu. Additionally, the

colored Higgs mass matrix should satisfy eqs. (3.12), (3.13). We have obtained the values

of the Yukawa coupling matrices that satisfy the above conditions and that are consistent

with the experimental data of quark and lepton masses and flavor mixings. By comparing

the “minimal proton partial lifetimes” calculated from the Yukawa coupling matrices that

meet the conditions and those that do not necessarily so, we have confirmed that the tex-

ture of the Yukawa coupling matrices satisfying the conditions contributes to suppressing

dimension-five proton decay. Specifically, we have found that a SUSY particle mass spec-

trum where the SUSY particle masses are all at 1500 TeV and tan β = 50 is consistent with

all the experimental bounds on proton decay if the above conditions are satisfied. Also,

for this mass spectrum, when the conditions are met, we expect to discover the p → K+ν̄

decay with 2 years running of Hyper-Kamiokande.
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A Superpotential

We review our definition of the coupling constants and masses for H, ∆, ∆, Σ, Φ, A fields in

10, 126, 126, 120, 210, 45 representations, which follows eq. (2) of ref. [42]. The couplings

are defined in the same way as eq. (3) of ref. [42]. Note that 120 representation field is

written as D in ref. [42], while we write it as Σ. The coupling constants are defined as

W =
1

2
m1Φ2 +m2∆∆ +

1

2
m3H

2

+
1

2
m4A

2 +
1

2
m6Σ2

+λ1Φ3 + λ2Φ∆∆ + (λ3∆ + λ4∆)HΦ

+λ5A
2Φ − iλ6A∆∆ +

λ7

120
εAΦ2

+λ15Σ2Φ

+Σ{λ16HA+ λ17HΦ + (λ18∆ + λ19∆)A+ (λ20∆ + λ21∆)Φ} (A.1)

where ε denotes the antisymmetric tensor in SO(10) space.

B Values of Y10, Y126, Y120 and r1, r2, re, rD

We present the values of the Yukawa coupling matrices Y10, Y126, Y120 and numbers

r1, r2, re, rD obtained from the analysis of section 5.1. Y10, Y126, Y120 are shown repeatedly
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in three different flavor bases. For reference, the central value of the up quark Yukawa

coupling at scale µ = µGUT = 2 · 1016 GeV in DR scheme is yu = 2.81 · 10−6.



(Y10)uRdR
(Y10)uRsR

(Y10)uRbR

(Y10)cRdR
(Y10)cRsR

(Y10)cRbR

(Y10)tRdR
(Y10)tRsR

(Y10)tRbR


 =




3.92 ·10−6 e2.26 i 5.61 ·10−6 e−1.26 i 0.00168e−0.21 i

0.00187e−1.22 i 0.00810e−1.24 i 0.0194e−1.04 i

0.00592e−2.61 i 0.0202e−2.81 i 0.230e0.46 i


 (B.1)




(Y126)uRdR
(Y126)uRsR

(Y126)uRbR

(Y126)cRdR
(Y126)cRsR

(Y126)cRbR

(Y126)tRdR
(Y126)tRsR

(Y126)tRbR


 =




5.23 ·10−6 e−2.28 i 5.70 ·10−6 e0.89 i 0.00158e2.01 i

0.00198e1.12 i 0.00856e1.10 i 0.0182e1.18 i

0.00618e0.57 i 0.0197e0.31 i 0.228e−0.46 i


 (B.2)




(Y120)uRdR
(Y120)uRsR

(Y120)uRbR

(Y120)cRdR
(Y120)cRsR

(Y120)cRbR

(Y120)tRdR
(Y120)tRsR

(Y120)tRbR


 =




0.000365 0.00159 0.000457e2.44 i

0.00159e−3.13 i 0.000366e0.06 i 0.000454e−0.26 i

0.000328e−1.94 i 0.000539e1.55 i 1.71 ·10−5 e2.95 i


 (B.3)




(Y10)uLdL
(Y10)uLsL

(Y10)uLbL

(Y10)cLdL
(Y10)cLsL

(Y10)cLbL

(Y10)tLdL
(Y10)tLsL

(Y10)tLbL


 =




5.45 ·10−6 e−1.30 i 0.920 ·10−6 e1.39 i 0.00168e0.58 i

0.00187e−2.28 i 0.00810e0.85 i 0.0194e−0.25 i

0.00385e1.98 i 0.0208e−0.72 i 0.230e1.25 i


 (B.4)




(Y126)uLdL
(Y126)uLsL

(Y126)uLbL

(Y126)cLdL
(Y126)cLsL

(Y126)cLbL

(Y126)tLdL
(Y126)tLsL

(Y126)tLbL


 =




5.10 ·10−6 e0.41 i 0.961 ·10−6 e−2.01 i 0.00158e2.80 i

0.00198e0.05 i 0.00856,e−3.10 i 0.0182e1.97 i

0.00395e−1.03 i 0.0206e2.44 i 0.228e0.33 i


 (B.5)




(Y120)uLdL
(Y120)uLsL

(Y120)uLbL

(Y120)cLdL
(Y120)cLsL

(Y120)cLbL

(Y120)tLdL
(Y120)tLsL

(Y120)tLbL


 =




0.000365e−1.06 i 0.00159e2.08 i 0.000459e−3.06 i

0.00159e−1.05 i 0.000369e−1.10 i 0.000452e0.54 i

0.000523e0.29 i 0.000353e−2.51 i 1.90 ·10−5 e−2.51 i


 (B.6)




(Y10)uLuL
(Y10)uLcL

(Y10)uLtL

(Y10)cLcL
(Y10)cLtL

(Y10)tLtL


 =




1.27 ·10−6 e1.18 i 7.11 ·10−5 e0.60 i 0.00168e0.58 i

0.00870e0.77 i 0.0192e−0.27 i

0.230e1.25 i


 (B.7)




(Y126)uLuL
(Y126)uLcL

(Y126)uLtL

(Y126)cLcL
(Y126)cLtL

(Y126)tLtL


 =




2.45 ·10−6 e−1.39 i 6.69 ·10−5 e2.83 i 0.00158e2.80 i

0.00907e3.11 i 0.0181e1.96 i

0.228e0.32 i


 (B.8)




(Y120)uLuL
(Y120)uLcL

(Y120)uLtL

(Y120)cLcL
(Y120)cLtL

(Y120)tLtL


 =




0 0.00164e2.09 i 0.000435e−2.91 i

0 0.000457e0.54 i

0


 (B.9)

r1 = 0.871, r2 = 1.06e0.92 i, re = 1.01e0.79 i, rD = 0.482e−3.11 i. (B.10)

In eqs. (B.7)–(B.9), we do not display some off-diagonal components because in this flavor

basis, Y10, Y126 are symmetric and Y120 is antisymmetric.

C Prediction on neutrino parameters

The result of the analysis of section 5.1, shown in appendix B, gives the following prediction

on the Dirac CP phase of the neutrino mixing matrix, δCP, the sum of the neutrino mass,
∑3

i=1mi, and the effective neutrino mass for neutrinoless double β decay, |mee|:

δCP = 1.35 rad, (C.1)

3∑

i=1

mi = 0.0630 eV, (C.2)

|mee| = 0.000263 eV. (C.3)

We caution that there is no clear correlation between the prediction on δCP,
∑3

i=1mi, |mee|
and the degree of suppression of dimension-five proton decay, as seen in figure 2 where we

plot the results of “fitting without minimizing eq. (5.1)” on the planes of 1/Γmax(p → K+ν̄)
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Figure 2. Results of “fitting without minimizing eq. (5.1)” on the planes of 1/Γmax(p → K+ν̄)

versus δCP,
∑3

i=1 mi, |mee| in the upper, lower-left and lower-right panels, respectively.

versus δCP,
∑3

i=1mi, |mee|. Similar figures are obtained for 1/Γmax(p → K0µ+) and

1/Γmax(p → K0e+). Therefore, the prediction of eqs. (C.1)–(C.3) is not a consequence of

the texture of the Yukawa coupling matrices suppressing dimension-five proton decay.

D Other nucleon decay modes

The “minimal partial lifetimes” of the N → πβ+ and p → ηβ+ modes (β = e, µ) defined

analogously to eq. (5.13) and calculated from the Yukawa coupling matrices of appendix B

through the formulas in ref. [39] are

1/Γmax(p → π0µ+) = 1.5 × 1037 years, (D.1)

1/Γmax(p → π0e+) = 7.2 × 1039 years, (D.2)

1/Γmax(n → π−µ+) = 4.9 × 1037 years, (D.3)

1/Γmax(n → π−e+) = 2.4 × 1039 years, (D.4)

1/Γmax(p → ηµ+) = 3.9 × 1037 years, (D.5)

1/Γmax(p → ηe+) = 1.9 × 1040 years. (D.6)
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