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We proceed to generalize the Yang-Baxter (YB) deformation of Wess-Zumino-Witten (WZW) model to 
the Lie supergroups case. This generalization enables us to utilize various kinds of solutions of the 
(modified) graded classical Yang-Baxter equation ((m)GCYBE) to classify the YB deformations of WZW 
models based on the Lie supergroups. We obtain the inequivalent solutions (classical r-matrices) of the 
(m)GCYBE for the gl(1|1) and (C3 + A) Lie superalgebras in the non-standard basis, in such a way 
that the corresponding automorphism transformations are employed. Then, the YB deformations of the 
WZW models based on the GL(1|1) and (C3 + A) Lie supergroups are specified by skew-supersymmetric 
classical r-matrices satisfying (m)GCYBE. In some cases for both families of deformed models, the metrics 
remain invariant under the deformation, while the components of B-fields are changed. After checking 
the conformal invariance of the models up to one-loop order, it is concluded that the GL(1|1) and 
(C3 + A) WZW models are conformal theories within the classes of the YB deformations preserving 
the conformal invariance. However, our results are interesting in themselves, but at a constructive level, 
may prompt many new insights into (generalized) supergravity solutions.
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1. Introduction

Klimcik [1–3] proposed the YB σ -model as a systematic way to consider integrable deformations of two-dimensional non-linear σ -
models. Then, this systematic procedure refined by Delduc, Magro and Vicedo in [4]. The deformations obtained via this method are called 
Yang-Baxter deformations, due to the central place that the CYBE takes in the construction. The principal chiral models deformed by Klim-
cik were also generalized by Delduc, Magro and Vicedo in [5,6] for the AdS5 × S5 superstring action (see, also [7–9]). In [5], the integrable 
deformation of the type I I B AdS5 × S5 superstring action along with the deformed field equations, Lax connection, and κ-symmetry 
transformations have been presented. Moreover, one can see the supercoset constructions in the YB deformed AdS5 × S5 superstring 
with the SU (2, 2|4) Lie supergroup based on the homogeneous CYBE in [10] (see, also [11]). Actually, the integrable deformations of the 
AdS5 × S5 superstring is an important application of the YB σ -model description. So far in all the works done on the deformation of the 
superstring action, the attention has been concentrated to the case where the deformations are created by bosonic generators of the Lie 
supergroup. Unlike these works, in the present work, the deformation is performed on both bosonic and fermionic sectors of the models.

The YB σ -model was then generalized by adding a WZW term. A prescription of the YB deformation of WZW model invented by 
Delduc, Magro and Vicedo in [12] (see, also [13–15]). In most of the works, the deformations of the YB WZW models have been studied 
on semisimple or compact Lie groups. Some interesting examples of the deformed YB WZW models were constructed on the Lie groups 
Nappi-Witten [16], H4 [17] and GL(2, R) [18] with classical r-matrices satisfying the (m)CYBE. A fundamental fact about them is that all 
can be considered as unique conformal theories within the class of the YB deformations preserving the conformal invariance.

The goal of the present work is to generalize the YB deformation of WZW model to the Lie supergroups case and present the result-
ing YB deformed backgrounds for the GL(1|1) and (C3 + A) Lie supergroups along with inequivalent classical r-matrices satisfying the 
(m)GCYBE. This generalization would be important from the viewpoint of its applications, because the YB deformed backgrounds on the 
Lie supergroups have a wider class of the (generalized) supergravity solutions [19] in general rather than the bosonic Lie groups.

This paper is organized as follows. In Section 2, by introducing a useful notation of Z2-graded vector space we generalize the YB 
deformation of WZW model to the Lie supergroups case. In Section 3, we find the R-operators and inequivalent r-matrices for the 
gl(1|1) Lie superalgebra. We furthermore construct the YB deformed backgrounds of the GL(1|1) WZW model in this section. Calculating 
inequivalent r-matrices for the (C3 +A) Lie superalgebra and followed by the YB deformations of the (C3 + A) WZW model are devoted 
to Section 4. In Section 5, it is shown that the deformed backgrounds satisfy the one-loop beta function equations which is the most 
important feature of the obtained models. In this way, we obtain the dilaton fields making the deformed models conformal up to the 
one-loop order. Some concluding remarks are given in the last section.

2. YB deformation of WZW model based on Lie supergroups and (m)GCYBE

We are now interested in studying the YB deformation of WZW model based on Lie supergroups. The general procedure that we shall 
apply is a straightforward generalization of the well-known prescription of Delduc, Magro and Vicedo [12]. Thus, in this section, inspired 
by a prescription invented by authors of Ref. [12], we generalize the YB deformation of WZW model from Lie groups to Lie supergroups. 
Before setting the model with Lie supergroups, let us recall the properties of Z2-graded vector space and also the definition of a Lie 
superalgebra G [20]. A super vector space V is a Z2-graded vector space, i.e., a vector space over a field K with a given decomposition 
of subspaces of grade 0 and grade 1, V = V0 ⊕ V1 . The parity of a nonzero homogeneous element, denoted by |x|, is 0 (even) or 1 (odd)1

according to whether it is in V0 or V1, namely, |x| = 0 for any x ∈ V0 , while for any x ∈ V1 we have |x| = 1. A Lie superalgebra G is a 
Z2-graded vector space, thus admitting the decomposition G = GB ⊕GF , equipped with a bilinear superbracket structure [., .] : G ⊗G → G
satisfying the requirements of anti-supersymmetry and super Jacobi identity. If G is finite-dimensional and the dimensions of GB and GF

are m = #B and n = #F , respectively, then G is said to have dimension (m|n). We shall identify grading indices by the same indices in 
the power of (−1), i.e., we use (−1)x instead of (−1)|x| , where (−1)x equals 1 or −1 if the Lie sub-superalgebra element is even or odd, 
respectively.2

Let us turn our attention to the model setting with Lie supergroups. First of all, it should be noted that the original WZW model based 
on a Lie supergroup G in Dewitt’s notation was first presented in [22]. Accordingly, the action of the YB deformed WZW model on a Lie 
supergroup G may be expressed as3

S
Y B

W ZW
(g) = 1

2

∫
�

dσ+dσ− (−1)a Ja+�ab L
b− + κ

12

∫
B3

d3σεαβγ (−1)a+bc Laα�ad f dbc Lbβ L
c
γ , (2.1)

where σα = (σ+, σ−) are the standard lightcone variables such that their relationship with the worldsheet coordinates (τ , σ) is given by 
σ± = (τ ± σ)/

√
2. Here, the left-invariant super one-form Lα = g−1 ∂α g is written in terms of an element g(τ , σ) of the Lie supergroup 

G . Lα is a G -valued function, that is, it can be written as Lα = (−1)aLaαTa , in which Ta , a = 1, ..., dim G are the basis of Lie superalgebra G
of G . A key ingredient contained in both terms of the action (2.1) is the most general non-degenerate invariant supersymmetric bilinear 
form �ab on the Lie algebra G which satisfies the following condition [22]:

f dab �dc + (−1)bc f dac �db = 0. (2.2)

Note that the bilinear form �ab is defined as inner product < . , . > for the basis Ta of G , and f cab are the structure constants which 
determine the (anti-)commutation relations [Ta , Tb ] = f cab Tc . The deformed currents J± = (−1)a Ja±Ta are defined in the following form

1 The even elements are sometimes called bosonic, and the odd elements fermionic. From now on, we use B and F instead of 0 and 1, respectively.
2 Note that this notation was first used by Dewitt in [21]. Throughout this paper we work with Dewitt’s notation.
3 The last term in (2.1) is the standard WZ term integrated over a 3-dimensional space B3 parameterized by (τ , σ , ξ) and whose boundary is the worldsheet �, where the 

extra direction is labeled by ξ . In this term, εαβγ is the Levi-Civita symbol in three dimensions.
2



A. Eghbali, T. Parvizi and A. Rezaei-Aghdam Physics Letters B 838 (2023) 137727
J± = (1+ ωη2)
1± ÃR

1− η2R2
L±, (2.3)

where η, Ã and κ are three independent real parameters such that the deformation is measured by η and Ã. The last parameter κ is 
regarded as the level. When η = Ã = 0 and κ = 1, the action (2.1) is nothing but that of the original WZW model on the Lie supergroup 
[22]. The operator R in (2.3) is a linear map from the Lie superalgebra G to itself, R : G → G . It is a skew-supersymmetric solution of the 
(m)GCYBE on G . That is to say, for any X, Y ∈ G it satisfies

[R(X), R(Y )] − R
([R(X), Y ] + [X, R(Y )]) = ω[X, Y ]. (2.4)

Here ω is a constant parameter which can be normalized by rescaling R . Equation (2.4) can be generalized to the mGCYBE if one sets 
ω = ±1, while the case with ω = 0 is the homogeneous GCYBE. Moreover, the skew-supersymmetric condition of the linear R-operator 
requires that

< R(X), Y > + < X, R(Y ) >= 0. (2.5)

In what follows we will focus on a class of linear R-operators constructed from a classical r-matrix r ∈ G ⊗ G by means of the general 
formula4

R(X) =< r , 1⊗ X >, (2.6)

for any X ∈ G . Here the r-matrix defined as r = rab Ta ⊗ Tb is a solution of the following standard (m)GCYBE [20]

[[r, r]] ≡ [r12 , r13 ] + [r12 , r23 ] + [r13 , r23 ] = ω �, (2.7)

where r12 = r ⊗ 1, r23 = 1 ⊗ r and r13 = rab Ta ⊗ 1 ⊗ Tb ; moreover, � ∈ �3(G ) is the canonical triple tensor Casimir of G. Notice that the 
standard form of the (m)GCYBE is equivalent to (2.4). When the r-matrix is a skew-supersymmetric solution of (2.7), i.e., rab = −(−1)ab rba , 
one can write

r = 1

2
rab

(
Ta ⊗ Tb − (−1)ab Tb ⊗ Ta

)

= 1

2
rab Ta ∧ Tb . (2.8)

We furthermore note that the r-matrix is considered to be even as r ∈ GB ∧GB ⊕GF ∧GF so that it has the following matrix representation5

rab =
(
rB 0
0 rF

)
. (2.10)

According to this, rab = 0 if |a| 
= |b|. In other words, fermions with bosons can’t be mixed (grading is preserved). By using the fact that in 
rab , |a| + |b| = 0, and by expanding X and R in terms of the bases of G as X = (−1)a xaTa and R = (−1)b Ra

bTb , and then by substituting 
(2.8) in (2.6) we find

Ra
b = −(−1)ac �ac r

cb. (2.11)

Matrices such as �ab and Ra
b are also considered similar to (2.10), that is, one considers for them |a| +|b| = 0. Accordingly, the (m)GCYBE 

(2.4) can be rewritten into the following form:

(−1)k Ra
c f kcdRb

d − (−1)b Ra
c f dcbRd

k − (−1)a Rb
c f dac Rd

k = ω f kab. (2.12)

It is also useful to obtain matrix form of the above equation by using the matrix representations of the structure constants, f cab = −(Yc)ab , 
giving us6

(−1)d R YkR
st − (−1)c R(YdRd

k) − (YdRd
k)R

st = (−1)k ωYk, (2.13)

where index d in the first term of the left hand side denotes the column of matrix Yk , while in the second sentence, c corresponds to 
the row of matrix Yd . In the next sections, we employ the above formulation in order to obtain the linear R-operators and r-matrices on 
the gl(1|1) and (C3 +A) Lie superalgebras. By using the obtained R-operators we will find all YB deformations of WZW models based on 
these Lie supergroups.

4 We note that the inner product is evaluated on the second site of the r-matrix.
5 For a Lie superalgebra G = GB ⊕ GF of dimension (m|n) we define the basis of G as {Ta }m+n

a=1 = {ti , Sα } where {ti }mi=1 and {Sα }m+n
α=m+1 are the bosonic and fermionic basis, 

respectively. Accordingly, the r-matrix can be written into the form

r = ri j
B
ti ⊗ t j + rαβ

F
Sα ⊗ Sβ . (2.9)

6 Here the superscript “st” in Rst
stands for supertranspose [21].
3
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3. YB deformations of WZW model on the GL(1|1) Lie supergroup

In this section we first solve the (m)GCYBE (2.13) in order to obtain the R-operators and inequivalent r-matrices for the gl(1|1) Lie 
superalgebra. Using the resulting R-operators we construct the YB deformed backgrounds of the GL(1|1) WZW model.

3.1. R-operators and r-matrices of the gl(1|1)

First of all, let us introduce the gl(1|1) Lie superalgebra. In Backhouse’s classification [23], the gl(1|1) has been denoted by (C2−1 +A); 
in fact, traditional notation for the (C2−1 + A) Lie superalgebra is the gl(1|1). On the other, in Ref. [24] we classified all four-dimensional 
Drinfeld superdoubles of the type (2|2) and showed that there are just three classes of non-isomorphic Drinfeld superdoubles of the type 
(2|2) so that two of them are isomorphic to the Lie superalgebras gl(1|1) and (C3 + A), another is an Abelian Lie superalgebra. These 
possess two bosonic generators and two fermionic ones. We shall denote the former by T1 , T2 and use T3 , T4 for fermionic generators. 
From now on we consider T1 , T2 and T3 , T4 as bosonic and fermionic generators, respectively. For the gl(1|1), the relations between these 
elements are, in the non-standard basis, given by [23]

[T1 , T3 ] = T3 , [T1 , T4 ] = −T4 , {T3 , T4} = T2 . (3.1)

It should be noted that in Ref. [25] two of us obtained all Lie superbialgebra structures on the gl(1|1) and their corresponding r-matrices 
in the standard basis. According to DeWitt’s notation [21], in the standard basis the structure constants f B

F F
are considered to be pure 

imaginary. As we showed a moment ago in (3.1) here we work in the non-standard basis, so our results on the Lie superbialgebra 
structures and corresponding r-matrices will be different from those of [25]. The gl(1|1) Lie superalgebra possesses a non-degenerate 
supersymmetric ad-invariant metric �ab which is defined for any pair of bases Ta , Tb ∈ gl(1|1) such that by using (2.2) and also the 
structure constants of (3.1) one gets [22]

�ab =

⎛
⎜⎜⎝

β α 0 0
α 0 0 0
0 0 0 α
0 0 −α 0

⎞
⎟⎟⎠ , (3.2)

for some real constants α, β . The metric is needed e.g. to write down the action of WZW model on the GL(1|1) Lie supergroup.
Before proceeding to solve the (m)GCYBE (2.13) for the gl(1|1), let us first assume that the most general skew-supersymmetric r-matrix 

r ∈ G
(2|2) ⊗ G

(2|2) has the following form:

r =m1T1 ∧ T2 +m2T3 ∧ T4 + 1

2
m3T3 ∧ T3 + 1

2
m4T4 ∧ T4 . (3.3)

Comparing this with (2.8) one can obtain the matrix representation of rab , giving us

rab =

⎛
⎜⎜⎝

0 m1 0 0
−m1 0 0 0
0 0 m3 m2
0 0 m2 m4

⎞
⎟⎟⎠ , (3.4)

where mi are some real parameters. In addition, the matrix representations of the gl(1|1) are easily obtained to be

Y1 = 0, Y2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ , Y3 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Y4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎠ . (3.5)

Inserting (3.2) and (3.4) into (2.11) one can obtain the general form of the corresponding R-operator. Thus, by substituting the resulting 
R-operator and also the representations (3.5) into equation (2.13), the general solution of the (m)GCYBE is split into four families RIa

b , 
RI Ia

b , RI I Ia
b and RIVa

b such that the solutions are, in terms of the constants α, β, ω, mi , given by

RIa

b =

⎛
⎜⎜⎝

αm1 −βm1 0 0
0 −αm1 0 0
0 0 ±√−ω 0
0 0 0 ∓√−ω

⎞
⎟⎟⎠ , RI Ia

b =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 − ω

αm3
0 0 −αm3 0

⎞
⎟⎟⎠ ,

RI I Ia

b = ±√−ω

⎛
⎜⎜⎝

1 − β
α 0 0

0 −1 0 0
0 0 1 ± αm4√−ω

0 0 0 −1

⎞
⎟⎟⎠ , RIVa

b = ±√−ω

⎛
⎜⎜⎝

−1 β
α 0 0

0 1 0 0
0 0 1 0
0 0 ∓ αm3√−ω

−1

⎞
⎟⎟⎠ . (3.6)

Again by employing (2.11) and (3.2) one can obtain the corresponding r-matrices in the form of (2.9), giving us
4
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rI =m1 T1 ∧ T2 ±
√−ω

α
T3 ∧ T4 ,

rI I = m3

2
T3 ∧ T3 − ω

2α2m3
T4 ∧ T4 ,

rI I I = ±
√−ω

α

(
T1 ∧ T2 + T3 ∧ T4

)
+ m4

2
T4 ∧ T4 ,

rIV = ∓
√−ω

α

(
T1 ∧ T2 − T3 ∧ T4

)
+ m3

2
T3 ∧ T3 . (3.7)

The next step is that to determine the inequivalent r-matrices for the gl(1|1). In fact, we need to specify the exact value of the parameters 
mi of the solutions (3.7). In Ref. [17] as a Proposition we proved that two r-matrices r and r′ of a Lie algebra G are equivalent if one 
can be obtained from the other by means of a change of basis which is an automorphism A of Lie algebra G . Here we generalize the 
Proposition to the super case.

Proposition 3.1. Two r-matrices r and r′ of a Lie superalgebra G are equivalent if there exists an automorphism A of G such that

rab = (−1)d (A
st
)ac r

′cd Ad
b. (3.8)

The proof of this Proposition is similar to those of [17].
According to formula (3.8) in order to obtain the inequivalent r-matrices one must use the automorphism group of Lie superalgebra 

G which preserves (a) the parity of the generators (they can’t mix fermions with bosons), and (b) the structure constants f cab . Therefore 
it is crucial for our further considerations to identify the supergroup of automorphisms of the gl(1|1) Lie superalgebra. We define the 
action of the automorphism A on G by the transformation T ′

a = (−1)b Aa
b Tb . The set of automorphisms of gl(1|1) is generated by two 

transformations:

T ′
1 = −T1 + cT2, T ′

2 = abT2, T ′
3 = −aT4, T ′

4 = −bT3, (3.9)

and

T ′
1 = T1 + cT2, T ′

2 = abT2, T ′
3 = −aT3, T ′

4 = −bT4, (3.10)

where a, b, c are arbitrary real numbers such that ab 
= 0. The bases {T ′
a} obey the same (anti-)commutation relations as {Ta}. When taken 

into account, the above transformations lead to a conclusion that the parameters mi in (3.7) can be scaled out to take the value of 1 or 0. 
Now by using the automorphism transformations and by employing formula (3.8), one can determine the inequivalent r-matrices for the 
gl(1|1). Finally we arrive at eleven families of inequivalent r-matrices whose representatives can be described by means of the following 
Theorem.

Theorem 3.1. Any r-matrix of the gl(1|1) Lie superalgebra as a solution of the (m)GCYBE belongs just to one of the following eleven inequivalent 
classes7

ri = T1 ∧ T2 ,

rii = 1

2
T3 ∧ T3 ,

riii = −1

2
T3 ∧ T3 ,

riv = T3 ∧ T4 ,

rv = T1 ∧ T2 +m2T3 ∧ T4 , m2 =
√−ω

α
> 0, m2 
= 1,

rvi = 1

2

(
T3 ∧ T3 + T4 ∧ T4

)
,

rvii = 1

2

(
T3 ∧ T3 − T4 ∧ T4

)
,

rviii = −1

2

(
T3 ∧ T3 + T4 ∧ T4

)
,

rix = T1 ∧ T2 + T3 ∧ T4 ,

rx = T1 ∧ T2 + T3 ∧ T4 + 1

2
T4 ∧ T4 ,

rxi = T1 ∧ T2 + T3 ∧ T4 − 1

2
T4 ∧ T4 .

7 As we mentioned at the beginning of subsection (3.1), all Lie superbialgebra structures on the gl(1|1) and their corresponding r-matrices have been, in the standard basis, 
obtained in [25]. There, it has been shown that among seventeen families of inequivalent Lie superbialgebra structures, only six of them are of coboundary type, while in the 
present work we have obtained eleven families of inequivalent r-matrices. The reason behind this is that if one solves super co-Jacobi and mixed super Jacobi identities for 
the gl(1|1) in the non-standard basis, then he/she sees that the solutions will be different from those of [25].
5
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It should be noted that among eleven inequivalent classes of the r-matrices, only ri , rii and riii satisfy the standard GCYBE with ω = 0, 
while the rest are solutions of the mGCYBE with ω = −α2 except for rv and rvii which is ω = α2 for rvii . The parameter m2 is present in 
rv as it can’t be removed by means of the transformations (3.9) and (3.10). It means that for different values of m2 we have inequivalent 
r-matrices. However, as we will see, the m2 plays a role of the deformation parameter in the YB deformed background of the GL(1|1)
WZW model.

Before closing this subsection, let us look at the unimodularity condition on the solutions of the (m)GCYBE for the gl(1|1), Theo-
rem 3.1. As we know the r-matrix is the initial input for construction of the YB deformed backgrounds. When the r-matrix satisfies the 
unimodularity condition that is given by [26]

rab [Ta, Tb] = 0, (3.11)

then, the resulting deformed background is a solution to type IIB supergravity. If not, the background does not satisfy the on-shell 
condition of the supergravity and becomes a solution to a generalized supergravity. Below we determine which of the r-matrices classified 
in Theorem 3.1 are unimodular and or non-unimodular. Using (3.11) together with (3.1) we find that the r-matrices riv , rv , rix , rx and rxi are 
non-unimodular, while the rest denote the unimodular r-matrices. In the following, by calculating the linear R-operators corresponding to 
the inequivalent r-matrices of the gl(1|1) we will deform the GL(1|1) WZW model.

3.2. YB deformed backgrounds of the GL(1|1) WZW model

Before proceeding to construct out the YB deformed backgrounds of the GL(1|1) WZW model, let us have an overview of undeformed 
WZW model structure based on the GL(1|1) Lie supergroup. In Ref. [22], it was constructed the GL(1|1) WZW model in order to study 
super Poisson-Lie symmetry [27] of the model. As mentioned in section 2, by setting η = Ã = 0 and κ = 1 in (2.3) one gets the original 
WZW model from the action (2.1). Let us introduce a supergroup element represented by

g = eχ T4 eyT1 exT2 eψT3 , (3.12)

where x(τ , σ) and y(τ , σ) denote bosonic fields while ψ(τ , σ) and χ(τ , σ) stand for fermionic fields. Using (3.12), the components of 
left-invariant super one-form La± on the GL(1|1) can be evaluated as [22]

L1± = ∂± y, L2± = ∂±x− ∂±χ ψey,

L3± = −∂±ψ − ∂± y ψ, L4± = −∂±χ ey . (3.13)

A key ingredient in writing down the action of a WZW model is the most general supersymmetric ad-invariant form such that for the 
gl(1|1) has been given by equation (3.2). Finally by using (3.1), (3.2) and (3.13) one can write down the action of WZW model based on 
the GL(1|1) similar to what was done in Ref. [22]. The corresponding supersymmetric metric and anti-supersymmetric two-form field 
(B-field) are given by

ds2 = (−1)μν Gμνdx
μ dxν = βdy2 + 2dydx− 2ey dψdχ,

B = 1

2
(−1)μν Bμνdx

μ ∧ dxν = −ey dψ ∧ dχ. (3.14)

Here we have assumed that the constant α of �ab in (3.2) is set to be 1. From now on we consider α = 1. Equation (3.14) as a background 
of the WZW model should be conformally invariant. To check this, one first looks at the one-loop beta function equations [28]

Rμν + 1

4
Hμρσ H

σρ

ν + 2
−→∇μ

−→∇ ν � = 0,

(−1)
λ∇λ(

e
−2�

Hλμν

) = 0,

4� −R− 1

12
Hμνρ H

ρνμ + 4
−→∇μ�

−→∇μ
� − 4

−→∇μ

−→∇μ
� = 0, (3.15)

where the covariant derivatives 
−→∇μ , scalar curvature R and Ricci tensor Rμν are calculated from the metric Gμν that is also used for 

lowering and raising indices, and Hμνρ is the field strength corresponding to the B-field which is defined by

Hμνρ = (−1)μ
−→
∂

∂xμ
Bνρ + (−1)ν+μ(ν+ρ)

−→
∂

∂xν
Bρμ + (−1)ρ+ρ(μ+ν)

−→
∂

∂xρ
Bμν . (3.16)

For the background (3.14) one easily verifies equations (3.15) with a constant dilaton field, � = ϕ0, and vanishing cosmological constant.
Let us turn into the main goal of this subsection which is nothing but calculating the YB deformations of the GL(1|1) WZW model. 

As we mentioned earlier, having R-operators one can calculate the deformed currents. Now we use formulas (2.11) and (3.2) to obtain all 
linear R-operators corresponding to the inequivalent r-matrices of Theorem 3.1. In order to calculate the currents J± one may write down 
relation (2.3) in the following form

J a± − (−1)b+c η2 J b± Rb
c Rc

a = (1+ ωη2)
[
La± ± (−1)b ÃLb± Rb

a]. (3.17)

Finally by using the resulting linear R-operators satisfying the (m)GCYBE, and also by utilizing relation (3.17) together with (3.13) one 
obtains the YB deformations of the GL(1|1) WZW model. The deformed backgrounds including metric and B-field together with the 
6
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Table 1
YB deformed backgrounds of the GL(1|1) WZW model.

Background symbol Backgrounds including metric and B-field Comments

GL(1|1)(η, Ã,κ)

i ds2 = 1
1−η2

[
βdy2 + 2dydx + 2η2ψeydydχ

]
− 2eydψdχ

B = Ã
1−η2 ψeydy ∧ dχ − κeydψ ∧ dχ ω = 0

GL(1|1)( Ã,κ)
ii ds2 = βdy2 + 2dydx − 2eydψdχ

B = − 1
2 Ãe2y dχ ∧ dχ − κeydψ ∧ dχ ω = 0

GL(1|1)( Ã,κ)
iii ds2 = βdy2 + 2dydx − 2eydψdχ

B = 1
2 Ãe2y dχ ∧ dχ − κeydψ ∧ dχ ω = 0

GL(1|1)(η,κ)

iv ds2 = (1 − η2)
(
βdy2 + 2dydx

)
− 2η2ψeydydχ − 2eydψdχ

B = −κeydψ ∧ dχ ω = −1

GL(1|1)(η, Ã,κ)
v ds2 = 1

1−η2

[
β(1 −m2

2η
2)dy2 + 2dydx + 2η2(1 −m2

2)ψeydydχ
]
− 2eydψdχ

B = Ã(1−m2
2η

2)

1−η2 ψeydy ∧ dχ − κeydψ ∧ dχ m2 = √−ω

GL(1|1)(η, Ã,κ)

vi ds2 = (1 − η2)
[
βdy2 + 2dydx + 2η2

1+η2 ψeydydχ − 2
1+η2 e

ydψdχ
]

B = − Ã(1−η2)

1+η2

[
ψdy ∧ dψ + 1

2 e
2ydχ ∧ dχ

] − κeydψ ∧ dχ ω = −1

GL(1|1)(η, Ã,κ)

vii ds2 = (1 + η2)
[
βdy2 + 2dydx − 2η2

1−η2 ψeydydχ − 2
1−η2 e

ydψdχ
]

B = Ã(1+η2)

1−η2 [ψdy ∧ dψ − 1
2 e

2ydχ ∧ dχ ] − κeydψ ∧ dχ ω = 1

GL(1|1)(η, Ã,κ)

viii ds2 = (1 − η2)
[
βdy2 + 2dydx + 2η2

1+η2 ψeydydχ − 2
1+η2 e

ydψdχ
]

B = Ã(1−η2)

1+η2 [ψdy ∧ dψ + 1
2 e

2ydχ ∧ dχ ] − κeydψ ∧ dχ ω = −1

GL(1|1)( Ã,κ)
ix ds2 = βdy2 + 2dydx − 2eydψdχ

B = Ã ψeydy ∧ dχ − κeydψ ∧ dχ ω = −1

GL(1|1)( Ã,κ)
x ds2 = βdy2 + 2dydx − 2eydψdχ

B = − Ã ψdy ∧ dψ − (κ + Ã)eydψ ∧ dχ ω = −1

GL(1|1)( Ã,κ)
xi ds2 = βdy2 + 2dydx − 2eydψdχ

B = Ã ψdy ∧ dψ − (κ + Ã)eydψ ∧ dχ ω = −1

related comments are summarized in Table 1. Notice that the symbol of each background, e.g. GL(1|1)(η, Ã,κ)

i , indicates the deformed 
background derived by ri ; roman numbers i, ii etc. distinguish between several possible deformed backgrounds of the GL(1|1) WZW 
model, and the (κ, η, Ã) indicate the deformation parameters of each background.

As it is seen from Table 1, in some of the backgrounds such as GL(1|1)( Ã,κ)
ii , GL(1|1)( Ã,κ)

iii , GL(1|1)( Ã,κ)
ix , GL(1|1)( Ã,κ)

x and GL(1|1)( Ã,κ)
xi , 

the metrics are invariant under the deformation, up to two-form B-fields. That is, the effect coming from the deformations is reflected 
only as the coefficient of B-field. With the exceptions of the GL(1|1)( Ã,κ)

ii , GL(1|1)( Ã,κ)
iii and GL(1|1)(η,κ)

iv , for the rest of the backgrounds 
we have ignored the total derivative terms that appeared in the B-fields part.

4. YB deformations of WZW model on the (C3 + A) Lie supergroup

Similarly to the performance of calculations for the gl(1|1), in this section we first solve the (m)GCYBE (2.13) to obtain the R-operators 
and inequivalent r-matrices for the (C3 + A) Lie superalgebra. We then get YB deformations of the WZW model based on the (C3 + A)

Lie supergroup by utilizing the inequivalent r-matrices satisfying the (m)GCYBE. This is the subject of the present section.

4.1. R-operators and r-matrices of the (C3 +A)

The (C3+A) Lie superalgebra is spanned by the set of generators {T1 , T2 ; T3 , T4 } which fulfill the following non-zero (anti-)commutation 
rules [23]:

[T1 , T4 ] = T3 , {T4 , T4} = T2 . (4.1)

Notice that the Lie superbialgebra structures on the (C3 + A) along with their corresponding r-matrices, in the standard basis, were 
obtained in [29]. Here we work in the non-standard basis; accordingly, our results on the r-matrices will be different from those of [29].

Analogously, we consider an element r ∈ (C3 +A) ⊗ (C3 +A) as in (3.3), or equivalently, (3.4). On the other hand, using (2.2) one easily 
checks that the non-degenerate ad-invariant metric on the (C3 +A) is the same (3.2). The general form of the corresponding R-operator 
can be found by inserting (3.2) and (3.4) into (2.11). Calculating the matrix representations (Yc)ab of the (C3 + A) and then putting the 
resulting R-operator into (2.13), the most general solution can be determined like
7



A. Eghbali, T. Parvizi and A. Rezaei-Aghdam Physics Letters B 838 (2023) 137727
Ra
b =

⎛
⎜⎜⎝

m1 −βm1 0 0
0 −m1 0 0
0 0 m2 0
0 0 −m3 −m2

⎞
⎟⎟⎠ . (4.2)

Here the condition (2.13) has led to the following constraints:

ω =m2(m2 + 2m1), m4 = 0. (4.3)

Again by employing (2.11), the corresponding r-matrix to the above solution is obtained to be

r =m1T1 ∧ T2 +m2T3 ∧ T4 + 1

2
m3 T3 ∧ T3 . (4.4)

In the following, in order to find inequivalent r-matrices we need to specify the exact value of the parameters mi of the above solution. 
For this purpose, one must use the formula (3.8). The use of this formula requires that we know the automorphism transformation of the 
given Lie superalgebra. For the (C3 +A) the automorphism transformation preserving the (anti-)commutation rules (4.1) is given by

T ′
1 = aT1 + cT2, T ′

2 = b2T2, T ′
3 = −abT3, T ′

4 = −dT3 − bT4, (4.5)

for some constants a, b, c, d. After performing the transformation (4.5) on formula (3.8), one concludes that r-matrices of the (C3 +A) are 
split into eight inequivalent classes. For the sake of clarity the results are summarized in Theorem 4.1.

Theorem 4.1. Any r-matrix of the (C3 + A) Lie superalgebra as a solution of the (m)GCYBE belongs just to one of the following eight inequivalent 
classes

ri = 1

2
T3 ∧ T3 ,

rii = −1

2
T3 ∧ T3 ,

riii = T3 ∧ T4 ,

riv = T1 ∧ T2 ,

rv = T1 ∧ T2 + 1

2
T3 ∧ T3 ,

rvi = T1 ∧ T2 − 1

2
T3 ∧ T3 ,

rvii = T1 ∧ T2 +m2 T3 ∧ T4 ,ω =m2(m2 + 2), m2 
= 0,−2

rviii = T1 ∧ T2 − 2 T3 ∧ T4 .

It is noteworthy that only the r-matrices riii and rvii satisfy the mGCYBE with ω = 1 and ω = m2(m2 + 2), respectively, while the rest 
are solutions of the GCYBE. At the end of this subsection it should be noted that all inequivalent r-matrices above are unimodular, that is, 
they satisfy the unimodularity condition (3.11).

4.2. YB deformed backgrounds of the (C3 + A) WZW model

We start this subsection by introducing the (C3 + A) WZW model. The (C3 + A) WZW model based on the (C3 + A) Lie supergroup 
was originally created in Ref. [30] in order to study its super Poisson-Lie T-dualizability [27]. In order to write the model explicitly we 
need to find the super one-form La± ’s. To this purpose we use a general element of (C3 + A) as in (3.12). Then we find [30]

L1± = ∂± y, L2± = ∂±x− ∂±χ
χ

2
,

L3± = −∂±ψ + ∂±χ y, L4± = −∂±χ. (4.6)

As mentioned before, one must set the parameters η = Ã = 0 and κ = 1 in (2.3) to get the original WZW model from the action (2.1). 
Using (4.1), (4.6) and the fact that the ad-invariant metric on the (C3 +A) is the same (3.2), one computes the action of WZW model on 
the (C3 + A) Lie supergroup. From the action one can easily read off the corresponding metric and anti-supersymmetric fields, giving us

ds2 = βdy2 + 2dydx+ χdydχ − 2dψdχ,

B = χ

2
dy ∧ dχ. (4.7)

Indeed, this background satisfies the one-loop beta function equations (3.15) with � = ϕ0 and � = 0.
We are looking for our main goal in this section, which is nothing but calculating the YB deformations of the (C3 + A) WZW model. 

First, employing formulas (2.11) and (3.2) we obtain all linear R-operators corresponding to the inequivalent r-matrices of Theorem 4.1. 
Then, making use of the relations (3.17) and (4.6) one obtains the deformed currents J± . Finally we have used the action (2.1) to classify 
all YB deformed backgrounds of the (C3 + A) WZW model. The results including metric and B-field are summarized in Table 2. As it is 
seen, only in the backgrounds (C3 + A)

( Ã,κ)

i and (C3 + A)
( Ã,κ)

ii , the metrics remained unchanged under transformation, up to the B-fields. 
In addition, for all backgrounds we have ignored the total derivative terms that appeared in the B-fields part, except for the mentioned 
backgrounds.
8
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Table 2
YB deformed backgrounds of the (C3 + A) WZW model.

Background symbol Backgrounds including metric and B-field Comments

(C3 + A)
( Ã,κ)

i ds2 = βdy2 + 2dydx + χdydχ − 2dψdχ

B = − 1
2 Ã dχ ∧ dχ + 1

2 κχ dy ∧ dχ ω = 0

(C3 + A)
( Ã,κ)

ii ds2 = βdy2 + 2dydx + χdydχ − 2dψdχ

B = + 1
2 Ã dχ ∧ dχ + 1

2 κχ dy ∧ dχ ω = 0

(C3 + A)
(η, Ã,κ)

iii ds2 = (1 + η2)
[
βdy2 + 2dydx + χdydχ − 2

(1−η2)
dψdχ

]
B = − Ã(1+η2)

(1−η2)
y dχ ∧ dχ + 1

2 κχ dy ∧ dχ ω = 1

(C3 + A)
(η, Ã,κ)

iv ds2 = 1
(1−η2)

[
βdy2 + 2dydx + χdydχ

]
− 2dψdχ

B = 1
2

[
κ + Ã

(1−η2)

]
χdy ∧ dχ ω = 0

(C3 + A)
(η, Ã,κ)

v ds2 = 1
(1−η2)

[
βdy2 + 2dydx + χdydχ

]
− 2dψdχ

B = 1
2

[
κ + Ã

(1−η2)

]
χdy ∧ dχ − 1

2 Ã dχ ∧ dχ ω = 0

(C3 + A)
(η, Ã,κ)

vi ds2 = 1
(1−η2)

[
βdy2 + 2dydx + χdydχ

]
− 2dψdχ

B = 1
2

[
κ + Ã

(1−η2)

]
χdy ∧ dχ + 1

2 Ã dχ ∧ dχ ω = 0

(C3 + A)
(η, Ã,κ)

vii ds2 = (1+ωη2)

(1−η2)

[
βdy2 + 2dydx + χ dydχ

]
− 2(1+ωη2)

(1−m2
2η

2)
dψdχ ω =m2(m2 + 2)

B = 1
2

[
κ + Ã(1+ωη2)

(1−η2)

]
χdy ∧ dχ − Ãm2(1+ωη2)

(1−m2
2η

2)
ydχ ∧ dχ m2 
= 0,−2

(C3 + A)
(η, Ã,κ)

viii ds2 = 1
(1−η2)

[
βdy2 + 2dydx + χ dydχ

]
− 2

1−4η2 dψdχ

B = 1
2

[
κ + Ã

(1−η2)

]
χdy ∧ dχ + 2 Ã

(1−4η2)
ydχ ∧ dχ ω = 0

Table 3
The dilaton fields making the GL(1|1) deformed backgrounds conformal up to one-loop order.

Background symbol Dilaton field Comments

GL(1|1)(η, Ã,κ)

i � = �
8(1−η2)2

y2 + c1 y + c0 � =
[
Ã + κ(1 − η2)

]2 − 1

GL(1|1)( Ã,κ)
ii � = 1

8 (κ2 − 1)y2 + c1 y + c0

GL(1|1)( Ã,κ)
iii � = 1

8 (κ2 − 1)y2 + c1 y + c0

GL(1|1)(η,κ)

iv � = 1
8

[
κ2 − (1 − η2)2

]
y2 + c1 y + c0

GL(1|1)(η, Ã,κ)
v � = �

8(1−η2)2
y2 + c1 y + c0 � =

[
Ã(1−m2

2η
2) + κ(1 − η2)

]2 − (1−m2
2η

2)2

GL(1|1)(η, Ã,κ)

vi � = �
2 y2 + c1 y + c0 � = Ã2 − (1+η2)2

4(1−η2)2

[
(1− η2)2 − κ2

]
GL(1|1)(η, Ã,κ)

vii � = �
2 y2 + c1 y + c0 � = − Ã2 − (1−η2)2

4(1+η2)2

[
(1+ η2)2 − κ2

]
GL(1|1)(η, Ã,κ)

viii � = �
2 y2 + c1 y + c0 � = Ã2 − (1+η2)2

4(1−η2)2

[
(1− η2)2 − κ2

]
GL(1|1)( Ã,κ)

ix � = 1
8

[
( Ã + κ)2 − 1

]
y2 + c1 y + c0

GL(1|1)( Ã,κ)
x � = 1

8

[
( Ã + κ)2 − 1

]
y2 + c1 y + c0

GL(1|1)( Ã,κ)
xi � = 1

8

[
( Ã + κ)2 − 1

]
y2 + c1 y + c0

5. Conformal invariance of the YB deformed backgrounds

Our goal in this section is to investigate the conformal invariance conditions of the deformed models. In fact, we shall show that 
the WZW models based on the GL(1|1) and (C3 + A) Lie supergroups can be considered as conformal theories within the classes of 
the YB deformations preserving the conformal invariance up to the one-loop order. Accordingly, using the equations (3.15) we check the 
conformal invariance conditions of the deformed backgrounds (Tables 1 and 2). From solving the equations we find the general form of 
the dilaton fields that make the deformed backgrounds conformal up to the one-loop order. The results obtained for the deformations of 
the GL(1|1) WZW model are represented in Table 3. It is noteworthy that in all cases the cosmological constant vanishes. Also, the results 
obtained from solving equations (3.15) for the deformed backgrounds of the (C3 + A) WZW model are summarized in Table 4. In some 
cases of the (C3 + A) deformed backgrounds, we have shown that dilaton fields can depend on both bosonic coordinates. Note that c0 and 
c1 in Tables 3 and 4 are some arbitrary constants.

6. Summary and concluding remarks

We have generalized the formulation of YB deformation of WZW model proposed by Delduc, Magro and Vicedo from Lie groups to 
Lie supergroups. As showed, this generalization enabled us to find the various kinds of the solutions to the (m)GCYBE. As two influential 
examples, we classified the inequivalent r-matrices as solutions of the (m)GCYBE for the gl(1|1) and (C3 + A) Lie superalgebras in the 
non-standard basis. Using these solutions we could construct YB deformations of the WZW models based on the GL(1|1) and (C3 + A)

Lie supergroups. We furthermore showed that the deformed backgrounds are conformally invariant up to the one-loop order which is the 
most important feature of the resulting models. With this interpretation, we have shown that the WZW models on the aforementioned 
9
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Table 4
The dilaton fields making the (C3 + A) deformed backgrounds conformal up to one-loop order.
Background symbol Dilaton field Comments

(C3 + A)
( Ã,κ)

i � = c1 y + c0 ; � = 0,

(C3 + A)
( Ã,κ)

ii � = c1 y + c0 ; � = 0,

(C3 + A)
(η, Ã,κ)

iii � = c1 y + c0 ; � = 0,

� =
(

�(1+η2)
β

) 1
2
x+ c0 ; Ã = − κ(1−η2)

2(1+η2)

(C3 + A)
(η, Ã,κ)

iv � = c1 y + c0 ; � = 0,

� =
(

�

β(1−η2)

) 1
2
x+ c0 ; Ã = −5(1− η2)

(C3 + A)
(η, Ã,κ)

v � = c1 y + c0 ; � = 0,

� =
(

�

β(1−η2)

) 1
2
x+ c0 ; Ã = −5(1− η2)

(C3 + A)
(η, Ã,κ)

vi � = c1 y + c0 ; � = 0,

� =
(

�

β(1−η2)

) 1
2
x+ c0 ; Ã = −5(1− η2)

(C3 + A)
(η, Ã,κ)

vii � = c1 y + c0 ; � = 0,

� =
(

�
[
1+m2(m2+2)η2

]
β(1−η2)

) 1
2
x+ c0 ; Ã = − κ(1−η2)(1−m2

2η
2)[

1+m2(m2+2)η2
][

1+2m2−m2(m2+2)η2
]

(C3 + A)
(η, Ã,κ)

viii � = c1 y + c0 ; � = 0,

� =
(

�
β(1−η2)

) 1
2
x+ c0 ; Ã = κ

3 (1− η2)(1− 4η2)

supergroups can be considered as conformal theories within the classes of the YB deformations preserving the conformal invariance up to 
one-loop order.

As mentioned earlier, here we have worked with two of the WZW models based on the GL(1|1) and (C3 + A) Lie supergroups. 
The GL(1|1) WZW model is interesting from the point of view of physics, because in some of the articles it has attracted considerable 
attention: By studying maximally symmetric branes in the GL(1|1) WZW model it was shown that such branes are localized along 
(twisted) super-conjugacy classes [31] (see also [32]). The correlators of the model through a free field representation were constructed 
out in [33], then, by investigating some properties of the theory it was shown that some of the model correlators can be contained 
logarithmic singularities. Generally, WZW models on Lie supergroups present themselves as an ideal playground to extend many of the 
beautiful results of unitary rational conformal field theory to logarithmic models. Even the simplest models are mathematically rich and 
physically relevant. In addition, the existence of super Poisson-Lie symmetry is the most important feature of the GL(1|1) WZW model 
[22].

We hope that in future it will be possible to find other YB deformed WZW models, especially for physically interesting backgrounds. 
As a future direction, it would be interesting to get the YB deformations of the WZW models on Lie supergroups in higher dimensions 
such as the O S P (1|2) and O S P (2|2) by following our present analysis and method. However, our results in the present work can still 
provide insights into (generalized) supergravity solutions. For this purpose, one must generalize the generalized supergravity equations to 
supermanifolds. Some of these problems are currently under investigation.
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