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Abstract The action of scalar–tensor (ST) gravity the-
ory can be written in both of the Jordan and Einstein
frames, which are related via conformal transformations.
Here, by introducing a suitable conformal transformation
(CT), the action of three-dimensional Einstein-dilaton-Born–
Infeld (EdBI) gravity has been obtained from that of scalar–
tensor-Born–Infeld (STBI) theory. Despite the field equa-
tions of ST gravity, the exact solutions of Einstein-dilaton
(Ed) theory can be obtained, easily. The exact solutions of
STBI theory have been obtained from those of EdBI gravity
by applying the inverse CTs. As the result, two novel classes
of ST black hole (BH) solutions have been introduced in
the presence of Born–Infeld (BI) nonlinear electrodynam-
ics. The BHs’ conserved and thermodynamic quantities have
been calculated under the influence of nonlinear electrody-
namics. Then, through a Smarr-type mass formula, it has
been shown that these quantities satisfy the standard form
of the thermodynamical first law, in both of the Jordan and
Einstein frames. Thermal stability or phase transition of the
BHs have been investigate by use of the canonical ensemble
method and regarding the signature of specific heat (SH).
The points of first- and second-order phase transitions, and
the size of those BHs which remain locally stable have been
determined.

1 Introduction

Although general relativity is an important theory that is in
agreement with a variety of observational tests [1,2], how-
ever this theory has some important challenges [3–6]. Study
of the viable alternative gravity theories, known as modified
theories of gravity, is one of the best candidates for the possi-
ble explanation of its problems. Among the various modified
theories of gravity, the ST theories pioneered by Brans and
Dicke [7,8], have provided fascinating results [9–11]. In the
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low energy limit of string theory, the Einstein–Hilbert action
is recovered which is coupled with a scalar field called the
dilaton [12]. Existence of the BHs, as the fascinating predic-
tion of general relativity, is an interesting area of research
in both of the ST and Ed theories. Recently, charged dila-
tonic BHs coupled to nonlinear electrodynamics in lower and
higher dimensions have received more attention. Charged Ed
BH solutions in the presence of one or two Liouville-type
potential have also been constructed with linear and nonlin-
ear electrodynamics [13–18]. In addition, study of charged
ST BHs with linear and nonlinear theories of electrodynam-
ics has provided many interesting results [19–22]. It is well-
known that the of ST theory which is written in the Jordan
frame (JF) is strongly coupled to an scalar field. Thus the
related field equations cannot be solved easily. The JF action
can be translated to the EF by use of a CT. In the EF, where
the scalar and gravitational fields are decoupled, solving the
equations of motion is not very difficult. Then by use of the
inverse CTs one can find the solution of JF equations from
their EF counterparts [23,24].

One of the main failures of the standard linear Maxwell
theory is that, for a point charge, it leads to infinite self-energy
at the charge position. Born and Infeld introduced a model
of nonlinear electrodynamics to overcome this problem by
imposing a maximum strength of the electromagnetic field
[25–28]. The BI-like models of nonlinear electrodynamics,
known as the logarithmic and exponential electromagnetic
theories, have the same consequences as BI electrodynam-
ics [29–31]. Moreover, Maxwell’s electromagnetic theory,
which predicts existence of the massless photons as the medi-
ator of electromagnetic interactions, violates conformal sym-
metry in the spacetimes with dimension non-equal to four.
Power-Maxwell nonlinear electrodynamics is an interesting
theory which preserves conformal symmetry in the spcetimes
with arbitrary dimensions [32–35]. Stability of the charged
BH solutions in the presence of the linear and nonlinear elec-
trodynamics have been studied extensively [36–40]. Many
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studies have been published on the charged BH and black
brane solutions with nonlinear electrodynamics coupled to
general relativity [41–46]. In addition, cosmological models,
including nonlinear electromagnetic fields, have been stud-
ied by many authors [47–53]. In the resent papers [54,55],
we have studied three-dimensional ST BHs in the presence
of Maxwell and power-Maxwell theories of electrodynam-
ics, respectively. Also, thermodynamics and especially ther-
mal stability and phase transition properties of the Ed and
ST BHs have been investigated. The aim of this work is to
extend these studies to the case of nonlinearly charged ST
BHs by considering BI electrodynamics.

Throughout this article, the metric signature is considered
as (−, +, +). Also, in terms of the connection coefficints,
the Riemann tensor is defined as follows

Rκ
λμν = ∂μ�κ

λν + �κ
μα�α

λν − ∂ν�
κ
λμ − �κ

να�α
λμ, (1.1)

and the Ricci tensor and Ricci scalar are obtained as Rμν =
Rα

μαν and R = gμνRμν , respectively [56].
The structure of this paper is as follows: in Sect. 2, The

action of three-dimensional Ed theory is obtained from that
of ST, by applying CTs, and the new scalar-coupled BI is
introduced. The Ed field equations are solved in Sect. 3, by
use of a circularly symmetric geometry. As the result, two
novel classes of EdBI BHs are obtained. All the solutions
recover the corresponding values when the BI parameter is
chosen very large. In Sect. 4, thermodynamic quantities of
EdBI BHs are calculated and it is shown that they satisfy the
standard form of the first law. In Sect. 5 Thermal stability or
phase transition of Ed BHs are studied by use of the BHs’ spe-
cific heat (SH). In Sect. 6, the JF exact solutions are obtained
by applying the inverse CT on the EF solutions. As the result,
two classes of ST BH solutions are obtained which, by fix-
ing the parameters, can produce one-horizon, two-horizon
and naked singularity STBI BHs. It is shown that thermo-
dynamic quantities are identical in the Jordan and Einstein
frames. Also, STBI BHs have the same thermal stability and
phase transition properties as EdBI BHs. We summarize and
discuss the results in Sec. 7.

2 The fundamental equations

We prefer to introduce the ST modified gravity theory with
the following action, which is written in the JF [22,54,55],
thus we have

I (ST ) = − 1

16π

∫ √−ḡ
[
A1(φ̄)R̄ + A2(φ̄)ḡμν∇̄μφ̄∇̄νφ̄

−2A3(φ̄) + L(F̄)
]
d3x . (2.1)

As it is customary, we have used a bar sign over for introduc-
ing the quantities in the JF. Therefore, R̄ denotes the Ricci
scalar of the spacetime with the metric tensor ḡμν , which has

been multiplied by the arbitrary function A1(φ̄) in which φ̄ is
a scalar field. The functions A2(φ̄) and A3(φ̄) are also other
ones to be determined. Evidently, the covariant derivative is
taken with respect to the JF metric ḡμν . Here, F̄ = F̄αβ F̄αβ

denotes the JF Maxwell invariant and L(F̄) is the electro-
magnetic Lagrangian in this frame. In the present work, we
are interested in the BI electromagnetic theory which is intro-
duced as [27,57,58]

L(F̄) = 4a2

⎛
⎝1 −

√
1 + F̄

2a2

⎞
⎠ . (2.2)

It is a model of nonlinear electrodynamics, and a is the BI/ or
nonlinearity parameter. The function L(F̄) can be expanded
in powers of F̄ , as follows

L(F̄) = −F̄ + F̄2

8a2 − F̄3

32a4 + · · · (2.3)

from which, one can conclude that the BI electromagnetic
theory reduces to that of Maxwell if a is chosen very large
or the electromagnetic fields are very weak.

The JF field equations can be obtained from Eq. (2.1) by
applying the variational principle. Since the gravitational and
scalar fields are strongly coupled to each other, they cannot
be solved simply. To overcome this problem, making use
of a CT, one can obtain the corresponding quantity in the
Einstein frame (EF) known as the Ed action [54,55]. To do
so, we consider the following CT [20–22]

ḡμν → ḡμν = (�(φ̄))2gμν, (2.4)

by which the components of JF metric are related to those of
EF denoted by gμν . It must be noted that the transformation
identified by Eq. (2.4), with �(φ̄) as a well-behavior func-
tion, is not a coordinate transformation such as xμ → x ′μ,
it transforms the metric structure and may shrink or stretch
the manifold. From such a transformation the Ricci scalar
transforms according to the following relation [59]

R̄ → R̄ = (�(φ̄))−2R − 4(�(φ̄))−3∂μ∂μ�(φ̄)

+2(�(φ̄))−4��(φ̄). (2.5)

The electromagnetic field transforms as F̄μν → Fμν and
F̄ρλ → F̄ρλ = ḡρμḡλν F̄μν = (�(φ̄))−4Fρλ. Thus the
Maxwell invariant transforms as

F̄ → F̄ = (�(φ̄))−4F , (2.6)

where,F = FμνFμν is the EF Maxwell invariant with Fμν =
∂μAν − ∂ν Aμ and Aμ is the electromagnetic potential.

We need to have another scalar field, which we label by φ

in the EF, which will be correspond to the JF scalar field φ̄.
Also, we assume that they are related to each other through
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the relation [19]

(
d ln �(φ̄)

dφ̄

)2

+ A2(φ̄)

2�(φ̄)
=

(
dφ

dφ̄

)2

. (2.7)

The function �(φ̄) must to be considered positive valued.
This fact guaranties the positivity of energy carried by the
scalar field, and noting Eq. (2.7), one obtained [19]

2

(
d�(φ̄)

dφ̄

)2

+ �(φ̄)A2(φ̄) ≥ 0. (2.8)

By substituting Eqs. (2.4), (2.5) and (2.6) into Eq. (2.1), and
making use of the following definitions

�(φ̄) = A−1
1 (φ̄), and A2(φ̄) = −2A1(φ̄),

and V (φ) = 2A3(φ̄)A−3
1 (φ̄), (2.9)

and for the electromagnetic Lagrangian, we have

L(F̄) → L(F , φ) = �3(φ̄)L
(
�−4(φ̄)F

)
,

with φ̄ = φ̄(φ), (2.10)

we can transform the JF action (II.1) to its correspond-
ing value in the EF. Thus, for the Ed gravity in a three-
dimensional spacetime, we have

I (Ed) = − 1

16π

∫ √−g
[R − 2gμν∇μφ∇νφ

−V (φ) + L(F , φ)] d3x . (2.11)

Note that, R = gμνRμν , and the EF covariant derivative
∇ is defined with respect to gμν . The function V (φ) is the
scalar potential, and L(F , φ) is the scalar-coupled BI elec-
trodynamics. Its explicit form is

L(F , φ) = 4a2e6αφ
(

1 − √
1 + X

)
, X = F

2a2 e
−8αφ,

(2.12)

and the parameter α, is named as the scalar-electromagnetic
coupling constant. Note that the function �(φ̄(φ)) has been
chosen as �(φ) = e2αφ . By expanding the Lagrangian
(II.12) we have

L(F , φ) = −Fe−2αφ + F2e−10αφ

8a2 − F3e−18αφ

32a4 + · · ·
(2.13)

When the limit a → ∞ (or F → 0) is taken, it reduces as
L(F , φ) = −Fe−2αφ , which is nothing but the Lagrangian
of Maxwell’s electrodynamics in the Ed gravity theory [54].

Now, the EF exact solutions can be obtained easily. This
will be done in the next section by use of the action (2.11).

3 Exact solutions in the EF

By applying variational principal to the action (2.11), the EF
field equations can be obtained. The vector electromagnetic
field satisfies the equation

∇μ

[
∂F L(F , φ)Fμν

] = 0, (3.1)

the tensorial gravitational field equation is

Rμν = V (φ)gμν + 2∂μφ∂νφ − gμνL(F , φ)

+2∂F L(F , φ)
(Fgμν − Fμσ F

σ
ν

)
, (3.2)

and the scalar field φ = φ(r) and scalar potential V (φ)

satisfy the following differential equation

4gμν∇μ∇νφ = dV (φ)

dφ
− ∂φL(F , φ). (3.3)

We are interested in obtaining the solution of above field
equations in a circularly symmetric geometry with the fol-
lowing line element

ds2 = gμνdx
μdxν = −W (r)dt2

+ 1

W (r)
dr2 + r2R2(r)dθ2. (3.4)

Here, W (r) and R(r) are two unknown functions of r which
must be calculated. W (r) is known as metric function and
R(r) is a dimensionless quantity indicating the effect of dila-
ton field on the spacetime geometry. It must reduce to unity
as the dilaton field disappears.

Making use of Eqs. (3.1) and (3.4), and noting the fact
thatF = −2F2

tr , the only nonzero component of the Faraday
tensor can be determined. That is

Ftr = qe2αφ

r R(r)
√

1 + ξ
, with ξ = q2e−4αφ

a2r2R2(r)
. (3.5)

Various components of gravitational field equations (III.2),
with the help of (III.4), take the following explicit forms

Ctt ≡ W ′′(r) +
[

1

r
+ R′(r)

R(r)

]
W ′(r) + 2V (φ)

−4a2e6αφ

(
2 − 2 + ξ√

1 + ξ

)
= 0, (3.6)

Crr ≡ Ctt + 2

[
R′′(r)
R(r)

+ 2R′(r)
r R(r)

+ 2φ′2(r)
]
W (r) = 0, (3.7)

Cθθ ≡
[

1

r
+ R′(r)

R(r)

]
W ′(r) +

[
R′′(r)
R(r)

+2R′(r)
r R(r)

]
W (r) + V (φ) − 4a2e6αφ

(
1 − √

1 + ξ
)

= 0.

(3.8)

They are the t t , rr and θθ components of the gravitational
field equations. Now, by use of Eqs. (3.3), (3.5), (3.6), (3.7)
and (3.8), after some calculations, one can show that
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[
1

r
+ R′(r)

R(r)

]
(Ctt − 2Cθθ ) = dCθθ

dr
. (3.9)

This mean that Eqs. (3.6) and (3.8) are not independent. Thus
the number of independent equations is one less than those of
unknown quantities, and they are not sufficient for obtaining
the full solutions. This problem can be solve by introducing
an ansatz. As it was done by Chan and Mann [60,61], we
consider a power-law function for R(r). In terms of a constant
of dimensionality r0, one can write

R(r) =
(
r

r0

)ν

. (3.10)

Note that similar solution has been used previously for find-
ing exact BH solutions in various spacetime dimensions. See
for example [55,60,61].

The scalar fieldφ(r) can be determined by use of Eqs. (3.7)
and (3.10). After solving the related differential equation, we
have

φ(r) = γ ln

(
b

r

)
, with γ = √−ν(ν + 1)/2, (3.11)

which is acceptable if b is positive and ν is restricted to the
range −1 < ν ≤ 0.

Note that Eq. (3.5), in the limiting case a → ∞, reduces
to

Ftr = qe2αφ

r R(r)
, (3.12)

which, by redefinition of the integration constant q as
qrν

0 b
2αγ → q, recovers the corresponding quantity in the

Einstein–Maxwell-dilaton (EMd) gravity theory [54]. Now,
the zeroth component of Aμ can be obtained as (Appendix-
A)

At (r) = q

2αγ + ν

(
b

r

)2αγ (r0

r

)ν

2F1

[
1

2
,

2αγ + ν

4γ λ
, 1 + 2αγ + ν

4γ λ
,−ξ

]
. (3.13)

Here, we have used the definition λ = −α + 1
2β

, with β =
γ

ν+1 . By expanding the Hypergeometric function 2F1, we
have

At (r) = q

2αγ + ν

(
b

r

)2αγ (r0

r

)ν + O
(

1

a2

)
, (3.14)

which is compatible withe result of [54] when a is chosen
very large.

By use of these quantities in Eqs. (3.3) and (3.8), after
some manipulations, one can show that the remaining
unknown functions W (r) and V (φ) satisfy the following dif-
ferential equations

W ′(r) + ν

r
W (r) − r

ν + 1

[
4a2

(
1 − √

1 + ξ
)
e6αφ − V (φ)

]
= 0, (3.15)

dV (φ)

dφ
− 4βV (φ) + 8a2

[
(2β − 3α)

(
1 − 1√

1 + ξ

)
− 2ξ(β − α)√

1 + ξ

]
e6αφ = 0. (3.16)

By solving the differential equation (III.16), and fixing the
integration constant, we obtain

V (�) = 2�e4β� + 4a2
[

1 − √
1 + ξ +

√
1 + ξ − H

4β(α − β) + 1

]
e6α�,

(3.17)

where, H is a hypergeometric function with the following
explicit form

H = 2F1

[
1

2
,

3α − 2β

2λ
, 1 + 3α − 2β

2λ
, −ξ

]
. (3.18)

By expanding the last terms of Eq. (3.17) in powers of ξ and
taking the limit a → ∞, and redefining the constant q, one
can show that

V (φ) = 2�e2βφ + 2q2β(2β − α)

b2(αβ − 2β2 + 1)

(r0

b

)2ν

e2(3α+2λ)φ,

(3.19)

which is just the same as that obtained in Ref. [54]. After
returning (III.17) into (III.15), we obtain the solution as met-
ric function W (r). That is

W (r) =
⎧⎨
⎩

−mr−ν − 2�r2

(1+ν)(2+3ν)

( b
r

)4βγ + 4a2r2η(r)
1+3ν+4αγ

( b
r

)6αγ
, ν 
= − 2

3 ,

−mr
2
3 − 6�b2 ln

( r
�

) + 18a2r2ζ(r)
(4α−3)2

( b
r

)2α
, ν = − 2

3 .
(3.20)
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Here, m is an integration constant, and

η(r) =
√

1 + ξ

4αγ − 1
+ 2γ λH1

(6αγ − 2 − ν)(4αγ − 1)
+ 3α − 2β

2λ(2 + 3ν)

(
�

[
3α − 2β

2λ

]
H2 − �

[
6αγ − ν + 2

4γ λ

]
H3

)
, (3.21)

ζ(r) = 2
√

1 + ξ0 − 1 − 2α

2 − 3α
H4 + 3 − 4α

1 − 2α
�

[
2 − 3α

2α − 1

]
× �

[
1 − α

2α − 1

]
H5, (3.22)

H1 = 2F1

[
1

2
,

6αγ − ν − 2

4γ λ
, 1 + 6αγ − ν − 2

4γ λ
, −ξ

]
, (3.23)

H2 = 2 F̃1

[
1

2
,

3α − 2β

2λ
, 1 + 3α − 2β

2λ
, −ξ

]
, (3.24)

H3 = 2 F̃1

[
1

2
,

6αγ − ν − 2

4γ λ
, 1 + 6αγ − ν − 2

4γ λ
, −ξ

]
, (3.25)

H4 = 2F1

[
1

2
,

2 − 3α

2α − 1
, 1 + 2 − 3α

2α − 1
, −ξ0

]
, (3.26)

H5 = 3 F̃2

[
1

2
,

2 − 3α

2α − 1
,

2 − 3α

2α − 1
,

1 − α

2α − 1
,

1 − α

2α − 1
, −ξ0

]
, (3.27)

with

ξ0 = q2

a2b2

(
b

r0

) 4
3
(
b

r

) 2
3 (1−2α)

,

ξ = q2

a2b2

(r0

b

)2ν
(
b

r

)2γ
(

1
β
−2α

)
. (3.28)

Note that the Mathematica-7 software has been used for solv-
ing the differential equations, and we have used the notations

2 F̃1[a, b, c, z] and 3 F̃2[a, b, c, d, e, z] for repre-
senting the HypergeometricPFQRegularized functions. They
take the following general form

p F̃q [a1, a2, ..., ap, b1, b2, ..., bq , z]
≡ HypergeometricPFQRegulari zed

[a1, a2, ..., ap, b1, b2, ..., bq , z], (3.29)

which is related to the Hypergeometric function pFq [a1, a2,

..., ap, b1, b2, ...bq , z] via

p F̃q [a1, a2, ..., ap, b1, b2, ..., bq , z]
= pFq [a1 , a2 , ..., ap , b1 , b2 , ..., bq , z]

�(b1)�(b2)...�(bq)
. (3.30)

By expanding the terms in powers of ξ (or ξ0), we obtain

W (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− m
rν − 2�r2

(ν+1)(2+3ν)

( b
r

)2βγ + 2q2r2

δb2δ(2αγ+ν)

( b
r

)2δ

+O
(

1
a2

)
, δ = 2αγ + ν + 1, ν 
= − 2

3 ,

−m r
2
3 − 6�b2

( r
b

) 2
3 + 9q2r2

b2(α−1)2

(
b
r0

) 4
3 ( b

r

) 2
3 (α+1)

+O
(

1
a2

)
, ν = − 2

3 ,

(3.31)

which are just the same as obtained in [54] when the limit
a → ∞ is taken.

Now, we explore existence of the horizon radii, if any.
They are the real roots of W (r = r+) = 0, and cannot be
determined analytically. Therefore, we use the plots of W (r)
versus r as shown in Figs. 1 and 2. The figures show that, for
the properly fixed parameters, two-horizon, one-horizon and
naked singularity BHs can occur.

It is well-known that one can interpret the solutions given
in Eq. (3.20) as BHs, if two following conditions are fulfilled
together. (i) The solutions are required to have at least one
horizon radius, which has been confirmed regarding the plots
of Figs. 1 and 2. (ii) The curvature scalars are needed to have
at least one essential singularity. This requirement can be
explored by analyzing the Ricci and Kretschmann scalars. As
it can be seen by calculations, these scalars take the following
forms

R = −W ′′ − 2(ν + 1)

r
W ′ − 2ν(ν + 1)

r2 W, (3.32)

RαβρλRαβρλ = (
W ′′)2 + 2 (ν + 1)2

(
W ′

r

)2

+ 4ν (ν + 1)2 WW ′

r3 + 4ν2 (ν + 1)2
(
W

r2

)2

. (3.33)
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Fig. 1 W (r) versus r for b = 1, α = 2.2, r0 = 1, m = 10, � = −1, q = 1. Left:ν = −0.37 and a = 1.26(black), 1.346(blue), 1.44(red).
Right: a = 1.44 and ν = −0.362(black), −0.376(blue), −0.385(red)

Fig. 2 W (r) versus r for ν = − 2
3 , b = 1, � = 1, r0 = 1, m = 8, � = −1, q = 1. Left:α = 2 and a = 1.06(black), 1.13(blue), 1.25(red).

Right: a = 1.4 and α = 1.98(black), 2.023(blue), 2.08(red)

By substituting Eq. (3.20) and it’s first and second derivatives
into Eqs. (3.32) and (3.33), after analyzing the final relations,
we found that these curvature scalars diverge as the limit r →
0+ is taken. It means that the spacetimes identified by the
metric functions (3.20) include an essential singularity at the
point r = 0. Therefore, noting existence of both, the horizon
for the metric functions and the essential singularity for the
spacetime, our solutions are really BHs. Thermodynamics of
the new Ed BHs are studied in the next section.

4 Thermodynamics of EdBI BHs

In this section, at first we calculate the thermodynamic quan-
tities then, making use of them we explore validity of the
first law of BH thermodynamics for both of new Ed BHs.
The Hawking temperature on the BH horizon, which is
defined in terms of the surface gravity κ as T = κ

2π
with

κ =
√

− 1
2 (∇μχν )(∇μχν) and χμ = (−1, 0, 0), is

obtained as [62,63]

T = 1

4π

(
dW (r)

dr

)
r=r+

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− r+
2π(ν+1)

[
�

(
b
r+

)4βγ + 2a2(
√

1+ξ+−H+)
4αβ−4β2+1

(
b
r+

)6αγ
]

, ν 
= − 2
3

− 3
2π

[
�b

(
b
r+

) 1
3 + 2a2r

4α−3

(
b
r+

)2α (√
1 + ξ0+ − H0+

)]
, ν = − 2

3 .

(4.1)
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we have used the following notations

H+ = 2F1

[
1

2
,

3α − 2β

2λ
, 1 + 3α − 2β

2λ
, −ξ+

]

with ξ+ = q2

a2b2

(r0

b

)2ν
(

b

r+

)2γ
(

1
β
−2α

)
. (4.2)

H0 = 2F1

[
1

2
,

3α − 2

1 − 2α
, 1 + 3α − 2

1 − 2α
, −ξ0+

]
,

with ξ0+ = q2

a2b2

(
b

r0

) 4
3
(

b

r+

) 2
3 (1−2α)

. (4.3)

The mass parameter m is absent in Eq. (4.1). This is due
to the fact that it has been eliminated by use of the condition
W (r+) = 0. A notable point is that the extreme BHs (i.e. the
BHs with zero temperature) can exist provided that the BHs
charge (i.e. q = qext ) and horizon radius (i.e. r+ = rext ) are
chosen such that the equation T (rext , qext ) = 0 is satisfied.
To find the vanishing point of the BH temperature labeled
by r+ = rext , we use the plots. The plots of T versus r+
are shown in Figs. 3 and 4 (blue curves). The left panel of
Fig. 3 show that, for the BHs with ν = − 2

3 , temperature
may be positive every where. There is no vanishing point for
temperature and extreme BHs does not exist. Noting right
panel of Fig. 3, one can conclude that the BH temperature
vanishes at r+ = rext , the BHs with horizon radius equal
to rext are known as extreme BHs. The physically reason-
able BHs, with positive temperature, occur for r+ > rext ,
and those with horizon radii smaller than rext have negative
temperature. The BHs with negative temperature cannot be
physically reasonable. We call them as the unphysical BHs.
Also, the plots of T versus r+, for BHs with ν 
= − 2

3 , have
been shown in Fig. 4. The plots show that extreme BHs can
exist with horizon radius equal to rext . The physical BHs
occur with horizon radii greater than rext , and unphysical
BHs exist with horizon radii smaller than rext .

The BH entropy is proportional to the BH surface area.
Thus, as a pure geometrical quantity, it can be calculated as

S = 2πr+R(r+)

4
= πrν+1+

2rν
0

. (4.4)

Where, r+ is the BH horizon radius, and is the real root of
W (r+) = 0. Also, in the absence of dilaton field (i.e. ν = 0)
Eq. (4.4) reduces to its corresponding value in the Einstein
gravity theory [33].

The electric potential on the horizon of the charged BHs,
as a thermodynamic quantity, can be calculated by use of the
following relation [64,65]

U (r+) = Aμχμ|reference − Aμχμ|r=r+ , (4.5)

which gives the electric potential relative to a reference point.
Noting Eq. (3.13) the electric potential can be written as
[32,66]

U (r+) = cq

2αγ + ν

(
b

r+

)2αγ (
r0

r+

)ν

2F1

[
1

2
,

2αγ + ν

4γ λ
, 1

+2αγ + ν

4γ λ
, −ξ+

]
. (4.6)

that we have assumed that the electric potential vanishes at
the reference point located at infinity. This is possible for
all values of ν in its allowed range, provided that the other
constants are chosen properly. Also, c is a constant coefficient
which will be fixed later.

Regarding the Gauss’s electric law, total charge Q of the
BHs can be calculated as a conserved quantity. That is [67,68]

Q = 1

4π

∫ √−gLF (F , φ)Ftrd�. (4.7)

Now, by use of Eqs. (2.12), (III.5) and (IV.7) one can show
that

Q = q

2
, (4.8)

which is just the electric charge of BTZ BHs.
Now, we proceed to calculate the BH mass by use of the

Brown-York mass proposal. Thus, we need the line element
to be rewritten in the following form [60,61,69,70]

ds2 = −F2(ρ)dt2 + dρ2

G2(ρ)
+ ρ2dθ2. (4.9)

Since the matter field does not contain derivatives of met-
ric, the quasilocal mass M must be calculated based on the
following relation

M = 2F(ρ)[G0(ρ) − G(ρ)]. (4.10)

The G0(ρ) is determined by imposing the zero mass condi-
tion on theG(ρ). By introducing the new variableρ = r R(r),
we have

dr2 = dρ2

(1 + ν)2R2 , (4.11)

and comparing with the line element (3.4), in terms of the
metric function W (r), we have

F2(ρ) = W (r(ρ)) , (4.12)

and

G2(ρ) = (1 + ν)2 (R(ρ))2 W (r(ρ)) . (4.13)

By substituting F(ρ) and G(ρ) into Eq. (4.10), after taking
the limit ρ → ∞ the BH mass M can be calculated. That is

M = ν + 1

8rν
0

m, (4.14)

which is the same as that obtained in [54], and reduces to that
of the BTZ BHs if we set ν = 0.
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Now, by use of the condition W (r+) = 0 one can obtain
the mass parameterm, and after substituting it into Eq. (4.14)
we obtain

M(r+, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1
2

(
r+
r0

)ν+1
[

�r2
0

2(2+3ν)

(
b
r+

)4βγ − a2r2
0 (ν+1)η(r+)

1+3ν+4αγ

(
b
r+

)6αγ
]

, ν 
= − 2
3 ,

−�b2

4

( r0
b

) 2
3 ln

( r+
�

) + 3a2r2+ζ(r+)

4(4α−3)2

(
r0
r+

) 2
3
(

b
r+

)2α

, ν = − 2
3 ,

(4.15)

which can be regarded as a Smarr-type mass formula, and
regarding Eqs. (4.4) and (4.8) it can be considered as a func-
tion of S and Q. Making use of Eq. (4.15) and noting Eq.
(4.1) one can show that(

∂M

∂S

)
Q

= T, for ν = −2

3
and ν 
= −2

3
. (4.16)

Also, by fixing the constant c introduced in Eq. (4.6) to c =
(4αβ − 4β2 + 1)−1 [32,71], we have(

∂M

∂Q

)
S

= U, for ν = −2

3
and ν 
= −2

3
. (4.17)

Thus, by considering T and U as intensive quantities conju-
gate to extensive parameters S and Q, one can conclude that
the first law of BH thermodynamics in the form of

dM(S, Q) = TdS +UdQ, (4.18)

is valid for both of our novel EdBI BHs.

5 SH and BH stability

Thermal stability of a BH can be analyzed by use of the
canonical ensemble method and noting the signature of SH.
In this method, a BH with positive SH is locally stable. The
unstable BHs, those with negative SH, experience phase tran-
sition to be stable. The points at which SH vanishes are known
as the first-order phase transition points. The divergent points
of SH are the positions of second-order phase transition [72–
74]. Therefore, we must to calculate SH of our new dilatonic
BHs. The SH of a BH, as a thermodynamic system, can is
defined through the following relation

HQ = T

(
∂S

∂T

)
Q

. (5.1)

By combining Eqs. (4.16) and (5.1), we can write

HQ = T

MSS
, and MSS =

(
∂T

∂S

)
Q

. (5.2)

Note that the subscript Q emphasizes that in working deriva-
tive with respect to S, Q must be considered as a constant.
In the following subsections, after calculating the SH, with
constant BH charge, we will analyze thermal stability of BHs
separately.

5.1 The case of ν = − 2
3

As it is shown in Eq. (5.2), the numerator of SH is just the
BH temperature which has been presented in Eq. (4.1). The
denominator can be find by use of Eqs. (4.1) and (4.4). That
is

MSS = 3

π2

(
r+
r0

) 2
3
{

�

(
b

r+

) 4
3 − 2a2(1 − 2α)

4α − 3

(
b

r+

)2α

×
[

3
(√

1 + ξ0+ − H0+
)

−
(

ξ0+√
1 + ξ0+

+ 2ξ0H
′
0+

)] }
, (5.3)

where

H ′
0+ = −∂H0+

∂ξ0+
= 3α − 2

2(α − 1)

×2F1

[
3

2
,

α − 1

1 − 2α
,

−α

1 − 2α
, −ξ0+

]
. (5.4)

H0 = H4 = 2F1

[
1

2
,

2 − 3α

2α − 1
, 1 + 2 − 3α

2α − 1
, −ξ0

]
.

(5.5)

The divergent and vanishing points of SH cannot be obtained
by analytic calculation. Thus, to find the points of first- and
second-order phase transition points, we use the plots. The
left panel of Fig. 3 show that, for the BHs with positive-valued
temperature, there is only one point of second-order phase
transition located at r+ = r1. There is no point of first-order
phase transition, and BHs with r+ < r1 are locally stable.
Noting the right panel of Fig. 3, one can conclude that the
BHs with the horizon radii equal to rext and r+ = r2 undergo
first- and second-order phase transition, respectively. The
BHs with horizon radii in the range rext < r+ < r2 are
locally stable.
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5.2 The case of ν 
= − 2
3

Just like the previous case, after some algebraic calculations,
the denominator of SH can be written in the following form

MSS = − 1

π2(ν + 1)2

(
r0

r+

)ν
{

2a2(ν + 1)

4αβ − 4β2 + 1
×

(
b

r+

)6αγ [
(1 − 6αγ )

(√
1 + ξ+ − H+

)

−2γ λ

(
ξ+√

1 + ξ+
+ 2ξ+H ′+

) ]
+ �(1 + 2ν)

(
b

r+

)4βγ
}

, (5.6)

in which

H ′+ = −∂H+
∂ξ+

= 3α − 2β

2(3α − 2β + 2λ)
2F1

[
3

2
,

3α − 2β + 2λ

2λ
,

3α − 2β + 4λ

2λ
, −ξ+

]
. (5.7)

The plots of T and HQ versus r+ have been shown in Fig. 4,
for finding the phase transition points. According the left
panel there is only one point of first-order phase transition
located at r+ = rext , no second-order phase transition takes
place and the BHs with horizon radii greater than rext are
locally stable. As the right panel shows the first- and second-
order phase transitions occur for the BHs with r+ = rext and
r+ = r2, respectively. The BHs with the horizon radii in the
range rext < r+ < r2, with positive SH and temperature, are
locally stable.

6 BHs in the STBI theory

In the previous sections, we have provided exact BH solutions
and related thermodynamic properties in EdBI gravity theory.
Now, we are in the situation to extend these studies to the case
of STBI theory. This can be done by use of the inverse CT on
the solutions of EdBI gravity. At fist, we calculate elements
of the STBI metric ḡμν . Making use of Eq. (2.4) we have

ḡμν = ( b
r

)4αγ
gμν for the following ST line element

ds̄2 = ḡμνdx
μdxν =−A(r)dt2 + 1

B(r)
dr2 + r2C2(r)dθ2.

(6.1)

As the result, we can write

A(r) = ( b
r

)4αγ
W (r),

B(r) = ( b
r

)−4αγ
W (r),

C(r) = ( b
r

)2αγ
R(r).

(6.2)

Note that R(r) and W (r), as the exact solutions of EdBI
theory, have presented in Eqs. (3.10) and (3.20), respectively.
We have plotted B(r) versus r , for the cases of ν = − 2

3 and

ν 
= − 2
3 in Figs. 5 and 6, respectively. It is clear that, the two-

horizon, extreme and naked singularity ST BHs can occur.

Also, having � and combining Eqs. (2.7) and (2.9), after
some calculations, we have

φ̄(φ) =
√

1 − (2α)−2 e2αφ, α >
1

2
. (6.3)

It gives the JF scalar function φ̄ in terms its corresponding
quantity in the EF labeled by φ, presented in Eq. (3.11).
Now, one can calculate the arbitrary functions A1, A2 and
A3, appeared in the JF action (II.1). Noting Eq. (2.9), we
have

A1(φ) = e−2αφ,

A2(φ) = −2e−2αφ,

A3(φ) = 1
2V (φ)e−6αφ.

(6.4)

Thermodynamic properties of the STBI BHs can be stud-
ied noting those of EdBI theory. The temperature on the hori-
zon of STBI BHs T̄ as follows

T̄ = 1
4π

(√
B(r)
A(r)

d A(r)
dr

)
r=r+

= 1
4π

(
b
r+

)−4αγ
d
dr

[( b
r

)4αγ
W (r)

]
r=r+

= 1
4π

dW (r)
dr |r=r+

= T .

(6.5)

An immediate consequence is that the horizon temperature
of the STBI BHs is just equal to that of EdBI BHs. Also, other
quantities such as charge, mass, entropy and electric poten-
tial are identical in both of the Einstein and Jordan frames.
Through calculation of a Smarr-type mass formula for the
STBI, we obtain
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Fig. 3 T (blue) and HQ(black) versus r+ for ν = − 2
3 , b = 1, � = 1, r0 = 1, m = 8, � = −1, q = 1. Left:α = 2 and a =

1.06(black), 1.13(blue), 1.25(red). Right: a = 1.4 and α = 1.98(black), 2.023(blue), 2.08(red)

Fig. 4 T (blue) and HQ(black) versus r+ for ν 
= − 2
3 , b = 1, � = 1, r0 = 1, m = 8, � = −1, q = 1. Left:α = 2 and a =

1.06(black), 1.13(blue), 1.25(red). Right: a = 1.4 and α = 1.98(black), 2.023(blue), 2.08(red)

Fig. 5 B(r) versus r for b = 1, α = 2.2, r0 = 1, m = 10, � = −1, q = 1. Left:ν = −0.37 and a = 1.315(black), 1.347(blue), 1.38(red).
Right: a = 1.44 and ν = −0.373(black), −0.3758(blue), −0.379(red)

Ū = ∂ M̄(S̄, Q̄)

∂ Q̄
, and T̄ = ∂ M̄(S̄, Q̄)

∂ S̄
, (6.6)

from which we can write

d M̄(S̄, Q̄) = ∂ M̄(S̄, Q̄)

∂ S̄
d S̄ + ∂ M̄(S̄, Q̄)

∂ Q̄
d Q̄, (6.7)

which confirms validity of the first law of BH thermodynam-
ics for STBI BHs. It can be easily shown that the SH of STBI
BHs is just equal to that of EBId BHs. Consequently, the
STBI and EdBI BHs have the same stability properties as
shown in Figs. 3 and 4.
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Fig. 6 B(r) versus r for ν = − 2
3 , b = 1, � = 1, r0 = 1, m = 8, � = −1, q = 1. Left:α = 2 and a = 1.1(black), 1.129(blue), 1.17(red).

Right: a = 1.25 and α = 2.005(black), 2.0133(blue), 2.02(red)

7 Conclusions

Here, we studied thermodynamic properties of charged (2 +
1)-dimensional ST BHs in the presence of BI nonlinear elec-
trodynamics. Since the analytic solutions to the field equa-
tions of ST gravity theory, which are written in the JF, can
not be obtained directly, we have translated the JF action to
the EF by use of the CTs. The EF field equations, known as
the Ed gravity theory, have been solved in a static and cir-
cularly symmetric geometry. The corresponding solutions in
the ST gravity have been obtained by applying the inverse
CTs. As the result, we introduced two novel classes of exact
BH solutions in both of the Jordan and Einstein frames, which
can produce the two-horizon, extreme and naked singularity
BHs. It is notable that all the exact solutions of EdBI theory
recover the corresponding values in the Ed-Maxwell grav-
ity, when the nonlinearity parameter a is chosen very large.
The thermodynamic quantities such as BH entropy, electric
potential and temperature, as well as the BH charge and mass,
as the conserved quantities, have been calculated under the
influence of BI nonlinear electrodynamics. It has been shown
that these thermodynamic and conserved quantities are iden-
tical in both of the Jordan and Einstein frames. Also, through
a Smarr-type mass formula, it has been proved that the stan-
dard form of the first law of BH thermodynamics is valid
for both of the ST and Ed BHs. Thermal stability or phase
transition of the BHs have been explored, in both of the ST
and Ed theories, by use of the canonical ensemble method.
From the viewpoint of canonical ensemble method, and not-
ing properties of the CTs, we found that both of the ST and
Ed BHs have the same thermodynamic behaviors.

Geometrical thermodynamics and P-V criticality of the
ST and Ed BHs will be studied in a forthcoming paper.
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Appendix A: Details of derivation of Eq. (3.13)

By use of the relation Ftr = −∂r At (r), and noting Eq. (3.5),
we have

At (r) = −
∫

qe2αφdr

r R(r)
√

1 + ξ
+ const., (A.1)

and making use of Eqs. (3.10) and (3.11), we have

ξ = q2

a2b2

(r0

b

)2ν
(
b

r

)4γ λ

,

with λ = −α + 1

2β
, β = γ

ν + 1
, (A.2)

and

At (r)=−
∫

q
( b
r

)2αγ
dr

r
(

r
r0

)ν
√

1+ q2

a2b2

( r0
b

)2ν ( b
r

)4γ λ
+constant.

(A.3)
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I have worked out this integral by use of the Mathematica
software. After some algebraic simplifications and setting the
integration constant equal to zero, one obtains the nonzero
component of the electromagnetic four-vector as presented
in Eq. (3.13).
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