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It has been argued that charged Anti-de Sitter (AdS) black holes have similar thermodynamic behavior 
as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic 
variable (pressure) in an extended phase space. In this paper, we disclose the deep connection between 
charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider 
the mass of an AdS black hole as a function of square of the charge Q 2 instead of the standard Q , i.e. 
M = M(S, Q 2, P ). We first justify such a change of view mathematically and then ask if a phase transition 
can occur as a function of Q 2 for fixed P . Therefore, we write the equation of state as Q 2 = Q 2(T , �)

where � (conjugate of Q 2) is the inverse of the specific volume, � = 1/v . This allows us to complete 
the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition 
as well as critical exponents of the system. We identify a thermodynamic instability in this new picture 
with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore 
study the critical behavior of isotherms in Q 2–� diagram and deduce all the critical exponents of the 
system and determine that the system exhibits a small–large black hole phase transition at the critical 
point (Tc, Q 2

c , �c). This alternative view is important as one can imagine such a change for a given single 
black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic 
properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that 
scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large 
as one moves away from the critical point along the transition line. Therefore, we are able to attribute 
the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at 
the phase transition.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inspired by the black hole physics a profound connection be-
tween the laws of thermodynamics and the gravitational systems 
has been argued to exist. A pioneering work in this respect was 
done by Bekenstein and Hawking [1,2] who disclosed that the en-
tropy (S) and temperature (T ) of a black hole satisfy the first 
law of thermodynamics, dM = T dS , where M is the mass of 
the black hole. Later, the thermodynamic phase space of black 
hole was extended by considering the charge Q and the cos-
mological constant � (pressure P ) [3–6] as the thermodynamic 
variables. By consideration the energy formation of the thermo-
dynamic system, the authors of Ref. [7] showed that the mass 
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of AdS black hole M is indeed the enthalpy H . Therefore, the 
first law of black hole thermodynamics was written in the form 
dM ≡ dH = T dS + V dP + �dQ , where V and � are volume and 
electrical potential, respectively.

Phase transition has gained attention as a thermodynamic prop-
erty of AdS black holes ever since gravity correspondence was 
discovered with thermal field theory. The first study on black hole 
phase transitions was done by Hawking and Page [8] who demon-
strated a certain phase transition in Schwarzschild AdS black hole. 
This transition can be interpreted as a confinement–deconfinement 
phase transition in the dual quark gluon plasma [9]. Recently, au-
thors of [10] have shown that Hawking and Page phase transition 
can be found by Ruppeiner geometry. One of the important topics 
in phase transition is the critical point (continuous phase tran-
sition) because thermodynamic properties of the system exhibit 
non-analytic behavior. Such non-analytic behavior is described in 
terms of power-laws whose exponents define the universality class 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of various systems. Variation of the electric charge affects the ther-
modynamic behavior of black hole and consequently it can lead to 
critical phenomena. Authors of Refs. [3,4] reportedly showed that 
a phase transition occurs between large and small black holes in 
Q –� plane. They claimed that this behavior is similar to Van der 
Waals phase transition. However, as we will show in this paper, 
the phase transition they studied in [3,4] when Q is considered 
as a thermodynamic variable, is mathematically problematic and 
physically unconventional. Similar studies were also carried out by 
treating the cosmological constant as the thermodynamic pressure 
in an extended phase space, with its conjugate variable as volume 
[11–16]. By exploring the behavior of the pressure P versus spe-
cific volume v (with fixed charge Q and v = 2r+), the authors of 
Ref. [5] showed the existence of a continuous and discontinuous 
phase transition between small and large charged AdS black holes. 
This transition is analogous to the Van der Waals liquid–gas phase 
transition and belongs to the same universality class. In this view, 
the cosmological constant is treated as thermodynamically equiv-
alent to the pressure of the system. However, in general relativity 
(GR) the cosmological constant is usually assumed as a constant 
related to the background of AdS geometry. Indeed, the cosmologi-
cal constant, which is usually assumed as the zero point energy of 
the field theory, defines the background of the spacetime. There-
fore, from a physical point of view, it is difficult to consider the 
cosmological constant as a pressure of a system which can take on 
arbitrary values.

It seems natural to think of variation of charge Q of a black 
hole and keep the cosmological constant as a fixed parameter, 
since the charge of a black hole is a natural external variable 
which can vary. However, previous works [3,4] have considered 
the energy differential as �dQ with � = Q /r+ , with r+ the event 
horizon radius. They have identified a phase transition and have 
studied its associated thermodynamic behavior. As we will show 
shortly, such a view of thermodynamic conjugate variables (Q and 
� = Q /r+) which are not mathematically independent can lead to 
physically irrelevant quantities such as (∂ Q /∂�)T which is sup-
posed to be a thermodynamic response function, but mathemati-
cally ill-defined. In the present work, we offer an alternative view 
of such an phase space and definition of new response function 
which naturally leads to physically relevant quantity. As we will 
show, the critical behavior indeed occurs in Q 2–� plane, where 
� = 1/2r+ . Thus, the first law of black hole thermodynamics as 
well as the Smarr relation are subsequently modified. We identify 
a small–large black hole phase transition and obtain the critical 
point as well as the critical exponents. Perhaps more interestingly, 
by calculating the scalar curvature, we are able to establish a direct 
link between microscopic interactions and the resulting macro-
scopic phase transition.

The outline of our paper is as follows: in the next section, we 
study thermodynamics of charged AdS black holes by replacing 
term �dQ with �dQ 2 in the first law of thermodynamics. In sec-
tion 3, we investigate the critical behavior and phase transition of 
charged AdS black holes by treating the charge as the thermody-
namic variable and keeping the cosmological constant (pressure) as 
a fixed parameter. In section 4, we explore microscopic properties 
of charged AdS black holes by applying thermodynamic geometry 
towards thermodynamics of the system. In particular, we focus on 
studying the kind of intermolecular interaction along the transi-
tion curve for small and large black holes by using the Ruppeiner 
geometry. We finish with concluding remarks in the last section.

2. Thermodynamics of charged AdS black holes

Our starting point is the action of Einstein–Maxwell theory in 
the background of AdS spacetime [5]
I = 1

16π

∫
d4x

√−g
(
R − 2� − Fμν F μν

)
, (1)

where Fμν = ∂μ Aν −∂ν Aμ is the electrodynamics field tensor with 
gauge potential Aμ , R is the Ricci scalar, � = −3/l2 is the negative 
cosmological constant and l is the AdS radius. The line element of 
Reissner–Nordström (RN)-AdS black holes can be written as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (2)

where d�2 is the metric of 2-sphere and f (r) is given by

f (r) = 1 − 2M

r
+ Q 2

r2
+ r2

l2
, (3)

where M and Q are, respectively, the Arnowitt–Deser–Misner 
(ADM) mass and charge of the black hole. The Maxwell equation 
also yields the electric field as Ftr = Q /r2. The event horizon r+ , 
is the largest root of f (r+) = 0, and hence the mass of black hole 
is written as

M(r+) = r+ + Q 2

r+
+ r3+

l2
. (4)

The Hawking temperature of the RN-AdS black hole on event hori-
zon r+ can be calculated as [5]:

T = f ′(r+)

4π
= 1

4πr+

(
1 + 3r2+

l2
− Q 2

r2+

)
. (5)

The entropy of the charged black hole which is a quarter of the 
event horizon area is S = πr2+ . Now, we explore thermodynam-
ics of RN-AdS black hole in a new phase space. We consider the 
entropy S , square of charge Q 2 and negative cosmological con-
stant � (P = −�/(8π)), as independent variables. Thus, the ADM 
mass of black hole is enthalpy [7], (H = M) and is obtained as

M(S, Q 2, P ) = 1

6
√

π S

(
3S + 8P S2 + 3π Q 2

)
. (6)

The intensive parameters conjugate to S , Q 2 and P are defined by 
T ≡ (∂M/∂ S)P , Q 2 , � ≡ (

∂M/∂ Q 2
)

S, P , V ≡ (∂M/∂ P )S, Q 2 , where 
T is the temperature, � = 1/(2r+), and the thermodynamics vol-
ume V is obtained via V = ∫

4Sdr+ = 4πr3+/3. The new variable �

is the inverse of the specific volume v = 2r+ in the natural unit 
where lp = 1 [5]. Therefore, the above thermodynamic relation sat-
isfies the first law as:

dM = T dS + �dQ 2 + V dP . (7)

From scaling argument, we arrive at the Smarr formula as [7]:

M = 2
(

T S + � Q 2 − V P
)

. (8)

Let us compare the first law of thermodynamics we have proposed 
here in Eq. (7) with the usual first law that has been studied in the 
literature. For example, the authors of [5] proposed the first law of 
thermodynamics in an extended phase space in the from

dM = T dS + �dQ + V dP , (9)

where � = Q /r+ is the electric potential, measured at infinity 
with respect to the horizon. The corresponding Smarr formula is 
[5]

M = 2 (T S − V P ) + �Q . (10)

It is important to note that we have replaced the usual �dQ
term in the first law with �dQ 2. The extended phase space as-
sociated with P = −�/(8π) is still the same. Also, the associ-
ated Smarr formula given in Eqs. (8) and (10) is the same, since 
2� Q 2 = Q 2/r+ = �Q .
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Fig. 1. (Color online.) The behaviors of isothermal Q –� diagram and the corre-
sponding G–Q diagram (inset) of charged AdS black holes for the case of l = 1. 
Note that, after Maxwell construction both regions of positive and negative slope 
still remain. Compare with Figs. 2 and 3.

Now, the question we ask is which one of the two sets of 
equations, i.e. Eqs. (7) and (8) or Eqs. (9) and (10) is more ap-
propriate for investigation of AdS black hole thermodynamics? We 
have already argued that the use of extended phase space (V dP ) 
is physically difficult to justify as it implies arbitrary values of cos-
mological constant. However, and more important to our propose 
here, our question boils down to what is the appropriate thermo-
dynamic variable representing the charge of a AdS black hole, Q 2

or Q ? A look at Eqs. (3), (4), (5) and (6) shows that the charge 
of AdS black hole is never represented as Q but always as Q 2. 
However, there is far more fundamental reason for choosing Q 2

instead of Q . The reason is the corresponding conjugate variable, 
� vs. � . The conjugate thermodynamic variables are supposed to 
be mathematically independent variables. For example change of 
volume leads to a change of pressure through some physical pro-
cess (V dP ), or change of temperature leads to change of entropy 
(T dS). It is through this independence that physically relevant re-
sponse functions are defined like compressibility (−1/V (∂V /∂ P )) 
and heat capacity (T (∂ S/∂T )), which are required to be positive 
for a stable thermodynamic system. If one looks at the Q –� space, 
one immediately realizes such independence is violated as the con-
jugate variable � ≡ Q /r+ explicitly depends on Q itself! This 
makes the definition of a response function (∂ Q /∂�) physically 
and mathematically problematic. This is important, as phase tran-
sitions are driven by thermodynamic instabilities which are man-
ifested in unusual behavior in the corresponding response func-
tions, thus making appropriate definition of them of fundamental 
importance.

Therefore a change in � might automatically bring a change 
in Q without any physical response from the system, making 
∂ Q /∂� meaningless as a physical response function. In order to 
see how this can lead to problems (see Refs. [3] and [4] for ex-
ample), we have plotted the Gibbs free energy as a function of Q
in the inset of Fig. 1 and the corresponding “unstable” isotherm 
in Q –� diagram. The instability associated with multivaluedness 
of G is not removed by the standard Maxwell construction as is 
clearly seen in the figure. This is so because both regions of posi-
tive and negative slope (∂ Q /∂�)T still remain even after Maxwell 
construction. Therefore Maxwell construction does not lead to sta-
ble isotherms. Since the entire thermodynamics of phase transition 
is based on identification of stable and unstable regimes, one can 
conclude that previous studies which have been based on such a 
view lead to suspicious results.

Here, we propose to consider isotherms in the Q 2–� diagrams 
and use the physically and mathematically relevant response func-
tion (∂ Q 2/∂�) in order to distinguish regions of stable and un-
stable system. Note that our proposed alternative view leads to a 
natural response function which measures how the size of a black 
Fig. 2. (Color online.) The behavior of isothermal Q 2–� diagram of charged AdS 
black holes for the case of l = 1. Note that in this approach the isotherms look 
essentially the same as Van der Waals isotherms, compare to Fig. 1 (conventional 
approach) which exhibits unusual isotherms.

hole (� ∼ r−1+ ) changes with changes in its charge (Q 2). We will 
see that this alternative view remedies the problems seen Fig. 1
and more importantly leads to a natural correspondence with the 
Van der Waals fluid and the associated small–large black hole 
phase transition without a need for extended phase space.

3. Phase transition and critical exponents

In this section, based on the first law of thermodynamics given 
in Eq. (7) and the enthalpy (mass) of system given in Eq. (8), we 
propose an alternative approach towards critical behavior of black 
holes by considering the pressure P = 3/(8π l2) as a fixed exter-
nal parameter and allow the charge of the black hole to vary. 
Therefore, by using Eq. (5), one may write the equation of state 
Q 2(T , �) as,

Q 2 = r2+ + 3r4+
l2

− 4πr3+T . (11)

The Q 2–� isothermal diagram is shown in Fig. 2. In this figure 
there are some parts of the isotherms which correspond to a neg-
ative Q 2. Clearly these parts of diagram are physically not accept-
able. Note that this also occurs in the usual Van der Waals fluid 
where the pressure can become negative for certain values of T
[17]. However, more importantly, oscillating part of the isotherm 
indicates instability region (

(
∂ Q 2/∂�

)
T > 0). Both of these phys-

ically unstable features are remedied by the usual Maxwell equal 
area construction [17],∮

�dQ 2 = 0, (12)

as depicted in Fig. 3. Isothermal diagrams show that, for l constant 
and T = Tc , there is an inflection point which is the critical point 
where a continuous phase transition occurs. Therefore, the critical 
point can be characterized by

∂ Q 2

∂�

∣∣∣
Tc

= 0,
∂2 Q 2

∂�2

∣∣∣
Tc

= 0. (13)

One obtains:

Tc = 1

π l

√
2

3
, Q 2

c = l2

36
, �c =

√
3

2l2
, (14)

which leads to a universal (l independent) constant,

ρc ≡ Q 2
c Tc�c = 1

36π
. (15)

The behavior of a thermodynamic system can also be characterized 
by the Gibbs free energy, G = M − T S . In a fixed pressure regime, 
the Gibbs free energy reduces to
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Fig. 3. (Color online.) The behavior of isothermal Q 2–� diagram of charged AdS 
black holes constructed by Maxwell equal area law. Here we have set l = 1 and 
rescaled the axes.

Fig. 4. (Color online.) Gibbs free energy of charged AdS black holes with l = 1. 
Curves are shifted for clarity.

Fig. 5. (Color online.) Transition line of small-large BH phase transition of charged 
AdS black hole in the Q 2–T plane. The critical point marks the end of the transition 
line.

G = G
(

T , Q 2
)

=
(

r+
4

+ 3Q 2

4r+
− r3+

4l2

)
ω, (16)

where ω = 4π is the area of unit 2-sphere, and r+ = r+
(
T , Q 2

)
, 

see Eq. (11). The behavior of the Gibbs free energy in term of Q 2

is depicted in Fig. 4. Here, the multi-valued behavior of Gibbs free 
energy indicates that the system has a discontinuous (first order) 
phase transition from small black hole to large black hole. Evi-
dently, for T > Tc the square of charge and the temperature of 
charged AdS black hole are constant during the phase transition. 
The transition line can be obtained from Maxwell’s equal area law 
and Gibbs free energy, which shows a small-large black hole phase 
transition. Such a phase diagram is shown in Fig. 5 where one can 
see that the extremal large black hole does not exist.

Next, we turn to calculate the critical exponents in this new 
phase space approach. The behavior of thermodynamic functions in 
the vicinity of the critical point is characterized by the critical ex-
ponents. Let us define the reduced thermodynamic variables
�r ≡ �

�c
, Q 2

r ≡ Q 2

Q 2
c
, Tr ≡ T

Tc
. (17)

To find the critical exponents, we write the reduced variables in 
the form Tr = 1 + t, �r = 1 + ψ, Q 2

r = 1 + �, where, t , ψ and �
show the deviation from the critical point. First, we consider the 
entropy as a function of temperature T and � = 1/(2r+) as

S = S (T ,�) = π

4�2
, (18)

which is independent of temperature T . Therefore the specific heat 
at fixed � reads,

C� = T
∂ S

∂T

∣∣∣
�

= 0.

Since, the exponent α describes the behavior of C� near the criti-
cal point as C� ∝ |t|α , one finds α = 0. By using Eq. (17), equation 
of state (11) translates into the law of corresponding states,

Q 2
r = 6

�2
r

+ 3

�4
r

− 8Tr

�3
r

, (19)

which is the equation of state in an l-independent form. One can 
expand Eq. (19) near the critical points as

� = −8t + 24tψ − 4ψ3 + O
(

tψ2,ψ4
)

. (20)

Applying the Maxwell’s equal area law and differentiating Eq. (20)
with respect to ψ at a fixed t > 0, leads to

� = −8t + 24tψl − 4ψ3
l = −8t + 24tψs − 4ψ3

s ,

0 = �c

ψs∫
ψl

ψ
(

24t − 12ψ2
)

dψ, (21)

where ψs and ψl denote the event horizon of small and large black 
holes, respectively. Eqs. (21) have the nontrivial solution

ψs = −ψl = √
6t. (22)

So, the behavior of the order parameter near the critical point can 
be calculated as

|ψs − ψl| = 2ψs = 2
√

6t1/2 =⇒ β = 1/2. (23)

To obtain the critical exponent γ , we may determine the behavior 
of the function

χT = ∂�

∂ Q 2

∣∣∣
T
,

near the critical point as χT ∝ |t|−γ . Using Eq. (20), one obtains

χT ∝ �c

24Q 2
c t

=⇒ γ = 1. (24)

The shape of the critical isotherm t = 0 is calculated by � =
−4ψ3 =⇒ δ = 3. In this way, we have obtained the set of criti-
cal exponents for charged AdS black holes by treating the charge 
as a thermodynamic variable and keeping fixed the cosmological 
constant (pressure). Note that the obtained critical exponents in 
this section coincide with those obtained for Van der Waals fluid 
[5,17]. Also, the authors of Ref. [5] obtained the same critical expo-
nents for charged AdS black holes by keeping the charge as a fixed 
parameter and treating the cosmological constant as a thermo-
dynamic pressure and its conjugate quantity as a thermodynamic 
volume in an extended phase space. Our thermodynamic approach 
to phase space is more natural and potentially more realistic. For 
example, one can easily imagine increasing Q while keeping T
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Table 1
The allowed ranges of �/�c .

�/�c <
√

�0 �/�c >
√

�0

R Positive Negative
T Positive Negative
Validity Allowed Not allowed

constant and observing the resulting continuous increase in black 
hole size (r+). More importantly, however, our phase transition 
diagrams (e.g. Fig. 3) indicate that there is an instability region 
where intermediate-size black holes should never be observed for 
Tc < T < 1.22Tc . This is precisely the Maxwell constructed region 
where an abrupt change from a small to large black hole occurs. 
In the extended phase space approach this transition occurs as a 
function of cosmological constant while in the present approach it 
occurs as a function of Q 2.

4. Thermodynamic geometry and microscopic structure

In this section we intend to study microscopic properties of 
charged AdS black holes by applying thermodynamic geometry to-
wards thermodynamics of the system. In particular, we focus on 
studying the kind of intermolecular interaction along the transition 
curve for small and large black holes by using the Ruppeiner ge-
ometry obtained from the thermodynamic fluctuation theory [18]. 
Since Ricci scalar is a thermodynamic invariant, the Ruppeiner ge-
ometry defined in (M , Q 2) space can be rewritten in the Weinhold 
energy form [19]:

gμν = 1

T

∂2M

∂ Xμ∂ Xν
, (25)

where Xμ = (S, Q 2). We can calculate thermodynamic Ricci scalar 
(scalar curvature R) that is a thermodynamic invariant analogous 
to that of GR. The sign of R gives information about intermolecular 
interaction in a thermodynamic system i.e. positivity (negativity) 
of R refers to dominance of repulsive (attractive) interaction in 
thermodynamic system [20,21]. R = 0 shows there is no interac-
tion in the system [22]. Using the above, one can calculate the 
Ruppeiner scalar curvature with fixed pressure l = 1. Then

R = 36 (�/�c)
2 [

(�/�c)
2 + 1

]
π

[
3 + 6 (�/�c)

2 − (Q /Q c)
2 (�/�c)

4] . (26)

As shown in Table 1, the sign of R depends on the value of Q /Q c , 
i.e. the scalar curvature is positive (repulsive intermolecular inter-
action) for �/�c <

√
�0 where

�0 = 3 +
√

9 + 3 (Q /Q c)
2

(Q /Q c)
2

, (27)

and the region of �/�c >
√

�0 is not physically allowed due to 
negative absolute temperature. Fig. 6 depicts the behavior of scalar 
curvature R versus temperature T /Tc along the transition curve 
(Fig. 4) for small and large black holes (Tc ≤ T < 1.22Tc). This fig-
ure shows that R is positive (repulsive intermolecular interaction) 
and is the same value at critical point for small and large black 
holes. Moreover, the Ruppeiner scalar has a gap between small and 
large black holes for Tc < T < 1.22Tc . Furthermore, one can note 
that R becomes increasingly large as T increases for a small BH 
(upper branch). This behavior is very interesting as diverging R in-
dicates a very strong repulsive force. For example, our results show 
that a small BH at T ≈ 1.22Tc behaves much like a fermi gas at 
T ≈ 0 [23], where fermi exclusion principle dominates the thermo-
dynamic behavior of the system with strong degenerate pressure.
Fig. 6. (Color online.) The Ruppeiner scalar curvature R along the transition curve 
for small and large black holes. Note the logarithmic scale on the R axis.

However, it is also interesting to speculate on the possible mi-
croscopic nature of the phase transition at hand here. As one 
moves away from the critical point (continuous transition) along 
the transition line, one can see that the corresponding phase tran-
sition becomes discontinuous and more sudden in nature. The re-
sulting large black hole is larger the further away one moves away 
from the critical point along the transition line (see Fig. 2, e.g. 
T /Tc = 1.1). Now, one can see from Fig. 5 that the associated R
value for such a transition has a larger and larger gap. All possi-
ble stable large back holes have nearly R value of zero, indicating 
weakly-interacting constituents. However, the repulsive nature of 
these constituents on the small BH side of the transition line can 
be very large which is indicative of a very large outward pressure 
and a tendency to expand. The picture that emerges here is that 
phase transition from small to large black holes is driven by a re-
pulsive nature of the interacting constituents whose tendencies are 
to expand the black hole. The larger this tendency at the transi-
tion (i.e. larger R) the larger the resulting black hole (smaller r+). 
We are therefore able to draw certain conclusions about internal 
structure and interactions of a black hole simply by looking at its 
possible phase transitions.

5. Concluding remarks

In this paper we have studied the small-large black hole phase 
transition which has been intensively studied in previous years. We 
have not considered the extended phase space view where cos-
mological constant is thought to take arbitrary values, although 
such an approach could be taken within our proposed view. On 
the other hand, we have pointed out the problems associated with 
the traditional Q –� view in the non-extended phase space. Sub-
sequently, we have offered an alternative view in the Q 2–� plane 
where � = 1/2r+ . Unlike previous studies, this change of view 
naturally leads to physically and mathematically meaningful re-
sponse function (∂ Q 2/∂�)T whose sign clearly signifies stable and 
unstable regimes. We have characterized this instability as a small–
large black hole phase transition and have characterized such a 
transition, including critical point, critical exponents, and a uni-
versal constant. As the name implies, cosmological constant does 
not offer a natural variable. However, as we have shown, for a 
given cosmological constant, one can imagine black holes taking 
on various amount of charge, which can subsequently lead to a 
phase transition. We have also studied microscopic properties of 
charged AdS black holes by considering thermodynamic geome-
try. This provides important insights into the nature of interactions 
among the black hole’s constituents. Our results indicate that the 
transition from small black hole to large black hole is caused by 
a strongly repulsive interaction amongst the constituents, which 
upon expansion and the subsequent phase transition to a large 
black hole, lead to a relaxation of such internal forces (R ≈ 0). This 



240 A. Dehyadegari et al. / Physics Letters B 768 (2017) 235–240
is in contrast with the usual liquid–gas transition where the at-
tractive forces among the constituents lead to condensation and a 
subsequent large specific volume. We end by observing that no 
stable small black hole is possible for T > 1.22Tc , as the unstable 
regime extends to arbitrary large � , e.g. see Fig. 2. Such isotherms 
only exhibit stable large black hole regime with nearly vertical 
isotherms. This behavior indicates that, for T > 1.22Tc , the size 
of the black hole is essentially a function of temperature only, 
where addition of charge does not significantly alter the size of the 
large black hole as the constituents have reached a non-interacting 
regime of R = 0 and thus no further expansion is possible. There-
fore, in this new alternative view of the phase space, the attractive 
force between the constituents is the deriving force that not only 
determines the size of the black hole but is the essential mecha-
nism causing the instability and the subsequent phase transition.
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