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The Standard Model Higgs potential may become unbounded from below at large field values
h≳ htop ∼ 1010 GeV, with important cosmological implications. For a potential of this form, the
commonly assumed scenario of a nucleated thin-wall bubble driving the transition from the electroweak
vacuum to the unstable region does not apply. We present exact analytical solutions for potentials that have
the same qualitative form as the Higgs potential. They show that the transition is driven by a thick-wall
spherical bubble of true vacuum, with a surface that expands at asymptotically the speed of light.
A “crunch” singularity appears in the quasi-anti–de Sitter interior, with the collapsed region also expanding
at asymptotically the speed of light. The singularity is surrounded by a region of trapped surfaces whose
boundary forms an apparent horizon. An event horizon separates the singularity from the bubble exterior,
so that the expansion of the bubble surface is not affected by the collapse of the interior. The solutions
provide exact descriptions of the geometry for thick-wall bubbles and are consistent with the analysis of
Espinosa et al. [J. High Energy Phys. 09 (2015) 174.] and Strumia-Tetradis [J. High Energy Phys. 09
(2022) 203.] for the Higgs potential.
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I. INTRODUCTION

The Standard Model (SM) Higgs potential may display
an instability at large field values h≳htop∼1010GeV [1–3],
with important cosmological implications [4–14]. After
radiative corrections are taken into account, the SM
potential can be approximated through an effective running
coupling as

V≈−λðhÞh
4

4
; λðhÞ¼bln

h2

e1=2h2top
; with b≈

0.15
ð4πÞ2 : ð1Þ

The electroweak vacuum is located at hfalse ≈ 0. It is
separated by a barrier located at h ¼ htop from a region
where the potential would become unbounded from below
unless gravitational effects generate a new deep minimum
around the Planck scale. For a potential of this form, the
commonly assumed scenario of a thin-wall bubble driving
the transition from the false vacuum to the unstable region
of the potential does not apply. After the nucleation, the
field within the bubble does not take a constant value, but
instead “rolls” down the potential. The situation becomes
more complicated when gravity is taken into account.

Regions of constant negative energy density can be
described in terms of the anti–de Sitter (AdS) spacetime,
leading to the Coleman-de Luccia picture of vacuum
decay [15]. However, if the field evolves in time, the
interior is not captured sufficiently well by the standard
AdS geometry. Moreover, the presence of a dynamical field
can lead to the appearance of a “crunch” singularity [4,15].
The combination of these factors has raised doubts even

for the validity of the basic conclusion that a sufficiently
large bubble will expand forever after its nucleation. In [16]
it was argued that expanding bubbles nucleated during
inflation eventually turn around and collapse into black
holes because of the rapid evolution of the Higgs field in
the interior towards larger values. In [17] it was shown that
this conclusion relies on the assumption made in [16] that
the interior of the bubble is homogeneous, an approxima-
tion that is not valid in the exact solution. The numerical
study of the equations of motion (EOM) has shown that a
“crunch” singularity appears in the interior of the bubble,
but the bubble surface keeps expanding for sufficiently
large bubbles [17]. In this sense, the original analysis of [4]
remains valid and the Hubble scale during inflation must be
constrained in order for the catastrophic bubble nucleation
to become improbable.
The purpose of the present paper is to present further

evidence in order to confirm the above conclusion. The
analysis of [4] made use of the thin-wall approximation,
while [17] relied heavily on a numerical solution. In this
respect, an analytical treatment beyond the thin-wall
approximationwould bemore transparent.We are especially
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interested in vacuum decay during inflation. Earlier work on
thevarious saddle points associatedwith vacuumdecay in de
Sitter (dS) spacetime [18] has not considered the evolution
of the spacetime after tunneling in the case of an unbounded
potential. Of particular interest is the structure of the global
geometry, including possible horizons, as well as the nature
of the singularities that may appear. All thesewould become
clearer in a Penrose diagram constructed through an exact
solution.
Unfortunately, it is not easy to find analytical solutions

for the realistic Higgs potential of Eq. (1). However, exact
solutions can be derived for potentials that have the same
qualitative form. A particular example is the potential

VðhÞ ¼ −
1

4
λh4 ð2Þ

with constant λ > 0. In the absence of gravity, this potential
has solutions characterized as Fubini instantons [19] of the
form

hðtE; rÞ ¼
h0

1þ ðr2 þ t2EÞ=r20
with r0 ¼

1

h0

ffiffiffi
8

λ

r
ð3Þ

and arbitrary h0. The instanton action is

SF ¼ 8π2

3λ
; ð4Þ

independently of h0. The instantons describe tunneling
from a false vacuum at h ¼ 0 to a vacuum with an arbitrary
field value h0. The existence of solutions for any value of
h0 and the independence of the action on this parameter are
reflections of the scale invariance of the theory. The
logarithmic field dependence of λ in the SM potential
breaks the scale invariance and results in the presence of a
barrier. As a result, a particular value of h0 is selected in the
unique instanton solution.
When gravity is taken into account, the full Einstein

equations must be solved. Even though this seems like a
formidable task, it is possible to derive analytical solutions
for particular forms of the potential [20–24]. For potentials
that mimic the qualitative form of Eq. (2), an efficient
method is to allow for a conformal coupling of the field to
gravity, find a solution, and eventually transform it to the
Einstein frame. Such an example was presented in [17] in
an asymptotically flat spacetime. In the following we shall
analyze this solution in more detail and also present a novel
one in an asymptotically de Sitter (dS) spacetime, which is
relevant for bubble nucleation during inflation. We shall
construct Penrose diagrams for the global spacetimes in
order to understand the evolution of the nucleated bubbles,
as well as the nature of the horizons and singularities that
appear. In all cases we assume that the potential has a
locally stable false vacuum at the origin as a result of small

corrections that we neglect. Even though our solutions
leave the field value h0 at the center of the bubble
undetermined, a particular value is selected when these
modifications are taken into account, similarly to what
happens for the SM potential.
We consider a scalar field h with a nonminimal coupling

to gravity. We express all dimensionful quantities in units
of the reduced Planck mass 1=M2

Pl ¼ 8πG. The action is

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
jdet gj

p

×

�
1

2
R −

1

2
gμνð∂μhÞð∂νhÞ −

1

2
ξRh2 − VðhÞ

�
; ð5Þ

where we use the convention ð−;þ;þ;þÞ for the
Lorentzian signature of the metric. In the context of
quantum tunneling, we also consider the analytic continu-
ation to Euclidean signature ðþ;þ;þ;þÞ, with an inverted
potential −VðhÞ. The action is

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p

×

�
−
1

2
Rþ 1

2
gμνð∂μhÞð∂νhÞ þ

1

2
ξRh2 þ VðhÞ

�
: ð6Þ

II. EXACT SOLUTIONS IN ASYMPTOTICALLY
FLAT SPACE

It is remarkable that the Fubini instanton remains a
solution in a fully gravitational setting for a conformal
coupling ξ ¼ 1=6. The Einstein equations are satisfied with
a flat metric, while Eq. (3) solves the EOM of the field h.
This observation allows the derivation of an exact solution
for a minimally coupled field in the Einstein frame with a
modified potential. A conformal transformation

gμν → Ωgμν with Ω ¼ 1 −
h2

6
; ð7Þ

followed by the redefinition of the scalar field as

Z
dh

1

1 − h2=6
¼

ffiffiffi
6

p
arctanh

hffiffiffi
6

p ð8Þ

so that it has a canonical kinetic term, leads to the actions
(5) and (6) with ξ ¼ 0 and

VðhÞ ¼ −9λ sinh4
hffiffiffi
6

p : ð9Þ

(Notice that we have used the same notation for both the
original and the redefined field.) The solution of the EOM
for a Lorentzian signature is
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hðt; rÞ ¼
ffiffiffi
6

p
arctanh

h0=
ffiffiffi
6

p

1þ ðr2 − t2Þ=r20
ð10Þ

gμν ¼ A2ðt; rÞημν ¼
�
1 −

h20=6
ð1þ ðr2 − t2Þ=r20Þ2

�
ημν; ð11Þ

with arbitrary h0 and r0 ¼
ffiffiffiffiffiffiffi
8=λ

p
=h0. The continuation to

Euclidean signature provides an Oð4Þ-symmetric solution
of the EOM resulting from the action (6) with ξ ¼ 0 and
potential given by Eq. (9). The on shell action of this
configuration is again given by Eq. (4). This solution was
derived in [17] in order to support the numerical analysis
for the realistic Higgs potential. We summarize here its
main features and display them more clearly through the
construction of the corresponding Penrose diagram.
Equations (10) and (11) provide an analytical description

of tunneling in situations that the potential has a very
deep minimum or is totally unbounded from below. The
Euclidean solution describes tunneling from a false vacuum
at h ¼ 0 towards the lower part of the potential. As we
discussed in the previous section, in physically interesting
situations the scale invariance is broken by additional terms
in the potential that provide a barrier and lead to the
minimization of the action for a particular value of h0. The
on shell action, whose leading term is given by Eq. (4),
determines the exponential suppression of the tunneling
probability.
After tunneling, the system can be described by Eqs. (10)

and (11), with the initial time taken as t ¼ 0. It is apparent
from Eq. (10) that the maximal field value at this time,
obtained at r ¼ 0, becomes infinite for h0 ¼

ffiffiffi
6

p
. The

analysis becomes unreliable for h0 close to this maximal
value, as the field takes values far above the Planck scale,
where corrections to the potential are expected. However,
for h0 sufficiently below

ffiffiffi
6

p
there is always an initial

regime in the evolution when the analysis is reliable.

Even if the initial scalar field configuration is smooth,
a singularity develops at sufficiently late times, along
the line

t2 ¼ r2 þ ð1 − h0=
ffiffiffi
6

p
Þr20; ð12Þ

accompanied by a curvature singularity in spacetime.
Moreover, a region of trapped surfaces appears around
it, whose boundary forms an apparent horizon, as we shall
see in the following. The curvature scalar diverges for
Aðt; rÞ ¼ 0, leading to Eq. (12). This relation determines a
surface on which the geometry collapses, as is apparent
from Eq. (11). The singularity has a natural interpretation as
a generalization of the known “AdS crunch,” associated
with dynamical fields in AdS spacetime [4,15], to a case in
which the negative vacuum energy is not constant. The
spacetime is well defined only in the ðt; rÞ regions in which
A2ðt; rÞ > 0. In the left plot of Fig. 1 we depict the location
of the singularity as a thick black line on the ðt; rÞ plane for
h0 ¼ 2, r0 ¼ 4. This line asymptotically converges to the
line t ¼ r.
The presence of the singularity also leads to the

appearance of a region of trapped surfaces, whose boun-
dary defines an apparent horizon. Outgoing/ingoing null
geodesics, denoted by r�ðtÞ, define surfaces of areal radii
R�ðt; r�ðtÞÞ. A truly outgoing geodesic results in the
growth of the area of such a surface, while an ingoing
geodesic results in the reduction of the area. On an apparent
horizon, the rate of change of the area vanishes. The
product

Θ ¼ dRþ
dt

dR−

dt
ð13Þ

is a convenient quantity in order to search for a horizon. An
apparent horizon would appear at the point where Θ
vanishes and subsequently changes sign. In our model,
outgoing/ingoing geodesics for the metric of Eq. (11)

0 1 2 3 4
r0

1

2

3

4
t

I+

I –

i0

FIG. 1. The geometry described by the metric (11) for h0 ¼ 2, r0 ¼ 4.

EXACT SOLUTIONS FOR VACUUM DECAY IN UNBOUNDED … PHYS. REV. D 108, 036008 (2023)

036008-3



satisfy dr�=dt ¼ �1, while the areal radius is R ¼ Ar. This
gives

Θ ¼ ðA;trÞ2 − ðAþ A;rrÞ2; ð14Þ

with the subscripts denoting derivatives. In Fig. 1 we depict
as a blue line the location of the apparent horizon on which
Θ vanishes. The highlighted region between the apparent
horizon and the singularity is the region of trapped surfaces.
The light cone of an observer at the center of the

instanton, which corresponds to t ¼ r, is depicted as a
thick red line in Fig. 1. This surface delineates a region
from which light cannot escape. Light rays travel at 45°
towards the right (outgoing) or the left (ingoing). When
they are emitted from any point above the red line, they
always end up on the singularity. Based on this property,
this surface can be characterized as an event horizon.
Notice that the event horizon appears already at t ¼ 0,
before the emergence of trapped surfaces, as expected.
The bubble of true vacuum does not have a sharp surface

separating it from the bulk space where the field asymp-
totically approaches the false vacuum at h ¼ 0. One can use
as a measure of the size of the bubble the radius at which
the field hðt; rÞ has a value equal to a fraction κ < 1 of its
initial value at the center hð0; 0Þ ¼ ffiffiffi

6
p

arctanhðh0=
ffiffiffi
6

p Þ. In
Fig. 1 we depict as a green line the location of this radius
for h0 ¼ 2 and κ ¼ 2=3. It is apparent that the radius grows
with a speed that asymptotically approaches that of light.
The combined picture that emerges is of a spherical

bubble of true vacuum that expands asymptotically at the
speed of light. A singularity appears in its interior that also
expands asymptotically at the speed of light, surrounded by
a region of trapped surfaces whose boundary forms an
apparent horizon. The singularity and the bubble exterior
are separated by an event horizon that coincides with the
light cone of the observer at the center of the instanton. At
finite times, as measured by an asymptotic observer, the
singularity is confined behind the horizon. However,
the expansion of the bubble surface is not stopped by
the collapse of its interior. At asymptotically late times the
bubble eats up the entire false vacuum, while its interior is
swallowed by the singularity. The picture is consistent with
the analysis of [4,17] for the Higgs potential.
The spacetime can also be depicted through a conformal

diagram, shown in the right plot of Fig. 1. In this diagram
the time coordinate was allowed to take negative values.
The bubble surface starts with infinite radius at t → −∞,
moves to a finite radius at t ¼ 0, and subsequently expands
again. The left plot corresponds to the upper half of the
right plot. It is also apparent that both the “crunch” and the
bubble surface reach the future null infinity at the same
point, swallowing the entire false vacuum. The conformal
diagram is reminiscent of that of a Schwarzschild black
hole. However, there is a a crucial difference; the singu-
larity appears not at a single point, but on an entire spatial

surface, similarly to the big bang singularity. In this sense,
the event horizon is a cosmological horizon.

III. EXACT SOLUTIONS IN ASYMPTOTICALLY
DE SITTER SPACE

In this section we generalize the previous solutions to the
case that the false vacuum has nonzero vacuum energy. Of
particular interest is the case of positive energy density, as
the resulting solutions describe tunneling in de Sitter
spacetime, a situation relevant for inflation. (Similar
solutions have been derived for tunneling from an AdS
false vacuum, with an interpretation in the context of the
AdS=CFT correspondence. See [25,26] and references
therein.)
For a conformally coupled scalar field (ξ ¼ 1=6) it is

possible to find an exact solution for the potential

VðhÞ ¼ 12

l2
−
1

4
λh4 ð15Þ

with λ > 0. It describes Euclidean dS space of curvature
48=l2, in coordinates such that the metric takes the form

gμν ¼
1

ð1þ ðr2 þ t2EÞ=l2Þ2 ημν; ð16Þ

where ημν is the identity matrix. The field is given by the
relation

hðtE;rÞ¼
h0ð1þðr2þ t2EÞ=l2Þ
1þðr2þ t2EÞ=r20

with r0¼
1

h0

ffiffiffi
8

λ

r
ð17Þ

and arbitrary h0. The action attributed to this configuration
can be computed as

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
det g

p

×
�
1

2
gμνð∂μhÞð∂νhÞ þ

1

2
ξRh2 þ VðhÞ − Vð0Þ

�
: ð18Þ

It is again given by Eq. (4).
A peculiarity of the Euclidean solution (17) is that for

r2 þ t2E → ∞ the field does not reach zero. In this sense
the configuration does not start exactly from the false
vacuum. As discussed in detail in [18] this is a typical
occurrence in tunneling from a dS vacuum, which can be
considered as a thermal environment at the characteristic dS
temperature. The field can be viewed as being thermally
excited to a value away from the unstable minimum of the
potential, with the tunneling occurring subsequently from
that value. It must be noted that a consistent picture requires
that we assume the hierarchy l ≫ r0, so that the bubble is
nucleated with a surface well within the dS horizon.
The asymptotic field value is then suppressed by r20=l

2.
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Also, realistic potentials include small modifications near
the origin, which generate a locally stable false vacuum at
vanishing field. These modifications induce only small
corrections to the leading tunneling solution (17), while
forcing the field to approach a value close to zero for
r2 þ t2E → ∞. Their main effect is to select a specific value
for h0 for the unique instanton solution.
The conformal transformation (7) and the field redefi-

nition (8) generate a solution for a theory of a scalar field
with a canonical kinetic term and a minimal coupling to
gravity (ξ ¼ 0). The potential is given by

VðhÞ ¼ 12

l2
cosh4

hffiffiffi
6

p − 9λ sinh4
hffiffiffi
6

p : ð19Þ

The solution of the EOM for a Lorentzian signature is

hðt; rÞ ¼
ffiffiffi
6

p
arctanh

h0ffiffiffi
6

p 1þ ðr2 − t2Þ=l2

1þ ðr2 − t2Þ=r20
ð20Þ

gμν ¼A2ðt;rÞημν
¼
�

1

ð1þðr2− t2Þ=l2Þ2−
h20=6

ð1þðr2− t2Þ=r20Þ2
�
ημν: ð21Þ

The continuation to Euclidean signature provides an
Oð4Þ-symmetric solution of the EOM resulting from the
action (6) with ξ ¼ 0 and a potential given by Eq. (19).
Similarly to above, the field does not reach zero for
r2 þ t2E → ∞. This is reflected in the fact that the curvature
becomes

R ¼ 48

l2

1 − h2
0

6

r6
0

l6�
1 − h2

0

6

r4
0

l4

�
2

ð22Þ

in this limit. Our assumptions that l ≫ r0 and that additional
small modifications to the potential around the origin gen-
erate a minimum at this point imply that asymptotically the
field will approach a value close to zero, while keeping
the basic formofEqs. (20) and (21). Themain effect is that the
solution will exist only for a specific value of h0.

The geometry described by the metric (21) is depicted in
Fig. 2. The location of the “crunch” singularity (thick black
line), the region of trapped surfaces (light-blue shaded
area), the apparent horizon (blue line), the event horizon
(red line) and the location of the bubble surface (green line)
are very similar, with small quantitative differences, to
those of Fig. 1. The main difference between the two
figures lies in the presence of the horizons of the asymptotic
dS spacetime. These are depicted as dashed blue lines. It
important to notice that the metric (21) can be written as the
dS metric multiplied by a conformal factor. Therefore, it
retains the causal structure of the dS geometry, apart from
the region affected by the singularity of the conformal
factor. As a result, the dS horizons are expected to persist as
horizons of the full geometry, even though the bubble
interior must be viewed as a quasi-AdS spacetime.
The location of the dS horizons can be determined by

changing from the coordinates ðt; rÞ of the metric (21) with
h0 ¼ 0 to Kruskal coordinates. In this way, one finds that
the horizons correspond to the lines t ¼ �ðl − rÞ, depicted
in Fig. 1. These lines denote the limits for the information
exchange with the observer on the south pole of the dS
spacetime. Notice that, in the left plot of Fig. 2, l has not
been taken much larger than r0 in order for the details of the
plot to be visible. Around the surface of the bubble, the
geometry switches from quasi-dS to quasi-AdS. An exten-
sion of the solution to negative values of t allows the
construction of the conformal diagram, shown in the right
plot of Fig. 2 for l → ∞.
There are three interesting points that can be deduced

from Fig. 2:
(i) The first one is the similarity with the picture that

emerges from an analysis in the thin-wall limit [4],
based on appropriate junction conditions on the
bubble surface [27]. In particular, one notices the
crossing of the dS horizon by the bubble surface at
some point during the evolution.

(ii) The second observation is that when the “crunch” and
the bubble surface reach the future null infinity a
portion of space remains outside the bubble, so that a
part of the false vacuum survives. Of course, after the
end of inflation the relevant conformal diagram is that

0 1 2 3 4 5 6 7 8 9 10
r0

1

2

3

4

t
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o

u
th
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o

le

I+

I–

FIG. 2. Left plot: The geometry described by the metric (21) for h0 ¼ 2, r0 ¼ 4, l ¼ 8. Right plot: The conformal diagram for l → ∞.
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of Fig. 1, which implies that the whole of the false
vacuum is eventually swallowed by the “crunch.”

(iii) Finally, the similarity of the right plot with the
conformal diagram of the dS-Schwarzschild geom-
etry is apparent. However, there is a crucial differ-
ence in that the singularity appears not at a point, but
on a whole spatial surface, similarly to the big bang
singularity. As a result, the event horizon depicted
by the red line is a cosmological horizon.

IV. NUMERICAL SOLUTIONS FOR A CLASS
OF MODELS

The purpose of this work was to derive analytical
solutions of vacuum decay in unbounded potentials in
order to understand in precise terms the effect on the bubble
surface of the “crunch” developing within the nucleated
quasi-AdS bubble interior. Exact solutions were derived for
specific potentials, which demonstrated that the surface of a
sufficiently large bubble keeps expanding, independently
of the “rolling” of the field down the potential and the
appearance of a singularity. The results complement the
numerical analysis of [17] and reconfirm the general picture
presented in [4].
A variety of other models can be constructed in an

implicit fashion, resulting in very similar solutions and
conformal diagrams. It was observed in [28] that a con-
formally flat metric of the form gμν ¼ A2ðwÞημν, with
w ¼ r2 − t2, and a scalar field configuration obeying

h02ðwÞ ¼ 2

A2ðwÞ ð2A
02ðwÞ − AðwÞA00ðwÞÞ ð23Þ

satisfy the Einstein equations for a minimally coupled
scalar theory with a potential given implicitly as

VðwÞ¼ 4

A4ðwÞðwA
02ðwÞþ3AðwÞA0ðwÞþ3wA00ðwÞÞ: ð24Þ

This allows the construction of models directly in the
Einstein frame by selecting the desired AðwÞ, solving
Eq. (23) for hðwÞ, inverting this function and deriving

the function VðhÞ through substitution in Eq. (24). Even
though finding analytical solutions is not easy, a numerical
implementation of the above procedure is straightforward.
An interesting class of solutions has metrics of the form

gμν ¼ A2ðt; rÞημν
¼

�
1

ð1þ ðr2 − t2Þ=l2Þ2
��

1 −
h20=6

ð1þ ðr2 − t2Þ=r20Þs
�
ημν;

ð25Þ

with s an integer larger than 2. The metric is similar to (21).
It includes one conformal factor that corresponds to an
exact dS spacetime and another that induces a “crunch”
singularity. For s > 2 the dS metric is approached in the
limit r → ∞ faster than in the case of the metric (21).
The solution of Eq. (23) describes a field that vanishes

for w → ∞. The resulting configuration for an Euclidean
signature describes an instanton that drives the tunneling
from the false vacuum at the origin to the unstable region of
the potential. This configuration is depicted in the right plot
of Fig. 3 as a function of

ffiffiffiffi
w

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ t2E

p
. The potential is

given implicitly through Eq. (24) and is depicted in the left
plot of Fig. 3. It has a shallow minimum at the origin,
separated by a barrier from the large-field region where it
becomes unbounded from below. This numerical solution
confirms the validity of the discussion in the previous
section and Refs. [4,17]. The bubble expands continuously,
despite the appearance of the “crunch” in its interior,
crosses the horizon of the external dS geometry, and
eventually reaches asymptotic null infinity.
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