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Recently, the peak structure of the sound velocity was observed in the lattice simulation of two-color
and two-flavor QCD at the finite quark chemical potential. The comparison with the chiral perturbation
theory (ChPT) result was undertaken; however, the ChPT failed in reproducing the peak structure. In this
study, to extend the ChPT framework, we incorporate contributions of the σ meson, that is identified as the
chiral partner of pions, on top of the low-energy pion dynamics by using the linear sigma model (LSM).
Based on the LSM, we derive analytic expressions of the thermodynamic quantities as well as the sound
velocity within a mean-field approximation. As a result, we find that those quantities are provided by sums
of the ChPT results and corrections, where the latter is characterized by a mass difference between the
chiral partners, the σ meson and pion. The chiral partner contributions are found to yield a peak in the sound

velocity successfully. We furthermore show that the sound velocity peak emerges only when mσ >
ffiffiffi
3

p
mπ

and μq > mπ , with mσðπÞ and μq being the σ meson (pion) mass and the quark chemical potential,
respectively. The correlation between the sound velocity peak and the sign of the trace anomaly is also
addressed.

DOI: 10.1103/PhysRevD.109.096034

I. INTRODUCTION

The sound velocity is a crucial ingredient for character-
izing the baryonic dense matter, particularly in the context
of neutron stars. Recent discussions have emphasized that
the presence of a peak structure in the sound velocity is an
essential feature for meeting the observation of the mass
and radius relation in neutron stars [1,2]. To clarify the
presence of the sound velocity peak from the first-principles
viewpoint of quantum chromodynamics (QCD), there is
a growing demand for lattice QCD simulations including
the quark chemical potential (μq). However, it is not easy
to accomplish lattice simulations in high dense regions,
primarily due to the so-called sign problem in three-color
QCD at finite μq [3,4].
To avoid the sign problem, QCD-like theories are

considered instead of the real-life QCD with three colors.
For instance, the sign problem is absent in the case of

two-color QCD (QC2D) with two flavors, owing to the
pseudoreality of SUð2Þc gauge group [5]. This advanta-
geous feature enables the implementation of lattice simu-
lations in large μq regions in QC2D.
In QC2D, the diquarks, made of two quarks, form color-

singlet baryons due to again the pseudoreality of SUð2Þc,
and thus, they obey the Bose-Einstein statistics. When the
chemical potential μq reaches half the value of the pion
mass, the ground-state diquark baryons become massless.
Consequently, this gives rise to the Bose-Einstein con-
densation of diquarks, i.e., the diquark condensation, along
with the creation of a baryonic matter, resulting in a
transition to the baryon superfluid phase [6,7]. In contrast
to the large μq, the hadronic phase is realized in the lower
μq, which is smoothly connected to the vacuum. Lattice
simulations have been extensively performed to reveal
various aspects in the cold dense QC2D such as phase
structures, thermodynamics quantities, and the hadron mass
spectrum, across the phase transition [8–30] (for a review,
see [31]).
Recently, the μq dependence of the sound velocity has

been evaluated in the QC2D lattice simulation [32]. The
simulated result has indicated that in the baryon superfluid
phase, the sound velocity monotonically grows from zero
as μq increases, and soon it exceeds the conformal limit
c2s ¼ 1=3. Meanwhile, at sufficiently large μq, the relevant
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scale of the dense matter is solely provided by μq, resulting
in that the sound velocity eventually converges on
c2s ¼ 1=3. Therefore, the observed excess implies the
appearance of peak structures in the sound velocity.
Note that the isospin chemical potential dependence of
the sound velocity in the three-color QCD has also been
investigated through lattice simulations [33–37], implying
the presence of the sound velocity peak in the isospin
asymmetric matter of the real-life QCD.
The high-density behavior of the sound velocity has also

been theoretically under investigation in both the real-life
QCD and QCD-like theories, based on quark-level pictures
and their extensions [38–40] including the quarkyonic
description [41]. Besides, impacts of the quark saturation
inside hadrons on the sound velocity peak have also been
examined [42–44], while considering the relation to the
continuous transition from hadron to quark matter [41,45].
Despite those extensive efforts, no conclusive picture for
the peak structure of the sound velocity has been estab-
lished yet.
In QC2D with large μq, the gluon is unaffected by the

Meissner effect [46–48] since the diquark condensate exists
as a color singlet object. This leads to the gluon sector in
QC2D being unscreened and implies that the highly dense
QC2D system is expected to remain confined [49–51].
Indeed, the recent lattice simulation has shown that the
Polyakov loop L maintains small values even after the
phase transition to the baryon superfluid phase: L ≪ 1
[24,26]. This indicates that QC2D would be in the confine-
ment phase in a wide range of μq, and the hadronic picture
could be applicable across the baryon superfluid phase
transition, although at the extremely high-density region
the quark degrees of freedom become significant. The
difficulty in clarifying the microscopic pictures of cold
dense matter is related to the quark-hadron continuity [1].
In this study, we approach the baryonic matter from the
low-energy perspective using hadronic models. These
models allow us to continuously enter the baryon super-
fluid phase based on the hadronic picture, which would
be one of the reliable methods to elucidate properties
of the sound velocity from the low-energy viewpoint of
dense QC2D.
As a conventional approach of such a hadron effective

model, the chiral perturbation theory (ChPT) is frequently
employed to make a comparison with lattice observa-
tions of cold dense QC2D [6,7,51–54]. In particular, the
ChPT evaluation for the sound velocity within the mean-
field approximation exhibits no explicit model parameter
dependence [13,49], and for this reason, the ChPT results
serve as a robust benchmark of the low-energy QC2D in
comparing with the lattice data. Indeed, the ChPT pre-
diction of the sound velocity is in good agreement with the
lattice data in the vicinity of the phase-transition point;
however, it monotonically converges to c2s ¼ 1 at high
density without showing any peak structures. Hence, there

is a discrepancy between the QC2D lattice observation and
the ChPT prediction of slightly higher μq. This is because
the ChPT is constructed upon a low-energy expansion with
respect to the Nambu-Goldstone (NG) bosons, and this
model is adaptable for only the deep low-energy regime of
QC2D. Thus, it is natural that the ChPT cannot apply to the
high-dense regime, owing to the lack of higher excitations.
Motivated by the shortcomings of the ChPT, in the

present study, we incorporate overlooked contributions
from excited hadrons into an effective model, in order to
bridge the gap between the QC2D lattice observation and
the ChPT evaluation. In particular, we make use of the
linear sigma model (LSM) invented in Ref. [55] to take
into account additional contributions of the chiral partner,
i.e., the σ meson, which is linked with the NG bosons under
the chiral symmetry. Then, we discuss how the σ meson
contributes to the sound velocity to generate the peak
structure. Besides, the recent QC2D lattice simulation
provides the μq dependence of the trace anomaly, indicating
that the trace anomaly becomes negative in high-density
regions [32]. We further examine the correlation between
the sound velocity and the trace anomaly within the LSM.
This paper is organized as follows. In Sec. II, we provide

a brief review of the ChPT approach at a mean-field level
and present analytic expressions of the thermodynamics
quantities including the sound velocity. Those quantities
are also evaluated within the LSM approach in Sec. III,
and the σ meson contributions on top of the ChPT
framework is clarified in this section. Then, in Sec. IV,
numerical demonstrations to visualize the σ meson con-
tributions are provided, and finally, in Sec. V, we conclude
the present work.

II. ChPT IN COLD DENSE QC2D

In this study, we aim to delve into the understanding of
the sound velocity from a perspective of the hadronic
picture. In particular, we take into account hadron con-
tributions absent in the ChPT framework and extend the
hadronic result of the sound velocity beyond the low-
energy regime governed by the ChPT. To facilitate our
discussion, in this section, we provide a brief review of the
ChPTwhich serves as a low-energy effective model for the
lightest hadrons identified as the NG bosons associated
with the chiral symmetry breaking. We also provide an
overview of the well-established thermodynamic quantities
in the ChPT. Following that, we review the evaluation of
the sound velocity in finite quark chemical potentials at
zero temperature.

A. ChPT Lagrangian

In this subsection, we introduce the ChPT Lagrangian for
two-flavor QC2D which can access the baryonic matter.
In QC2D, two (anti)quarks can be bound together by the

strong interaction to form color-singlet (anti)baryons in
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addition to mesons, carrying the quark number þ2 (−2). In
contrast to the three-color QCD, those diquark baryons
behave as bosonic particles sharing common properties
with mesons due to the pseudoreal nature of the color
SUð2Þc group. Hence, both the diquark baryons and
mesons are treated on an equal footing in constructing
the hadron effective model in QC2D. Besides, it is known
that the pseudoreality allows us to extend SUð2ÞL ×
SUð2ÞR chiral symmetry to the Pauli-Gürsey SUð4Þ sym-
metry, and in the low-energy region, this SUð4Þ symmetry
is spontaneously broken to the Spð4Þ symmetry [6,7].
Therefore, in QC2D, low-energy effective models are
constructed upon the symmetry-breaking pattern of
G ¼ SUð4Þ → H ¼ Spð4Þ.
To formulate the ChPT Lagrangian, we introduce

the nonlinear field ξ which is parametrized by the NG
bosons πi,

ξ ¼ exp

�
iπiXi

fπ

�
: ð1Þ

Here, in two-flavor QC2D, the manifold of G=H ¼
SUð4Þ=Spð4Þ is characterized by five degrees of freedom,
and hence, the superscript “i” in Eq. (1) runs from 1 to 5.
In terms of the hadrons, πi¼1;2;3 and πi¼4;5 denote the
pseudoscalars and (anti)baryons serving as the NG bosons,
i.e., pions and positive-parity (anti)diquarks. The 4 × 4

matrices Xi are generators belonging to the Lie algebra of
G=H ¼ SUð4Þ=Spð4Þ given by

Xi ¼ 1

2
ffiffiffi
2

p
� τif 0

0 ðτifÞT
�

ðfor i ¼ 1; 2; 3Þ;

Xi ¼ 1

2
ffiffiffi
2

p
�

0 Di
f

ðDi
fÞ † 0

�
ðfor i ¼ 4; 5Þ; ð2Þ

with τif being the Pauli matrix in the flavor space, and Df

being D4
f ¼ τ2f and D5

f ¼ iτ2f. The constant fπ in Eq. (1) is
the pion decay constant at the vacuum. Since the nonlinear
field ξ is the representative of the coset space G=H, its
transformation law can be determined by

ξ → gξhT; ð3Þ

with g∈G and h∈H. Since h satisfies

hTEh ¼ E with E ¼
�

0 1

−1 0

�
ð4Þ

from its definition, one can define a useful chiral field U
which transforms homogeneously under the transformation
(3) as

U ¼ ξETξT: ð5Þ

Indeed, this U exhibits the following transformation law:

U → gUgT: ð6Þ

Using the chiral field U, one can write down the SUð4Þ-
invariant ChPT Lagrangian of the lowest order in terms of
the derivative (momentum) expansion [6,7]:

LChPT ¼ f2π
4
tr½DμU†DμU� þ f2πm2

π

4
tr½EU þU†E†�; ð7Þ

where mπ denotes the pion mass at the vacuum. The first
term in Eq. (7) is the kinetic term of the chiral field U, and
the quark number chemical potential μq is embedded in the
covariant derivative,

DμU ¼ ∂μU − iμqδμ0ðJU þ UJTÞ; ð8Þ

with

J ¼
�
1 0

0 −1

�
: ð9Þ

The second term in Eq. (7) corresponds to the explicit chiral
symmetry-breaking term, which provides the finite mass
for the NG bosons πi.

B. ChPT in the baryon superfluid phase

As demonstrated by the lattice simulations in QC2D, the
diquark baryonic matter is created, accompanied by the
phase transition to the baryon superfluid phase, at which
the chemical potential takes the half value of the vacuum
pion mass, μcrq ≡mπ=2 [10,21,24]. These notable proper-
ties can also be described within the chiral effective models
including the ChPT. In this subsection, we recapitulate the
well-known analytic expressions of the thermodynamic
quantities in the ChPT [13,49]: the pressure, the quark-
number density, the quark-number susceptibility, and the
energy density.
To evaluate the superfluid phase transition in the ChPT,

we take the vacuum expectation value (VEV) for the chiral
field U,

hUi ¼ ei2
ffiffi
2

p
X5βET ¼ ðcos β þ i2

ffiffiffi
2

p
X5 sin βÞET; ð10Þ

where β lies in a range of 0 ≤ β ≤ π=2. By considering the
matching with the underlying QC2D, we have the following
correspondence between the quark bilinear condensates
and β in the VEV of U [6,7],

ϕ̄ChPT ¼ cos β; d̄ChPT ¼ sin β; ð11Þ

where ϕ̄ and d̄ are defined such that they are normalized by
the vacuum chiral condensate hψ̄ψijvac as
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ϕ̄≡ hψ̄ψi=hψ̄ψijvac;

d̄≡
�
−
i
2
ψTCγ5τ2cτ2fψ þ H:c:

�
=hψ̄ψijvac: ð12Þ

In Eq. (11), the subscript “ChPT” has been attached to
emphasize that this is the ChPT evaluation for later
convenience. Within the ChPT analysis, the baryon super-
fluid phase transition is induced by a nonzero value of β as
seen from Eqs. (11) and (12).
In this study, we adopt the mean-field approximation

where the hadronic loop corrections are not considered.
Substituting Eq. (12) into the ChPT Lagrangian (7) at the
mean-field level, an effective potential Vmean ¼ −hLi is
obtained as

Vmean
ChPTðβÞ ¼ −4μ2qf2πsin2β − 2f2πm2

π cos β: ð13Þ

The phase transition is determined by solving the stationary
condition of Vmean

ChPT with respect to β: ∂Vmean
ChPT=∂β ¼ 0,

which yields

β ¼ 0 ðfor μq < μcrq Þ;

cos β ¼ m2
π

4μ2q
ðfor μq ≥ μcrq Þ: ð14Þ

This expression surely shows that the baryon superfluid
phase transition in the ChPToccurs at μcrq ¼ mπ=2. In terms
of the chiral and diquark condensates, Eq. (14) implies

ϕ̄ðHÞ
ChPT ¼ 1; d̄ðHÞChPT ¼ 0;

ϕ̄ðBSÞ
ChPT ¼ 1

μ̄2
; d̄ðBSÞChPT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

μ̄4

s
; ð15Þ

in the hadronic (H) and baryon superfluid (BS) phases, with
μ̄ denoting the chemical potential normalized by the critical
value, μ̄ ¼ μq=μcrq . We note that the sign of the diquark
condensate has been chosen to be positive. Equation (15)
indicates that the chiral condensate is always constant in the
hadronic phase. In the superfluid phase, it decreases
proportionally to 1=μ2q. Meanwhile, the diquark condensate
approaches hψ̄ψijvac as μq → ∞.
By inserting the solution of β into the effective potential

(13), one can express the pressure, p ¼ −Vmean, in both the
phases,

pðHÞ
ChPT ¼ 2f2πm2

π;

pðBSÞ
ChPT ¼ f2πm2

π

�
μ̄2 þ 1

μ̄2

�
: ð16Þ

In the hadronic phase, the pressure pðHÞ
ChPT does not have the

chemical potential dependence and keeps the vacuum
value, ensuring that the ChPT result satisfies the so-called

Silver-Braze property observed in the lattice simulations.

At asymptotically large μq, p
ðBSÞ
ChPT grows with a power of μ

2
q.

At the vacuum, the pressure is not reduced to zero but has
a finite contribution as in Eq. (16), which should be
subtracted to facilitate the following demonstration appro-
priately. After this subtraction, the pressure in the super-
fluid phase reads

psub
ChPT ¼ pðBSÞ

ChPT − pðHÞ
ChPT

¼ f2πm2
π

�
μ̄ −

1

μ̄

�
2

: ð17Þ

Using this subtracted pressure, the baryon number density
n and the baryon susceptibility χ are analytically evaluated
as

nChPT ¼ ∂psub
ChPT

∂μq
¼ 1

μq
2f2πm2

π

�
μ̄2 −

1

μ̄2

�
;

χChPT ¼ ∂
2psub

ChPT

∂μ2q
¼ 8f2π

�
1þ 3

1

μ̄4

�
: ð18Þ

Furthermore, the subtracted energy density, ϵ ¼ −pþ μqn,
can also be evaluated as

ϵsubChPT ¼ −psub
ChPT þ μqnChPT

¼ f2πm2
π

�
1

μ̄2
ðμ̄2 þ 3Þðμ̄2 − 1Þ

�
: ð19Þ

C. Sound velocity in ChPT

Using the thermodynamic quantities shown in Sec. II B,
one can obtain an analytic expression of the sound velocity
in the ChPT within the mean-field approximation. In
general, the sound velocity is defined by a derivative of
the pressure p with respect to the energy density ϵ:
c2s ¼ ∂p=∂ϵ, along the isentropic curve. At zero temper-
ature, the isentropic trajectory sticks to the μq axis, and
then, the sound velocity can be simplified to the following
concise expression [56]:

c2s ¼
n
μqχ

: ð20Þ

Using the ChPT evaluations of the baryon number
density and the baryon susceptibility in Eq. (18), the sound
velocity is expressed as [13,49]

ðcChPTs Þ2 ¼ nChPT
μqχChPT

¼ 1 − 1=μ̄4

1þ 3=μ̄4
: ð21Þ

It is interesting to note that ðcChPTs Þ2 is simply described
by the chemical potential tagged with the pion mass
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(or viewed as the function of only the normalized chemical
potential μ̄ ¼ μq=μcrq ¼ 2μq=mπ). In the baryonic matter,
the sound velocity starts from zero at μq ¼ μcrq (correspond-
ing to μ̄ ¼ 1). As the chemical potential increases, the
sound velocity in the ChPT grows monotonically and
approaches 1 for μq → ∞ without exhibiting a peak.
The μq dependence of the sound velocity has been

observed in the QC2D lattice simulation [32], indicating
that the sound velocity departs from zero in the superfluid
phase and exceeds the conformal limit c2s ¼ 1=3. This
conformal limit must be realized for sufficiently large μq,
since in such a dense matter the relevant scale is solely
provided by μq. Hence, the lattice result claims the
appearance of the peak structure in the intermediate
chemical potential regime in cold dense QC2D. This
observation, however, contradicts the ChPT estimation
(21). In what follows, we show that this lack of the peak
structure in the ChPT framework can be resolved by
including contributions from chiral partners of the NG
bosons.

III. LSM IN COLD DENSE QC2D

In Sec. II, we have shown that the sound velocity
evaluated within the ChPT fails in yielding the peak
structure. Since the ChPT framework describes only NG
bosondynamics, onemay infer that the shortcomings are due
to the lack of higher excitations. Here, the so-called chiral
partners of the NG bosons carrying opposite parities can be
considered reasonably as the excitations, which are con-
nected to the NG bosons under the chiral transformation.1

To take into account the contribution from these chiral
partners, here, we move onto the LSM approach.

A. LSM at mean-field approximation

The chiral partners can be introduced by linearizing the
chiral field U ¼ ξETξT ¼ ξ2ET in the ChPT, i.e., by
parametrizing ξ2 with positive-parity mesons (negative-
parity diquark baryons) as well as the NG bosons. Hence, a
building block in the LSM incorporating those hadrons can
be introduced as [55]

Σ ¼ ðSi − iPiÞXiE; ð22Þ

where Xi¼0 ¼ 14×4=ð2
ffiffiffi
2

p Þ, and Xi (i ¼ 1–5) is defined in
Eq. (2). The dynamical variables Si and Pi are identified to
the hadrons as follows: Si¼0 is the isosinglet scalar meson
(σ meson); Si¼1;2;3 are the isotriplet scalar mesons (a0
mesons); Si¼4;5 are the positive-parity (anti)baryons; Pi¼0

is the isosinglet pseudoscalar meson (η meson); Pi¼1;2;3 are

the isotriplet pseudoscalar meson (pions); Pi¼4;5 are the
negative-parity (anti)baryons. It should be noted that Σ has
mass dimension þ1 while U is dimensionless, where these
fields are related by Σ ∼ fπU ¼ fπξ2ET.
Given that the difference between Σ andU is just the way

of parametrization of the hadron field, Σ also transforms
under the Pauli-Gürsey SUð4Þ symmetry as

Σ → gΣgT; ð23Þ

following the transformation law of U. Hence, with
the linearly parametrized Σ, the LSM Lagrangian, that
is invariant under SUð4Þ transformation, is constructed
as [55]

LLSM ¼ tr½DμΣ†DμΣ� −m2
0tr½Σ†Σ� − λ1ðtr½Σ†Σ�Þ2

− λ2tr½ðΣ†ΣÞ2� þmlc̄
2

tr½E†Σþ Σ†E�; ð24Þ

where m2
0 is a mass parameter, and λ1 and λ2 are

dimensionless parameters controlling interactions among
the hadrons. The last piece proportional to mlc̄ is respon-
sible for the explicit breaking of the Pauli-Gürsey SUð4Þ
symmetry which is inevitable to generate finite masses of
the NG bosons. In Eq. (24), the Uð1ÞA anomalous con-
tributions are not introduced since the lattice results on the
mass difference between η and pion imply small effects
from the Uð1ÞA anomaly [55].
According to the matching with the underlying QC2D,

the fields S0 and P5 can be linked to the quark bilinear
fields [57],

ψ̄ψ ¼ −
ffiffiffi
2

p
c̄S0; −

i
2
ψTCγ5τ2cτ2fψ þ H:c: ¼ −

ffiffiffi
2

p
c̄P5:

ð25Þ
Within the LSM, the chiral condensate and the diquark
condensate are, hence, introduced as

σ0 ≡ hS0i; Δ≡ hP5i; ð26Þ

where σ0 and Δ are chosen to be positive. As in the case of
the ChPT analysis, we also implement the mean-field
approximation in the present LSM analysis. Then, sub-
stituting Eq. (26) into Eq. (24) through Eq. (22), the
effective potential is expressed as

Vmean
LSM ðσ0;ΔÞ ¼ −2μ2qΔ2 þm2

0

2
ðσ20 þ Δ2Þ

þ λ̃

4
ðσ20 þ Δ2Þ2 −

ffiffiffi
2

p
mlc̄σ0; ð27Þ

where we have defined λ̃≡ λ1 þ λ2=4 to denote the four-
point couplings collectively. The phase structure can be
evaluated through stationary conditions,

1In this regard, the ChPT would be regarded as the “lowest-
energy” effective model of QC2D where the chiral partners of the
NG bosons are integrated out, owing to the nonlinear represen-
tation.
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Vmean
LSM ðσ0;ΔÞ

∂σ0
¼ 0;

Vmean
LSM ðσ0;ΔÞ

∂Δ
¼ 0: ð28Þ

By solving these stationary conditions, one can see that the
critical chemical potential to enter the superfluid phase
coincides with the one derived in the ChPT: μcrq ¼ mπ=2. In
fact, from Eq. (28), the condensates are evaluated as

σðHÞ0 ¼
ffiffiffi
2

p
mlc̄=m2

π;

ΔðHÞ ¼ 0 ðfor μq < μcrq Þ; ð29Þ

while

σðBSÞ0 ¼ σðHÞ0 m2
π

4μ2q
;

ΔðBSÞ ¼
�
1

λ̃
ð4μ2q −m2

0Þ − ðσðBSÞ0 Þ2
�
1=2

ðfor μq ≥ μcrq Þ:

ð30Þ

We note that the vacuum pion mass within the LSM is read
from the quadratic term of the pion fluctuation field upon
the mean-field approximation, in Eq. (24), as

m2
π ¼ m2

0 þ λ̃ðσðHÞ0 Þ2: ð31Þ

Following a similar procedure, the vacuum mass of the
chiral partner of the pion, the σ meson, is evaluated to be

m2
σ ¼ m2

0 þ 3λ̃ðσðHÞ0 Þ2: ð32Þ

The analytic expressions of σ0 and Δ in Eq. (30) include
explicit model parameters, which prevent us from achiev-
ing an intuitive picture of their μq dependencies. For this

reason, in what follows, we try to translate σðHÞ0 , m2
0, and λ̃

into more physically transparent quantities. First, by
evaluating the broken current associated with the broken
SUð4Þ=Spð4Þ space, one can easily show that the mean

field σðHÞ0 is connected to the pion decay constant as

σðHÞ0 ¼
ffiffiffi
2

p
fπ; ð33Þ

which is derived in the Appendix. Next, from Eqs. (31) and
(32), m2

0 and λ̃ can be expressed in terms of the pion and σ
meson masses, which reads

m2
0 ¼

3m2
π −m2

σ

2
; λ̃ ¼ m2

σ −m2
π

2ðσðHÞ0 Þ2
: ð34Þ

Therefore, substituting those relations into Eq. (30), finally
σ0 and Δ in the superfluid phase are rewritten to

σðBSÞ0 ¼
ffiffiffi
2

p
fπ

μ̄2
;

ΔðBSÞ ¼
�
16f2π
δm̄2

σ−π
ðμ̄2 − 1Þ þ 2f2π

�
1 −

1

μ̄4

��
1=2

; ð35Þ

where the normalized chemical potential μ̄ ¼ μq=μcrq is
used, and the dimensionless mass difference between σ
meson and pion is defined by2

δm̄2
σ−π ≡m2

σ −m2
π

ðμcrq Þ2
: ð36Þ

Equation (35) clearly shows that the fate of the mean fields
σ0 and Δ in the superfluid phase is essentially determined
by vacuum values of the decay constant and the mass
difference between the chiral partners.3

At the end of this subsection, we make comparisons
between the ChPT and LSM results on μq dependencies of
the chiral and diquark condensates. From the matching
result in Eq. (25) together with Eq. (35), one can derive the
following relations with respect to the normalized chiral
and diquark condensates in the superfluid phase:

ϕ̄ðBSÞ
LSM ¼ ϕ̄ðBSÞ

ChPT;

ðd̄ðBSÞLSMÞ2 ¼ ðd̄ðBSÞChPTÞ2 þ ðδd̄ðBSÞÞ2; ð37Þ

with

ðδd̄ðBSÞÞ2 ≡ 8

δm̄2
σ−π

ðμ̄2 − 1Þ; ð38Þ

where the ChPT results on ϕ̄ and d̄ are provided in Eq. (15).
Thus, from Eq. (37), the normalized chiral condensate is
found to share the common μq scaling in the superfluid
phase. Meanwhile, the squared diquark condensate is
divided into the ChPT result and an additional contribution
ðδd̄ðBSÞÞ2. In particular, Eq. (38) indicates that the addi-
tional effects are quantified by the mass difference of the
chiral partners, σ meson and pion, and amplified as the
chemical potential increases. Since ðδd̄ðBSÞÞ2 is propor-

tional to 1=δm̄2
σ−π , d̄

ðBSÞ
LSM is reduced to d̄ðBSÞChPT when the σ

meson mass is sufficiently large compared to the pion mass.
This reduction is natural; such a heavy-mass limit is
equivalent to integrating out the σ meson from the LSM
framework, which should converge on the ChPT. Hence,

2A mass difference of the chiral partners, the σ meson and
pion, measures strength of the chiral symmetry breaking. When
the chiral symmetry is explicitly and/or spontaneously broken,
the σ meson mass deviates from the pion mass, leading to the
nonzero value of δm̄2

σ−π .
3This simple expression of the mean fields is not modified

even when the Uð1ÞA anomaly effects are introduced, and
accordingly, the following discussions are not changed.
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one can conclude that the ðδd̄ðBSÞÞ2 is induced as a
correction beyond the lowest-energy dynamics governed
by the NG bosons. Those clear properties of the LSM
played by the σ meson are also reflected to the thermo-
dynamic quantities, as is shown in the following analysis.

B. Thermodynamic quantities in LSM

In this subsection, we exhibit the thermodynamic quan-
tities in the LSM approach within the mean-field approxi-
mation and shed light on connections between results from
the ChPT and LSM.
The pressure within the LSM is straightforwardly evalu-

ated from the potential (27). In terms of the physical
quantities, mπ , mσ, and fπ provided in Eqs. (31)–(33), it
reads

pðHÞ
LSM ¼ f2πm2

π

�
δm̄2

σ−π

16
þ 1

�
;

pðBSÞ
LSM ¼ f2πm2

π

��
4

δm̄2
σ−π

þ 1

μ̄2

�
ðμ̄2 −1Þ2þ

�
δm̄2

σ−π

16
þ 1

��
;

ð39Þ

in both the hadronic and baryon superfluid phases.
Similarly to the normalized diquark condensate indicated
in Eq. (37), the pressure in both the phases includes the
mass difference of the chiral partners δm̄2

σ−π . We note that
the LSM analysis surely satisfies the Silver-Braze property
in the hadronic phase, as seen from Eq. (39).
Here, we discuss connections between the LSM and

ChPT results in terms of the thermodynamic quantities.

Subtracting the vacuum pressure from pðBSÞ
LSM similarly to

Eq. (17), one can find that the subtracted pressure evaluated
in the LSM is also separated into the ChPT result and an
additional part,

psub
LSM ¼ pðBSÞ

LSM − pðHÞ
LSM

¼ psub
ChPT þ δp; ð40Þ

where δp reads

δp ¼ f2πm2
π

�
4

δm̄2
σ−π

ðμ̄2 − 1Þ2
�
: ð41Þ

In this expression, a square bracket has been included to
extract the common coefficient derived in the ChPT result
(17). Accordingly, the baryon number density and the
baryon susceptibility in the LSM are found to be linked
with the ChPT results,

nLSM ¼ nChPT þ δn;

χLSM ¼ χChPT þ δχ; ð42Þ

where δn and δχ are given by

δn ¼ 1

μq
2f2πm2

π

�
8

δm̄2
σ−π

ðμ̄4 − μ̄2Þ
�
;

δχ ¼ 8f2π

�
8

δm̄2
σ−π

ð3μ̄2 − 1Þ
�
: ð43Þ

In addition, we can evaluate the subtracted energy in the
LSM from ϵ ¼ −pþ μqn, which yields

ϵsubLSM ¼ ϵsubChPT þ δϵ; ð44Þ

where δϵ is given by

δϵ ¼ f2πm2
π

�
4

δm̄2
σ−π

ð3μ̄2 þ 1Þðμ̄2 − 1Þ
�
: ð45Þ

The contributions, δp, δn, δχ, and δϵ, are expressed by
the pion decay constant, pion mass, and mass difference
of the chiral partners, as well as the chemical potential.
Notably, these terms are proportional to the inverse of
δm̄2

σ−π ,

δp; δn; δχ; δϵ ∝ 1=δm̄2
σ−π: ð46Þ

At the heavy mass limit of the σ meson, those corrections
are suppressed such that the thermodynamic quantities are
reduced to the ChPT results,

lim
mσ→∞

psub
LSM ¼ psub

ChPT;

lim
mσ→∞

nLSM ¼ nChPT;

lim
mσ→∞

χLSM ¼ χChPT;

lim
mσ→∞

ϵsubLSM ¼ ϵsubChPT; ð47Þ

as observed for the squared diquark condensate in Eq. (37).
Therefore, as explained at the end of Sec. III A, the
additional contributions for the thermodynamic quantities
are regarded as corrections beyond the lowest-energy
regime governed by the NG bosons.

C. Sound velocity in LSM

In Sec. III B, we have evaluated the thermodynamic
quantities by employing the LSM and succeeded in
extending the ChPT results so as to include the correc-
tions from the chiral partners. Here, we discuss the chiral
partner contribution to the sound velocity within the LSM
framework.
Using the baryon number density and the baryon

susceptibility in Eq. (42), we find the analytical expression
of the sound velocity in the LSM within the mean-field
approximation,
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ðcLSMs Þ2 ¼ nChPT þ δn
μqðχChPT þ δχÞ

¼ ð1 − 1=μ̄4Þ þ 8ðμ̄2 − 1Þ=δm̄2
σ−π

ð1þ 3=μ̄4Þ þ 8ð3μ̄2 − 1Þ=δm̄2
σ−π

; ð48Þ

which is only dependent on the masses of σ meson and pion
together with the chemical potential but is independent of
the pion decay constant.
When we take mσ → ∞ while keeping μq finite, the

sound velocity is reduced to the ChPT result,

lim
mσ→∞

ðcLSMs Þ2 ¼ ðcChPTs Þ2 ¼ 1 − 1=μ̄4

1þ 3=μ̄4
; ð49Þ

as naively expected. On the other hand, when taking
μq → ∞ withmσ kept finite, the sound velocity approaches
the conformal limit in the end,

lim
μq→∞

ðcLSMs Þ2 ¼ 1

3
: ð50Þ

We note that the smaller value ofmσ taken, the more rapidly
the sound velocity converges on the conformal limit.
Although ðcLSMs Þ2 includes the δm̄2

σ−π contributions
nonlinearly, formally one can decompose ðcLSMs Þ2 into
the ChPT result and corrections as

ðcLSMs Þ2 ¼ ðcChPTs Þ2 þ δc2s ; ð51Þ

by explicitly extracting Eq. (21). After this decomposition,
δc2s < 0 for any μ̄ (≥ 1) is easily proven analytically while,
of course, ðcChPTs Þ2 > 0. Hence, there appears a competi-
tion between ðcChPTs Þ2 > 0 and δc2s < 0, i.e., between the
ChPT contributions from the NG bosons and the correction
provided from the chiral-partner dynamics. As a conse-
quence, the emergence of nonmonotonic behaviors in the
sound velocity, including the peak structure, is expected.

IV. NUMERICAL DEMONSTRATIONS

In Sec. III, we have learned that the LSM analysis
leads to generating corrections to the ChPT results of
the thermodynamics quantities, that is characterized by the
mass difference δm̄2

σ−π . In this section, focusing on this
clear structure, we present numerical results on the sound
velocity and the trace anomaly to take a closer look at roles
of the σ meson. We note that currently the mass of the σ
meson defined as the chiral partner remains obscure, due to
not only errors in the lattice results [30] but also possible
mixing effects from other hadrons such as a 0þ glueball.
Hence, in what follows, we vary the value of mσ for
numerical demonstrations.

A. Sound velocity

In this subsection, we present numerical results on the
impact of the σ meson on the sound velocity.
Depicted in Fig. 1 is the resultant μq dependencies

of the sound velocities evaluated in the LSM with several
values of mσ . The solid black curve corresponds to the
ChPT result which is also reproduced within the LSM
framework by taking mσ → ∞. The peak structure for
certain choices of mσ is indeed observed, as the recent
lattice data implies [32]. The figure also indicate that, in
the vicinity of μq ¼ μcrq , the results are less sensitive to the
value of mσ . In fact, from Eq. (48), the sound velocity for
μq ≈ μcrq is simply approximated by

ðcLSMs Þ2 ≈ μ̄ − 1; ð52Þ

which does not exhibit any δm̄2
σ−π dependencies. This

linear line is shown by the dashed line in Fig. 1. On the
other hand, when looking at the high-density region such
as μq ¼ 3mπ ≫ μcrq , the value of c2s changes from c2s ¼ 1

toward c2s ¼ 1=3 in association with reduction of the σ
meson mass, indicating a significant dependence on mσ. In
fact, for finite mσ , one can show that the sound velocity in
high dense regime is expanded as

ðcLSMs Þ2 ¼ 1

3
þ δm̄2

σ−π − 8

36

1

μ̄2
þOð1=μ̄3Þ; ð53Þ

where the coefficient of 1=μ̄2 depends on mσ. This clearly
shows that the sound velocity for μ̄ ≫ 1 is strongly affected
by the value of mσ , and finally, it converges on 1=3 as long
as mσ is not infinitely large, as derived in Eq. (50).
Equation (53) also implies that when the coefficient

of 1=μ̄2 is positive, i.e., δm̄2
σ−π > 8, the sound velocity

approaches 1=3 from above for sufficiently large μq,
leading to the at least one peak structure. In order to take

FIG. 1. μq dependence of the sound velocity with various
values of mσ .
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a closer look the emergence of the peak, here we consider a
stationary condition of c2s : ∂c2s=∂μ̄jμ̄¼μ̄p

¼ 0, which is, more
concretely, rewritten into

ðδm̄2
σ−π − 2μ̄6pÞðδm̄2

σ−π − 8Þ þ 18δm̄2
σ−πμ̄

2
p ¼ 0: ð54Þ

This equation possesses a single solution of positive μ̄2p
only when δm̄2

σ−π − 8 > 0 is satisfied. In other words,
within the present LSM, we can obtain only one peak in the
sound velocity, and this peak is derived only when

mσ >
ffiffiffi
3

p
mπ: ð55Þ

On the contrary, when the σ meson mass is constrained
by mσ ≤

ffiffiffi
3

p
mπ, the sound velocity monotonically grows

toward the conformal limit 1=3 without exhibiting any
peaks. We can verify the constraint (55) numerically, as
illustrated in Fig. 2. In this figure, the peak positions

indicated by filled circles surely appear only when (55)
is satisfied. The figure also implies that two different values
of mσ can yield the identical peak position μ̄p. Such a
doubling of the peak position is realized because Eq. (54) is
a quadratic equation with respect to δm̄2

σ−π .
As the σ meson mass becomes heavier, the suppression

of the sound velocity from the correction δc2s gets weak-
ened. In order to gain insights into a relationship between
this weakening and the peak properties, we depict the peak
value c2sðμ̄pÞ and the peak position μ̄p as functions ofmσ , in
panels (a) and (b) of Fig. 3, respectively. Panel (a) of Fig. 3
shows that as mσ becomes larger from the critical value
mσ ¼

ffiffiffi
3

p
mπ , the peak value is enhanced from c2s ¼ 1=3

toward c2s ¼ 1 monotonically. From panel (b), one can see
that there exists a lower limit of the peak position, μ̄p ¼ 2,
realized when mσ ¼ 3mπ . In other words, the peak is
generated only for μq > 2μcrq within the present LSM
approach. Besides, the doubling of the peak position
explained below Eq. (55) is clearly seen in this panel.
Despite such a doubling, its peak value is distinct from
panel (a) of Fig. 3. Therefore, by combining both the
information, the peak value, and the peak position, one can
identify the vale of mσ exclusively.

B. Trace anomaly

Owing to the contribution of the σ meson, the asymptotic
behavior of the sound velocity at the high-density region is
changed to approach the conformal limit. The related
conformal property would be further investigated from
the trace anomaly measured by Θμ

μ ¼ ϵ − 3p. In the recent
QC2D lattice simulation, the chemical potential depend-
ence of the trace anomaly has also been computed [32],
implying that its sign turns from positive to negative at
some chemical potential in the superfluid phase. In this
subsection, motivated by this characteristic property, we
explore the correlation between the sound velocity peak

FIG. 2. Constraints on the emergence of the sound velocity
peak.

(a) (b)

FIG. 3. Peak value (a) and peak position (b) as functions of the σ meson mass.
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and the sign of the trace anomaly in the baryonic matter
within the LSM approach.
In the QC2D lattice simulation, the μq dependence of the

trace anomaly is evaluated by subtracting the vacuum value
from Θμ

μ [32]. Following this lattice definition, we evaluate
the subtracted trace anomaly in the LSM as4

ðΘsub
LSMÞμμ ¼ ϵsubLSM − 3psub

LSM

¼ ðΘChPTÞμμ þ δΘμ
μ; ð56Þ

where the subtracted ChPT contribution ðΘsub
ChPTÞμμ and the

chiral-partner correction δΘμ
μ are provided by

ðΘsub
ChPTÞμμ ¼ ϵsubChPT − 3psub

ChPT

¼ f2πm2
π

�
−2
μ̄2

ðμ̄2 − 3Þðμ̄2 − 1Þ
�
; ð57Þ

and

δΘμ
μ ¼ δϵ − 3δp

¼ f2πm2
π

�
16

δm̄2
σ−π

ðμ̄2 − 1Þ
�
; ð58Þ

respectively. Here, to make sure, we again emphasize that
the correction is proportional to 1=δm̄2

σ−π which vanishes
for mσ → ∞ limit, and hence, in this limit ðΘsub

LSMÞμμ is
reduced to ðΘsub

ChPTÞμμ. In chiral effective models, the typical
mass scale of the trace anomaly is characterized by f2πm2

π.
Then, to easily grasp the μq dependence of the trace
anomaly, we define the following dimensionless one:

Θ̄ ¼ Θμ
μ

f2πm2
π
: ð59Þ

Looking at the high-density regions, the μq scaling of the
normalized trace anomaly Θ̄ in the LSM reads

Θ̄LSM ¼
�

16

δm̄2
σ−π

− 2

�
μ̄2 þ

�
−

16

δm̄2
σ−π

þ 8

�
þOð1=μ̄4Þ:

ð60Þ

From this expression, we find that in the high-density
regions the sign of trace anomaly is related to the σ meson
mass. When mσ ¼

ffiffiffi
3

p
mπ , the first term of Eq. (60)

vanishes, leading to Θ̄LSM → 6 that is positive. For smaller
σ meson mass, mσ <

ffiffiffi
3

p
mπ , Θ̄LSM positively diverges;

meanwhile, when the σ meson mass satisfies mσ >
ffiffiffi
3

p
mπ ,

the asymptotic sign of Θ̄LSM turns out to be negative. It is
noteworthy that the critical value for the sign of the trace
anomaly mσ ¼

ffiffiffi
3

p
mπ is identical to the one which dis-

criminates the emergence of the sound velocity peak, as
delineated in Sec. IVA. Those remarkable correlations are
summarized in Table I.
In order to visualize those behaviors of the trace anomaly,

we depict μq dependence of Θ̄ in Fig. 4. From this figure, it is

evident that the finite σ meson mass for mσ >
ffiffiffi
3

p
mπ plays

the role in yielding the negative trace anomaly which has
indeed been observed on the lattice simulation.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the sound velocity at
the finite quark chemical potential and zero temperature in
QC2D with two quark flavors, based on an effective model
described by hadronic degrees of freedom. In particular, we
have employed the linear sigma model, LSM, invented in
Ref. [55] that is capable of describing not only the NG
bosons associated with the chiral symmetry breaking but
also their chiral partners as higher excitations, to go beyond
the leading-order ChPT framework [6,7].
Utilizing a mean-field approximation, we have analyti-

cally found that the thermodynamic quantities evaluated
within the LSM are expressed by sums of the ChPT results
and the corrections. Notably, the latter corrections are
characterized by the inverse of a mass difference between
the chiral partners, the σ meson and pion. Hence, in a heavy
mass limit of the σ meson, the corrections vanish and the
thermodynamic quantities in our LSM are reduced to the

TABLE I. Relation between the sound velocity peak and the
sign of the trace anomaly for μ̄ → ∞.

σ meson mass Peak of c2s Asymptotic sign of Θ̄

mσ >
ffiffiffi
3

p
mπ ✓ Negative

mσ ≤
ffiffiffi
3

p
mπ Positive

FIG. 4. μq dependence on the normalized trace anomaly Θ̄.

4Owing to this subtraction, vanishing of the trace anomaly
evaluated here, ðΘsubÞμμ ¼ 0, does not correspond to the restora-
tion of the scale symmetry of the theory.
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ChPT results, as naively expected. For this reason, in the
QC2D thermodynamic aspects, the LSM is regarded
as a reasonable extension of the ChPT motivated by chiral
symmetry. Therefore, we conclude that the LSM evaluation
of the QC2D thermodynamics can serve as a new bench-
mark of hadron model approaches to compare with lattice
observations.
Within the ChPT analysis, the sound velocity in a

sufficiently dense region converges on c2s → 1; meanwhile,
based on the LSM, we have found that the asymptotic
behavior of the sound velocity is affected by the σ meson
mass to approach the conformal limit c2s → 1=3. In
addition, the σ meson contribution provides only one peak
in the sound velocity when mσ >

ffiffiffi
3

p
mπ is satisfied.

Furthermore, this peak has been found to emerge only
for μq > 2μcrq , where μcrq ¼ mπ=2 denotes the critical
chemical potential to enter the baryon superfluid phase.
We have further investigated the correlation between the

sound velocity peak and the sign of the trace anomaly
within the LSM.When the sound velocity peak appears, the
sign of the trace anomaly turns negative with the increase of
the chemical potential. Conversely, when the sound veloc-
ity peak is absent, the trace anomaly becomes always
positive. We note that the QC2D lattice simulation indicated
both the presence of the sound velocity peak and the
negative trace anomaly at some chemical potential [32].
We expect that the revealed features of the sound

velocity and trace anomaly provide useful information
on roles of hadronic degrees of freedom in cold dense
QC2D from the chiral partner aspects and predictions for
future QC2D lattice simulations.
In what follows, we give comments and discussions that

are not addressed in this paper. In this work, we have
employed the LSM to incorporate the chiral partners as
excitations that are not inherent in the ChPT, toward
examination of, particularly, the peak structure of the sound
velocity. For another direction to go beyond the lowest-
energy regime of QC2D, one would consider higher-order
corrections within the ChPT framework. In fact, the ChPT
Lagrangian including Oðp4Þ as well as Oðp2Þ terms at the
mean-field level is also capable of yielding the sound
velocity peak despite containing unfixed parameters. It is
well known that the ChPT is useful to explain the low-
energy NG-boson dynamics because of its systematic
treatment. Meanwhile, the LSM has a great advantage that
it can describe the chiral partners, i.e., P-wave excited
hadrons, in addition to the NG bosons respecting chiral
symmetry, and lattice simulations indeed observed such
excited hadrons [30]. Besides, there exits an argument that
NG-boson contributions in all orders of the momentum
expansion within the ChPTwould be replaced by a σ meson
dynamics, in terms of the pion scattering lengths [58]. For
these reasonings, our present LSM analysis is expected to
be a promising approach to extend the ChPT results on the
thermodynamics in cold dense QC2D.

Our findings are evaluated within the mean-field
approximation. To confirm the validity of our evaluations
at the quantum level, it is worth going beyond the mean-
field approximation in the LSM. Indeed, the one-loop
calculation of the NG-boson fluctuations has already been
taken into account in the ChPTanalysis [59–61]. Given this
fact, the inclusion of the chiral partner contribution in the
one-loop calculation would be straightforward. More
explicit analysis of such loop corrections in the LSM is
to be pursued elsewhere.
Our present investigation has been mostly devoted to

examining the sound velocity in the hadronic level, utiliz-
ing the LSM treating spin-0 hadrons. As the chemical
potential is increased, it is expected that further excitations
such as spin-1 hadrons would also start to contribute to the
sound velocity [62], and finally, the quark degrees of
freedom appear. However, how those other excited hadrons
have influences on the sound velocity and how the quark-
gluon dynamics begins to manifest themselves in the
baryonic matter remain unclear [38–41,44,47,48], owing
to the current limited lattice data in cold dense QC2D.
Moreover, the σ meson spectrum may be contaminated by a
0þ glueball through their mixings. Hence, in order to gain
insights into those contributions, we expect more lattice
results on not only the sound velocity but also the hadron
spectrum in the future. Despite those uncertainties, our
main harvest, the reproduction of the sound velocity peak
in cold dense QC2D by extending the NG boson dynamics
to include the chiral partners, would already have great
significance.
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APPENDIX: SPONTANEOUS CHIRAL
SYMMETRY BREAKING IN LOW-ENERGY

QC2D AND LSM

In this appendix, we derive the connection between the
chiral condensate and pion decay constant in Eq. (33).
We start from the underlying Lagrangian of the two-

flavor QC2D,

LQC2D ¼ ψ̄ðiγμDμ −mlÞψ −
1

4
Ga

μνGμν;a; ðA1Þ
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where ψ ¼ ðu; dÞT denotes the two-flavor quark doublet,
and Dμψ ¼ ð∂μ þ igAa

μTa
cÞψ is the covariant derivative

incorporating interactions with a gluon field Aa
μ. The

2 × 2 matrix Ta
c ¼ τac=2 is the generator of SUð2Þc color

group with τac being the Pauli matrix; g and ml are the
QC2D coupling constant and an isospin symmetric mass of
current quarks, mu ¼ md ≡ml. For the sake of conven-
ience in the following discussion, we take the Weyl
representation of the Dirac matrices,

γμ ¼
�

0 σμ

σ̄μ 0

�
; γ5 ¼

�
1 0

0 −1

�
; ðA2Þ

where σμ ¼ ð1; σiÞ and σ̄μ ¼ ð1;−σiÞ with the Pauli matrix
σi in spinor space. By using the Weyl representation, the
quark field, which belongs to the fundamental representa-
tion for SUð2Þc, is decomposed into the left- and right-
handed components,

ψ ¼ ðψR;ψLÞT: ðA3Þ
From the pseudoreal viewpoint of SUð2Þ groups, it is

convenient to introduce the following “conjugate fields,”

ψ̃L;R ¼ σ2τ
2
cψ

�
L;R

¼ ðũL;R; d̃L;RÞT: ðA4Þ
Note that this pseudoreal representation satisfies a property
similar to the Grassmann property for fundamental quarks
ψT
LðRÞψLðRÞ ¼ 0:,

ψ̃†
LðRÞψLðRÞ ¼ 0: ðA5Þ

By combining the fundamental and pseudoreal representa-
tions, one can define the following field:

Ψ ¼ ðψR; ψ̃LÞT ¼ ðuR; dR; ũL; d̃LÞT; ðA6Þ

where these four components are in the flavor space. Then,
the two-flavor QC2D Lagrangian can be expressed as

LQC2D ¼ Ψ†σμði∂μ − gAa
μTa

cÞΨ −
1

4
Ga

μνGμν;a

−
ml

2
ðΨTσ2τ2cETΨþ ðH:c:ÞÞ: ðA7Þ

At the massless limit of the current quark masses, this
Lagrangian is invariant under the SUð4Þ transformation,

Ψ → gΨ with g∈ SUð4Þ: ðA8Þ

By using the Ψ field, the quark condensate can be
described as

hψ̄ψi ¼
��

1

2
ΨTσ2τ2cETΨþ ðH:c:Þ

��
: ðA9Þ

This quark condensate constructed by Ψ is not invariant
under the SUð4Þ transformation but invariant under the
Spð4Þ transformation,

Ψ → hΨ with h∈ Spð4Þ: ðA10Þ

Namely, when the quark condensate gets a finite value,
the SUð4Þ symmetry is spontaneously broken into the
Spð4Þ symmetry in the vacuum of the two-flavor QC2D.
Consequently, five NG bosons show up, which is asso-
ciated with the number of the broken generators of
SUð4Þ=Spð4Þ, Xi (i ¼ 1–5). Indeed, a current of the broken
symmetry is coupled to the NG bosons.
Under the broken symmetry transformation with the

rotation angle θi, the quark field Ψ is transformed as

Ψ → exp½−iθiXi�Ψ: ðA11Þ

Then, one can obtain the broken current,

jiμ5 ¼ Ψ†σμXiΨ: ðA12Þ

Note that this current can be rewritten by the original
field ψ ,

jiμ5 ¼
8<
:

1

2
ffiffi
2

p ψ̄γμγ5τ
i
fψ ðfor i¼1;2;3Þ

i
4
ffiffi
2

p ψTCγ5τ2cðDi
fÞ†ðγμÞ†ψþðH:c:Þ ðfor i¼4;5Þ ;

ðA13Þ

where C ¼ iγ2γ0 denotes the charge-conjugation operator.
As a consequence of the spontaneous chiral symmetry
breaking, there exists an overlap amplitude between the
broken current jiμ5 and the NG bosons Pi in the low-energy
regime of QC2D,

h0jjiμ5 ðxÞjPjðpÞi ¼ −ifπpμe−ip·xδij ði; j ¼ 1 − 5Þ;
ðA14Þ

where fπ denotes the pion decay constant.
In the LSM, we can also define the broken current at the

vacuum (μq ¼ 0). By following the underlying transfor-
mation in Eq. (A11), Σ also transforms under the broken
symmetry of SUð4Þ as

Σ → exp½−iθiXi�Σ exp½−iθiðXiÞT �: ðA15Þ

From Eq. (24), the broken current of the LSM reads

jiμ5 ¼ 2ð∂μPjSk − ∂
μSjPkÞtr½fXj; XkgXi�: ðA16Þ

In the hadronic phase, where the vacuum undergoes the
spontaneous chiral symmetry breaking, σ0 ¼ hS0i ≠ 0 and
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Δ ¼ hP5i ¼ 0, the broken current takes the form of

jiμ5 ¼ 1ffiffiffi
2

p σ0∂
μPi þ � � � : ðA17Þ

Here, we have picked up a term relevant to NG bosons.
Thus, within the LSM, the overlap amplitude between the
broken current jiμ5 and the NG bosons Pi is evaluated as

h0jjiμ5 ðxÞjPjðpÞi ¼ −i
1ffiffiffi
2

p σ0pμe−ip·xδij: ðA18Þ

Matching to the underlying definition in Eq. (A14), the
chiral condensate can be connected to the pion decay
constant as

σ0 ¼
ffiffiffi
2

p
fπ: ðA19Þ

Note that the factor
ffiffiffi
2

p
deviates from the well-known case

of the three-color QCD with two flavors since the chiral
SUð2Þ symmetry is extended to the SUð4Þ symmetry due to
the pseudoreality of QC2D.
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