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1 Introduction

This paper is concerned with the dynamics of a classical string in anti-de Sitter spacetime.
According to the gauge/gravity duality [1–3], the string in the bulk is dual to a flux tube in
the boundary field theory. In this paper, I will concentrate on the bulk side of the duality
and study the string motion in AdS3 spacetime. Under certain conditions, the non-linear
time-evolution creates pairs of cusps on the string. The goal of the paper is to understand
the qualitative features of this process in a concrete system: a string hanging from the
boundary of AdS3 spacetime. The initally static string configuration is shown in figure 1.
In order to learn about the non-linear time-evolution, one of the endpoints is kicked, after
which both endpoints are kept at a fixed position. This quench creates a propagating wave
on the string.
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Figure 1. The setup: a string is hanging from the boundary of AdS3. The configuration is initially
static on the Poincaré patch. Then, a propagating wave is created by moving one of the endpoints
as shown by the arrows. After the quench, the endpoints are fixed again.

For large enough quenches, direct energy cascades have been observed in the liter-
ature [4]. Direct cascades transfer energy from large to small scales and thus ultaviolet
physics becomes important. A prominent example is fully developed turbulence, described
by the Navier-Stokes equation. In that case, energy is dissipated at a scale set by the
viscosity. In contrast, the string energy is conserved in AdS3. In fact, since the motion is
integrable [5–7], there are infinitely many conserved quantities. What happens in the UV
instead of energy dissipation? As we will see, non-linear waves “break” and pairs of cusps
are produced on the string which then carry away the excess energy. Such cusps (spikes)
have been studied previously in [8–16] (see also the thesis [17] for a review).

The sigma model equations of motion can be converted into a generalized sinh-Gordon
equation [5]. By an appropriate change of coordinates, the equation locally reduces to
the Liouville, the sinh-Gordon (shG), or the cosh-Gordon (chG) equation. This will be
referred to as the local type of the equation. The type is selected by sign(R − R0), where
R is the scalar curvature of the induced metric, and R0 is the constant negative curvature
of elementary string segments.

Since the generalized shG equation encompasses both the shG and the chG equations,
their relationship can be examined in a unified dynamical framework. The main results of
the paper are the following:

• The cosh-Gordon theory has superluminal soliton solutions. These are the counter-
parts of the subluminal singular solitons of the sinh-Gordon theory.

• The sinh-Gordon theory can be thought of as a region in the cosh-Gordon theory
where superluminal solitons have condensed. This region moves with the speed
of light.

Initially, the string is static (or time-periodic as we will see) and the local type is chG
everywhere on the string. If the quench is sufficiently large, it can produce one or more
shG-type regions. The boundary between the shG and chG regions travels with the speed
of light.
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One of the hallmarks of integrable field theories is the absence of particle production.
How can cusps (which are solitonic objects at the level of the generalized shG equation) be
pair-produced? The answer lies in that they can only form near the boundaries between
shG and chG regions. One of the cusps falls into the shG region of the string, while the other
cusp stays outside in the chG region. The cusp in the shG region is the well-known singular
soliton of the shG equation. It should be thought of as a “hole” in the shG region. On the
other hand, the chG theory has no known “ordinary” soliton solutions.1 In this region, the
cusp corresponds to a singular object with a spatial worldline: a superluminal soliton.

The string motion in AdS3 is integrable. This allows for an exact discretization of
the (1+1)-dimensional partial differential equation [18–24]. The discretization renders the
equation of motion discrete in both space and time. The corresponding string solution
is a segmented string. Any string solution can be approximated by segmented strings to
arbitrary accuracy by increasing the number of segments and appropriately choosing the
initial positions and velocities of the elementary segments. Solving discrete equations has
various advantages over numerical solutions of continuous PDEs. Most importantly, there
are no numerical errors that would otherwise accumulate over a long period of time.

We will investigate what happens to the string at late times after many oscillations.
If there is a shG region on the string, then cusps are constantly produced at its boundary.
Eventually, the shG region completely evaporates and leaves behind a gas of superluminal
solitons in a chG environment. The evaporation time depends crucially on how many
segments the string consists of (in the continuum limit the shG region does not shrink at all
during the time-evolution). The number of solitons in the final state and the original size of
the shG region (measured in number of string segments) are equal. Thus, new particles have
not been created, instead the shG region has disintegrated into a superluminal soliton gas.

The paper is organized as follows. Section 2 outlines the derivation of the discrete
equation of motion. Section 3 discusses how to set up the initial string. Even though this
solution is static in the continuum limit, the segmented version is only time-periodic and
requires some care. Section 4 computes the non-linear string motion after the quench. The
energy spectrum is calculated and an example for energy cascades is shown. Section 5
studies the cusp pair-production mechanism in detail. Section 6 qualitatively describes the
long-time dynamics: the evaporation of the shG region and the formation of the gas of
cusps. Appendices A–C contain information about the technical details of the calculations.
Appendix D describes an analytical string solution.

2 The equation of motion

2.1 Classical string in AdS3

The canonical embedding of AdS3 into R2,2 is given by the universal covering space of
the surface

~Y · ~Y ≡ −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 = −1. (2.1)
1The chG theory has no trivial solution which would be the starting point for generating multi-soliton

configurations by applying Bäcklund transformations.
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Figure 2. Terminology used in the paper: cusps & kinks on the string. At the location of cusps
the string normal vector changes sign. They correspond to solitons in the sinh-Gordon theory and
have a topological charge. Kinks connect elementary string segments and move with the speed of
light. There is no charge associated to these objects.

Global AdS time is defined as the angle on the Y−1, Y0 plane. Figures in this paper will
use coordinates2 on the Poincaré patch with metric

ds2 = −dt
2 + dx2 + dz2

z2 (2.2)

Here z < 0 is the radial coordinate that will be shown as the vertical direction in the
forthcoming figures. The reason for this choice is that in the {t, x, z} coordinate system
there is a gravitational force pulling massive objects down in the z direction. Hence,
in order to study the long-term dynamics of the string, one has to hold it in place. The
simplest way to do this is to keep both of its endpoints fixed, for instance, on the boundary.
According to the AdS/CFT dictionary, the string is the holographic dual of the flux tube
between two external quarks in the boundary field theory.

Our starting point is the Polyakov action

S = −τ1
2

∫
d2σ
√
−hhab∂aXM∂bX

NGMN (2.3)

where τ1 is the string tension. XM are arbitrary coordinates on AdS3, while h and G are
the worldsheet and background metrics, respectively.

In terms of the Y coordinates in (2.1), the equations of motion in conformal gauge are

∂∂̄~Y − (∂~Y · ∂̄ ~Y )~Y = 0.

The second term comes from a Lagrange multiplier that keeps the string on the AdS3
hyperboloid. The equations are supplemented by the Virasoro constraints

∂~Y · ∂~Y = ∂̄ ~Y · ∂̄ ~Y = 0 ,

and we have used the null worldsheet coordinates z = 1
2(σ − τ), z̄ = 1

2(σ + τ).
The above system can be reduced to a generalized sinh-Gordon theory [5, 6] by defining

e2α(z,z̄) = 1
2∂
~Y · ∂̄ ~Y

Na = 1
2e
−2αεabcdY

b∂Y c∂̄Y d

p = −1
2
~N · ∂2~Y , p̄ = 1

2
~N · ∂̄2~Y .

2The coordinate transformation is given by

(t, x, z) =
(

Y0

Y2 − Y−1
,

Y1

Y2 − Y−1
,

1
Y2 − Y−1

)
.
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Note that ~N · ~Y = ~N · ∂~Y = ~N · ∂̄ ~Y = 0 and ~N · ~N = 1. Furthermore, p = p(z) and
p̄ = p̄(z̄) are functions of only one of the lightcone coordinates.3 The potential α satisfies
the generalized sinh-Gordon equation

∂∂̄α(z, z̄)− e2α + p(z)p̄(z̄)e−2α = 0. (2.4)

By the use of an appropriate coordinate transformation, the equation can be cast in the
usual sinh-Gordon, cosh-Gordon, or Liouville equation form. The type of the canonical
equation depends locally on the sign of p(z)p̄(z̄). Since z and z̄ are lightcone coordinates,
boundaries between shG and chG regions are also null. For instance, in the shG region a
new coordinate w can be defined by

dw =
√
p(z)dz .

In the w-plane the modified metric factor

2α̂(w, w̄) = α− 1
4 log pp̄

satisfies the ordinary sinh-Gordon equation

∂∂̄α̂− 4 sinh α̂ = 0.

The shG teory has singular soliton and antisoliton solutions, given by the explicit
formula

αs,s̄ = ± log
(

tanh2 σ − vτ√
1− v2

)
(2.5)

where v is the soliton velocity. Solitons with α→ −∞ correspond to cusps on the string.4
On the other hand, antisolitons with α → +∞ correspond to places where the string
touches the boundary of AdS3. The boundary is infinitely far away which necessitates the
blow-up of the metric factor.

At the location of cusps on the string, the normal vector N ∈ R2,2 changes sign. Thus,
cusps are topological objects which cannot be undone unless they collide with other cusps.
As we will see in future sections, they appear in pairs when large non-linear waves on the
string collapse.

Given a solution, the string embedding can be computed by solving an auxiliary Dirac
equation where α appears as a potential. Explicit formulas for solutions of the shG equation
with n solitons are known and the corresponding string embeddings have been found in [10].
In this paper we will explore a different exact method which will be described in the
following section.

3In the Euclidean case, they are (anti-)holomorphic functions.
4The motion of a Nambu-Goto string on R× S2 can be described by the sine-Gordon equation [25]. The

sine-Gordon solitons are rather different from the singular solitons of the sinh-Gordon equation: the string
embedding corresponding to a sine-Gordon soliton smoothly connects two points on the equator of S2.
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Figure 3. Kink worldlines form a quad lattice on the string worldsheet (parametrized by τ and
σ). The field aij lives on the edges (black or white dots depending on edge orientation).

Figure 4. Subdivided lattice. The discrete a field has been extended to the vertices (y, v) and to
the centers of plaquettes (x, u).

2.2 The discrete equation of motion

A new route to solving the string equation of motion has recently been investigated [18, 19].
The classical theory is integrable which allows for the exact discretization of the equations.
The solutions correspond to discrete string embeddings which consist of AdS2 patches
glued along null rays. (This is the generalization of a piecewise-linear string in flat space.)
The string is smooth almost everywhere, but at the location of the kinks the normal
vector jumps.

Kinks move with the speed of light on the worldsheet, and — due to the Virasoro
constraints — in target space as well. This is necessary to maintain the “segmentedness”
of the string. The kink worldlines form a quad lattice on the worldsheet, see figure 3.
Each diamond in the figure is a patch of AdS2 with a constant normal vector. A discrete
evolution equation for the normal vectors (or, equivalently, the kink collision points) has
been found [18, 19] and can be used to build segmented string solutions. The technique
is ideally suited for long-time computations, because there are no accumulating numerical
errors that typically scale with the lattice spacing.

In [23] I show that segmented strings in AdS3 move according to the discrete equation
of motion

1
aij − ai,j+1

+ 1
aij − ai,j−1

= 1
aij − ai+1,j

+ 1
aij − ai−1,j

. (2.6)

Here i and j are integer indices labeling lattice points on the string worldsheet. As illus-
trated in figure 3, kink worldlines pass through each of the lattice points. These kinks
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move with the speed of light both in target space and on the worldsheet. The points are
colored alternatingly, depending on which way the corresponding kinks move. The value of
a is related to the Poincaré time where the extended null kink ray hits the AdS boundary.

The a variables sitting on black and white dots correspond to advanced and retarded
times, respectively. The discrete field a is generically not constant along a kink worldline
due to the collisions with other kinks.

The kink lines surround a patch of AdS2. The sum of all diamond-shaped patches is
the entire segmented string worldsheet. It is an exact solution (i. e. one does not need
take the zero lattice spacing limit).

Segmented string embeddings can be obtained (up to a global SL(2) transformation)
from solutions of the equation (2.6). Details of the reconstruction procedure are described
in appendix A.

Finally we note that there exist other discretizations of the sinh-Gordon equation
(see for instance [26] which uses an analytically continued version of Hirota’s integrable
discretization of the sine-Gordon model given by Orfanidis in [27]).

2.3 Another form of the equation of motion

All the calculations in the present paper have been done using eq. (2.6). Although this
equation has already a rather simple form, it can be cast into an even simpler one which
will be explained in the following.

Let us consider the square lattice in figure 3 and subdivide it by adding extra variables
to all the kink collision vertices and to the plaquette centers. The resulting lattice is
displayed in figure 4. Let us now fix one of the new variables in the subdivided, say set
x = x0 in the figure. If we assume that the aij field solves eq. (2.6), then these values are
given as well. We now demand that the cross-ratio of all small diamonds is equal to minus
one. This will the new equation of motion for the subdivided lattice. For instance, in the
small diamond with the variables {x, a10, y, a11}, we have

(a10 − x)(a11 − y)
(x− a11)(y − a10) = −1 . (2.7)

From this equation, one can compute the value of y, since the other three are already given.
By repeated use of this cross-ratio equation, one can fix all the other variables. It is easy to
check that the cross-ratio equation is compatible with (2.6): going around aij by applying
the equation four times gives a consistent result.

For example, if we fix x = x0, then first compute y, then u, and finally then v, then the
cross-ratio equation with {x, a11, v, a21} will be automatically satisfied. The new variables
in the lattice x, y, . . . will only depend on the value of x0.

3 The initial setup

Let us consider a static string in the bulk connecting two external quarks on the boundary of
AdS3. Due to time-translation symmetry, the string profile satisfies an ordinary differential
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Figure 5. Time-periodic segmented string with 12 kinks. It is an exact solution which approximates
the static smooth solution in AdS3 (background gray curve). Black and red dots indicate left- and
right-moving kinks. These are connected by elementary segments (black lines).

equation which can be derived from the Nambu-Goto action. In terms of the Poincaré patch
coordinates (2.2) one gets

2x′(z) + 2x′(z)3 − zx′′(z) = 0

where x(z) gives the location of the string in the x direction as a function of the radial
direction.

The solution to this equation can be expressed in terms of elliptic functions. The
integration constants translate the solution in the x direction, and rescale the curve by
an overall factor on the x − z plane. The constants can be set such that the two string
endpoints touch the boundary at x = ±1. The resulting string profile is plotted in figure 5
as a thick gray curve in the background.

We now need to set up a segmented string which approximates this static curve. The
technical details of this are relegated to appendix B. At this point, the only parameter
is the number of kinks (i.e. the number of elementary string segments minus one) which
will be denoted by Nkink. An example with Nkink = 12 is displayed in figure 5. Left-
and right-moving kinks are shown in red and black dots, respectively. They are connected
by black lines which indicate elementary string segments. The solution is not static: it
oscillates slightly around the smooth solution in a time-periodic fashion as the kinks move
and collide with the speed of light. The period is proportional to 1/Nkink (for large Nkink),
since it depends on the average distance of neighboring kinks.

The smooth solution can be approximated to arbitrary precision by changing the num-
ber of segments (kinks). In the Nkink → ∞ limit, the resulting string converges to the
static solution.

4 The quench

So far we have a time-periodic string embedding on the Poincaré patch. The string end-
points q and q̄ are static quarks on the boundary. In order to get something more interest-
ing, let us move q̄ so that the worldlines move according to the functions

xq(t) = −1 and xq̄(t) = 1 + εβ(t) .

– 8 –
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Figure 6. Compactly supported smooth function β(t) for moving one of the string endpoints.

Figure 7. Segmented string with Nkink = 300. The perturbation of the left endpoint (∆t = 4,
ε = 0.05) has created a large wave on the string.
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Figure 8. Polar-like coordinate system. Constant r slices follow the shapes of static strings.

To make contact with earlier works in the literature, β will be chosen to be the compactly
supported C∞ function

β(t) =


exp

[
2
( ∆t
t−∆t −

∆t
t

+ 4
)]

(0 < t < ∆t)

0 (otherwise)
.

The function is plotted in figure 6. The parameters of the quench are the amplitude ε and
the length ∆t. These must be chosen in a way so that the quark velocity never exceeds
the speed of light.

The quench produces a large non-linear wave on the string and then moves the string
endpoint back to its original position (xq̄ = 1). Due to the Dirichlet boundary conditions,
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Figure 9. The first five eigenmodes of the linearized (continuous) string equation of motion as a
function of the polar-like angle.

the wave bounces back and forth between the two endpoints. A snapshot with ∆t = 4 and
ε = 0.05 is shown in figure 7. The initial static string embedding is a smooth gray curve,
while the actual string configuration is drawn in black. In this example, the string consists
of 300 segments. With such a large number of kinks, the embedding looks smooth. The
number of segments is a constant: as a kink reaches a boundary, a new kink is sent in such
that the Dirichlet boundary condition is maintained. The details of setting up the correct
boundary conditions are given in appendix C.

The authors of [4] kindly provided the numerical results of a simulation of the lon-
gitudinal one-sided quench. I have compared their numerical data to my exact results
(using Nkink = 300 and the same quenching function) and found a quantitative agreement
between the two.

5 Energy cascades

In this section we will compute the energy spectrum of waves on the string. Waves are de-
fined by a displacement function which needs a reference embedding. Hence, the spectrum
calculation is non-local and non-covariant. The reference embedding will be the initial,
unperturbed static string which has been shown in gray in the figures.

The static string can be parametrized by a polar-like coordinate (r, ϕ) which follows
the shape of the static string. The new coordinate system is defined by [4]

z = rf(ϕ) x = rg(ϕ)

where f(ϕ) ≡ sn(ϕ;−1) is a Jacobi elliptic function and

g(ϕ) ≡ −
∫ ϕ

β0/2
dϕ′f(ϕ′)2 , β0 ≡

Γ(1
4)2

2
√

2π
.

In these coordinates, the static string embedding lies at r(t, ϕ) = z0 ≡ 2β0/π where
ϕ ∈ (0, β0).

The displacement function χ is defined by the perturbed embedding

r(t, ϕ) = z0 [1 + χ(t, ϕ)] .

– 10 –
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Figure 10. Segmented string with 300 kinks after a quench (∆t = 8, ε = 0.095). The wave bounces
between the two endpoints and eventually it breaks. At this point, a cusp/anticusp pair is created.
The figure shows the moment when cusps are formed (at t = 22.59).

To linear order χ satisfies the equation [4](
∂2
t −

1
z2

0h
∂ϕh∂ϕ

)
χ = 0

where h ≡ [(g/f)′f ]2.
Next, one can numerically determine the normal mode frequencies ωn and eigenfunc-

tions en(ϕ) on the string. The first five modes are displayed in figure 9. Any displacement
function can be expressed in terms of these orthonormal eigenmodes as

χ(t, ϕ) =
∞∑
n=1

cn(t)en(ϕ) .

This expansion is needed for computing the energy spectrum. Note that only single-
valued functions can be expanded in this way. Once the string displacement is not such
a function (for instance, there is a loop in the curve) the spectrum cannot be unambigu-
ously computed.

Using the coefficients cn(t), the energy of a given mode is expressed as

εn(t) ∝
(
ċ2
n + ω2

nc
2
n

)
.

In the linear theory εn is conserved separately for each n. Even though the system is
integrable and there are infinitely many conserved quantitites, the individual mode energies
are not conserved in the full non-linear theory. The quench populates the low-lying modes
while higher modes are initially not filled. During the time-evolution energy is transferred
from large to small scales, and the string embedding looks like a breaking wave as in
figure 10. In the figure, the static configuration is shown in gray while the actual string
is a black curve. The steepest point is around x ≈ 0.13 where the ϕ derivative of the
displacement function seems to diverge. At this point in time, the spectrum obeys a
power-law. Such a power-law spectrum is presented in figure 11.

A linear fit gives εn ∝ n−1.41±0.05. The exponent does not seem to be universal. In
fact, this is expected due to the covariance of the system: one cannot differentiate a priori
between the background (the static string) and waves on top of it. By pumping in more
energy, the string can be made arbitrarily long which changes the “size of the box” in which
the waves propagate.
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Figure 11. Energy spectrum right before the formation of the first cusp pair. A power-law fit
gives εn ∝ n−1.41±0.05. The parameters were ∆t = 8, ε = 0.07, Nkink = 600.

Shortly after the power-law spectrum is observed, the wave breaks and two cusps
form on the string. Since there is no viscosity in the system, there should exist another
mechanism that gets rid of the excess energy at the ultraviolet end. This mechanism is
the cusp pair-production process. Without cusp production, the energy must eventually
flow back to the infrared. This seems to be the case when the string propagates in higher
dimensions [4].

The breaking of the wave is somewhat similar to the way shockwaves form in solutions
of the inviscid Burgers equation (i.e. the (1+1)-dimensional Euler-equation without the
pressure term). One important difference, however, is that the discrete string equation of
motion (2.6) is not singular when the wave breaks and cusps form.

It is plausible that by turning on finite-Nc effects (e.g. taking backreaction effects into
account), viscosity and energy dissipation can be implemented. Cusps are likely to quickly
lose energy by giving off a large gravitational radiation which can be detected at the AdS
boundary. We will not investigate these possibilities here.

6 Pair-production of cusps

The Ricci scalar of the induced metric on the worldsheet can be expressed in terms of the
metric factor.

R = −2e−2α∂∂̄α . (6.1)

Let us rewrite the generalized shG-equation (2.4) as

−2e−2α∂∂̄α(z, z̄)− 2p(z)p̄(z̄)e−4α = −2 .

In the first term we recognize the scalar curvature R. Since e−4α > 0, we have

sgn(R−R0) = sgn pp̄

where R0 ≡ −2 is the constant curvature of elementary string segments. Hence, by comput-
ing the scalar curvature, one is able to decide whether (2.4) can be reduced to the shG or to
the chG equation via an appropriate coordinate transformation. This is important, because
the two equations behave differently. The shG-equation has singular soliton solutions that
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Figure 12. The collision of two kinks on the segmented string worldsheet generates a deficit angle.
The sign of the angle selects the local type of the equation of motion (shG or chG).

Figure 13. Local type of the generalized sinh-Gordon equation on the worldsheet. White (black)
color indicates that the equation can be reduced to the ordinary sinh-Gordon (cosh-Gordon) equa-
tion. The parameters of the simulation are Nkink = 300, ∆t = 8, and ε = 0.095. After 860 discrete
time steps, a cusp-anticusp pair emerges.

Figure 14. The parameters of the simulation are Nkink = 100, ∆t = 8, and ε = 0.095. The orange
curve is a Poincaré timeslice. The corresponding string embedding is shown in figure 15.

can be generated by the Bäcklund transformation. This procedure is not available for the
chG-equation, since its potential is unbounded from below and one cannot start adding
solitons to its ground state. The difference in the potentials also has consequences for the
string dynamics. For instance, in the shG case, the cosh potential blows up as α → −∞
which stops strings from collapsing.

On the segmented string worldsheet R = R0 almost everywhere, except for those points
where kinks collide. The local behavior of the equation (shG or chG) is dictated by the
sign of the integrated Ricci scalar that is produced by the collision. It is equal to twice the
deficit angle and is given by the formula [24]

2φvertex =
∫

vertex
d2σ
√
−g R = 2 log

[(b− c)(a− d)
(c− d)(b− a)

]2

where a, b, c, d are the discrete field variables around the vertex (see figure 12).
The sign of the deficit angle can be plotted as a function of the discrete worldsheet

variables. These plots are seen in figure 13 and 14. Black (white) color corresponds to
chG (shG) regions on the worldsheet. The horizontal direction is worldsheet time τ and
the vertical axis is the spatial σ coordinate. The only difference between the two figures is
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Figure 15. Cusp and anticusp on the string. The shG and chG regions are indicated by red and
black, respectively. The anticusp lies in the shG region (at x ≈ −0.1) and the cusp is located in
the chG region (at x ≈ 0.1). The initial static configuration before the quench is shown in gray.

the number of string segments used in the simulation (Nkink = 300 and 100, respectively).
Although the second figure is more pixellated, there is no significant difference. The quench
creates a (white) shG region that bounces off the string endpoints (the bottom and top of
the plot).

After several discrete time steps, a cusp pair forms near the leading boundary of the
shG region. This happens at after 860 steps in the Nkink = 300 case, and after 290 steps
in the Nkink = 100 case. The corresponding Poincaré times are almost the same in the two
cases. This shows that the segmentedness of the string is not relevant for cusp-production.

The cusp pair is shown in figure 15. Note that in the shG region the cusp corresponds to
a subluminal singular soliton. In the chG region the worldline of the cusp on the worldsheet
is superluminal. The corresponding singular solutions of the chG theory will be dubbed
superluminal solitons.

The reason for superluminality can be understood by zooming in on the solitons. In
such a limit, the generalized shG-equation reduces to a Liouville-like form

∂∂̄α+ pp̄e−2α = 0.

A sign change of pp̄ can be compensated by swapping the worldsheet coordinates τ ↔
σ. This changes the sign of the first term and renders subluminal soliton worldlines
superluminal.

Although the soliton is superluminal in the chG region, the corresponding cusp is
perfectly causal in target space. Figure 15 shows that the cusp in the chG region is
pointing inward, therefore its tip can travel slower in target space, because it’s moving on
a curve of smaller “radius”.

The results of another simulation are shown in figure 16. The amplitude of the quench
remains the same, but the quench time is half as long, therefore the endpoint moves twice
as fast. This motion creates two shG regions on the worldsheet. The figure is a density
plot of the induced curvature. Superluminal soliton worldlines are surrounded by blue
“curvature clouds” whose size depends on the (superluminal) speed of the soliton. As the
soliton speeds approach the speed of light near the string endpoints, the cloud size vanishes.
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Figure 16. Density plot of the deficit angle on the segmented string worldsheet. The quench creates
two sinh-Gordon regions (shown in yellow). The time-evolution produces several cusp pairs, some
of which annihilate. The parameters of the simulation are ∆t = 4, ε = 0.095, with Nkink = 300.

Figure 17. Density plot of the deficit angle on the segmented string worldsheet. The shG (chG)
region is shown in yellow (blue). Dashed line indicates the null boundary between the two regions.
A cusp pair is produced near the boundary. The parameters of the simulation are ∆t = 4, ε = 0.1,
Nkink = 300.

Figure 17 is a close-up plot highlighting the region of cusp production on the world-
sheet. One of the cusps falls into the shG region, while the other one stays outside in the
chG region. Cusps are always produced near the leading front of the shG interval. The
worldline of the singularity crosses the boundary (dashed line) with the speed of light. This
is necessary, since on one side it is superluminal, while on the other side it has to move
subluminally.

Note that α̂ blows up at the boundary of the region where pp̄→ 0.
Solitons that fall in slowly sink to the rear end of the shG region where they either

annihilate with another incoming soliton, or just delete one segment from the shG region.
In the target space, the corresponding cusps completely disappear (this is related to the
fact that at the boundary of the shG region we have pp̄→ 0 and the equation degenerates
into the Liouville equation).
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Figure 18. Recurrence plot of cusps on the worldsheet. The parameters of the simulation are
∆t = 8, ε = 0.1, Nkink = 50. Each pixel column in the plot is separated by the oscillation period
(i.e. 2Nkink discrete time steps) under which the sinh-Gordon interval (shown in white) bounces off
both string endpoints and moves back to the same position. The interval quickly disintegrates after
a few periods.

Figure 19. Recurrence plot of cusps on the worldsheet. The parameters of the simulation are
∆t = 8, ε = 0.1, Nkink = 100.

The authors of [4] have noted that the cusp formation time becomes longer as the
quench amplitude ε gets smaller. They have performed a numerical extrapolation and
have found a threshold value below which no cusps form. In our language, the reason for
this is rather simple: for small enough values of ε the quench does not create a sinh-Gordon
region on the string. Such a region is necessary for cusp formation. I have computed the
threshold values of ε (at which the shG region consists of a single string segment) for a few
values of ∆t, and the results matched the numerical results in [4].

Note the “fermionic” nature of cusps on the string. At the tip the normal vector N
changes sign. Thus, one cannot place two cusps on top of each other, since flipping the sign
twice corresponds to nothing at all. Cusps repel each other which is visible at the level of
the shG equation: soliton worldlines never cross.

We end this section by referring the reader to appendix D which describes an analytical
string embedding in (2+1)-dimensional flat spacetime. Even though the solution is periodic
in time, it shows some similarities to the AdS3 solutions discussed previously. In particular,
analogs of shG and chG regions can be identified. In flat space these are selected by sgnR.

7 Long-time dynamics

The production of cusps eventually leads to the complete evaporation of the shG region at
least in the segmented case. This is highlighted in figures 18–20. The three figures show
the local type of the generalized shG-equation. The type is computed from the sign of the
deficit angle at the kink collision vertices. Black and white colors indicate chG and shG
regions, respectively. The vertical axis labels string segments, it is the discrete analog of
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Figure 20. Recurrence plot of cusps on the worldsheet. The parameters of the simulation are
∆t = 8, ε = 0.1, Nkink = 300.

Figure 21. Density plot of the deficit angle on the worldsheet. The horizontal axis labels elemen-
tary time steps. The parameters of the simulation are ∆t = 8, ε = 0.1, Nkink = 50, after 50000
time steps (not shown). The figure corresponds to the last two columns in figure 18.

the continuous worldsheet coordinate σ. The horizontal coordinate does not correspond to
discrete time steps as in previous figures. In order to be able to display large time scales,
we wait a full oscillation period between two adjacent columns. During this time, the wave
bounces off both string endpoints and moves back to its original position. Correspondingly,
the white shG interval also moves back to the original position on the string. The time
period (expressed in discrete time steps) is twice the total number of string segments since
the shG interval propagates with the speed of light.

The recurrence plots give us an idea about the behavior of the system over long simu-
lation times. Figure 18 indicates that the shG region completely evaporates after approx.
100 periods. After the evaporation, the string only contains a chG region (similarly to the
static string before the quench) plus a gas of superluminal solitons. The cusps that fell
into the shG interval are gone: they behave like holes in that region.

In figure 19, the string has twice as many elementary segments and thus the effective
ultraviolet cutoff is also twice as large. Hence, the shG region stays together for a longer
period of time.

The behavior of cusp pairs is best seen in figure 20. This case has the largest “reso-
lution” with Nkink = 300 which means that the simulation approximates a smooth string
to a greater accuracy. A cusp that is thrown out into the chG region oscillates between
the two string endpoints. The other cusp that fell into the shG region slowly sinks to the
bottom end of the interval where it changes the type of the last segment into chG. At this
point the cusp completely disappears. Presumably this has to do with the fact that at the
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boundary the generalized shG equation degenerates into the Liouville equation and the
cusp size vanishes in this limit.

Note that as time passes, the worldlines of newly minted cusps are increasingly closer
to being lightlike. Furthermore, it seems that the rate at which cusps are produced is
decreasing over time. A quantitative understanding of the phenomenon would be needed
to express the evaporation time as a function of Nkink.

Based on the figures, it is natural to extrapolate and speculate about the continuum
limit of smooth strings. It seems that in that case the shG region never evaporates, since
the segment size is zero, but the cusp production rate is roughly independent of the number
of kinks.

Figure 21 displays a density plot of the scalar curvature in the final state (a sample
of 200 time steps after the evaporation). Black lines indicate superluminal solitons of the
chG theory where the curvature blows up.

Finally, I note that on even longer time scales the solitons can condense again forming
a smooth shG region. The study of such recurrences was beyond the focus of the paper.

8 Discussion

This paper has studied the non-linear motion of a string in AdS3 spacetime. The motion is
governed by an underlying generalized sinh-Gordon equation which can be reduced to the
sinh-Gordon, cosh-Gordon, or Liouville equation. The dynamics of small strings changes
in the various cases, since the associated potentials are different. Sinh-Gordon strings for
instance always reach a minimal size because the cosh potential blows up for small values
of the field. Cosh-Gordon strings on the other hand can collapse [28].

The sinh-Gordon equation has well-known singular soliton solutions which correspond
to cusps on the string. In this paper we have discovered analogous (albeit superluminal)
soliton solutions of the cosh-Gordon equation.

The calculations were performed using an exact discretization of the equations. The
solutions are segmented strings, built from elementary pieces. In a flat target space limit
these pieces are straight lines. Instead of using the reflection formulas of [18, 19], the com-
putation relied on the variables introduced in [23] which were better behaved numerically.
Although the calculations are exact in both cases, repeated application of the reflection
formula exponentially magnifies the tiny numerical errors that arise from the fact that
computers store real numbers only up to a certain number of digits.

By setting up the initial and boundary conditions carefully, the string worldsheet can
contain regions of different local equation type. (Note that for a segmented string, the local
type is almost everywhere Liouville. What one means by sinh-Gordon or cosh-Gordon type
is measured at points on the worldsheet where two kinks collide. The collision generates a
deficit angle on the worldsheet and the sign of the angle gives the local type: shG or chG).

We have seen that the sinh-Gordon region evaporates via the cusp pair-production
mechanism. A pair of cusps is produced on the string just outside the null boundary be-
tween the shG and chG regions. One of them falls into the shG region where it corresponds
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to the well-known singular soliton solutions of the shG theory. The other one stays out-
side in the chG region. Its worldline is superluminal and the corresponding object in the
cosh-Gordon theory is a superluminal soliton.

There are many ways to extend this work:

• Long strings play an important role in the AdS/CFT correspondence. It would be
interesting to understand segmented strings from the boundary point of view. Closed
segmented strings in the bulk should correspond to a distinguished class of operators
of large canonical dimension in the CFT.

• Although we have shown the existence of superluminal solitons of the cosh-Gordon
theory, we have found no analytical expressions describing these solutions which are
valid in a smooth limit. It may be possible to obtain such formulas if the background
is carefully chosen.

• The generalized sinh-Gordon equation is relevant for the 2d Gross-Neveu model since
it governs the evolution of the mesonic mean field [29]. Boundedness of the meson
field selects asymptotically shG-type solutions. Previous work has focused on purely
shG-type solutions (see e.g. [30]). Generically, however, they can contain intervals of
chG regions as well. It would be interesting to understand the consequences of our
results in this context.

• Cusps are topological objects only in three spacetime dimensions. In four dimensions,
for instance, they only appear for a moment on the string. In AdSn, the string motion
is integrable and using a higher-dimensional version of the spinor-helicity formalism,
it is possible to obtain discrete equations of motion in various dimensions.

• This paper was only concerned with open strings. It is plausible that similar phenom-
ena also exist for closed strings. Since these compact objects eventually fall through
the Poincaré horizon, global AdS coordinates are better suited for their study.

• It is possible to couple the string to a certain background B-field while preserving
integrability of the equations [24]. For a special value of the coupling one arrives at
the WZW model. We expect similar behavior in these systems, especially since the
underlying discrete equations are the same.

• It would be interesting to study the thermodynamics of the system.

I hope to address some of these points in the future.
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Figure 22. An elementary patch on the worldsheet. Xi are points in spacetime, N is the normal
vector of the patch. The variables a, b, c, d are those that appear in eq. (2.6).

A Reconstructing the embedding

Here we list some formulas that allow one to convert the discrete field into spacetime
coordinates. Figure 22 shows a single elementary patch on the worldsheet. Its four vertices
are denoted by Xi ∈ R2,2. The patch is characterized by a constant normal vector N ∈
R2,2. The patch is surrounded by four kinks whose worldlines are null. For instance,
(X1 − X2)2 = 0. These difference vectors can then be written as products of helicity
spinors as in [23]: X1−X2 = λλ̃. Both spinors can be chosen to have two real components
(this is possible because the ambient spacetime is R2,2). Thus, each spinor is characterized
by a magnitude and a phase. The tangents of the phases are denoted a, b, c, d and they
sit on the kink lines in figure 22. These are the values of the discrete field aij of eq. (2.6)
at four neighboring lattice points. The formula for computing them from the difference
vector X1 −X2 ≡ {p−1, p0, p1, p2} is

a = p−1 + p2
p0 + p1

and similarly for b, c, and d.
Let us assume that aij is given for all values of i and j. Let us further assume that

X2 ≡ {Y−1, Y0, Y1, Y2} is given. Then, N can be determined by

N = 1
a− b


(1 + ab)Y0 + (ab− 1)Y1 − (a+ b)Y2

−(1 + ab)Y−1 + (a+ b)Y1 + (ab− 1)Y2

(ab− 1)Y−1 + (a+ b)Y0 − (1 + ab)Y2

−(a+ b)Y−1 + (ab− 1)Y0 + (1 + ab)Y1

 . (A.1)

Note that N2 = 1 and thus the normal vector has three degrees of freedom. Two of them
are fixed by a and b, and the third one by the constraint that X2 lies on the patch, i.e.
N ·X2 = 0.

Once N ≡ {n−1, n0, n1, n2} is determined, the other three Xi vertices of the patch can
be determined by inverting (A.1). For instance,

X4 = 1
c− d


(1 + cd)n0 + (cd− 1)n1 − (c+ d)n2

−(1 + cd)n−1 + (c+ d)n1 + (cd− 1)n2

(cd− 1)n−1 + (c+ d)n0 − (1 + cd)n2

−(c+ d)n−1 + (cd− 1)n0 + (1 + cd)n1

 .

– 20 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
8

Figure 23. Elementary patches on the worldsheet.

B Initial conditions

In this section I would like to outline the shooting method I used for finding initial condi-
tions for the calculations. An example plot of the worldsheet is displayed in figure 23. The
horizontal and vertical axes are the lightcone coordinates on the worldsheet. The black
lines are kink worldlines. In between the kink lines we have elementary patches with con-
stant normal vectors. The goal is to find the correct normal vectors of two “rows” which
allows the simulation to start. In the figure the first row consists of 2, 7, and 11. The
second row is 1, 4, 8, and 12. This example has only 3 + 4 = 7 elementary segments on the
string (patch 1 and 12 are both ending on the boundary of AdS3).

The first two patch normals (red squares) are given. Then the numbering shows the
order in which we compute the other normal vectors. Gray circles indicate that the normal
vector is obtained via a δt time-shift on the Poincaré patch. If the original normal vector
is N = {n−1, n0, n1, n2}, then the time-shifted normal vector is

N ′ =


n−1 + δt n0 − 1

2δt
2(n−1 + n2)

n0 − δt(n−1 + n2)
n1

n2 − δt n0 + 1
2δt

2(n−1 + n2)

 .

Using this formula, we compute N3 from N2. The time-shift parameter is a variable at this
point and all the normal vectors Ni for i ≥ 3 will depend on it.

From N1, N2, and N3, we can compute N4 by the reflection formula

N4 = −N1 + 2 N2 +N3
1 +N2 ·N3

.

The fact that N4 has been computed via the reflection formula is indicated by an orange
diamond. Now we compute N5 again with a δt time-shift from N4. Then we move on to
compute N6 by the reflection formula.

The remaining normal vectors are computed in a similar fashion. Once we reach the
required number of segments, we examine the final normal vector — in this case N12 —
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Figure 24. Boundary conditions. Vertical and horizontal directions are τ and σ, respectively.
Kink worldlines are shown as solid black lines. Vertical dashed line indicates the location where the
worldsheet touches the AdS3 boundary. P,Q are spacetime points, while A,N , and N ′ are normal
vectors. Red lowercase letters label the discrete aij field at different points.

and adjust δt via a shooting method such that N12 is again perpendicular to the boundary.
Finally, we rescale the entire string such that the endpoints on the Poincaré patch are at
x = ±1, and convert the normal vectors into the aij variables.

C Boundary conditions

This appendix discusses the details of enforcing the correct boundary conditions. This is
crucial for calculation. Figure 24 shows the worldsheet which ends on the boundary of
AdS3 along the vertical dashed line.

Let us first assume that we want fixed Dirichlet boundary conditions for this string
endpoint. This means that we want N ′ simply be a time-shift of N (see appendix B for
the time-shift formula). Furthermore, let us assume that we have already computed three
rows of the discrete field (red letters in the figure), and thus we know a, x, y, u, and v.
We cannot compute z using eq. (2.6), since one of the variables is missing (i.e. the mirror
image of y). Hence its value is determined by the boundary condition. Now N is known,
and using the results of appendix B, we can compute the spacetime point P = P (N, a, x).
Then we compute the normal vector A = A(P, x, v), then Q = Q(A, u, y), and finally we
have N ′ = N ′(Q, z, y). If we now let this equal to a time-shifted N vector, then we get an
equation for z.

Finally, z′′ = z since the corresponding kink lines touch the boundary at the same time
(and this is the actual meaning of these variables).

If the endpoint is not fixed (for instance, when we are creating the initial wave on the
string), then N ′ will not be a simple time-shift of N . In this case, z has to be set by a
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Figure 25. Timeslices of an analytical solution in flat space. The first plot has no cusps. Cusps
in the other three plots move with the speed of light.

shooting method such that N ′ best approximates the prescribed boundary condition which
is a smooth function in our case.

Note that this method of setting the boundary condition requires three rows of the
discrete field. Since initial conditions only provide two rows, one has to make sure that
these two rows are those of a and x in the figure, because then y = x is easily computed.
If we were to start out with the rows of x and y (without knowing the values of the field
in the row of a), then we would not know how to proceed.

D An analytic solution in flat space

This appendix contains an analytical solution in flat space which shares some features with
the non-linear AdS3 solutions in the bulk of the paper. The string embedding is explicitly
given by

Xt(τ, σ) = 1
4
√

2

(
(8 + 2a2)τ − a2 cos 2σ sin 2τ

)
Xx(τ, σ) = 1

4
√

2

(
(8− 2a2)σ + a2 sin 2σ cos 2τ

)
Xy(τ, σ) = 2a sin σ cos τ .

The solution satisfies the flat space equation of motion and the Virasoro constraints,

∂∂̄ ~X = 0 , (∂ ~X)2 = (∂̄ ~X)2 = 0

where z = τ + σ and z̄ = τ − σ. Figure 25 shows the string at different moments of time.
The first plot contains no cusps which then later appear. The motion is time-periodic, and
thus the cusps will finally recombine and disappear.

Note that in the second plot of figure 25 the newly minted cusps (at x ≈ 10 and x ≈ 14)
are on the same side of the string. This is because the string in the first plot has a loop and
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Figure 26. Induced scalar curvature of the analytical solution in flat space (with a = 5). Dashed
lines indicate where the curvature changes sign. Cusps on the string correspond to the blue/white
curves in the figure. The worldlines are subluminal (superluminal) in the R > 0 (R < 0) regions.

the associated topological charge has to be preserved under time-evolution. In figure 15,
cusps were on the opposite sides, because the string did not contain such a loop before the
moment of pair-creation.

The scalar curvature of the induced metric can be easily computed. It is given by

R = 256a2(cos 2σ + cos 2τ)
(4 + a2 cos 2σ − a2 cos 2τ)4 . (D.1)

A density plot of this function is shown in figure 26. The brighter and darker regions
indicate the sign of R. These are analogous to the shG and chG regions in the AdS3 case.

As the figure displays, at τ = 0 the singular objects are momentarily static. Let us
pick one of the singularities which is located at

σ = σ0 ≡
1
2 arccos a

2 − 4
a2 .

Expanding the curvature (D.1) near σ0 we get

R ∝ (σ − σ0)−4 . (D.2)

In order to see what this has to do with sinh-Gordon solitons, let us expand the exact
static soliton solution in (2.5) near its singularity. We get

α ∝ log(σ − σ0) .

By applying (6.1), the scalar curvature is seen to have the same singular scaling as in (D.2).
This implies that this singular object in flat space is indeed analogous to the well-known
sinh-Gordon soliton.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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