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1. Introduction

Significant progress attained over the last decade and a half in perturbative N = 4 super-Yang-Mills theory (see, e.g. [1] for review) was 
substantially triggered by the seminal work [2] that, based on the previous findings [3], [4], showed how string and twistor theories can be 
coupled in a synergetic way. One of the developments was the construction of (ambi)twistor action functionals for N = 4 super-Yang-Mills 
theory in [5], [6], [7] that results in efficient rearrangement of the perturbative series expansion.

Since N = 4 super-Yang-Mills theory has a dual description as Type IIB string theory on AdS5 × S5 superbackground it is interesting 
to apply twistor methods also to the exploration of this duality [8], [9]. This necessitates working out supertwistor formulation on the 
AdS5 × S5 superbackground for the superstring [10], [11] and Type IIB supergravity [12], [13] that should start from identifying proper su-
pertwistor variables. One of the feasible ways towards this goal is to consider supertwistor formulation on the AdS5 × S5 superbackground 
of the massless superparticle model that arises in the infinite-tension limit of the superstring.

Such approach was pursued in [14] (see also [15]) based on the generalization of the extended superparticle model [16] that has extra 
dynamical variables to linearly realize SU (2, 2|4) symmetry and extra gauge symmetries to get the same physical degrees of freedom 
as in the conventional superparticle models. In the model of Ref. [14] appropriately fixing part of the gauge symmetries allows to ex-
press the superparticle’s Lagrangian in terms of the supertwistors arranged into two SU (2) doublets, one of which is a straight-forward 
generalization of the Ferber supertwistors [17], while components of another SU (2) doublet of supertwistors have different Grassmann 
parity, i.e. SU (2, 2) components are Grassmann odd, whereas SU (4) components are Grassmann even. Besides that supertwistors satisfy 
SU (2, 2|4)-invariant quadratic constraints that are generators of the su(2|2) gauge symmetry of the superparticle’s action.

In [18], [19] we have found that this supertwistor Lagrangian can be obtained also from the supertwistor formulation of the 
conventional massless superparticle model on AdS5 × S5 superbackground [20], [21], [22], [23], [24]. One of the benefits of this ap-
proach is that it yields the incidence relations connecting supertwistor components and AdS5 × S5 superspace coordinates via the 
P SU (2, 2|4)/(S O (1, 4) × S O (5)) supercoset representative. Let us note that unlike the superspace formulation of the superparticle, in 
which the Lagrangian involves highly non-linear expressions for the AdS5 × S5 supervielbein bosonic components, kinetic term and the 
constraints in the supertwistor formulation are quadratic facilitating Dirac quantization. In [19] it was obtained the set of equations for 
the superparticle’s wave function in the space of superambitwistors, however, open problem is to elaborate on the details of the Pen-
rose transform in order to establish a mapping of the components of the wave function to the fields of Type IIB supergravity multiplet 
compactified on AdS5 × S5 superbackground.

In this note we use close relationship [25] of SU (2, 2|4) supertwistors and SU (2) bosonic and fermionic oscillators that were used to 
construct positive energy unitary irreducible representations (uirs) of P SU (2, 2|4) [26], [12], to provide representation-theoretic charac-
terization of the quantum states of AdS5 × S5 superparticle. Similar analysis of the massive bosonic particle model on AdS5 in the twistor 
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formulation [27]1 was performed in [29]. After briefly recapitulating four-supertwistor formulation of the massless superparticle, we 
proceed to study oscillator realization of the u(2, 2|4) global symmetry and su(2|2) gauge symmetry generators, analyze gauge-invariant 
subspace of the quantum states of the superparticle and show how they fit the fluctuation spectrum of IIB supergravity over the AdS5 × S5

superbackground.

2. Four-supertwistor formulation of massless superparticle on AdS5 × S5 superbackground

In [18], [19] it was derived four-supertwistor representation of the Lagrangian of the massless AdS5 × S5 superparticle starting from 
the first-order form of its superspace Lagrangian. Corresponding action functional reads

S = ∫
dτL4−stwistor
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where components of the two doublets of SU (2, 2|4) supertwistors have different Grassmann parity, that is Ferber or c-type supertwistors
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A , whereas a-type supertwistors
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have Grassmann-odd SU (2, 2) components ξα
q , ξ̄q

α and Grassmann-even SU (4) components L A
q , L̄q

A . The action (1) coincides with that 
obtained in Ref. [14] by partial gauge fixing 2T superparticle model in 2 + 10 dimensions. The advantage of the approach pursued in [18], 
[19] is not only in establishing the direct connection with the superparticle’s formulation in AdS5 × S5 superspace but also in obtaining 
the incidence relations for the components of supertwistors and superspace coordinates parametrizing P SU (2, 2|4)/(S O (1, 4) × S O (5))
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Unlike the eight-supertwistor formulation also considered in [19], in the four-supertwistor formulation there are only the first-class 
constraints introduced in (1) via the Lagrange multipliers – seven bosonic
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and eight fermionic
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A�A
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that are the generators of the classical su(2|2) gauge symmetry of the superparticle’s action. It was shown in [18], [19] that, when this 
gauge symmetry is taken into account, the number of gauge-invariant physical degrees of freedom in the supertwistor formulation is the 
same as in the superspace formulation. The presence of only the first-class constraints greatly facilitates Dirac quantization of the model 
but requires insights into the Penrose transform of the functions of superambitwistors of c- and a-type as was discussed in [19], where 
the set of the first-order differential equations for the superparticle’s wave function was derived.

1 This twistor formulation of the bosonic particle on AdS5 was recently revisited and generalized to dimensions 4 and 7 in [28], for which one can benefit from using 
two-component spinors with complex, real and quaternionic entries respectively.
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3. From S U (2, 2|4) supertwistors to S U (2) oscillators

Let us start this section with a few remarks regarding oscillator construction of the representations of D = 4 conformal algebra and 
its N = 4 supersymmetric extension. Bosonic oscillators have been utilized since 1960’s in the field-theoretical models with underlying 
conformal symmetry to construct the generators of so(2, 4) ∼= su(2, 2) algebra and describe their quantum states, as well as to realize 
certain su(2, 2) representations (see, e.g. [30], [31] and notably [32], where quantized twistors and oscillators were treated in the uniform 
way and used to describe ladder representations). In the mid 1980’s the oscillator approach was advanced further in [33], [26] and applied 
in [12] to construct positive energy (lowest weight) uirs of su(2, 2) (of which ladder representations constitute a particular case) that arise 
upon the compactification of Type IIB supergravity on AdS5 × S5 superbackground. Subsequently the oscillator approach was also used to 
study the AdS5/C F T4 correspondence [34], [35].

Infinite-dimensional positive energy uirs, that can be constructed with the aid of quantized bosonic oscillators, have (half-)integer 
labels and correspond to finite-component fields in AdS5 or on its conformal boundary given by the 4-dimensional Minkowski space-
time. Their classification was finalized in [36] based on the method of induced representations from the maximal parabolic subalgebra 
(D ⊕ sl(2, C)) + K ⊂ su(2, 2), where D and K are generators of the conformal dilatations and boosts.2 As was shown in Ref. [37] positive 
energy uirs with (half-)integer labels correspond to the holomorphic discrete series uirs of su(2, 2) or its limits. Recently there was 
proposed a generalization of the oscillator approach to describe uirs of su(p, q) and its superextensions with non-(half-)integer labels [38].

The construction of Ref. [33] makes use of the bosonic oscillators carrying fundamental representation(s) of the semisimple part of the 
maximal compact subalgebra of the non-compact Lie algebra in question. Upon generalization [26] to non-compact simple superalgebras 
they acquire superpartners – fermionic oscillators transforming in the fundamental representation of the subalgebra of R-symmetry and 
generating its finite-dimensional uirs. For psu(2, 2|4) superalgebra (recall that su(2, 2|4) is not simple) this construction implies introduc-
tion of the two species of bosonic oscillators associated with two su(2) subalgebras of the maximal compact subalgebra of su(2, 2) and 
two species of fermionic oscillators for two su(2) subalgebras of su(4). Positive energy uirs of psu(2, 2|4) are grouped into supermultiplets 
– massive (long), massless (short) and doubleton supermultiplets – generated from respective lowest-weight vectors (lwv) that carry cer-
tain finite-dimensional uirs of the maximal compact subalgebra of su(2, 2) and su(2) ⊕ su(2) ⊂ su(4). Each member of the supermultiplet 
corresponds to a finite-component field in AdS5 or on its conformal boundary transforming according to some finite-dimensional repre-
sentation of the su(4) R-symmetry algebra. Classification of psu(2, 2|4) supermultiplets was done in [39] without employing oscillators 
(see also [38] for consideration relying on oscillators).

Let us now present our definition [40] of the bosonic SU (2) oscillators. Introduce S L(2, C) constituents of the SU (2, 2) components of 
c-type supertwistors
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where I is the unit 2 × 2 matrix. Unitary transformation (9)-(10) describes transition from the basis of D = 2 + 4 γ -matrices, in which 
the generator of conformal dilatations D and so(1, 3) generators are block-diagonal in the spinor representation, to the basis, in which 
generators of the maximal compact subalgebra K = su(2) ⊕ su(2) ⊕ u(1) ⊂ so(2, 4) take block-diagonal form. The generators of the su(2)

algebras in K are given by the linear combinations of the su(2) ⊂ so(1, 3) generators and so(2, 4) − so(1, 3) generators that have no time 
indices (see [35] and Appendix B in [38] for details). The former basis corresponds to the realization of the su(2, 2) algebra as D = 4
conformal algebra that is at the heart of the twistor theory, while the latter underlies the oscillator approach. Transformation (9)-(10)
amounts to the diagonalization of the matrix Hα

β that enters the definition of dual supertwistors in (2) and (3)

Hα
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0 I
I 0

)
→

( −I 0
0 I

)
. (11)

Note some abuse of the notation in (9)-(10) and below since, as in [38], small lightface Greek letters stand for the indices of both sl(2, C)

two-component spinors and two-component spinors of the two su(2) algebras in K. Moreover, following [33] we use the same letters to 
label indices of a- and b-oscillators although they carry spinor representations of different su(2) algebras and are not contracted. It suffices 
to take into account that sl(2, C) spinor indices are carried by the SU (2, 2) twistor components and space-time fields (discussed at the 
end of Section 5), whereas oscillators and psu(2, 2|4) supersymmetry generators constructed out of them carry su(2) spinor indices.

Dirac bracket (D.B.) relations for the bosonic components of c-type supertwistors that follow from the kinetic term of the Lagrangian 
(1)

{Zα
i , Z̄ j

β}D.B. = iδ j
i δ

α
β (12)

2 Equivalence of these approaches was discussed in [35] including a one-to-one mapping of the representation labels.
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in the quantum theory become commutators3

[Zα
i , Z̄ j

β ] = δ
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i δ
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that upon above transformation translate into commutators of a- and b-oscillators

[ai
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Thus oscillators aα
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α are treated as raising operators, whereas ai
α and bα

i are lowering operators annihilating oscillator vacuum |0〉.
Similarly D.B. relations of the odd components of c-type supertwistors (2) read
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On the quantum level they become anticommutators
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that can be viewed as defining relations of the two sets of SU (4) fermionic oscillators. Decomposing SU (4) (anti)fundamental represen-
tation on the fundamental representations of its two SU (2) subgroups introduces two kinds of SU (2) fermionic oscillators [12], [34]4
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Admissible choice is to treat αa
i and β i

ȧ as raising oscillators, then αi
a and βȧ

i are lowering ones annihilating oscillator vacuum |0〉.
Note that in such a way we get two copies of bosonic and fermionic oscillators of each kind transforming as the doublet of one of 

the su(2) subalgebras of su(2|2) gauge superalgebra that is an instance of the color algebras in the oscillator approach. Note also that to 
realize su(2, 2) and psu(2, 2|4) generators it suffices to take just one copy of the oscillators of each kind. Using these minimal realization 
of su(2, 2) it is possible to construct only ladder uirs (named doubletons in the oscillator approach) and their supermultiplets, among 
which the N = 4 super-Yang-Mills multiplet is the only self-conjugate one [12], [34]. Other positive energy su(2, 2) (and psu(2, 2|4)) uirs 
can be obtained by decomposing tensor products of finitely many (super)doubletons.

One can analogously introduce oscillators associated with the a-type supertwistors (3). Namely, taking linear combinations of the 
S L(2, C) constituents of the odd components of a-type supertwistors
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in addition to (17). The fact that Grassmann parity of the SU (2, 2) components of a-type supertwistors differs from that of the c-type 
supertwistors has far-reaching consequences for the future analysis. In particular, from the anticommutators of ξα

q and ξ̄ p
β
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i.e. ω-oscillators satisfy wrong-sign anticommutation relations.
Grassmann-even components of a-type supertwistors that in the quantum theory satisfy commutation relations
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admit decomposition on the SU (2) constituents in analogy with (17)
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This yields two extra species of SU (2) bosonic oscillators. Commutation relations for them can be read off from (23)
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As will be shown in the next section for one type of the introduced SU (2) bosonic oscillators the commutation relations are necessarily 
the wrong-sign ones.

3 We do not place hats over the quantum operators not to overburden the notation. Hopefully this will not cause a confusion.
4 Another option – to use SU (4) oscillators as they stand to construct psu(2, 2|4) uirs was considered in [41], [42], [38].
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4. Oscillator realization of global u(2, 2|4) symmetry

As was mentioned above superparticle’s action (1) is invariant under the su(2|2) gauge symmetry. The constraints (6) and (7) span 
the su(2|2) superalgebra named color superalgebra in [15], [14] since it generalizes bosonic color symmetries that accompany oscillator 
realizations of su(2, 2) and psu(2, 2|4) generators [12], [34], [35], [41]. Superparticle’s action (1) is also invariant under U (2, 2|4) global 
symmetry generated by

ZA
i Z̄ i

B − �A
q �̄

q
B = u(2,2|4). (26)

Important property of these u(2, 2|4) generators is that they (anti)commute with the generators of the su(2|2) gauge symmetry due to 
the color symmetry invariance.5 When expressed in terms of oscillators introduced in (9), (10), (17), (20) and (24), these global symmetry 
generators are used to build the space of states of quantized superparticle model as the certain representation space of u(2, 2|4). These 
generators are of three types: quadratic in creation oscillators, quadratic in annihilation oscillators and composed of the products of 
creation and annihilation oscillators in accordance with the three-grading structure of the (ps)u(2, 2|4) superalgebra [34]. This three-
grading structure allows to choose which of the oscillators associated with the a-type supertwistors represent creation and annihilation 
operators once such choice is made for the oscillators related to the c-type supertwistors.

Consider first the su(2, 2) ⊂ u(2, 2|4) algebra. Three-grading decomposition of its generators is as follows
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Above expressions deserve a number of comments. From (28d) and (28e) it follows that ωq
β and ϕα

q are annihilation operators, whereas 
ωα

q and ϕq
β are creation operators. In (27) g(0) is spanned by the generators of the maximal compact subalgebra u(1)E ⊕ su(2) ⊕ su(2) of 

su(2, 2), where E is the AdS5 energy (conformal dimension) operator that defines grading of su(2, 2) generators:

[E, g(σ )] = σ g(σ ) σ = 0,±1. (29)

As a result su(2, 2) commutation relations can be written in concise schematic form

[g(σ ), g(σ ′)] = g(σ+σ ′). (30)

This three grading decomposition can be viewed as a modification of the Cartan decomposition. Expression (28a) corresponds to creation-
annihilation ordering of oscillators and was obtained from the manifestly Hermitian one by moving raising oscillators to the left. 
Introducing oscillator number operators N(a) = aα
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2
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Note that N(ω) includes extra minus sign that correlates with the wrong sign in the anticommutator of the ω-oscillators in (22). Though E
is defined to be non-negative, in (31) there is no positive c-number term in distinction to the case when su(2, 2) generators are realized 
solely in terms of the bosonic oscillators [12], [34]. Such positive c-number contribution ensures that obtained irreducible representations 
(irreps) lie above or saturate respective unitarity bounds. There is no ordering ambiguity in the expressions (28b) and (28c) for Lα

β and 
R α

β that generate two su(2) subalgebras of su(2, 2). Lwv’s carry spin s1 and s2 irreps of these su(2) subalgebras and are eigenvectors 
of E so that two spins s1, s2 and AdS5 energy are, as is common, used to label the su(2, 2) irreps. Whatever oscillator realization of the 
su(2, 2) generators is, positive energy representations are constructed by repeated action of T (+)α

β generators on the lwv’s annihilated by 
T (−)α

β . In the model under consideration lwv corresponding to the superparticle’s ground state is also annihilated by the su(2|2) gauge 
symmetry generators.

Generators of the su(4) ⊂ u(2, 2|4) algebra also admit three-grading decomposition
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ȧdȧ
q, (33a)

Aa
b = αa

i α
i
b − ca

qcq
b − 1

2 δa
b(αd

i α
i
d − cd

qcq
d), (33b)

B ȧ
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ḃ
− 1

2 δȧ
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5 This is a manifestation of the Howe duality that has been recently discussed in [43] with the emphasis on the oscillator approach.
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so that commutation relations of su(4) algebra can be brought to the form respecting this three-grading structure

[h(τ ),h(τ ′)] = h(τ+τ ′), (34)

where grading of a generator is read off from its commutator with C

[C,h(τ )] = −τh(τ ) τ = 0,±1. (35)

The form of the diannihilation and dicreation operators (33d) and (33e) suggests that bosonic oscillators cq
b and dȧ

q are lowering ones, 
while ca

q and dq
ḃ

are raising. In view of (25) this choice implies that c-oscillators satisfy wrong-sign commutation relations. Then the 
operator C can be written in the form similar to that of the AdS5 energy operator (31)

C = −1

2
(N(α) + N(β) + N(c) + N(d)), (36)

where N(α) = αa
i α

i
a , N(β) = β i

ȧβ
ȧ
i , N(c) = −ca

qcq
a and N(d) = dq

ȧdȧ
q are oscillator number operators and the overall minus sign has been 

introduced to conform with the definition of C in [34]. It is readily seen to be non-positive definite, whereas for the su(4) uirs constructed 
in [12] its eigenvalues are non-negative due to the positive c-number contribution equal the number of copies of the oscillators. su(4)

irreps are labeled by two spins j1 and j2 of the irreps of su(2) algebras spanned by Aa
b and B ȧ

ḃ that are carried by lwv’s as well as 
eigenvalues of C . Like su(2, 2) lowest-weight representations, su(4) lowest-weight representations are constructed via repeated action of 
V (+)a

ḃ on respective lwv’s annihilated by V (−) ȧ
b . If su(4) generators are constructed using finite number of fermionic oscillators as in 

[12], [34] resulting lowest-weight representations are finite-dimensional.
Two additional bosonic generators of u(2, 2|4) are the constraint (6c) that in oscillator form equals

T = −N(a) + N(b) − N(α) + N(β) − N(ω) + N(ϕ) − N(c) + N(d) ≈ 0 (37)

and

U = −N(a) + N(b) + N(α) − N(β) − N(ω) + N(ϕ) + N(c) − N(d). (38)

Since T is the constraint, for all physical states of the quantized superparticle its eigenvalue is zero but eigenvalues of Y = −N(a) + N(b) −
N(ω) + N(ϕ) can be used as an additional label together with the su(2, 2) and su(4) labels.

Among 32 odd generators of u(2, 2|4) eight are constructed out of the raising oscillators

Q (+)α
ȧ = aα

i β i
ȧ − ωα

q dq
ȧ, Q (+)a

α = αa
i bi

α − ca
qϕ

q
α (39)

and belong to the +1 eigenstate w.r.t. the grading defined by E − C . Their repeated action on the su(2, 2) ⊕ su(4) lwv of the ground state 
of the superparticle, that will be identified in the next Section, yields all the lwv’s of the supermultiplet of the physical states.

5. Physical states of quantized superparticle

As discussed above u(2, 2|4) generators (26) (anti)commute with su(2|2) gauge symmetry generators (6) and (7), so the latter act 
directly on the lwv’s and one can examine the constraints they impose on the ground state of the quantized superparticle. Bosonic 
constraints (6) imply that sought for lwv is a singlet of the two su(2) color subalgebras of su(2|2) and is annihilated by T . So the 
ground state can be constructed by acting on the vacuum |0〉 with the products of the color-singlet combinations of raising oscillators, 
namely, the determinants of bosonic oscillators �(a) = 1

2 εi jεαβaα
i aβ

j , �(b) = 1
2 εi jε

αβbi
αb j

β , �(c) = 1
2 εpqεabca

pcb
q and �(d) = 1

2 εpqε
ȧḃdp

ȧ dq
ḃ

, and 

antisymmetrized in color indices products of the fermionic oscillators αab = αa
i ε

i jαb
j , βȧḃ = β i

ȧεi jβ
j

ḃ
, ωαβ = ωα

p εpqω
β
q and ϕαβ = ϕ

p
αεpqϕ

q
β

raised to the powers balanced in such a way as to be annihilated by T (−)α
β , V (−) ȧ

b and T . Among these lwv’s only vacuum itself is 
annihilated by all the fermionic constraints (7) and hence is the ground state.

Other lwv’s of the supermultiplet of physical states are obtained by repeated action of the supersymmetry generators (39) on the 
ground state. Consider first lwv’s that can be obtained by acting solely with Q (+)α

ȧ generators. For example, the product of two such 
supersymmetry generators can be decomposed on three types of contributions depending on the oscillators involved

Q (+)α1
ȧ1 Q (+)α2

ȧ2 = aα1
i aα2

j β i
ȧ1

β
j

ȧ2
+ ωα1

q ω
α2
p dq

ȧ1
dp

ȧ2
+ aα1

i ω
α2
q β i

ȧ1
dq

ȧ2
− aα2

i ωα1
q β i

ȧ2
dq

ȧ1
. (40)

Further decomposing the products of oscillators on irreducible tensors gives two lwv’s:

−1

4
εȧ1ȧ2

(
a(α1

i aα2)
j β i j − 2ωα1α2�(d) + 2a(α1

i ω
α2)
q β i

ḃ
εḃċdq

ċ

)
|0〉, β i j = β i

ḃ
εḃċβ

j
ċ (41)

with spins s1 = 1, s2 = 0 with respect to su(2) subalgebras of su(2, 2) and j1 = j2 = 0 with respect to su(2) subalgebras of su(4), and

1

4
εα1α2

(
2�(a)βȧ1ȧ2 − ωpqdp

(ȧ1
dq

ȧ2)
− 2aβ

i εβγ ω
γ
p β i

(ȧ1
dp

ȧ2)

)
|0〉, ωpq = ω

β
pεβγ ω

γ
q (42)

with spins s1 = s2 = 0 and j1 = 0, j2 = 1 presented in the third and fourth rows of the Table 1. Since each of the other products of 
Q (+)α

ȧ ’s gives rise to single lwv and the products of more than four supercharges vanish, one finds six independent lwv’s presented in 
the Table 1. Spin content of these lwv’s coincides with the spin content of the lwv’s in the first column of the Table 1 in [12]6 that have 

6 We prefer to label lwv’s by four spins of four su(2) subalgebras of psu(2, 2|4) rather than by Young tableau as in [12].
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Table 1
su(2, 2) and su(4) labels of lwv’s obtained by acting with the powers of Q (+)α

ȧ on 
|0〉 and respective fields on AdS5 × S5.

su(2,2) labels (E, s1, s2) su(4) labels (C, j1, j2) Y fields on AdS5 × S5

(0,0,0) (0,0,0) 0 ϕ(1)(y, z)

(1/2,1/2,0) (−1/2,0,1/2) -1 λ
(1)

αȧ (y, z)

(1,1,0) (−1,0,0) -2 A(1)
α(2)(y, z)

(1,0,0) (−1,0,1) -2 ϕ
(2)

ȧ(2)
(y, z)

(3/2,1/2,0) (−3/2,0,1/2) -3 λ
(2)

αȧ (y, z)

(2,0,0) (−2,0,0) -4 ϕ(3)(y, z)

Table 2
su(2, 2) and su(4) labels of lwv’s obtained by acting with the powers of Q (+)a

α on 
|0〉 and respective fields on AdS5 × S5.

su(2,2) labels (E, s1, s2) su(4) labels (C, j1, j2) Y fields on AdS5 × S5

(1/2,0,1/2) (−1/2,1/2,0) 1 λ
(1)
α̇a (y, z)

(1,0,1) (−1,0,0) 2 A(1)
α̇(2)

(y, z)

(1,0,0) (−1,1,0) 2 ϕ
(2)
a(2)(y, z)

(3/2,0,1/2) (−3/2,1/2,0) 3 λ
(2)
α̇a (y, z)

(2,0,0) (−2,0,0) 4 ϕ̄(3)(y, z)

units in the second and third digits. We normalize AdS5 energy E in such a way that its eigenvalues are (half-)integer for lwv’s with 
(half-)integer s1 + s2 and eigenvalues of Y take integer values.

Similarly repeated application of Q (+)a
α produces five other lwv’s with interchanged spins s1 ↔ s2 and j1 ↔ j2 presented in the 

Table 2. Their spin content is the same as that of the lwv’s given in the first column of the Table 1 in [12] with units in the first and 
fourth digits. Multiple application of the bosonic generators (28e) and (33e) to obtained lwv’s produces basis vectors of the infinite-
dimensional su(2, 2) ⊕ su(4) irreps. Respective fields on AdS5 × S5, coordinatized by y and z, are listed in the utmost right column of the 
Tables 1 and 2. To make contact with the consideration of Ref. [12] we use similar notation for these fields. In particular, fields with the 
same spins of su(2) ⊕ su(2) ⊂ su(2, 2) are denoted by the same letters and superscripts with numbers in round brackets are used to label 
them in order of increasing AdS5 energy. In the subscripts numbers in round brackets following sl(2, C) or su(2) indices denote a group 
of symmetrized indices equal to that number.

There remains to consider simultaneous application of Q (+)α
ȧ and Q (+)a

α to the ground state. To find respective lwv’s one has to 
decompose the products of oscillators into irreps of four su(2) subalgebras of psu(2, 2|4) and leave, according to the criterion formulated 
in [41], only traceless tensors of the two su(2) color subalgebras. The role of the latter requirement can be explained on the simple 
example of the product Q (+)α

ȧ Q (+)b
β . There arise four contributions

Q (+)α
ȧ Q (+)b

β = aα
i b j

ββ i
ȧα

b
j + ωα

p ϕ
q
βdp

ȧ cb
q + aα

i ϕ
q
ββ i

ȧcb
q − ωα

p b j
βdp

ȧ αb
j . (43)

It is easy to see that neither aα
i b j

β |0〉 and ωα
p ϕ

q
β |0〉 nor their traces in the color indices form su(2, 2) lwv’s since the r.h.s. of the commuta-

tors of aα
i b j

β and ωα
p ϕ

q
β with the lowering generators (28d) do not annihilate the oscillator vacuum. However, color-traceless combinations 

(aα
i b j

β − 1/2δ
j
i aα

k bk
β)|0〉 and (ωα

p ϕ
q
β − 1/2δ

q
pω

α
r ϕr

β)|0〉 indeed are the lwv’s, as well as aα
i ϕ

q
β |0〉 and ωα

p b j
β |0〉 that ab initio transform irre-

ducibly under both color subalgebras. Note that due to the color symmetry invariance of the su(2, 2) ⊕ su(4) lwv’s, taking color-traceless 
combinations of the products of oscillators associated with su(2, 2) selects color-traceless combinations of the products of oscillators asso-
ciated with su(4). In fact there is a relationship between the su(2) ⊕ su(2) ⊂ su(2, 2) representations, su(2) ⊕ su(2) ⊂ su(4) representations 
and those of the color symmetry carried by a lwv.7 So (β i

ȧα
b
j − 1/2δi

jβ
k
ȧα

b
k )|0〉 and (dp

ȧ cb
q − 1/2δ

p
q dr

ȧcb
r )|0〉 form su(4) lwv’s together with 

β i
ȧcb

q |0〉 and dp
ȧ αb

j |0〉. Respective spin values s1 = s2 = 1/2 and j1 = j2 = 1/2 are given in the first row of the Table 3. Examining other 
products of the supercharges yields extra 24 lwv’s, whose labels can formally be obtained by summing those of all pairs of the lwv’s from 
Tables 1 and 2, except for the vacuum.

We conclude this section with a few comments regarding comparison of the results obtained in this note with known descriptions of 
the compactification spectrum of IIB supergravity on AdS5 × S5 superbackground. In distinction to the approach of Ref. [12] superparticle 
model in the supertwistor formulation has finitely many physical states. This can be explained by the fact that in [12] the spectrum 
of IIB supergravity on AdS5 × S5 is described in terms of the S5 Fourier modes of the on-shell 10d fields, that is the fields on AdS5
transforming according to finite-dimensional su(4) uirs. Fourier modes presented in each line of the Table 1 in [12] have the same 
su(2) ⊕ su(2) ⊂ su(2, 2) spins and are parametrized by integer p with AdS5 energies and su(4) labels proportional to p. The states of 
the superparticle model collected in Tables 1-3 (apart from the leading mode of ϕ(1) that corresponds to the scalar field carrying the 
su(2, 2) representation) are naturally identified with the AdS5 × S5 fields obtained by summing Fourier modes in each line of the Table 1 
in [12]. On the other hand, Fourier modes with the same p in different lines make up supermultiplets of the psu(2, 2|4) supersymmetry. 

7 In the non-supersymmetric case color symmetry is not essential in constructing su(2, 2) lwv’s (see, e.g. sections 5-6 in Ref. [34]).
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Table 3
su(2, 2) and su(4) labels of lwv’s obtained by acting with the powers of Q (+)α

ȧ and 
Q (+)a

α on |0〉 and respective fields on AdS5 × S5.

su(2,2) labels (E, s1, s2) su(4) labels (C, j1, j2) Y fields on AdS5 × S5

(1,1/2,1/2) (−1,1/2,1/2) 0 A(1)

αα̇aȧ(y, z)

(3/2,1,1/2) (−3/2,1/2,0) -1 �
(1)
α(2)α̇a(y, z)

(3/2,0,1/2) (−3/2,1/2,1) -1 λ
(3)

α̇aȧ(2)
(y, z)

(3/2,1/2,1) (−3/2,0,1/2) 1 �
(1)

αα̇(2)ȧ(y, z)

(3/2,1/2,0) (−3/2,1,1/2) 1 λ
(3)

αa(2)ȧ(y, z)

(2,1,0) (−2,1,0) 0 A(2)
α(2)a(2)(y, z)

(2,0,1) (−2,0,1) 0 A(2)

α̇(2)ȧ(2)
(y, z)

(2,1,1) (−2,0,0) 0 hα(2)α̇(2)(y, z)

(2,0,0) (−2,1,1) 0 ϕ
(4)

a(2)ȧ(2)
(y, z)

(2,1/2,1/2) (−2,1/2,1/2) -2 A(2)

αα̇aȧ(y, z)

(2,1/2,1/2) (−2,1/2,1/2) 2 Ā(2)

αα̇aȧ(y, z)

(5/2,1/2,1) (−5/2,0,1/2) -1 �
(2)

αα̇(2)ȧ(y, z)

(5/2,1/2,0) (−5/2,1,1/2) -1 λ
(5)

αa(2)ȧ(y, z)

(5/2,1,1/2) (−5/2,1/2,0) 1 �
(2)
α(2)α̇a(y, z)

(5/2,0,1/2) (−5/2,1/2,1) 1 λ
(5)

α̇aȧ(2)
(y, z)

(5/2,0,1/2) (−5/2,1/2,0) -3 λ
(4)
α̇a (y, z)

(5/2,1/2,0) (−5/2,0,1/2) 3 λ
(4)

αȧ (y, z)

(3,1/2,1/2) (−3,1/2,1/2) 0 A(3)

αα̇aȧ(y, z)

(3,0,1) (−3,0,0) -2 A(3)
α̇(2)

(y, z)

(3,0,0) (−3,1,0) -2 ϕ
(5)
a(2)(y, z)

(3,1,0) (−3,0,0) 2 A(3)
α(2)(y, z)

(3,0,0) (−3,0,1) 2 ϕ
(5)

ȧ(2)
(y, z)

(7/2,0,1/2) (−7/2,1/2,0) -1 λ
(6)
α̇a (y, z)

(7/2,1/2,0) (−7/2,0,1/2) 1 λ
(6)

αȧ (y, z)

(4,0,0) (−4,0,0) 0 ϕ(6)(y, z)

In particular, leading modes in the S5 harmonic expansion of λ(1)

αȧ , λ(1)
α̇a , A(1)

α(2) , A(1)
α̇(2)

and subleading mode of ϕ(1) make up N = 4 super-
Yang-Mills multiplet that corresponds to modes with p = 1 in Table 1 of [12]. This multiplet is known to decouple from other modes 
given by the D = 5 N = 8 gauged supergravity multiplet (p = 2) and massive psu(2, 2|4) supermultiplets with spins ranging from 0 to 2 
(p > 2).

AdS5 energies of some of the superparticle’s states in Tables 1-3 with spins s1 and s2 lie below the unitarity bound for massless fields 
on AdS5 E ≥ s1 + s2 + 2 (s1s2 �= 0) and the bound for massless fields on the Minkowski boundary of AdS5 E ≥ s1 + s2 + 1 (s1s2 = 0)8

and hence correspond to non-unitary representations with non-negative energy. To explain the possible origin of such irreps take, for 
instance, fields ϕ(1) in the first row of the Table 1 in [12]. Respective su(2, 2) uirs have energies E ϕ(1)

p = p (in our normalization) and their 

sum 
∞∑

p=1
E ϕ(1)

p diverges but can be ζ -regularized to take finite value of −1/12. Also the description of the su(4) irreps by means of ever 

increasing number of fermionic oscillators in the limit results in the infinite-dimensional non-unitary irreps that can be realized in terms 
of finitely many bosonic oscillators. Making these arguments more rigorous requires further study.

Finally let us confront the results of the present work with those of Ref. [13], where the spectrum of IIB supergravity on AdS5 × S5

superbackground had been obtained starting from the field equations in D = 1 + 9 dimensions expanded over the background values 
of the metric and Ramond-Ramond (RR) self-dual five-form and linearized in small excitations. This allowed not only to find the set of 
fields on AdS5 but also the equations they satisfy and to trace their 10d origin. So Table 4 below serves twofold purpose – to match the 
fields that arise in the spectrum of physical states of the considered superparticle model with those found in [13] and to establish their 
relation to the fields from the D = 1 + 9 supermultiplet of IIB supergravity. The data presented require some explanatory comments. In 
distinction to our notation, in [13] small Greek letters are used for curved-space indices of AdS5 (μ, ν = 0, . . . , 4) and S5 (α, β = 1, . . . , 5), 
whereas indices of four-components spinors of Spin(1, 4) and Spin(5) are not shown explicitly. Bosonic fields that appear twice in the 
third column, such as ϕ(1) and ϕ(6) , stand for eigenvectors of the 2 × 2 matrices that enter the systems of coupled equations for the fields 
in the second column, like S5 Fourier modes of hα

α and aαβγ δ . Homogeneous equations for Aμν factorize so that there are two solutions 
and S5 expansion of Aαβ includes harmonics of two types that are eigenfunctions of the ‘square root’ of the S5 Laplacian with different 
eigenvalues also resulting in two independent solutions. Expansions of the fermionic fields include spinor (labeled by L) and vector-spinor 

8 Unitarity conditions found by G. Mack [36] for the SU (2, 2) positive energy irreps are the special cases of the unitarity bounds for the positive energy irreps of so(2, d)

[44] and for the positive energy irreps of su(p, q) [38].
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Table 4
Correspondence between the fields of IIB supergravity and the spectrum of its compactification on 
AdS5 × S5 superbackground.

Bosonic fields Fermionic fields

AdS5 × S5 fields AdS5 × S5 fields
10d fields

Ref. [13] ours
10d fields

Ref. [13] ours

h′
μν hα(2)α̇(2)

A(1)

αα̇aȧ

�
(1)
α(2)α̇a

hμα
A(3)

αα̇aȧ

ϕL+
(μ)

�
(1)

αα̇(2)ȧ

graviton
h(αβ) ϕ

(4)

a(2)ȧ(2)
�

(2)
α(2)α̇a

ϕ(1)
ϕL−

(μ)
�

(2)

αα̇(2)ȧ

hα
α ϕ(6) complex λ

(1)

αȧ

complex scalar B ϕ(3), ϕ̄(3) gravitino
�L−

λ
(1)
α̇a

A(1)
α(2)

, A(1)
α̇(2)

λ
(6)

αȧ
Aμν

A(3)
α(2)

, A(3)
α̇(2)

�L+
λ

(6)
α̇a

complex 2-form Aμα A(2)

αα̇aȧ , Ā(2)

αα̇aȧ λ
(3)

αa(2)ȧ

ϕ
(2)
a(2)

, ϕ
(2)

ȧ(2)

�T−
λ

(3)

α̇aȧ(2)

Aαβ
ϕ

(5)
a(2)

, ϕ
(5)

ȧ(2)
λ

(5)

αa(2)ȧ

aμναβ A(2)
α(2)a(2)

, A(2)

α̇(2)ȧ(2)

�T+
λ

(5)

α̇aȧ(2)

A(1)

αα̇aȧ λ
(2)

αȧ

RR 4-form
aμαβγ

A(3)

αα̇aȧ complex
λL−

λ
(2)
α̇a

ϕ(1) spinor λ
(4)

αȧ
aαβγ δ

ϕ(6)
λL+

λ
(4)
α̇a

(labeled by T) harmonics that are eigenspinors of the Dirac operator on S5 with opposite eigenvalues so expansion modes are endowed +
and − superscripts. The presence of spinor and vector-spinor harmonics with different eigenvalues results in two independent solutions 
with different ‘masses’ (AdS5 energies) of the equations for fermionic fields of each type.

6. Discussion

In this note we have shown how physical states of the quantized AdS5 × S5 massless superparticle in the twistor formulation can be 
described in terms of the su(2) bosonic and fermionic oscillators some of which were used previously to construct unitary supermultiplets 
of psu(2, 2|4) [12], [34], [35]. These physical states of the superparticle have been mapped to those in the spectrum of fluctuations of IIB 
supergravity on AdS5 × S5 superbackground [12], [13] and N = 4 super-Yang-Mills multiplet on D = 4 Minkowski boundary of AdS5. We 
observed that the description of IIB supergravity spectrum on AdS5 × S5 superbackground in the context of D = 10 superparticle model 
differs from the original one in Ref. [12], where it was presented in the form of an infinite sum of unitary psu(2, 2|4) supermultiplets, 
lwv’s of which were obtained by acting on the oscillator vacuum with raising supersymmetry generators of the psu(2, 2|4) superalgebra 
constructed out of P ≥ 1 copies of the four sets of su(2) oscillators coming from the linear combinations of the components of SU (2, 2|4)

Ferber supertwistors. In these supermultiplets fields corresponding to the irreps that have the same su(2) ⊕ su(2) ⊂ su(2, 2) spins and 
Y eigenvalues but transform according to different representations of su(4) represent expansion coefficients of the 10d fields over S5

harmonics [13]. On the contrary, dynamical variables of the AdS5 × S5 superparticle model in the four-supertwistor formulation are two 
Ferber or c-type supertwistors and two a-type supertwistors, whose components have another Grassmann parity. The latter give rise to 
su(2) oscillators some of which satisfy wrong-sign (anti)commutation relations. As a result for some states their su(2, 2) lwv’s have AdS5
energies, though non-negative but lying below the unitarity bounds for respective values of spins and hence corresponding to non-unitary 
irreps. We conjectured that such irreps correspond to infinite sums of the unitary ones. There also arise infinite-dimensional non-unitary 
su(4) representations that can be interpreted as resulting from summing up the S5 Fourier modes.

It would be interesting to study quantization of the superparticle model directly in terms of the supertwistors. In [19] there were 
derived the first-order differential equations for the superparticle’s wave function, whose arguments are c- and a-type superambitwistors. 
To provide the supertwistor description of the IIB supergravity fluctuations over AdS5 × S5 superbackground as solution of these equations 
it is necessary to develop ambitwistor transform of respective fields on AdS5. This would be an important step towards the twistor 
formulation of the AdS5/C F T4 duality.

The approach reported here can also be extended to describe fluctuation spectra over other highly supersymmetric backgrounds of 
known supergravity theories in the framework of appropriate supertwistor formulations of the models of superparticles and extended 
objects such as superstrings and branes.
9
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