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ansatz for analysis, especially in the search for new physics.
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1 Introduction

In the near future the LHC will begin its third run of data collection with the aim of
doubling the luminosity collected so far during the two previous runs. While Run-1 allowed
the discovery of the Higgs boson, no new physics has yet emerged from Run-2 and chances
are faint to get big surprises in the existing dataset, despite the many analyses that are still
ongoing. It is becoming obvious that the expected increase in luminosity will not yield a
strong enough gain in sensitivity. Tiny signals hidden behind large backgrounds would not
benefit much from additional statistics and would call for an improvement in the analysis
techniques to benefit fully from the information contained in each event.

Neural networks and boosted decisions trees, along with other less popular machine
learning techniques, are used to learn this information directly from simulations or more
rarely from data. The main difficulty of the machine learning methods is to make sure
that they actually learned physical information and that they are able to generalize that
knowledge. Ensuring this requires using control samples or regularization techniques which
have become a standard in the field and many other techniques such as pivoting [1], weakly
supervised [2, 3] and unsupervised [4] learnings have been applied in the field of high energy
physics over the past years. The physical information however is provided to the algorithm
in an indirect way, by means of the training dataset where it is encoded. Although powerful
in terms of prediction, its retro-engineering prospects are limited and therefore restrict its
interpretability.
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On the contrary, the Matrix Element Method (MEM) uses our knowledge of the Stan-
dard Model (SM) by means of the Lagrangian to compute the compatibility of experimental
events with a hypothetical process. The underlying knowledge of the physics process and
detector response makes its internal dynamic more straightforward to interpret than for
machine learning techniques. Since there is no training step, the MEM can also be used
when the number of events in the dataset in consideration is very small, a situation in
which other methods struggle.

The MEM originates from the Tevatron experiments DØ and CDF for top quark mea-
surement in tt̄ production [5–11] and has become common in particle physics analyses.
Recent examples at the LHC are the searches and measurements of the tt̄H [12–18] and
single top [19] production processes, as well as studies of spin correlation in tt̄ produc-
tion [20]. However this technique suffers from complexity and an expensive computation
time. In order to obtain the probability for a given process, the matrix element must
be convolved with the parton distribution functions, the transfer function of the detector
and be integrated over the whole phase-space. This integral is high dimensional and its
integrand has a nontrivial shape with many sharp peaks, the details will be presented in
the next section. Even modern implementations of the method (e.g. MoMEMta [21]) that
use efficient integration strategies need more CPU time to evaluate this integral than is
required by many applications of the method.

The aim of this paper is to show how a Deep Neural Network (DNN) can be used to
approximate the result of the matrix element integration. This makes it possible to use
the MEM for search for new physics, parameter scans, etc. The probability provided by
MoMEMta can be seen as an untraceable function — meaning there is no closed or compu-
tationally affordable form — of the final state 4-momenta. Any function with reasonable
assumptions can be approximated by a neural network given a large enough width — which
can be broken down into several layers — and although nothing guarantees the result of
the MEM fulfills all these assumptions it was enough to motivate this study.

This method is potentially much faster that the straight evaluation of the matrix
element by integration. A DNN needs a simulated sample and several hours of computing
time for training, but evaluating it afterwards is much faster: typically at least a few order
of magnitude less computing time than for the classical MEM integration, which takes a
few seconds per events even for the easiest processes. This is illustrated in figure 1 for a
few of the benchmark processes from ref. [21].

Many developments have been made recently in the context of the MEM by using
either parallel computing [22, 23] or GPU acceleration [24, 25]. In addition methods that
bypass the classic numerical integration libraries by using boosted decision trees [26] or
neural networks [27], and the recent new applications of normalizing flows for phase-space
sampling [28, 29] are promising ways to improve the computation time and potentially
to avoid the currently required integration variables optimizations such as implemented
in MoMEMta. Nonetheless these techniques can still be coupled with the method we
describe in this paper. On the contrary, likelihood-free inference methods [30–32] propose to
circumvent the integration shortcomings using machine learning to produce the likelihood
ratio without any loss of information. Even though apparently more powerful than the
MEM, they are less stable and more complicated to interpret than what we propose here.
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Figure 1. Computation time as a function of the number of events for few processes with Mo-
MEMta and using the proposed DNN approach. For the DNN it was assumed that the training and
evaluation times were 10 h and 150 µs per event respectively. Time spent on producing the training
sample is not taken into account.

2 The Matrix Element Method in a nutshell

The purpose of the MEM is to compute P (x|α), the probability to observe an experimental
event given the theoretical hypothesis α. In this context x refers to the 4-momenta of an
arbitrary number of particles observed in the final state. We will distinguish these experi-
mentally observed particles x from the parton level particles y produced at the interaction
point before the hadronization and their detection. α can refer to any set of parameters
(e.g. the mass of a resonance) or to different models.

For hadron colliders, the likelihood of a hard scattering producing a partonic final state
y is proportional to the differential cross section defined as

dσ(q1, q2, y) = (2π)4|M(q1, q2, y)|2
q1q2s

dΦ(y), (2.1)

where q1 and q2 are the initial state parton momentum fractions and s is the center-of-mass
energy. dΦ(y) is the n-body phase space of the final state y, while |M(q1, q2, y)|2 denotes
the matrix element for the given process α (including the summation over spin and colors)
usually computed numerically at leading order by packages such as MG5_aMC@NLO [33].

The propagation of the parton-level 4-momenta y to the experimentally observed ones
x includes the parton distribution functions (PDF) fa(q) (for each parton q of flavor a),
efficiency ε(y) to reconstruct and select the hadronic state y and transfer function T (x|y)
normalized with respect to x. The latter parameterizes the parton shower, the hadroniza-
tion and the detector response (whose resolution is limited and produces a smearing of the
observed particles momentas).
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The probability P (x|α) results from a convolution of the differential cross section with
the transfer function and a sum over initial states:

P (x|α) = 1
σvis
α

∫
q1,q2

∑
a1,a2

∫
y
dΦ(y)dq1dq2fa1(q1)fa2(q2)(2π)4|M(q1, q2, y)|2

q1q2s
T (x|y)ε(y),(2.2)

where σvis
α stands for the visible cross-section and is there to make sure that the probability

is normalized. It is often computed a posteriori with σvis
α = σα〈ε〉, where σα =

∫
dσα(y) is

the total cross-section and 〈ε〉 is the average selection efficiency. In practice the integration
and the computation of this factor are separated which is why we will omit it in the
following from equation (2.2) and define the MEM weights as W (x|α) = σvis

α × P (x|α). In
addition the weights can span several orders of magnitude which is why most of the time
we will use the event information defined as Iα = − log10(P (x|α)) or I ′α = − log10(W (x|α))
which only differs by a constant term.

The transfer function includes various complicated processes and several assumptions
are usually made to simplify its integration. The detection and measurement of each
particle in the final state is independent, at first order, which allows to factorise the transfer
function for the different particles. This argument can be pushed even further by factorizing
the different components of the measured 4-momentum. We therefore write the transfer
function as

T (x|y) =
n∏
i=1

Ti(xi|yi),

Ti(xi|yi) = TEi (xi|yi)T ηi (xi|yi)T φi (xi|yi), (2.3)

where the index i refers to the final-state particles. In most cases, the resolutions in η and
φ are very narrow and are parameterized as delta functions. On the contrary, the energy
resolution depends on the nature of the particles and should reproduce the behavior of
the simulation detector effects, typically Gaussian for fast simulations. Note that these
assumptions can break down when two objects have small angular separation which would
require specific care to not impair the convergence and accuracy of the integration. In
this paper we derived custom simulation-based binned transfer functions to account for
potential asymmetries.

The high-dimension integration in equation (2.2) requires the use of numerical inte-
grators such as Vegas [34]. These tools implement adaptive Monte Carlo techniques, the
basic principle of which is to randomly generate points evaluated with the function that
one wishes to integrate. With enough points, a relatively close approximation of the inte-
gral can be obtained along with its uncertainty. However this method becomes extremely
expensive in high-dimension space: while flat regions of the phase-space only need a few
points in order to get a good approximation of their integrals, regions where the function
fluctuates a lot need to be well covered.

Adaptive Monte Carlo techniques are iterative processes designed to populate the
phase-space heterogeneously in order to decrease the integral variance. Even though they
perform better than the uniform sampling, they do not scale easily with the dimensionality
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and the factorization assumption on which some are based — e.g. importance sampling in
Vegas — makes them especially suboptimal if the integrand presents peaks that depend
on several integration variables. In our case sharp peaks can arise from the propagators in
the matrix element or in narrow transfer function. The latter can already be mapped to
integration variables in the classic parameterization of the phase-space

dΦ =
(

n∏
i=3

|pi|2d|pi|sinθidθidφi
2Ei(2π)3

)
(2π)4δ4

p1 + p2 −
n∑
j=3

pj

 , (2.4)

where the Dirac function ensures the momentum conservation. Propagator enhancements
then need to be addressed by inverting the Breit-Wigner resonances and the delta functions
need to be integrated out. In addition this parameterization includes invisible particles,
i.e. particles that did not leave a trace in the detector. Neutrinos, particles outside the
acceptance and initial-state partons should be taken into account and the large volume
that they represent will heavily impact the integration - unless the kinematic constrains
are used to remove these degrees of freedom.

3 Fitting the MEM with DNN

Computing the weight of an event with MoMEMta can take from a few seconds to several
minutes depending on the complexity of the process in question. This has to be repeated
for each hypothesis α and for each event and quickly becomes prohibitive. In a real-
life analysis with several hypotheses and sometimes additional model parameters, it often
makes the implementation of the method challenging. In a nutshell, the approach proposed
in this study uses MoMEMta to process simulated samples and produce event information
I ′ under different hypotheses. The result is then used together with MoMEMta inputs
— the 4-momentas of each visible particle — to train a DNN. As shown in what follows,
the resulting network can be used instead of MoMEMta on a larger set of events and for
different values of the model parameters.

The inputs of MoMEMta are the 4-momenta of all the observed particles as well as
the missing transverse energy (only its PT and φ angle), consequently these are the inputs
that we want to provide to the DNN. Some rather standard pre-processing has been used
to facilitate its task, in the spirit of ref. [35]. Depending on the longitudinal difference in
momentum between the initial partons that collide in the detector, the particles produced
might be boosted in one or the other direction. The network will still be able to learn the
function at equation (2.2) but will also have to learn about the longitudinal boost itself,
which hinders its ability to describe the interesting part of the matrix element. Using as
inputs the PT , η and φ angles for each of the particles improves a lot the situation, since
the ∆η between two particles is in good approximation independent of the longitudinal
boost. Furthermore, the detector has a cylindrical symmetry and we do not want the
network to learn about an arbitrary reference in φ. Any relative quantity defined on the
angles could in principle be used, for example the relative ∆φ angle with an arbitrary
selected particle. This parameterization has shown to yield better results than the raw
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4-momenta without loss of generality. While in the integration of the MEM the ordering
of the particles is important because all permutations of indistinguishable particles — e.g.
two jets originating from a quark and an antiquark — need to be considered, there is no
notion of distance in the inputs of a fully connected network and it does not have to be
taken into account. As the targets span several orders of magnitude we will follow the
example set by ref. [21] and regress on the event information I ′ = − log10(weight) instead.
Similar approaches have been studied in detail in the literature [36].

In some cases, the computation does not converge before reaching the maximum num-
ber of iterations. In these cases the weights have non-physical infinitesimal values with
even smaller uncertainties, referred to as invalid. These weights are logically not included
in the learning process, but the DNN can be evaluated on these events as on any other. In
order to probe both the behavior of the MEM and the DNN for these events, some of the
invalid weights can be recomputed in MoMEMta with more sampling points and iterations
and evaluated with the DNN trained on valid weights.

An inherent quality of the DNN approach is the ability to interpolate on inputs that
were not seen during the training. In the classical method, parameter scans require to
generate weights at different parameter values and eventualy to perform an interpolation.
But the cost grows with the granularity and the dimensionality of the parameter space,
which can be prohibitive. The advantage of the DNN is that no integration with MoMEMta
is necessary anymore once the model is built, even for new events and new parameter
values — as long as one stays clear of the extrapolation regime where DNN are know to
be untrustworthy.

Note that in practice the MEM probabilities — and by extension the MEM information
I ′ — are rarely used directly in an analysis and are combined in an application-dependent
procedure. A simple comparison of their values is thus not a sufficient criterion to state
that the method we propose can be used without losses.

We have used the Keras [37] library interfacing Tensorflow [38] to train the DNNs. The
datasets were separated into three sets: one for the training (∼ 70%), one for the hyper-
parameter scans used in model selection (∼ 10%) and one for the performance evaluation
of the selected model (∼ 20%). All the plots in the paper contain events in the last set.
All this is done to detect any overfitting of the network, i.e. the loss of generalization to
unknown data because statistical fluctuations of the training data are learnt in addition
to, or instead of, the general features of its underlying distribution.

4 Proof of concept: the llbb̄ topology

As a proof of concept we will apply the method we propose in this paper to several processes
producing two opposite sign leptons and two jets initiated by b quarks (bjets) as detected
particles. This topology is interesting because the main contributions to this topolgy —
Drell-Yan Z → l+l− production with additional jets, and top quark pair production tt̄

with leptonic decays of the W bosons from both top quarks — are very dissimilar in
the way they are treated in the integration. The computation for the former is rather
straightforward as no missing particles are produced while the latter contains undetected
neutrinos whose degrees of freedom need to be accounted for. We will then consider the
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Process Drell-Yan weights tt̄ weights H → ZA weights
Weights Valid Invalid Invalid Valid Invalid Invalid Valid Invalid

recomputed recomputed
Drell-Yan sample 305407 12 12 305407 913 480 38642 3842
tt̄ sample 2903472 109 109 2903472 751 545 39441 14441
H → ZA sample 209130 10 10 209130 37084 10040 232719 32274

Table 1. Sample sizes for the three types of weights and the three samples. Valid represents weights
that converged, Invalid the ones that did not and Invalid recomputed the ones in the invalid category
that converged when recomputed.

resonnant H → Z(→ l+l−)A(→ bb̄) process that arises in the context of Two Higgs Doublet
Models (2HDM), and has been studied by the ATLAS [39] and CMS [40] collaborations.
The multiple resonances in this process present an interesting challenge from the integration
point of view and the unknown masses of the H and A bosons will illustrate the power of
our method when the parameter space is multi-dimensional - which is precisely where the
classical integration is impractical.

A summary of the number of events for which the weights have been computed is given
in table 1. Only 500K events for the tt̄ process have been used in the training to not unbal-
ance the network. The H → ZA samples and weights are split in 23 mass configurations
up to 1 TeV for both mA and mH . The event information I ′α will be evaluated for every
event — tt̄, Drell-Yan and H → ZA — 23 times with different mass parameters for the
H → ZA case alone. The number of invalid weights and how many were recomputed with
more iterations are also given in the table. The non-convergence indicates that it is very
difficult for MoMEMta to associate an event with the process the weights is computed for,
likely because the event is too incompatible with the hypothesis. The changes of variables
introduced in the computation are an attempt to optimize the axes of the integration to the
kinematics of the process in question. If the event is pathological or comes from another
process then the integrator might not generate points in the large value regions. Therefore
more iterations or more points are needed and the integration can reach the threshold on
the number of steps before convergence. Sometimes the threshold might be too hard and
the convergence was very close, this is probably the case for the invalid Drell-Yan weights
given their relatively small number. In addition the fact that all of them converged at the
recomputation step with more time and points tends to support this explanation. On the
other hand, it is possible that the phase-space regions to be populated for the event are
very far in the tails of the sampling distribution for the process under investigation. This
is probably the case for a portion of the tt̄ weights that did not converge even with more
points, especially for H → ZA events with invalid weights that are mostly at high MH

and MA (two thirds of the them are for cases where both masses are at the TeV scale).
This is because the kinematics of the leptons and bjets are incompatible with a 173 GeV
precursor, and thus make the task of MoMEMta more complicated. This does not happen
for the Drell-Yan weights because the kinematic range of the products is more flexible. A
study of these invalid weights is presented in a dedicated section.
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Figure 2. Distributions of the event information I ′DY from both MoMEMta and the DNN for the
three samples: Drell-Yan (left), tt̄ (middle) and H → ZA (right) events.

We made sure the events were weighted proportionally to the sample size between the
three categories so that they all have the same importance in the training of the DNN.
The goal for the H → ZA weights is to include MH and MA in the inputs of the DNN and
provide the Information I ′ as target. This parametric DNN [41] would be very interesting
for parameter scans (for example in a maximum likelihood context) that become prohibitive
with the classical approach. This DNN is therefore capable to provide Information for
parameter values it had not seen during the training and the interpolation that must
be performed apart from the integration in the classical approach is now embedded in
our method.

In the next section we will detail the computation process and regression results of each
type of weights. The summary of computation time and DNN topologies are at table 2.

4.1 Drell-Yan weights

Drell-Yan weights are the easiest to compute since the topology of the process is quite flex-
ible in the range of allowed kinematics for the products. This makes the task of MoMEMta
relatively easy when the correct changes of variables is applied. In practice the evaluation
of the Drell-Yan weights takes on average a few seconds per event, some rare events can
take a few tens of seconds in the tail of the distribution.

The I ′DY distributions are given in figure 2 for the three types of sample. The agreement
is very good between the weights from the MEM computed with MoMEMta and the ones
from the DNN. The best model selected during the parameters scan is the one with six
layers of 200 neurons, relu [42] and selu [43] activation functions for the hidden and output
layers respectively, the optimizer for the gradient descent was Adam [44]. Dropout [45]
and L2 [46] regularization technique did not improve the efficiency of the training. We
emphasize that these events have never been seen by the DNN during the training or in
the model evaluation in order to detect overfitting. As expected the Drell-Yan events have
higher weights than tt̄ and H → ZA ones because they have more compatibility with the
Drell-Yan hypothesis.
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Figure 3. Distributions of the event information I ′
tt̄

from both MoMEMta and the DNN for the
three samples: Drell-Yan (left), tt̄ (middle) and H → ZA (right) events.

4.2 tt̄ weights

Due to the more complicated topology of the tt̄ process — with fully leptonic decay, this
will be implicit from now on — from the narrow top resonance, the tt̄ weights are more
intricate to compute. However taking advantage of the Breit-Wigner resonances in a change
of variables, the computation time can be reduced to a reasonable level (about 3.2 times
slower than for the Drell-Yan weights).

The corresponding I ′
tt̄
distributions are shown in figure 3. The contrast in the weight

distribution between the Drell-Yan and tt̄ samples is less obvious but a longer tail can be
observed for the Drell-Yan events. The double peak of the H → ZA case comes from the
different mass configurationsMH andMA that constitute this sample. High (pseudo)scalar
masses lead to low weights while low masses are more consistent with the tt̄ hypothesis.
Overall the agreement between the classically computed weights and the ones from the
DNN is good. The best model is close to the one for the Drell-Yan weights: it contains
eight layers of 500 neurons and a small L2 regularization factor, probably to counter the
overfitting of such a deep network.

4.3 H → ZA → llbb weights

The case of the H → ZA hypothesis is more complicated due to its hypothetical nature
that makes this process dependent on unknown parameters. In our case we only varied
two parameters, the masses MH and MA, while other have been fixed. We have focused
on 23 configurations, both for the event generation and for the MEM computation. While
some integration tricks were beneficial for the other hypotheses, mostly by using the delta
function for the momentum conservation in equation (2.2) to remove some degrees of
freedom — such as the bjets momentum magnitude for the Drell-Yan process or replace
the integration over the invisible particles by integrating over the resonances in the tt̄

process — the absence of invisible particles and the multiple resonances of the H → ZA

process prevent these tricks to be profitable . This has a heavy impact on the computation
time, about 50000 CPU days for all the samples (on average about ten minutes per event
per weight).
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Figure 4 shows the different contributions of the weight distributions from the event
generated with different resonant masses. As expected, the event information is lower
(hence the probability is higher) when the masses used for the generation match the hy-
pothesis used for the weight calculation, although the dependence on the visible cross-
section is not taken into account here and might have a small effect. This can be seen on
the left part of figure 4 where the low mass events have higher weights. On the contrary,
the high mass events have the highest weights in the right part of the figure, as they match
more closely the topology of the high mass weights. Interestingly enough, events with same
MA but different MH compared to the values included in the weight tend to have slightly
higher probabilities.

From a pure technical point of view the best model for the H → ZA case is intrinsically
similar to that of Drell-yan and tt̄. It consists of 8 layers of 300 neurons with relu and selu
activation functions for the hidden and output layers respectively, trained with a small L2
factor. It is however conceptually radically different. In addition to the particles inputs,
it was also given the mass parameters for each H → ZA weight provided as target. It
has been trained on each event 23 times, for different MH , MA and target weight. Not
only has the DNN learned about the relation between the kinematics and the weight, but
also the dependence on the process parameters. The comparison between the weights from
MoMEMta and the DNN is shown in figure 5 for a specific mass configuration (MH =
800 GeV, MA = 400 GeV).

As expected, the tt̄ events have small H → ZA weights when the mass parameters are
high. This is the reciprocal of the fact that high mass signals have low tt̄ weights. Drell-
Yan events also depict the same behavior since they rarely produce particles with high
momenta, which is typically the case for H → ZA with high mass resonances. Notice also
that the higher weights for Drell-Yan events occur when the difference in mass hypothesis
MH−MA is large. In that case, the Z boson acquires a large boost not commonly observed
in Drell-Yan events.

In our specific case the parameter space is two-dimensional. To test the interpolation
capabilities of the network, a new set of weights was computed with parameters MH =
600 GeV andMA = 250 GeV (never seen during the training) on a small subset of the initial
samples (1K events per H → ZA sample, 5K events for the Drell-Yan and tt̄ samples).
For reference, the Delaunay technique — a piecewise-linear interpolation — was employed
to obtain the weights at these parameters values from closeby computed points. This is
compared to the DNN applied to these events without retraining in figure 6. Both method
perform equally well, demonstrating that the DNN is properly interpolating the parameter
space from observed samples. Note that while the Delaunay technique is relatively fast,
the main bottleneck is that it requires some points to start from, which means that each
event still needs to be computed for several mass points with MoMEMta. In addition
the granularity will still scale exponentially with the parameter space dimension. On the
contrary, there is no need to use MoMEMta anymore once the DNN is trained and while
the two methods give the same result, the DNN can be orders of magnitude faster —
especially in multi-dimensional parameter space.
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Figure 4. Distributions of the event information I ′H→ZA for two mass hypotheses — (MA =
100 GeV, MH = 250 GeV) (left) and (MA = 50 GeV , MH = 1000 GeV) (right). On each plot,
the contributions from the samples with different masses used for the event generation have been
stacked on top of each other for clarity.

Figure 5. Distributions of the event information I ′H→ZA of the specific mass point (MA = 400 GeV,
MH = 800 GeV) from MoMEMta and the DNN for the three samples: Drell-Yan (left), tt̄ (middle)
and H → ZA (right) events.

Figure 6. Distributions of the event information I ′H→ZA for the mass point (MA = 250 GeV ,
MH = 600 GeV) not seen during the training. The true distribution from MoMEMta is in green,
the Delaunay interpolation using the other weights is in red and the output of the DNN (not trained
at this mass point) is in blue. The three samples used are Drell-Yan (left), tt̄ (middle) and H → ZA

(right) cases.
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MEM Hypothesis MoMEMta DNN topology DNN training time DNN
evaluation time Nlayers Nneurons L2 Training size Time / epoch evaluation time

Drell-Yan 3.6 s / event 6 200 0 800K events 5 min 110 µs / weight
tt̄ 12 s / event 8 500 0.1 800K events 10 min 150 µs / weight
H → ZA 600 s / event 8 300 0.1 5,7M events 40 min 120 µs / weight / parameter

Table 2. Summary of evaluation and training times, and DNN topology. The topology includes
the number of layers and neurons per layers as well as the L2 regularization value, the activation
functions are always relu and selu for the hidden and output layers. Additionally all DNN have
been trained with a batch size of 512 and initial learning rate of 0.001. A learning rate scheduler
and early stopping were implemented to stop the training at the validation loss curve plateau before
the 100 epochs limit (even much sooner than that for the H → ZA case). The training size for the
H → ZA DNN takes into account that each event is seen for each mass configuration.

4.4 Applications and studies

While the weight distributions presented so far are a good indicator to evaluate the regres-
sion, they do not bring information about the event-by-event agreement. It is also difficult
to evaluate if the residual difference is physically relevant. In the following, we will look at
typical applications of the MEM in analysis, with the Information used as an input of the
MVA discriminant, or interpreted as a likelihood. This will allow also to better understand
the status of the invalid weights and the sensitivity to systematic uncertainties.

4.4.1 Discriminant

A very simple discriminant between two hypotheses α and β can be defined as

D(x) = P (x|α)
P (x|α) + P (x|β) = W (x|α)

W (x|α) + γW (x|β) where γ =
σvis
β

σvis
α

. (4.1)

The discriminant can be close to one or zero depending on which hypothesis α or β prevails
(respectively). For illustration, α and β can be taken to be respectively the tt̄ and Drell-
Yan processes. As an evaluation criterion for this discriminant we have used the Receiver
Operating Characteristic (ROC) curve. Although it does not impact the ROC curve, the
shape of the discriminant will be impacted by the factor γ in the denominator, we have
arbitrarily taken here γ = 1.

The ROC curves obtained with the weights coming from both the integration in the
MEM and from the DNN are shown in figure 7. The weights produced by the DNN actually
provide a slightly better discriminant than the ones from MoMEMta. The difference can
be traced to outliers present in the MoMEMta calculation, while the DNN behavior is
smoother by nature and has fewer of them.

The discriminant in equation (4.1) is limited to a classification between two hypotheses
which is a bit restrictive. In addition its simple definition might not make use of the
full information encapsulated in the MEM weights. A discriminant for higher dimension
parameter space could be generalized but is not guaranteed to be optimal. In this paper
we decided to follow a different path by using a classifier based on the MEM weights and
leave to it the determination of an optimal decision function. A natural choice here is the
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Figure 7. ROC curve of the discriminant. The x axis represents the probability for an event to be
classified in the correct process (tt̄ or Drell-Yan) while the y-axis represents the misidentification
probability. The AUC score is the area under curve.

use of a classifying DNN with three output nodes whose inputs are the weights for the
three processes under study. The DNN is trained to maximize the probability of correct
identification using a binary cross-entropy loss function. There are two ways one can define
the classifiers inputs based on the parametric definition of the H → ZA weights. A global
classifier is used to find an excess in the whole mass plane, regardless of its location. In the
spirit of the analysis in Reference [40] and anticipating the search for a specific resonance,
a parametric classifier is given the knowledge of the mass plane point of interest and can
therefore be used to find an excess at a given place. On the one hand the global classifier
is less sensitive because the excess needs to be large to be noticeable on the whole plane,
on the other hand there is no need to correct for the look-elsewhere effect which would be
the case for the parametric classifier that is evaluated at several locations.

The inputs of the global classifier are the Drell-Yan, tt̄ and the 23 H → ZA weights.
As we have no knowledge of the actual value ot the masses during the training on simu-
lated events we need a good enough coverage of the parameter space. At least one input
should provide sensitivity to a given hypothesis. The classification probabilities are given
in figure 8 and the corresponding ROC curves are compared in figure 10(a) using both the
weights from MoMEMta and the regressive DNNs.

The parametric classifier also takes as inputs the Drell-Yan and tt̄ weights but only
one H → ZA weight with the corresponding MA and MH parameters. For H → ZA

events, the actual parameter value is used, while for Drell-Yan and tt̄ events they can
either be attributed a random parameter point — in the same proportions as in H → ZA

events — or repeated for every parameter point found in the H → ZA events. The latter
was used to artificially increase the statistics. The associated ROC curves are shown in
figure 10(b), averaging over all the mass points. The dependence on the performance as
a function of these mass points is illustrated by the AUC score in figure 9. Naturally, the
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Figure 8. Distributions of the class probabilities with the global classifier applied on weights
coming from both MoMEMta and the DNN for the three samples: Drell-Yan (left), tt̄ (middle) and
H → ZA (right) events.

Figure 9. Distribution of the AUC score of the H → ZA classification for the weights coming
from MoMEMta (left) and the DNN (right).

best performance is achieved away from the regions heavily populated by other processes.
As a comparison, a simple classifier ROC curve with only the Drell-Yan and tt̄ weights

as inputs is shown in figure 10(c). Even though this simple classifier is suboptimal for H →
ZA, it reaches reasonable performance. Additionally the Drell-Yan and tt̄ classifications
improve when provided with the H → ZA weight information. The MEM weights can
provide discriminating power even for processes other that the one used in its computation.

All the classifiers are trained with weights from MoMEMta and the ROC curves shown
in figure 10 are evaluated with weights from both methods. The regression errors introduced
when using the regressive DNNs are propagated through the classifiers but the loss in
performance is negligible. Only in the global classifier can the MEM and DNN curves be
distinguished due to the residual differences already highlighted in figure 5 that add up for
all the H → ZA weights inputs.

4.4.2 Invalid weights

As discussed earlier, the MoMEMta integration may fail and result in “invalid weights”. It
is nevertheless trivial to evaluate the DNN for the corresponding events. The result can
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(a) (b) (c)

Figure 10. ROC curves of the Global (a), Parametric (b) and Simple (c) classifiers. The fraction
of events incorrectly classified as coming from a given process is represented as a function of the
probability to be correctly identified as such for each of the three processes. The ROC curves are
given for both the weights from MoMEMta (solid lines) and the ones coming from the DNN (dashed
line). The AUC score is the area under each curve.

Figure 11. Distributions of the event information I ′DY for events where the integration initially
failed either from MoMEMta (blue) or the DNN trained only on valid weights (red) for the three
samples: Drell-Yan (left), tt̄ (middle) and H → ZA (right) events.

be compared to the output of MoMEMta when the integration is made to converge by
increasing the number of sampling points, as done in figures 11 and 12, respectively for
Drell-Yan and tt̄ weights. For both cases it is obvious that the DNN does not agree with
MoMEMta for these events with invalid weights. In the case of Drell-Yan, the DNN seems
to deliver values similar to what is obtained for normal events, while MoMEMta returns
small probabilities even after allowing more iterations. The picture is quite different for the
tt̄ case, where the network returns consistently smaller weights (even though these events
were never seen during training). The question of what is happening with these events and
whether we can trust MoMEMta with these very small weights remains open at this stage.

Applying the discriminant from equation (4.1) to compare the invalid weights com-
puted with MoMEMta and the DNN, much better performance is obtained with the DNN
inputs than with the MoMEMta inputs (figure 13). This may suggest that the DNN pro-
vides a more reliable information than MoMEMta for these events, but more studies are
needed to get a conclusive answer.
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Figure 12. Distributions of the event information I ′
tt̄

for events where the integration initially
failed either from MoMEMta (blue) or the DNN trained only on valid weights (red) for the three
samples: Drell-Yan (left), tt̄ (middle) and H → ZA (right) events.

Figure 13. ROC curve of the discriminant for two cases: the invalid Drell-Yan weights (left) and
the invalid tt̄ weights (right). In each case two ROC curves are displayed, one for each discriminant
based on the methods with MoMEMta and the DNN.

4.4.3 Effect of the systematics

Already heavy in terms of computing in its simplest form, the MEM becomes even more de-
manding when the effect of systematic uncertainties has to be evaluated. Indeed, the effect
of uncertainties affecting the event kinematics cannot be propagated without recomputing
the matrix element integral, with relatively few opportunities to optimize this calculation.
While the DNN ansatz proposed here alleviates the impact of this additional integration,
it is important to verify that the regression performed during the training phase is robust
against these systematic effects too.

As an example, we will look at the jet energy scale (JES), which is potentially among
the most dangerous effects, due to the rather poor resolution of jets compared to leptons in
hadron collider experiments. We will not consider the impact of the jet energy resolution,
which is mostly covered by the transfer functions. To emulate a potential JES we have
applied an upward scaling of the jet energy by 10% — which is an extreme case — for each
of the bjets on a subset of the events and computed the corresponding new weights both
with MoMEMta and with the existing DNN parameterization (thus without retraining).
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(a) (b)

Figure 14. Comparison of the effect of the JES corrections on the background weights produced
by MoMEMta and the DNN. The left figure illustrates the change in event information when the
JES corrections are applied for both weights and both methods. The right figure is the ROC curve
of the discriminant based on these weights.

Regression bias Regression resolution
Nominal Drell-Yan −0.1243 0.1383

Shifted JES Drell-Yan 0.0049 0.1351
Nominal tt̄ −0.2758 0.4439

Shifted JES tt̄ −0.1659 0.4137

Table 3. Regression bias and resolution in the event information when replacing the integration
with MoMEMta by the DNN ansatz for the two SM weights with nominal and shifted JES events.

The comparison of the weights when the JES shift is applied or not is shown in fig-
ure 14(a). The regression error itself is not significantly impacted, as can be seen from the
DNN bias and resolution in table 3. This shows that the DNN is able to properly handle
these modified events.

In addition, the discriminant from section 4.4.1 has been evaluated using both Mo-
MEMta and DNN inputs for nominal and modified events. The associated ROC curves are
shown in figure 14(b). This specific discriminant appears to be robust against variations
of the jet energy scale, both in its traditional implementation and when using the DNN
ansatz as input.

4.4.4 Likelihood scan

A likelihood can be built from the MEM probabilities as

L(x|α) =
n∏
i=1

P (xi|α), (4.2)

where the product is over n measured events. This likelihood will peak around the param-
eter α which can be any measurable physics quantity such as a mass or a coupling and
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in the context of the H → ZA hypothesis will represent (MA,MH). It is expected that
events generated from this process will produce a likelihood peaked in the two dimensional
parameter space with a width roughly equal to the experimental resolution of the invariant
masses mjj and mlljj used as estimators of the parameters if n = 1 and will improve when
more events are taken into account.

The log-likelihood on simulated events defined as

− log(L(x|α)) = 1
n

n∑
i=1
− log(W (xi|α)) + log(σvis

α ), (4.3)

where the geometric mean of the likelihood is used to evaluate the resolution that would
be obtained for one measured H → ZA event with no background. In that expression,
− log(W (xi|α)) is the output of the DNN. Had it been computed with MoMEMta, each
event would have had to be integrated for several values of α = (MA,MH) with a granularity
fine enough to allow the fit of a potential peak. In this particular case the computation time
will grow exponentially with the parameter space dimentionality. In our two-dimensional
case it is already a major pitfall.

The DNN on the other hand can evaluate any event unseen during training on a grid
of parameter points with the same event inputs. The grid can be made arbitrarily fine
due to the non-linear interpolation property of the DNN for a very low cost in computa-
tion time. The number of evaluations still scales exponentially with the parameter space
dimensionality but evaluating the DNN on batches of event allows to take advantage of
parallelization to break the exponential dependence.

The second term of equation (4.3) is important and must be evaluated separately. In
our specific case the definition given at section 2 translates to

σvis
α = Acceptance×σ(H production)×BR(H → ZA)×BR(A→ bb)×BR(Z → ll). (4.4)

The acceptance is measured on simulation and the theoretical cross-section must be
multiplied by the branching ratios of the particular channel being looked at. The production
cross section and branching ratio A→ bb are very model dependent and are not taken into
account. The branching ratio of H → ZA is mostly kinematic dependent and was kept,
however a model dependent effect can be seen when MH = 2 ×MA, when the H → AA

process becomes relevant. The resulting likelihood is presented in figure 15.
The profile likelihoods in both MH and MA are shown in figure 16. For each profile,

several values of the other parameter are displayed to detect an eventual shift in the
expected peak. The central part of each curve is used to fit a second order polynom
to obtain the resolution of the likelihood peak and compare it to the mass resolution. This
likelihood has been built by averaging the contributions of the simulated H → ZA events,
emulating what would be observed on a single measured H → ZA event. The computed
resolutions are compatible with the experimental resolution of the invariant mass computed
from the reconstructed leptons and jets (mjj and mlljj). As opposed to these estimators
of MH and MA, the likelihood is unbiased and provides a more proper way of studying an
observed resonance.
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Figure 15. Log-likelihood scan from two different H → ZA samples.

Figure 16. Profile likelihoods averaged over the number of events (minimum scaled to zero for
easier interpretation) and produced with a mass configuration ofmH = 500 GeV andmA = 300 GeV.
Each profile has been computed for several values of the other parameter, the green curve is the
one obtained with the parameter used in the event production and the blue and red curves are for
smaller and larger (respectively) values. Each solid line is accompanied by a shorter dotted line
illustrating the polynomial fit applied on this portion of data which is used to compute the 1-sigma
resolution in the legend.

4.5 Direct application to a real-life analysis

As an example of a real-life study that tackles the llbb̄ final states, we will look closer to the
CMS H → ZA→ llbb̄ analysis [40]. The strategy of this study is to exploit the kinematics
of the process H → Z(→ l+l−)A(→ bb̄) (where l− = e− or µ−) to reconstruct the masses of
both H and A bosons using the two- and four-body invariant masses, mjj and mlljj and to
define a signal region using these quantities. These distributions are positively correlated
and an elliptic signal region has been chosen. The sizes and tilt angles depend on the
kinematics and the masses themselves. Hence the parameterization that this analysis used
is based on one-dimensional Gaussian fits of the mjj and mlljj distributions to obtain the
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Figure 17. Signal distribution in the (mjj ,mlljj) plane for several mass configurations (left)
and several elliptic fit sizes (parameterized by ρ) at a specific mass point of mH = 500 GeV and
mA = 300 GeV (right), to be compared with the 2D distribution in the plane. From [40].

reconstructed center and the diagonalization of the covariance matrix of both distributions
yields the axes and tilt angle (figure 17). The fraction of signal and background events in
different ellipses sizes is binned to be used in a maximum likelihood procedure. The use of
ellipses in this kind of searches makes it very well optimized and hard to improve without
loss of generality. The MEM is not expected to surpass the standard approach for such an
analysis, but should be able to approach the published performances.

Throughout our paper so far, only 23 points were used in the DNN training. As in
the CMS paper, our models will be applied on a larger (> 200) set of H → ZA samples
to cover finely the mass plane. Since no retraining takes place, we do not have to worry
about overfitting issues.

Every signal and background event has been processed through the regressive networks
of sections 4.1, 4.2 and 4.3 in order to produce the weights needed by the two classifiers
(global and parametric) that were then applied for each mass configuration. The ROC curve
has then been computed for each classifier either using all preselected events, or using only
events contained in the elliptic region defined in the mass plane for a given mass hypothesis
and a give size parameter ρ. To do so, the script provided by the collaboration [40] has been
used. Results are presented in figure 18 for two representative mass points, and compared
to the performance of the elliptic selection alone.

As expected, the global classifier brings no improvement to the ellipse method - es-
pecially at low masses. In some cases the combined ROC curve shows a potential gain
by taking a larger ellipse combined with the classifier, as can be seen on the right plot.
However this improvement is mostly located in the high purity region which is not the one
aimed for in the CMS analysis. The ellipse method is very well optimized in the search for
a resonance while the global classifier searches for an excess in the whole mass plane. As
already mentioned, the latter will require a larger excess to detect something but will not
be as heavily affected by the look-elsewhere effect.
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Figure 18. Comparison between the ROC curves of the ellipse method for two mass points with
different sizes parameterized by the scale factor ρ (in dotted line), both the global (solid line)
and parameterized (dashed line) classifiers, and the combination of these methods. Each ellipse is
denoted by a marker and the events that pass its selection are then used to compute the ROC curve
with both classifiers.

Drell-Yan events tt̄ events H → ZA events
Drell-Yan weights 3.6 s / event 3.8 s / event 4 s / event

tt̄ weights 12 s / event 10 s/ event 20 s / event
H → ZA weights ∼ 600 s / event ∼ 600 s / event ∼ 600 s / event

Sample size 279203 events 461244 events 2570596 events

Table 4. Average computation time in MoMEMta for each type of weights and events. For
Drell-Yan and tt̄ weights the time distribution is peaked around the values given below, while for
the H → ZA weights it is much wider - it is very common to find a computation time twice of
three times the value given here. The sizes of the samples involved in this section are given as an
indication of the overall computation time, the H → ZA one includes all 207 masses.

While better, the parametric network alone will only outperform the standard approach
at very high masses when the ellipses are ill-defined. However, the combination of both
becomes interesting for lower masses. In some cases the background contamination can be
reduced by almost one order of magnitude with very small loss in signal efficiency. This
effect is visible for MH as low as 200 GeV and increases towards the boosted and high
mass regions.

While the simple approach followed in this work only has the potential to marginally
improve the CMSH → ZA analysis, the DNN ansatz still opens a wide range of possibilities
previously out-of-reach of the MEM. Apart from their training time, which have lasted from
a few hours to a single day on CPU, evaluating a weight or a probability is a very fast
process: about 150µs with large enough batches, with small variations depending on the
depth of the network. This must be compared to the computation time of MoMEMta
(table 4) and the number of times it would have been called to produce figure 18 (table 5).
The weight computations for the global (parametric) classifier would have taken about
1450 (3050) CPU years, which is more than prohibitive even with a large farm of CPU.
Using the DNN to produce the weights requires in total less than 10 hours, where must be
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Process Drell-Yan events tt̄ events H → ZA events

Global classifier Calls (x1) Time [days] Calls (x1) Time [days] Calls (x1) Time [days]
Drell-Yan weights (x1) 279 203 11.6 461 244 20.3 2 570 596 119.0

tt̄ weights (x1) 279 203 32.3 461 244 85.4 2 570 596 595.0
H → ZA weights (x23) 6 421 669 44 594.9 10 608 612 73670.9 59 123 087 410 581.3

Total time [years] 122.3 202.1 1126.8

Parametric classifier Calls (x207) Time [days] Calls (x207) Time [days] Calls (x1) Time [days]
Drell-Yan weights (x1) 57 795 021 2408.1 95 477 508 4199.2 2 570 596 119.0

tt̄ weights (x1) 57 795 021 8027,1 95 477 508 17681.0 2 570 596 595.0
H → ZA weights (x1) 57 795 021 401 354.3 95 477 508 663 038.2 2 570 596 17 851.4
Total time [years] 1128.2 1876.5 50.9

Table 5. Total hypothetical computation time if all the weights had to be computed with Mo-
MEMta and not the DNN in order to be used by the classifiers. For each sample and each weight
the number of times MoMEMta would have been called is given as well as the computation time
it would have required. The number of calls depends on the type of classifier. The global classifier
requires only one weight per SM process but 23 different H → ZA weights, while the SM weights
need to be evaluated 207 times for the parametric classifier — because they are repeated at every
mass point — but only once for the H → ZA weight. The total time per classifier and process is
also given in years.

added the time of I/O data streams, RAM allocation, data repetition and processing — all
of which even tend to become dominant compared to the pure weight production. These
weights must be fed to the classifiers, looped through for each ellipse and the ROC curves
must be computed. In the end, with the DNN, the production of figure 18 on a cluster of
CPUs with a few hundred nodes took less than a day. The pure weight computation has
been reduced by six orders of magnitude.

5 Conclusion

In this paper we presented a method where the integral of the Matrix Element Method is
regressed by a Deep Neural Network in order to speed up the computations involved in
the MEM. From the few representative processes studied in this paper, we conclude that a
DNN can be trained that closely reproduces the results of the direct numerical integration
of the matrix element using dedicated tools like MoMEMta. This regression with the DNN
introduces inevitable inaccuracies in the weights that nonetheless do not have a significantly
impact on the performance in the studied applications. Faster weight calculations open a
wide range of possibilities: study of systematics, likelihood scans, parameters scans and in
general enables the use of the MEM for a new wider class of physics analyses, including
the search for new physics.
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