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Violation of non-Abelian Bianchi identity can be regarded as N2 − 1 Abelian-like monopole currents in
the continuum SU(N) QCD. Three Abelian-like monopoles, when defined in SU(2) gluodynamics on the
lattice à la DeGrand–Toussaint, are shown to have the continuum limit with respect to the color-invariant
monopole density and the effective monopole action. Since each Abelian-like monopole is not gauge
invariant, we have introduced various partial gauge fixing for the purpose of reducing lattice artifact
monopoles in the thermalized vacuum. Here we investigate Abelian and monopole dominances and the
Abelian dual Meissner effects adopting the same gauges like the maximal center gauge (MCG) in
comparison with the maximal Abelian gauge (MAG). Abelian and monopole contributions to the string
tension in these gauges are observed to be a little smaller than the non-Abelian string tension. However, we
find that the monopole dominance is improved well when use is made of the block-spin transformations
with respect to Abelian-like monopoles. We find each electric field is squeezed by the corresponding
colored Abelian-like monopole in such gauges and the Abelian dual Meissner effect is observed
independently for each color. Moreover, we confirm the dual Ampère’s law in these new gauges as
well as in MAG. The SU(2) vacuum is shown to be near the border between the type 1 and type 2 dual
superconductors. The penetration length is almost equal for the four gauge fixings, and the vacuum type in
MCG is almost the same value as the previous results. These results are consistent with the previous results
suggesting the continuum limit and the gauge-independence of Abelian monopoles.

DOI: 10.1103/PhysRevD.102.114504

I. INTRODUCTION

The mechanism of color confinement is still unknown in
quantum chromodynamics (QCD) [1].
As a picture of color confinement, ’t Hooft [2] and

Mandelstam [3] conjectured that the QCD vacuum is a dual
superconducting state. An interesting idea to realize this
conjecture is to project QCD to the Abelian maximal torus
group by a partial (but singular) gauge fixing [4]. After the
Abelian projection, color magnetic monopoles appear as a
topological current. The dual Meissner effect is caused by
condensation of monopoles. Numerically, Abelian monop-
ole dominance is observed clearly in the maximal Abelian

gauge (MAG) fixing [5–7]. Similar results are found also
in various local unitary gauges [8]. However, there are
infinite ways of such a partial gauge fixing. It is not at all
clear if the lattice results obtained in a partial gauge fixing
like MAG are gauge independent. In the works [9,10],
Abelian monopole dominance and the dual Meissner effect
are found to exist even without adopting any gauge fixing.
By making use of a huge number of thermalized vacua
with additional random gauge transformations, they found
that the string tension from the monopole Polyakov loop
correlations is identical to that of the gauge-invariant non-
Abelian static potential. There exists also the Abelian dual
Meissner effect. The vacuum type of pure SU(2) gauge
theory was found to be near the border between type 1 and
type 2 dual superconductors. Although the results are
interesting, the physical meaning of such gauge-variant
quantities without gauge fixing was not clear at all in the
continuum limit of QCD.
Recently, it was shown in the continuum limit that the

violation of the non-Abelian Bianchi identities (VNABI) Jμ
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is equal to Abelian-like monopole currents kμ defined by
the violation of the Abelian-like Bianchi identities [11,12].
Although VNABI is a gauge-variant adjoint operator
satisfying the covariant conservation rule, it gives us, at
the same time, the Abelian-like current conservation rules.
There are N2 − 1 conserved Abelian-like magnetic charges
in the case of color SU(N). We can define lattice Abelian-
like monopoles following DeGrand–Toussaint [13]. They
are just equal to the gauge-variant lattice Abelian-like
monopoles studied previously in the works [9,10].
It is interesting to study the continuum limit of the lattice

Abelian-like monopole density. But the technique adopted
in Ref. [9,10] can not be applied since such a quantity as
monopole densities is always positive definite. Therefore,
various techniques were introduced for the thermal vacua
[12], which are contaminated by lattice artifacts originally.
Gauge fixing and the monopole block-spin transformation
[14] are two main techniques extracting physical quantities
from the lattice vacuum. With such gauge fixings, they
adopted three global color invariant gauges: the maximal
center gauge (MCG) [15,16], the direct Laplacian center
gauge (DLCG) [17], and the maximal Abelian Wilson loop
gauge (MAWL) [18], as well as the global color-variant
MAG [5–7] with additional U(1) Landau gauge fixing
(MAU1). Then convincing scaling behaviors are seen when
the density ρðaðβÞ; nÞ is plotted versus the lattice spacing of
the blocked lattice b ¼ naðβÞ, where aðβÞ is the lattice
distance at the coupling β. A single universal curve ρðbÞ is
found from n ¼ 1 up to n ¼ 12 for all four gauges adopted,
which suggests that ρðaðβÞ; nÞ is a function of b ¼ naðβÞ
alone and gauge independent. Since the continuum limit
is realized as n → ∞, scaling means that the lattice defini-
tion of Abelian-like monopoles has a continuum limit.
Afterwards, one of the present authors (T. S.) found that
coupling constants of the effective monopole action derived
from the inverse Monte Carlo method [14,19] show also a
universal scaling behavior [20] for the above four gauges.
It is the purpose of this work first to investigate whether

the Abelian monopole dominance and the Abelian dual
Meissner effect, which are observed in the MAG [7], are
seen also in the above global color invariant gauges (MCG,
DLCG, and MAWL) with a reasonable number of field
configurations. Since VNABI are gauge variant, finding
various gauge-fixing methods reducing lattice artifact
monopoles without destroying physical monopole effects
is very important for extracting any physical quantity
concerning Abelian-like monopoles. Hereafter, the authors
call such gauges as smooth in this work. Secondly, it is
interesting to check global-color independence of the
Abelian dual Meissner effect when we introduce a single
color external source in the vacuum. Such a study could not
be done in practice at the present stage without any gauge
fixing as in Ref. [10]. Hence, we adopt here the above
global color invariant gauges smoothing the vacuum.
Furtheremore, we use the block-spin transformation of

the monopole current in comparing the monopole contri-
bution to confinement in the MCG with that in the MAG.

II. METHOD

A. The violation of non-Abelian Bianchi identities

If gauge fields have a line singularity in the continuum
QCD, then the non-Abelian Bianchi identity is violated.
The VNABI is found to be equivalent to that of Abelian-
like Bianchi identity [11,12]. Namely VNABI is regarded
as eight Abelian-like monopoles in the continuum SU(3)
QCD. Using a covariant derivative Dμ ¼ ∂μ − igAμ, we get
the following commutation relation:

½Dμ; Dν� ¼ −igGμν þ ½∂μ; ∂ν�; ð1Þ

where Gμν is a non-Abelian field strength. The second
commutator can not be discarded when a line singularity
exists. The Jacobi identities,

ϵμνρσ½Dν; ½Dρ; Dσ�� ¼ 0; ð2Þ

lead us to the following relation:

DνG�
μν ¼ ∂νf�μν ¼ kμ; ð3Þ

where fμν is defined as fμν ¼ ∂μAν − ∂νAμ ¼ ð∂μAa
ν −

∂νAa
μÞλa=2. In the case of SU(3), λa are the Gell-Mann

matrices. Relation (3) means that the VNABI is equivalent
to eight Abelian-like magnetic monopole currents in SU(3).
In the case of SU(2), VNABI is equivalent to three Abelian-
like magnetic monopole currents.

B. Abelian-like monopoles on a lattice

The direct definition of VNABI on a lattice is very
difficult. Hence, we adopt defining Abelian-like monopoles
on a lattice following Ref. [13] and study the continuum
limit of them since VNABI is equivalent to Abelian-like
monopoles in the continuum limit.
We consider here also SU(2) gluodynamics for simplic-

ity. SU(2) link variables are

UμðsÞ ¼ U0
μðsÞ þ iσaUa

μðsÞ; ð4Þ

where σa are the Pauli matrices, a ¼ 1, 2, 3 are color
indices, and U0

μðsÞ; Ua
μðsÞ are real coefficients. We explain

how to define Abelian-like monopoles in SU(2) gauge
theory below. First, Abelian-like gauge fields θaμðsÞ are
derived to get the maximum overlap with an original non-
Abelian link variable, namely in such a way as the
following quantity is maximized:

R1 ¼
X
s;μ

ReTr½eiθ1μðsÞσ1U†
μðsÞ�; ð5Þ

HIRAGUCHI, ISHIGURO, and SUZUKI PHYS. REV. D 102, 114504 (2020)

114504-2



where only the case for color ¼ 1 is written as an example.
Then we get

θaμðsÞ ¼ arctan

�
Ua

μðsÞ
U0

μðsÞ
�
ðjθaμðsÞj < πÞ: ð6Þ

This is equal to the definition as that adopted in previous
works [9,10]. We now define three monopole currents
following Ref. [13]:

kaνðsÞ ¼
1

4π
ϵμνρσ∂μθ̄

a
ρσðsþ ν̂Þ;

θaμνðsÞ ¼ ∂μθ
a
νðsÞ − ∂νθ

a
μðsÞ;

θ̄aμνðsÞ ¼ θaμνðsÞ − 2πnaμνðsÞ; ð7Þ

where θaμνðsÞ is an Abelian-like field strength, θ̄aμν∈ ½−π;π�,
and naμνðsÞ is an antisymmetric tensor. Note that naμνðsÞ
takes integer values {-2,-1,0,1,2}. It can be interpreted as
the number of Dirac strings. We found that these monopole
currents have a continuum limit, studying the monopole
density, and the effective monopole action on the lattice
with the aid of a block-spin transformation of monop-
oles [12,20].

C. Smooth gauge fixings

We adopt gauge-fixing techniques smoothing the vac-
uum as in Ref. [12]. The gauge-fixing methods adopted
here reduce lattice artifact monopoles well without destroy-
ing infrared long monopoles.
(1) MCG. The first is the maximal center gauge [15,16],

which is usually discussed in the framework of the
center vortex idea. We adopt the so-called direct
maximal center gauge, which requires maximization
of the quantity

R ¼
X
s;μ

ðTrUμðsÞÞ2; ð8Þ

with respect to local gauge transformations. The
condition (8) fixes the gauge up to Zð2Þ gauge
transformation.

(2) DLCG. The second is the Laplacian center gauge
[17], which is also discussed in connection with the
center vortex idea.

(3) MAWL. Another is the maximal Abelian Wilson
loop gauge, in which

R ¼
X
s;μ≠ν

X
a

ðcosðθaμνðsÞÞÞ ð9Þ

is maximized [18]. Since cosðθaμνðsÞÞ are 1 × 1

Abelian Wilson loops, the gauge is called the
maximal Abelian Wilson loop gauge.

(4) MAU1. The fourth is the combination of the MAG
and the U(1) Landau gauge [5,6]. Namely, we first

perform maximal Abelian gauge fixing and then,
with respect to what remains, U(1) symmetry Lan-
dau gauge fixing is done. This case breaks the global
SU(2) color symmetry, contrary to the previous three
cases (MCG, DLCG, and MAWL), but we consider
this case since the vacuum is smoothed fairly well.
The MAG is the gauge which maximizes

R ¼
X
s;μ

Trðσ3UμðsÞσ3U†
μðsÞÞ; ð10Þ

with respect to local gauge transformations. Then
there remains a U(1) symmetry to which the Landau
gauge fixing is applied, i.e.,

P
s;μðcos θ3μðsÞÞ is

maximized [21].

D. Simulation details

In most cases we adopt the tadpole improved action in
pure SU(2) gauge theory:

S ¼ β

�X
pl

Spl −
1

20u20

X
rt

Srt

�
; ð11Þ

where Spl and Srt denote plaquette and 1 × 2 rectangular
loop terms in the action

Spl;rt ¼
1

2
Trð1 −Upl:rtÞ; ð12Þ

the parameter u0 is the input tadpole improvement factor
taken here equal to the fourth root of the average plaquette
P ¼ h1

2
trUpli. In our simulations we do not include one-

loop corrections to the coefficients for the sake of sim-
plicity. The lattices adopted are 484 for β ¼ 3.0 ∼ 3.9 and
244 for β ¼ 3.0 ∼ 3.9. In the case of the tadpole improved
action, we adopt the same vacuum ensembles generated
and used in the previous research [12].

III. RESULTS

A. Abelian and monopole dominances

First, we check whether Abelian and monopole domi-
nances observed in the MAG are seen in other smooth
gauges like the MCG or not. We evaluate the potential from
Abelian Wilson loops and their monopole contributions.
Now, we take into account only a simple Abelian Wilson
loop, say, of size I × J. Then such an Abelian Wilson loop
operator is expressed as

Wa
A ¼ exp

�
i
X

JμðsÞθaμðsÞ
�
; ð13Þ

where JμðsÞ is an external current taking �1 along the
Wilson loop. Since JμðsÞ is conserved, it is rewritten for
such a simple Wilson loop in terms of an antisymmetric
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variable Mμν as Jν ¼ ∂ 0MμνðsÞ with a forward (backward)
difference ∂ν:ð∂ 0

νÞ. Note that MμνðsÞ take �1 on a surface
with the Wilson loop boundary. Although we can choose
any surface type, we adopt a minimal flat surface here.
We get

Wa
A ¼ exp

�
−
i
2

X
MμνðsÞθaμνðsÞ

�
: ð14Þ

We investigate the monopole contribution to the static
potential in order to examine the role of monopoles
for confinement. The monopole part of the Abelian
Wilson loop operator is extracted as follows [22]. Using
the lattice Coulomb propagator Dðs − s0Þ, which satisfies
∂ν∂ 0

νDðs − s0Þ ¼ −δss0 , we get

Wa
A ¼ Wa

monWa
ph; ð15Þ

Wa
mon ¼ exp

�
2πi

X
kaβðsÞDðs − s0Þ 1

2
ϵαβρσ∂αMρσðs0Þ

�
;

ð16Þ

Wa
ph ¼ expf−i

X ∂ 0
μθ̄

a
μνðsÞDðs − s0ÞJνðs0Þg: ð17Þ

We then compute the static potential from the Abelian
Wilson loops and the monopole Wilson loops in the MCG
and MAU1 on the 484 lattices at β ¼ 3.0, 3.2, 3.5, 3.9 and
in the above four smooth gauges on 244 at β ¼ 3.5. We fit
the potential to the usual functional form

VfitðrÞ ¼ σr − c=rþ μ; ð18Þ

where σ denotes the string tension, c the Coulombic
coefficient, and μ the constant. The static potential in the
MCG is shown in Fig. 1. The results of the string tensions

in the above four smooth gauges on the 244 lattice are
shown in Table I and on 484 in the MCG are summarized
for various β in Table II. Here VNA, VA, Vmon and Vph

mean potentials from non-Abelian, Abelian, monopole,
and photon Wilson loop, respectively. And σNA, σA, σmon
and σph are non-Abelian, Abelian, monopole, and photon
string tensions. Fairly good results of Abelian and
monopole dominances are obtained also in the MCG
in comparison with those in the MAG. Both ratios
σA=σNA and σmon=σNA approach more to one as the
coupling constant β becomes larger as expected from the
previous data [9,10].

 0
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Monopole
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FIG. 1. The potential between quark and antiquark in the MCG.
Only the data at β ¼ 3.9 on the 484 lattice is shown as an
example.

TABLE I. The string tension at β ¼ 3.5 on the 244 lattice.
ffiffiffiffiffiffiffiffi
σa2

p
σA=σNA σmon=σNA σph=σNA

MCG VNA 0.1555(6) 0.8149 0.7053 0.3709
VA 0.1267(7)
Vmon 0.1096(3)
Vph 0.0576(2)

DLCG VNA 0.1555(6) 0.8316 0.708 0.3605
VA 0.1293(6)
Vmon 0.1100(5)
Vph 0.0560(2)

MAWL VNA 0.1555(6) 0.8151 0.7066 0.3693
VA 0.1267(7)
Vmon 0.1098(3)
Vph 0.0574(3)

MAU1 VNA 0.1555(6) 0.8778 0.722 0.4114
VA 0.136(1)
Vmon 0.1122(2)
Vph 0.0639(9)

TABLE II. The string tension in the MCG on the 484 lattice.
ffiffiffiffiffiffiffiffi
σa2

p
σA=σNA σmon=σNA σph=σNA

β ¼ 3.0 VNA 0.3728(4) 0.8923 0.7807 0.1794
VA 0.3326(3)
Vmon 0.2910(1)
Vph 0.066(1)

β ¼ 3.2 VNA 0.2630(4) 0.8541 0.7576 0.2110
VA 0.2246(3)
Vmon 0.1992(2)
Vph 0.0554(4)

β ¼ 3.5 VNA 0.1546(3) 0.8525 0.7604 0.2701
VA 0.1317(3)
Vmon 0.1175(4)
Vph 0.0417(1)

β ¼ 3.9 VNA 0.0829(2) 0.9283 0.77 0.3841
VA 0.0769(4)
Vmon 0.0638(3)
Vph 0.0318(1)
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B. Monopole dominance after block-spin
transformations of monopoles

Considering the previous data [9,10] showing perfect
monopole dominance, insufficient monopole dominance
obtained here after smooth gauge fixings suggests that there
still remain lattice artifact monopoles. Here, let us consider
a block-spin transformation with respect to lattice monop-
oles. After the block-spin transformation of monopoles, we
can study the monopole behaviors in the long-range regions
near to the continuum limit. In Ref. [12], the scaling
behavior is seen when the monopole density is plotted
versus the lattice spacing of the blocked lattices b ¼ naðβÞ.
This result suggests the contribution of the monopole on the
blocked lattice must be larger than that of the monopole on
the original lattice. We evaluate the monopole Wilson loop
in the MCG and the MAG by using the monopole currents
on the blocked 244 (164) lattice after the n ¼ 2 (n ¼ 3)
block-spin transformation of monopoles on the original 484

lattice. Here, the definition of the block-spin transformation
of the monopole current is shown as

kðnÞμ ðsnÞ ¼
Xn−1
i;j;l¼0

kμðnsþ ðn − 1Þμ̂þ iν̂þ jρ̂þ lσ̂Þ: ð19Þ

In the calculations of physics on a blocked lattice, it is
important to adopt a corresponding improved operator
measuring physics correctly as well as the effective mono-
pole action on the blocked lattice [23]. But in the case of
measuring the string tension, it is enough to consider flat
Wilson loops on the blocked lattice as an improved
operator. We evaluate the monopole contribution to the
string tension at β ¼ 3.0 on the original lattice 484 and at
β ¼ 3.4 (β ¼ 3.6) on the n ¼ 2 (n ¼ 3) blocked lattice 244

(164). These β points have similar b ¼ naðβÞ values. As a

result, the string tensions from the monopole Wilson loop
on the blocked lattices in the MCG are larger than that on
the original lattice as seen in Fig 2. The string tensions from
monopoles in the MAG and the MCG are summarized in
Table III. After n ¼ 3 blocking, the improvement in the
MCG is bigger than that in the MAG and the results in both
gauges are almost the same. This is consistent with the
results showing gauge independence obtained in previous
work [12].

C. The dual Meissner effect

Next, we show the results with respect to the Abelian
dual Meissner effect. It is necessary to measure the
correlation functions between an Abelian Wilson loop
and various Abelian operators having the same, or different,
colors. But in the previous research [10], without any gauge
fixing they could measure only the correlations between a
non-Abelian Wilson loop and Abelian operators, which are
connected by a Schwinger line, since the disconnected
correlations are too small to get a reliable result. The
connected correlations, however, contain various contam-
inations, and it is desirable to measure original discon-
nected correlations between an Abelian Wilson loop and
Abelian operators directly. Therefore, we here adopt the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6  7  8

bV

r/b

n=1 in MCG
n=2 in MCG
n=3 in MCG

FIG. 2. The static-quark potentials from monopole Wilson
loops on a blocked reduced lattice with the spacing b ¼ na in
the MCG. The data at β ¼ 3.0 is without the block-spin trans-
formation. The data at β ¼ 3.4 (β ¼ 3.6) are taken from n ¼ 2
(n ¼ 3) blocked monopoles.

TABLE III. The string tension from the n blocked monopole
current in the MCG and the MAG. FR means the fitting range.

n β
ffiffiffiffiffiffiffiffi
σa2

p
FR(r/a) χ2=Nd:o:f σmon=σNA

MCG 1 3.0 0.2910(1) 5–16 0.482225 0.7807
2 3.4 0.296(2) 3–11 0.325642 0.815
3 3.6 0.330(2) 2–8 0.25499 0.842

MAG 1 3.0 0.3026(1) 2–20 0.995868 0.8119
2 3.4 0.304(1) 2–11 0.919558 0.836
3 3.6 0.328(3) 2–8 0.827499 0.837

(a) (b)

FIG. 3. Note that (a) is the schematic figure of the disconnect
correlation between an Abelian Wilson loop and an Abelian
operator. Note that (b) is the definition of the cylindrical
coordinate ðr;ϕ; zÞ along the q − q̄ axis.
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above four gauge fixings smoothing the vacuum and
evaluate such disconnected correlation functions:

ρðWa;ObÞ ¼ hWaObi − hWaihObi
hWai ; ð20Þ

whereWa is an Abelian Wilson loop, and Ob is an Abelian
operator. Here a and b denote color indices. A schematic
figure and the definition of coordinates are depicted in
Fig. 3. In this simulation we adopt Wilson loops of
WðR ¼ 3;T ¼ 3Þ at β ¼ 3.0, WðR¼5;T¼5Þ at β¼3.3,
and WðR ¼ 7;T ¼ 7Þ at β ¼ 3.5 on the 244 lattice. The
physical q − q̄ distances are almost equal to 0.48 fm for
these Wilson loops.

1. Color electric field distributions

To evaluate the profile of the Abelian color electric field,
we calculate the correlation between an Abelian Wilson
loop and an Abelian plaquette. In the naive continuum limit
a → 0, the correlation becomes hEiiqq̄. From now on, only

the MCG is discussed among global color invariant gauges
since the behaviors in the DLCG and the MAWL are much
the same as those in the MCG.
The results are as follows:
(1) When we put a static quark-antiquark producing an

adjoint color flux, Abelian electric fields with the
same color alone exist around the quark pair as is
naturally expected. It is shown in Fig. 4.

(2) The Abelian electric fields are squeezed actually.
Figure 5 shows the electric-field components at
the midpoint between the quark and the antiquark
pair. The electric field runs parallel to the direction
between the quark and the antiquark static sources.

(3) Figure 6 shows hEziqq̄ in four smooth gauge fixings.
In the case of MAU1, the global color symmetry
is broken. Hence, we evaluate both the diagonal
component and the off-diagonal one separately.
These data are fitted to a function

fðrÞ ¼ c1 exp

�
−
r
λ

�
þ c0: ð21Þ

The parameter λ corresponds to the penetration
depth and the values for different gauge fixings
are summarized in Table IV. The difference appears
only with respect to the coefficient c1 in the fitting
function Eq. (21). These results show that there is
little gauge dependence with respect to the behavior
of the squeezing of the Abelian color electric field.

-0.01
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Different color
Different color

FIG. 4. The color distribution of electric fields Ez on the 244

lattice in the MCG. Only the β ¼ 3.3 case is plotted.
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FIG. 6. The profile of the color electric field Ez at β ¼ 3.5 on
the 244 lattice for four smooth gauge fixings.

TABLE IV. The penetration length at β ¼ 3.5.

λ [fm] c1 c0

MCG 0.189(16) 0.0330(12) −0.00045ð44Þ
DLCG 0.175(13) 0.0352(12) −0.00067ð36Þ
MAWL 0.189(16) 0.0336(13) −0.00043ð45Þ
MAU1 0.190(14) 0.0482(15) −0.00065ð53Þ
MAU1(off-diagonal) 0.175(17) 0.0175(8) −0.000ð2Þ

-0.005

 0

 0.005

 0.01

 0.015

 0.02
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 0.03

 0  2  4  6  8  10  12

β=3.5, V=244, W(7,7)
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FIG. 5. The distribution of electric-field components Ez, Er,
and Eϕ on the 244 lattice in the MCG. Only the β ¼ 3.5 case
is shown.
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D. The monopole-current distribution

We then evaluate the monopole-current kbi distributions
around the static quark and antiquark pair defined by the
relation

ρðWa; kbi Þ ¼
hWakbi i
hWai ; ð22Þ

where a and b are color indices.

1. The correlation between different color objects

It is interesting to see the color correlation between the
color of the static quark source and that of monopoles
keeping the global color invariance. Here we evaluate the
correlations adopting the above three smooth gauges keep-
ing the global color invariance at three different couplings
β ¼ 3.0, 3.3, 3.5. The example of the kϕ distribution in the
MCG case is shown in Fig. 7. We find the peak of the signal
of the monopole current (VNABI) slightly away from the
flux-tube. There are no correlations between different
colors. This result means that an Abelian color electric
field is squeezed by the same color monopole current alone.
This is consistent with the Abelian confinement picture.

2. The dual Ampère’s law

To see what squeezes the color-electric field, we inves-
tigate the dual Ampère’s law derived from the definition of
the monopole current

ðrotEaÞϕ ¼ ∂tBa
ϕ þ 2πkaϕ; ð23Þ

where index a is a color index with a ¼ 1, 2, 3. We confirm
the dual Ampère’s law holds in four smooth gauge fixings.
As a typical global-color invariant gauge, we show graphs
for the MCG alone in Fig. 8. The electric field is squeezed
mainly due to Abelian monopole currents as obtained in the
MAG [24] and in the work without any gauge fixing [10].

In the case of MAU1, the global color invariance is broken.
With respect to the diagonal component in the MAU1
gauge, Abelian monopole currents are shown to squeeze
the electric field [24]. But the behavior of the off-diagonal
component looks different. In this case, the Abelian color
magnetic displacement current ∂tB seems to play the role
of squeezing the off-diagonal electric field instead of the
Abelian monopole current like in the Landau gauge [25].
But in the MAU1 case, it is only apparent since even the
off-diagonal components contain monopoles if lattice
artifacts are deleted enough as studied in Ref. [12], whereas
in the Landau gauge, lattice monopoles à la Degrand–
Toussaint [13] do not exist.

E. The vacuum type in the MCG

Finally, we evaluate the Ginzburg–Landau (GL) para-
meter, which characterizes the type of the (dual) super-
conducting vacuum. In the previous result [10], they
found that the vacuum type is near the border between
the type 1 and type 2 dual superconductors by using the
SU(2) Iwasaki action without gauge fixing. The SU(2)
Iwasaki action is adopted also to make a comparison with
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the previous result [10]. The Iwasaki improved action is
essentially the same as (11) except for the mixing param-
eter. Here, we evaluate the GL parameter in the case of a
smooth MCG. The lattices adopted are 244 for β ¼ 1.10,
1.28, 1.40. The GL parameter is the ratio of the penetration
length and the coherence length. The penetration length is
measured, as done previously, in the tadpole-improved
action (11). To evaluate the coherence length, we evaluate
the correlation between the squared monopole densityP

μ kμðsÞkμðsÞ and the Abelian Wilson loop by using
the disconnected correlation function. The typical data is
shown in Fig. 9. We fit the profile of hPμ kμðsÞkμðsÞiqq̄ to
the function

gðrÞ ¼ c01 exp
�
−

ffiffiffi
2

p
r

ξ

�
þ c00; ð24Þ

where the parameter ξ corresponds to the coherence length.
The number of gauge configurations is Nconf ¼ 1000 to get
the signal of the correlation. We show the result of the GL
parameter κ ¼ λ=ξ in the Table V. The GL parameter in the
MCG is close to the value of the previous result [10]. These
show that the vacuum after the smooth MCG captures the
essential property of the vacuum in SU(2) gauge theory
with a reasonable number of field configurations as
opposed to the case of no gauge fixing.

IV. CONCLUSION

In conclusion, we have studied monopole dominance
and the dual Meissner effect in three smooth gauge fixings,
which preserve global color symmetry as well as in the
MAG. The summary is depicted as follows:
(1) The string tension of the static potential is repro-

duced fairly well by the monopole contribution.
When the string tension is evaluated after the block-
spin transformation of monopoles, the monopole
dominance is improved. The value of the string
tension in the MCG and the MAG become about the
same on the blocked lattice. These results suggest
that perfect monopole dominance and gauge inde-
pendence are realized in the continuum limit.

(2) In the study of the dual Meissner effect due to
Abelian-like monopoles, the electric field having a
color is squeezed by the corresponding colored
monopoles alone, as predicted by the Abelian
picture of confinement. We find the scaling behavior
of the dual Meissner effect in four gauge fixings.

(3) The vacuum type is determined to be at the border
between type 1 and type 2 in SU(2) gauge theory
with the smooth MCG gauge. This is consistent with
the previous data without gauge-fixing [10].

(4) The Abelian monopoles here correspond to VNABI
in the continuum limit, which are gauge variant.
Hence, we have to adopt any method extracting the
continuum gauge-invariant part on the lattice. One
way is to adopt a very large number of vacuum
ensembles for an average as adopted in Ref. [10].
Another method is to adopt a vacuum ensemble
which is smooth enough to reduce the lattice artifacts
as much as possible. In this sense, adopting a special
gauge is important. The MAG is the smooth gauge
known so far. Here, we show that the MCG is also a
good gauge, which can reproduce roughly the essen-
tial monopole properties of the continuum SU(2)
QCD with a reasonable number of field configura-
tions similarly as in the MAG. Moreover, contrary to
the MAG, the MCG has the advantage of preserving
the global color invariance and is so very interesting.
To study the correlation between the Abelian monop-
oles and the center vortex in the MCG may also be
interesting since the MCG was first discussed in the
framework of the center vortex model [15,16].

(5) Since the Abelian-like monopoles studied in this
work and the previous works [12,20] have a gauge-
invariant continuum limit, it is very important to
study what quantity corresponds to the limit in the
framework of continuum QCD.

(6) In the Abelian projection scenario of color confine-
ment proposed by ’t Hooft [4], Abelian monopoles
appear as topological objects corresponding to the
homotopy group by adopting a partial gauge fixing.
There the singularity leading to Abelian monopoles
comes from the partial gauge fixing. In our scenario,
VNABI comes from a line singularity possibly
existing in original gauge fields. If this scenario is
correct, we have to deal with a field theory com-
posed of an operator having such a singularity. Such
a singular operator is not considered in the frame-
work of usual axiomatic field theory. It is interesting
to extend a mathematical framework to accommo-
date such a singular operator.
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TABLE V. The GL parameter in the MCG.

β λ [fm] ξ=
ffiffiffi
2

p
[fm]

ffiffiffi
2

p
κ

1.10 0.124(2) 0.121(2) 1.022(1)
1.28 0.105(4) 0.087(3) 1.208(3)
1.40 0.144(8) 0.128(5) 1.13(1)
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