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Poisson–Lie T -plurality constructs a chain of supergravity solutions from a Poisson–Lie symmet-
ric solution. We study the Poisson–Lie T -plurality for supergravity solutions with H -flux, which
are not Poisson–Lie symmetric but admit non-Abelian isometries, £vagmn = 0 and £vaH3 = 0 with
£vaB2 �= 0. After introducing the general procedure, we study the Poisson–Lie T -plurality for
two Wess–Zumino–Witten backgrounds, AdS3 with H -flux and the Nappi–Witten background.
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1. Introduction

Abelian T -duality, which is a symmetry of string theory, is based on the existence of a set of
commuting vector fields vm

a satisfying the Killing equations

£vagmn = 0, £vaH3 = 0. (1.1)

At least in supergravity, this symmetry continues to hold even when the Killing vector fields form
a non-Abelian algebra [va, vb] = fab

c vc; this is known as non-Abelian T -duality [1]. There is a
further extension of T -duality, called Poisson–Lie (PL) T -duality [2,3] or T -plurality [4]. We have
PL T -duality when the background admits a set of vector fields vm

a satisfying the condition for PL
symmetry,

£vaEmn = −fa
bc Emp vp

b vq
c Eqn

(
Emn ≡ gmn + Bmn

)
. (1.2)

Here, fabc (= −facb) are called the dual structure constants, and if they are absent, this condition
reduces to the Killing equations, £vagmn = £vaB2 = 0. Then, the PL T -duality reduces to the
traditional non-Abelian T -duality. However, the condition £vaB2 = 0 is stronger than £vaH3 = 0
of Eq. (1.1) and, naively, not all of the traditional non-Abelian T -duality can be realized as a PL
T -duality. In this short paper we discuss how to perform the PL T -plurality in backgrounds with
non-Abelian isometries: £vagmn = 0 and £vaH3 = 0, but £vaB2 �= 0.

For the sake of clarity, let us comment on some of the related earlier works. There are at least
two approaches to performing the PL T -duality in an H -fluxed background.1 The first is taken in
Refs. [10,11], where Wess–Zumino–Witten (WZW) backgrounds are constructed as PL symmetric

1 There is a third way that is based on the λ-deformation [5]. For a target space of the λ-model, we can
explicitly construct the generalized frame fields which produce the H -flux (see, e.g., Refs. [6–9] for related
techniques). Using these we can perform a PL-like T -duality. We thank Falk Hassler for valuable comments
on this point.
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backgrounds satisfying the condition in Eq. (1.2) (see also Refs. [12,13] for the supersymmetric
extensions). For a given WZW background, how to find the set of vector fields vm

a and the dual
structure constants fabc is quite non-trivial, but once we find these, we can perform the PL T -duality
by following the standard procedure. The second approach is taken in Refs. [14,15], where the
non-trivial H -flux is produced by the spectator fields and the internal part satisfies the usual Killing
equations, £vaEmn = 0. Namely, the WZW backgrounds are realized as PL symmetric backgrounds
associated with semi-Abelian doubles (i.e. fabc = 0). Again, once we have found such a realization,
we can perform the PL T -duality by using the standard procedure of the PL T -duality with spectator
fields.

Now we explain our approach. For convenience, we use the language of double field theory (DFT)
[16–19], whose flux formulation [20] is especially useful here. In DFT, the supergravity fields in the
NS–NS sector are packaged into the generalized metric and the DFT dilaton,

HIJ ≡
(

gmn (B g−1)m
n

−(g−1 B)mn gmn

)
, e−2d ≡ e−2�

√|det gmn|, (1.3)

where I , J = 1, . . . , 2D and m, n = 1, . . . , D. Similar to the standard setup for studying the PL
T -duality in DFT [21], we assume that the generalized metric has the form

HIJ (x) = EI
A(x)EJ

B(x) ĤAB, (1.4)

where ĤAB is constant and EI
A is the inverse of the generalized frame fields EA

I satisfying

[EA, EB]D = −FAB
C EC . (1.5)

Here, [· , ·]D denotes the D-bracket or the generalized Lie derivative in DFT, and FAB
C are the

structure constants with components

Fabc = Habc, Fab
c = Fb

c
a = Fc

ab = fab
c, Fa

bc = Fc
a

b = Fbc
a = 0 = Fabc (1.6)

under the decompositions {A} = {a, a} and {A} = {a, a} (A = 1, . . . , 2D and a = 1, . . . , D). For the
DFT dilaton, for simplicity, we assume the absence of the dilaton flux:

FA ≡ EA
I DBEI

B + 2 DAd = 0
(DA ≡ EA

I ∂I
)
. (1.7)

In the usual setup of the PL T -duality/plurality in DFT [8,21,22], the components of the structure
constants are supposed to have the form

Fab
c = −Fa

c
b = Fc

ab = fab
c, Fa

bc = Fc
a

b = Fbc
a = fa

bc, Fabc = 0 = Fabc, (1.8)

which are the structure constants of the Drinfel’d double. However, as a solution-generating tech-
nique, Eqs. (1.4), (1.5), and (1.7) are sufficient,2 and instead of Eq. (1.8), we rather suppose Eq. (1.6)
in the initial background. As usual, the equations of motion of DFT reduce to

ĤAD (3 ηBE ηCF − ĤBE ĤCF)FABC FDEF = 0,(
ηCE ηDF − ĤCE ĤDF) ĤG[A FCD

B] FEFT = 0, (1.9)

2 We thank Chris Blair for correspondence regarding this point.
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and they are covariant under the O(D, D) transformation:

ĤAB → Ĥ′
AB ≡ CA

C CB
D ĤCD, FAB

C → F ′
AB

C ≡ CA
D CB

E (C−1)F
C FDE

F . (1.10)

Then, by finding a new set of generalized frame fields E′
A

I satisfying [E′
A, E′

B]D = −F ′
AB

C E′
C (but

E′
A �= CA

B EB), we can generate a new DFT solution, H′
IJ ≡ E′

I
A E′

J
B ĤAB, and d ′, which satisfies

F ′
A ≡ E′

A
I D′

BE′
I

B + 2 D′
Ad ′ = 0.

As concrete backgrounds satisfying Eqs. (1.4), (1.5), and (1.7), we consider the target space of an
(ungauged) WZW model. As we explain in Sect. 2, for any WZW model we can explicitly construct
the generalized frame fields EA

I and the DFT dilaton d satisfying Eqs. (1.4)–(1.7). There, we find a
set of (generalized) Killing vector fields (vm

a , ṽam) satisfying

£vagmn = 0, £vaB2 + dṽa = 0, [va, vb] = fab
c vc, (1.11)

which is similar to the setup of the traditional non-Abelian T -duality. Due to the presence of the
1-form fields ṽa, this is different from the usual condition for the PL symmetry, Eq. (1.2), and the
standard procedure of the PL T -duality cannot be applied. However, if the 2D-dimensional Lie
algebra [TA, TB] = FAB

C TC with FAB
C given in Eq. (1.6) can be decomposed into two maximally

isotropic subalgebras, we can construct the dual geometry by means of the PL T -plurality. Namely,
if we find an O(D, D) transformation as in Eq. (1.10) such that the new structure constants F ′

AB
C

have the form of Eq. (1.8), the 2D-dimensional algebra becomes a Drinfel’d double. For a Drinfel’d
double, we can systematically construct the dual fields E′

A
I and d ′ satisfying Eqs. (1.5) and (1.7).

Then, the resulting background should be a solution of DFT as long as the original WZW background
is a solution of DFT. This is the idea of the solution-generation method proposed in this paper.

As concrete examples of the WZW model, we consider the SL(2) WZW model and the Nappi–
Witten (NW) model [23]. For the SL(2) WZW model, we consider two approaches for the PL
T -plurality: the one studied in Ref. [10] and our approach. We find that the two approaches are based
on different six-dimensional Drinfel’d doubles. For each of the Drinfel’d doubles, there are several
inequivalent decompositions into the pair of algebras {fab

c, fcab}, called the Manin triples, and we
construct a background for each of the Manin triples. In general each Manin triple corresponds to
a different target geometry, but it turns out that many of the Manin triples correspond to the same
AdS3 solution with H -flux. This kind of self-duality under the PL T -duality has been observed in
Refs. [15,24] and this may represent the high symmetry of the AdS3 background. We also find that
some Manin triples correspond to a flat space with a linear dilaton and some Manin triples correspond
to a known AdS3 solution of the generalized supergravity equations of motion [25,26].

For the NW model, the Drinfel’d double is eight-dimensional and the Manin triples have not been
classified. We find several inequivalent Manin triples and construct the corresponding backgrounds.
Again, we find that two Manin triples correspond to the same NW background. Other Manin triples
correspond to a kind of T -fold [27] which does not allow a description in terms of the standard
fields in the NS–NS sector. We also perform the Yang–Baxter (YB) deformation [28] of the NW
background by using a classical r-matrix satisfying the modified classical YB equations (CYBE).
As a result, we find a one-parameter family of solutions which contains the NW background and the
flat Minkowski spacetime as specific cases.

This paper is organized as follows. In Sect. 2, we explain how to construct the generalized frame
fields EA

I and the DFT dilaton d satisfying Eqs. (1.5) and (1.7) in WZW backgrounds. We also
explain the procedure of the PL T -plurality. In Sect. 3, we study the PL T -plurality of the SL(2)
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WZW model. In Sect. 3, we study the PL T -plurality and theYB deformation of the NW background.
Section 5 is devoted to conclusions and discussions.

2. WZW background

Let us consider a group G associated with a Lie algebra, [Ta, Tb] = fab
c Tc. We define the left-/right-

invariant 1-forms and their duals as

� ≡ g−1dg ≡ �a
m dxm Ta, r ≡ dg g−1 ≡ ra

m dxm Ta, vm
a �

b
m = δb

a , em
a rb

m = δb
a . (2.1)

Then, the WZW model can be defined as

S = 1

4πα′

∫



gmn dxm ∧ ∗dxn + 1

2πα′

∫
B

H3 (∂B = 
), (2.2)

where the metric and the 3-form field strength are

gmn ≡ ĝab �
a
m �

b
n = ĝab ra

m rb
n ,

H3 ≡ 1

3! fabc �
a ∧ �b ∧ �c = 1

3! fabc ra ∧ rb ∧ rc. (2.3)

Here, ĝab is a non-degenerate invariant metric and fabc ≡ fab
d ĝdc is totally antisymmetric.

If we introduce a 2-form field B2 satisfying dB2 = H3, we can check that the generalized Killing
vector fields Va

I ≡ (vm
a , ṽam ≡ Emn vn

a dxm) satisfy Eq. (1.11) for any choice of B2. In general, ṽam

does not vanish and this background is not PL symmetric, i.e. we cannot perform the PL T -duality.
Now we define the generalized frame fields and a constant matrix as

EA
I ≡

(
em

a −en
a Bnm

0 ra
m

)
, ĤAB ≡

(
ĝab 0
0 ĝab

)
, (2.4)

and then the generalized metric for the WZW background of Eq. (2.3) is expressed as

HIJ (x) = EI
A(x)EJ

B(x) ĤAB. (2.5)

Using em
a en

b ep
c Hmnp = fabc, we can easily check that the frame fields {EA} = {Ea, Ea} satisfy the

algebra in Eq. (1.5) with the fluxes FAB
C given by Eq. (1.6) and Habc = fabc:3

[Ea, Eb]D = −fab
c Ec − fabc Ec, [Ea, Eb]D = 0,

[Ea, Eb]D = −[Eb, Ea]D = fac
b Ec. (2.6)

Here, the D-bracket or the generalized Lie derivative in DFT is defined as

[V , W ]I
D = V J ∂J W I − (

∂J V I − ∂ I VJ
)

W J , (2.7)

3 If a B-field satisfies dB2 = 1
3! Habc ra ∧rb ∧rc for general skew-symmetric constants Habc, the EA

I defined in

Eq. (2.4) satisfy the algebra in Eq. (2.6) with fabc replaced by Habc. In such a general case, HIJ = EI
A EJ

B ĤAB

does not describe the target space of a WZW model, but we can still perform the PL T -plurality. For the PL
T -plurality, ĤAB can also be an arbitrary constant O(D, D) matrix and is not restricted to having the form in
Eq. (2.4).
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where (∂I ) = (
∂
∂xm , ∂

∂ x̃m

)
and the indices {I } = {m, m} and {I } = {m, m} are raised or lowered with

the O(D, D)-invariant metric

ηIJ ≡
(

0 δn
m

δm
n 0

)
, ηIJ ≡

(
0 δm

n

δn
m 0

)
. (2.8)

Regarding the DFT dilaton, the requirement in Eq. (1.7) reduces to

−2 ∂md = en
b ∂nrb

m = −∂nen
b rb

m (2.9)

under our assumption ∂
∂ x̃m

= 0. By using ∂nen
b = �a

m en
b ∂nvm

a = −en
b ∂n ln|det(�a

m)|, which follows
from �a

m £vaem
b = 0, the DFT dilaton can be found to have the form

e−2 d = e−2 d0 |det(�a
m)|, (2.10)

where d0 is a constant. In our examples, we simply choose d0 = 0 because the constant is not
important in the equations of motion.

Now let us perform the O(D, D) transformation in Eq. (1.10) such that the new algebra F ′
AB

C is
the Lie algebra of a Drinfel’d double. Then we parameterize the group element, for example, as
g(x) = exa Ta , and define the right-/left-invariant 1-forms and their duals. We also define

g−1 TA g ≡
(

aa
b 0

(π a)ab (a−1)b
a

) (
πab = −πba), (2.11)

and construct new generalized frame fields and a DFT dilaton as

EA
I (x) ≡

(
em

a 0
πab em

b ra
m

)
, e−2 d(x) = e−2 d0 |det(�a

m)|. (2.12)

These are known to satisfy the desired properties of Eqs. (1.5) and (1.7) [8,21], and using these fields
we obtain the dual background, in the same way as the standard PL T -plurality.4

In order to make a solution for ten-dimensional supergravity, we may consider a product of the
WZW background and a certain space with coordinates yμ, called the spectator fields. In the examples
to be studied in this paper, the generalized metric is given by a direct sum,

HÎ Ĵ (x
m, yμ) =

(
HIJ (x) 0

0 Hs
MN (y)

)
, (2.13)

where Î = 1, . . . , 20 and {M } = {μ, μ} with μ = 1, . . . , 10 − n. The DFT dilaton is given by the
product

e−2 d(xm, yμ) = e−2 d(x) e−2 ds(y) . (2.14)

The fields Hs
MN (y) and ds(y) are invariant under the PL T -pluralities and only HIJ (x) and d(x) are

transformed in the following discussion.

4 When the dual algebra is non-unimodular (fa
ab �= 0), a PL symmetric background is known to satisfy the

generalized supergravity equations of motion [25,26] with the vector field I = 1
2 fb

ba va [8].
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3. SL(2) WZW model

Here we consider the SL(2) WZW model, where the target geometry can be identified with AdS3

with H -flux

ds2 = l2 dz2 − dt2 + dx2

z2 , H3 = ± l2 dz ∧ dt ∧ dx

z3 = ±2 l−1 ∗ 1. (3.1)

The Riemann curvature tensor is Rmnpq = −l−2 (gmp gnq−gmq gnp) and the Ricci scalar is R = −6/l2.
This becomes a ten-dimensional supergravity solution by adding spectator fields (which are not
affected by T -dualities)

ds2
S3×T 4 = l2

4

[
dθ2 + sin2 θ dφ2 + (

dψ + cos θ dφ
)2]+ dy2

1 + dy2
2 + dy2

3 + dy2
4,

H (S3×T 4)
3 = l2

4 sin θ dθ ∧ dφ ∧ dψ , e−2 ds(y) = (l/2)3 sin θ . (3.2)

Since e−2 ds(y) is just the volume element, the dilaton � can be found as

e−2� = e−2 d(x){|det gmn|}(−1/2).

In Ref. [10], this WZW background was reproduced as a PL symmetric background by using a
six-dimensional Drinfel’d double. Six-dimensional Drinfel’d doubles and the Manin triples were
classified in Ref. [29], and it is known that there are 22 Drinfel’d doubles. According to this classi-
fication, the Drinfel’d double used in Ref. [10] is called DD2 (see Ref. [30] for the notation). This
Drinfel’d double can be decomposed into four Manin triples [29],

DD2: (5.i|8|b) ∼= (8|5.i|b) ∼= (60|5.iii|b) ∼= (5.iii|60|b) (b > 0), (3.3)

and it was found that the SL(2) WZW background is associated with (5.i|8|b) [10]. Then, the PL T -
dual model, whose Manin triple is (8|5.i|b), was found to be a constrained sigma model [10]. In this
section, we find that the target geometry of this dual model is a kind of non-Riemannian background
(see Refs. [31–33] for details of non-Riemannian backgrounds). Then we further perform PL T -
pluralities and obtain the backgrounds associated with the other two Manin triples, (60|5.iii|b) and
(5.iii|60|b).

After completing the orbit of DD2, we consider the PL T -pluralities based on our approach. We
start with a flux algebra with the SL(2) algebra fab

c and the H -flux Habc �= 0. Then we identify that
this six-dimensional Lie algebra corresponds to a Drinfel’d double called DD7. The DD7 can be
decomposed into six Manin triples [10],

DD7: (70|4|b) ∼= (4|70|b) ∼= (4|2.iii|b) ∼= (2.iii|4|b) ∼= (60|4.i| − b) ∼= (4.i|60| − b), (3.4)

and we identify the corresponding backgrounds.

3.1. PL T-plurality for DD2

Here we review the result of Ref. [10] and then complete the orbit of DD2 described in Eq. (3.3).

3.1.1. Manin triple (5.i|8|1)
The Lie algebra of the Drinfel’d double considered in Ref. [10] has the following structure constants:

f12
2 = 1, f13

3 = 1, f2
12 = 1, f3

13 = −1, f1
23 = 2. (3.5)

6/25
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If we consider a redefinition,

Ta → �a
b Tb, T a → (�−1)b

a T b, �a
b =

(−1 0 0
0 2 1

2
0 2 − 1

2

)
, (3.6)

the structure constants become

f12
2 = −1, f13

3 = −1, f3
12 = −1, f1

23 = 1, f2
13 = −1. (3.7)

Therefore, this Manin triple is isomorphic to (5.i|8|b = 1) of Ref. [29].
Using the algebra in Eq. (3.5) and the parameterization g = ex T1 ey T2+z T3 , we obtain

rm
a =

(
1 0 0
0 ex 0
0 0 ex

)
, �m

a =
(

1 y z
0 1 0
0 0 1

)
, (3.8)

πab =
(

0 − ex y ex z
ex y 0 1 − e2x(y z + 1)

− ex z e2x(y z + 1)− 1 0

)
. (3.9)

By following Ref. [10], we introduce the constant matrix as

ĤAB =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 −1 0 0 0 2
0 0 1 0 2 0

⎞
⎟⎟⎟⎟⎟⎠, (3.10)

and then compute the generalized metric HIJ (x) = EI
A EJ

B ĤAB, where EA
I is defined in Eq. (2.12).

Then, the three-dimensional parts of the supergravity fields are found as

gmn =
⎛
⎜⎝1 + y z z

2
y
2

z
2 0 1

2
y
2

1
2 0

⎞
⎟⎠ , Bmn =

⎛
⎜⎝ 0 z

2 − y
2

− z
2 0 −1

2
y
2

1
2 0

⎞
⎟⎠. (3.11)

The DFT dilaton is trivial, e−2 d(x) = e−2 d0 |det(�a
m)| = e−2 d0 = 1, and the dilaton � is just a

constant. This background is a conformally flat Einstein space with R = −6, and the H -flux is
H3 = dx ∧ dy ∧ dz = ∗2. Namely, at least locally, this is precisely the H -fluxed AdS3 background
of Eq. (3.1) with unit AdS radius l = 1.

We can easily check that the condition for the PL symmetry in Eq. (1.2) is satisfied by the left-
invariant vector fields vm

a and the structure constants in Eq. (3.5). We can also check that these vector
fields vm

a do not generate the isometries of the target space, £vagmn �= 0 and £vaH3 �= 0, unlike the
usual setup of the traditional (non-)Abelian T -duality.

3.1.2. Manin triple (8|5.i|1)
Considering the PL T -duality Ta ↔ T a, namely, the O(3, 3) transformation of Eq. (1.10) with

CA
B =

(
03 13

13 03

)
, (3.12)

7/25
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the algebra is mapped to a Manin triple (8|5.i|1), where fab
c and fcab are swapped. The constant

metric becomes

ĤAB =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 2 0 −1 0
0 2 0 0 0 1
0 0 0 1 0 0
0 −1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (3.13)

By using the parameterization g = ez T3 ey T2 ex T1 , we find

rm
a =

(
1 + 2 y z −y y z2 + z

−2 z 1 −z2

0 0 1

)
, �m

a =
(

1 0 0
0 e−x 0

−2 y − e−x y2 ex

)
, (3.14)

πab =
(

0 −y −z (1 + y z)
y 0 y z

z (1 + y z) −y z 0

)
, (3.15)

and the generalized metric and the DFT dilaton become

HIJ (x) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −2 y 0 0 0
0 0 2 0 −1 0

−2 y 2 0 2 y 2 y2 1
0 0 2 y 1 0 0
0 −1 2 y2 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, d(x) = 0. (3.16)

Since the dual algebra is non-unimodular, this background is a solution of the generalized supergravity
equations of motion with the vector field I = 1

2 fbba va = −∂x. In DFT, the constant vector field I can
be included into the DFT dilaton as d(x) = I m x̃m = −x̃ [34], and then we find that this background
is a solution of DFT (by adding the spectator fields).

Since the matrix Hmn is degenerate, the standard fields {gmn, Bmn, �} are not defined and this is
an example of non-Riemannian backgrounds [31]. If we parameterize HIJ (x) as

HIJ (x) =
(

Gmn Gmq β
qn

−βmq Gqn Gmn − βmp Gpq β
qn

)
, (3.17)

we find

Gmn =
(

1 0 −2 y
0 0 2

−2 y 2 0

)
, βmn =

(
0 −y 0
y 0 1

2
0 − 1

2 0

)
, d(x) = −x̃. (3.18)

It turns out that the (open-string) metric Gmn is AdS3 with the radius l = 2, and the β-field produces
a constant Q-flux Qy

xy ≡ ∂yβ
xy = −1 with a non-zero trace. This will be the target geometry of the

constrained sigma model studied in Ref. [10].5

5 In Ref. [31], the string sigma model in a general non-Riemannian background is shown to be constrained
by a certain self-duality relation (or a chirality constraint), and this seems to be consistent with the result of
Ref. [10].
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We can remove the x̃ dependence of the dilaton by performing an Abelian T -duality along the
x-direction. We then find

Gmn(x) =
(

1 0 2 y
0 0 2

2 y 2 0

)
, βmn(x) =

(
0 y 0

−y 0 1
2

0 − 1
2 0

)
, d(x) = −x, (3.19)

which is again the AdS3 geometry with a constant Q-flux. Moreover, in order to describe this
background in the usual supergravity fields, let us consider a further constant O(3, 3) transformation
(or a constant B-shift):

HIJ → OI
K OJ

L HKL , OI
J =

(
δn

m 0
bmn δm

n

)
, bmn =

(
0 0 η

0 0 0
−η 0 0

)
. (3.20)

In terms of {Gmn, βmn}, we find

Gmn(x) =
(

1 0 2 y
0 0 2

2 y 2 0

)
, βmn(x) =

(
0 y −η

−y 0 1
2

η − 1
2 0

)
, d(x) = −x, (3.21)

and only the β-field gets a constant shift. In terms of the usual (closed-string) metric gmn and the
B-field, the non-zero η is crucial and we find a solution of the usual supergravity:

gmn =
⎛
⎝ 0 1

2 η y2 0
1

2 η y2
1

y2
2 η y−1
2 η2 y2

0 2 η y−1
2 η2 y2

1
η2

⎞
⎠, Bmn =

⎛
⎝ 0 1

2 η y2 − 1
η

− 1
2 η y2 0 1−2 η y

2 η2 y2
1
η

2 η y−1
2 η2 y2 0

⎞
⎠,

e−2� = 2 η2 y2 e2 x . (3.22)

Interestingly, this is a flat metric without H -flux for an arbitrary value of η (�= 0), and the dilaton
satisfies ∇m∂n� = 0 and gmn ∂m�∂n� = 1. Thus, we can find a certain coordinate transformation
which makes this solution a flat space with a (spacelike) linear dilaton � = ±x.

3.1.3. Manin triple (5.iii|60|1)
From the algebra in Eq. (3.5), we consider a redefinition of generators TA → CA

B TB with

CA
B =

⎛
⎜⎜⎜⎜⎜⎝

0 −2 1
2 1 − 1

4 −1
1 0 0 0 1

4 −1
0 −2 − 1

2 0 1
4 −1

1
2 0 0 0 − 1

8
1
2

0 1 − 1
4

1
2

1
8

1
2

0 0 0 0 − 1
4 −1

⎞
⎟⎟⎟⎟⎟⎠. (3.23)

We then obtain a new Manin triple with

f23
2 = −1, f13

1 = −1, f1
23 = 1, f2

13 = 1, (3.24)

which is called (5.iii|60|1). Under the transformation, the constant matrix is transformed as

ĤAB =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (3.25)
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Considering the parameterization g = ex T1+y T2 ez T3 , we find

rm
a =

(
1 0 0
0 1 0

−x −y 1

)
, �m

a =
(

e−z 0 0
0 e−z 0
0 0 1

)
, (3.26)

πab =
⎛
⎝ 0 − x2−y2

2 −y
x2−y2

2 0 −x
y x 0

⎞
⎠. (3.27)

The generalized metric and the DFT dilaton can be found as

HIJ (x) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, e−2 d(x) = |det �a

m| = e−2 z . (3.28)

This is again a non-Riemannian background, but if we perform a factorized T -duality along the
x-direction (which is a symmetry of string theory), we get a Riemannian background:

ds2 = 2 dx dy + dz2, B2 = 0, � = z. (3.29)

This (together with the spectator fields) is a solution of the ten-dimensional supergravity. Then, we
again found that the AdS3 background with H -flux is related to the flat space with a linear dilaton
through a PL T -plurality (and the usual T -duality).

3.1.4. Manin triple (60|5.iii|1)
We can realize the Manin triple (60|5.iii|1) by considering the PL T -duality from the previous
example. Again, we consider a parameterization g = ex T1+y T2 ez T3 and then obtain

rm
a =

(
1 0 0
0 1 0
y x 1

)
, �m

a =
(

cosh z sinh z 0
sinh z cosh z 0

0 0 1

)
, πab =

⎛
⎝ 0 x2−y2

2 x

− x2−y2

2 0 y
−x −y 0

⎞
⎠. (3.30)

The generalized metric and the DFT dilaton become

HIJ (x) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, d(x) = 0. (3.31)

Since the dual algebra is non-unimodular, the vector field I = −∂z is needed to satisfy the generalized
supergravity equations of motion. Again, under a factorized T -duality along the x-direction, this
non-Riemannian background is mapped to a flat Riemannian background,

ds2 = 2 dx dy + dz2, B2 = 0, � = 0, I = −∂z. (3.32)

Moreover, we can include I into the DFT dilaton as d(x) = −z̃, and by performing the formal
T -duality along the z-direction (which interchanges z and z̃), we get

ds2 = 2 dx dy + dz2, B2 = 0, � = −z. (3.33)
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Then, we again obtained the flat space with a linear dilaton, although the sign of the dilaton is
changed.

3.2. PL T-plurality for DD7

Now we consider the PL T -plurality based on our approach. We consider the SL(2) algebra

f12
3 = −1, f13

1 = −1, f23
2 = 1, (3.34)

and denote an invariant metric as

ĝab =
(

0 −1 0
−1 0 0
0 0 1

)
. (3.35)

Then, we find the non-vanishing components of fabc ≡ fab
d ĝdc as f123 = −1.

Using the coordinates xm = (z, t, x) and the parameterization

g = e
√

2 (t−x)T2 e−2 ln z T3 e
√

2 (t+x)T1 , (3.36)

we obtain

rm
a =

⎛
⎝ 0 − 2

√
2(t−x)

z − 2
z√

2
z2

√
2 [(t−x)2+z2]

z2
2(t−x)

z2√
2

z2

√
2 [(t−x)2−z2]

z2
2(t−x)

z2

⎞
⎠, �m

a =
⎛
⎝ − 2

√
2(t+x)

z 0 − 2
z√

2 [(t+x)2+z2]
z2

√
2

z2
2(t+x)

z2

−
√

2 [(t+x)2−z2]
z2 −

√
2

z2 − 2(t+x)
z2

⎞
⎠. (3.37)

Then the metric and the H -flux of the WZW background are found as

ds2 = 4
dz2 − dt2 + dx2

z2 , H3 = 1

3! fabc ra ∧ rb ∧ rc = −8 dz ∧ dt ∧ dx

z3 . (3.38)

Here, £vagmn = 0 and £vaH3 = 0 are satisfied, but we find £v2B2 �= 0 for B2 = 4
z2 dt ∧ dx. The AdS

radius is l = 2 and we add spectator fields, Eq. (3.2), with l = 2 in this subsection.
We can construct the generalized frame fields EA

I as given in Eq. (2.4). Then we can check that
they satisfy the algebra [EA, EB]D = −FAB

C EC with the fluxes

F12
3 = −1, F13

1 = −1, F23
2 = 1, F123 = −1. (3.39)

We also obtain the constant metric ĤAB by substituting Eq. (3.35) into Eq. (2.4). In the following,
we perform the PL T -plurality by rotating the pair of constants {FAB

C , ĤAB}.

3.2.1. Manin triple (4|2.iii|1)
Let us consider an O(3, 3) transformation TA → CA

B TB with

CA
B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (3.40)

Then we arrive at the Manin triple known as (4|2.iii|b = 1),

f12
2 = −1, f12

3 = 1, f13
3 = −1 f2

13 = −1. (3.41)
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This shows that the flux algebra in Eq. (3.39) corresponds to the Drinfel’d double, called DD7 [29],
which admits the six inequivalent Manin triples described in Eq. (3.4).

For (4|2.iii|1), we parameterize the group element as

g = ex T1 ey T2+z T3 , (3.42)

and then by using

rm
a =

(
1 0 0
0 e−x e−x x
0 0 e−x

)
, �m

a =
(

1 −y y − z
0 1 0
0 0 1

)
, (3.43)

πab =
⎛
⎝ 0 0 e−x y

0 0 y2

2 e−2x

− e−x y − y2

2 e−2x 0

⎞
⎠, (3.44)

the generalized metric and the DFT dilaton become

HIJ (x) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 y
0 0 0 0 −x x2 − 1
0 0 0 0 −1 x
0 0 0 1 y −xy
0 −x −1 y y2 −xy2

y x2 − 1 x −xy −xy2 x2y2

⎞
⎟⎟⎟⎟⎟⎠, d(x) = 0. (3.45)

This (together with the spectator fields) satisfies the equations of motion of DFT.
Again, this is a non-Riemannian background. In order to get the standard description, we perform

a factorized T -duality along the z-direction. Then we get

gmn =
(

1 0 y
0 0 −1
y −1 0

)
, Bmn =

(
0 0 0
0 0 x
0 −x 0

)
, � = 0. (3.46)

This background is (at least locally) the original AdS3 background. Indeed, under the coordinate
transformation

w ≡ −2 e−x/2, x+ ≡ − e−x y, x− ≡ z, (3.47)

this three-dimensional background becomes

ds2 = 4
dw2 + 2 dx+ dx−

w2 , H3 = 8 dw ∧ dx+ ∧ dx−

w3 . (3.48)

The above result shows that the AdS3 with H -flux has the (4|2.iii|1) symmetry. One can explicitly
construct the generators of the (4|2.iii|1) symmetry as

E1 = ∂x, E2 = ex ∂y − ex x dz, E3 = ex dz,

E1 = dx + y dz, E2 = e−x dy + e−x y2

2
dz,

E3 = − e−x y ∂x − e−x y2

2
∂y + e−x ∂z + e−x x dy + e−x xy2

2
dz. (3.49)

We can easily check that they satisfy

[EA, EB]D = −FAB
C EC , (3.50)

where FAB
C is the structure constant of the algebra (4|2.iii|1).
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3.2.2. Manin triple (2.iii|4|1)
Here we consider the PL T -dual of the previous background. By using the parameterization

g = ez T3 e(y+z)T2 ex T1 , (3.51)

and

rm
a =

(
1 z 0
0 1 0
0 1 1

)
, �m

a =
(

1 0 0
0 1 0
0 x + 1 1

)
, πab =

⎛
⎝ 0 y z

−y 0 z2

2

−z − z2

2 0

⎞
⎠, (3.52)

the dual background is found as

gmn =
⎛
⎝0 0 1

y

0 1
y2

1
y2

1
y

1
y2 0

⎞
⎠, Bmn =

⎛
⎝ 0 1

y
1
y

− 1
y 0 1

y2

− 1
y − 1

y2 0

⎞
⎠, e−2� = y2, I = ∂x. (3.53)

This satisfies the generalized supergravity equations of motion.
Again we see that the three-dimensional geometry is AdS3. Indeed, assuming y > 0, the coordinate

transformation

w = √
y, x+ = x + ln y, x− = z

4 , (3.54)

and a B-field gauge transformation gives a ten-dimensional background:

ds2 = 4
dw2 + 2 dx+ dx−

w2 + ds2
S3×T 4 , e−2� = w4,

B2 = 4 dx+ ∧ dx−

w2 + 2 dx+ ∧ dw

w
− cos θ dφ ∧ dψ , I = ∂+. (3.55)

This is precisely the solution obtained in Ref. [22] [see Eq. (4.11)] via the traditional non-Abelian
T -duality (which is not based on the Drinfel’d double).

3.2.3. Manin triples (4|70|1) and (4.i|60| − 1)
Here we consider an O(3, 3) transformation,

CA
B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 σ 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 σ

0 0 0 − σ

2 1 0
1 σ

2 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, σ = ±1, (3.56)

of the algebra in Eq. (3.39). Then we arrive at the algebra

F12
2 = −σ , F12

3 = σ , F13
3 = −σ , F1

23 = 1, F2
13 = −σ . (3.57)

This corresponds to the Manin triple (4|70|1) or (4.i|60| − 1) for σ = +1 or −1, respectively. The
constant matrix becomes

ĤAB =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 σ 0
0 −1 0 0 0 −σ

⎞
⎟⎟⎟⎟⎟⎠. (3.58)
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By using

g = ex T1 ey T2+z T3 , (3.59)

we obtain

rm
a =

(
1 0 0
0 e−σx σ x e−σx

0 0 e−σx

)
, �m

a =
(

1 y −y + z
0 1 0
0 0 1

)
, (3.60)

πab =
⎛
⎝ 0 0 σ y e−σx

0 0 e−2σx(σ+y2)−σ
2

−σ y e−σ x − e−2σx(σ+y2)−σ
2 0

⎞
⎠. (3.61)

Then the supergravity fields are

gmn =
(

1 + σ y2 −y 0
−y σ (1 − x2) −x
0 −x −σ

)
, Bmn =

(
0 −σ x y −y

σ x y 0 σ

y −σ 0

)
, � = 0. (3.62)

By computing the curvature tensor and the H -flux, we can identify that this is again the original
AdS3 background with AdS radius l = 2.

3.2.4. Manin triples (70|4|1) and (60|4.i| − 1)
Let us also consider the PL T -dual of the previous example, which corresponds to the Manin triple
(70|4|1) or (60|4.i| − 1) for σ = +1 or −1, respectively. Using the parameterization

g = ey T3 ex T1+(y−z)T2 , (3.63)

we find

rm
a =

(
cos y sin y 0

− sin y cos y 1
0 0 1

)
, �m

a =
(

1 0 0
z − y x + 1 1
z − y x 1

)
, (3.64)

πab =
(

0 −z sin y
z 0 1 − cos y

− sin y cos y − 1 0

)
(3.65)

for σ = +1, and

rm
a =

(
cosh y − sinh y 0

− sinh y cosh y 1
0 0 1

)
, �m

a =
(

1 0 0
z − y 1 − x 1
z − y −x 1

)
, (3.66)

πab =
(

0 z − sinh y
−z 0 cosh y − 1

sinh y 1 − cosh y 0

)
(3.67)

for σ = −1. Considering that the dual structure constants have non-vanishing trace, we find a
solution of the generalized supergravity equations of motion:

gmn =
⎛
⎜⎝ 0 −σ

z −σ
z

−σ
z −σ −σ − 1

z2

−σ
z −σ − 1

z2 −σ − 1
z2

⎞
⎟⎠, Bmn =

⎛
⎜⎝0 −σ

z 0
σ
z 0 1

z2

0 − 1
z2 0

⎞
⎟⎠,

e−2� = z2, I = σ ∂x. (3.68)
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If we perform the coordinate transformation

x ≡ σ (x+ − 2 ln w), y ≡ −4 x− − w2, z ≡ w2, (3.69)

we obtain

ds2 = 4
dw2 + 2 dx+ dx−

w2 − 16 σ (dx−)2, e−2� = w4,

B2 = 4 dx+ ∧ dx−

w2 + 2 dx+ ∧ dw

w
, I = ∂+. (3.70)

This AdS3 solution will be the same as the solution given in Eq. (3.55) up to a further coordinate
transformation.

4. Nappi–Witten model

The NW model [23] is theWZW model based on a central extension of the two-dimensional Euclidean
group Ec

2:

[J , Pi] = εij Pj, [Pi, Pj] = εij T . (4.1)

We denote the generators collectively as

{Ta} = {P1, P2, J , T }, (4.2)

and parameterize the group element as [23]

g = ex T1+y T2 eu T3+v T4 . (4.3)

The right- and left-invariant 1-forms are

rm
a =

⎛
⎜⎝

1 0 0 − y
2

0 1 0 x
2

y −x 1 − x2+y2

2
0 0 0 1

⎞
⎟⎠, �m

a =
⎛
⎜⎝

cos u − sin u 0 y
2

sin u cos u 0 − x
2

0 0 1 0
0 0 0 1

⎞
⎟⎠. (4.4)

Using the non-degenerate invariant metric

ĝab =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 b 1
0 0 1 0

⎞
⎟⎠, (4.5)

we obtain the NW background

gmn =
⎛
⎜⎝

1 0 y
2 0

0 1 − x
2 0

y
2 − x

2 b 1
0 0 1 0

⎞
⎟⎠, H3 = 1

3! fabc ra ∧ rb ∧ rc = dx ∧ dy ∧ du. (4.6)

Choosing the B-field, for example, as

B2 = u dx ∧ dy, (4.7)

we can construct the generalized frame fields EA
I of Eq. (2.4) satisfying the algebra in Eq. (1.5) with

F12
4 = 1, F13

2 = −1, F23
1 = 1, F123 = 1. (4.8)
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Using the constant metric ĤAB defined by Eq. (2.4), we obtain the generalized metric

HIJ = EI
A EJ

B ĤAB, (4.9)

which describes the NW background of Eq. (4.6).
The fluxes FAB

C and ĤAB satisfy the equations of motion in Eq. (1.9), and in the following
subsections we consider several O(4, 4) rotations TA → CA

B TB and ĤAB → CA
C CB

D ĤCD to find
the dual solutions.

4.1. Semi-Abelian double (Ec
2|A4)

As the first example, let us consider the O(4, 4) transformation

CA
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

The original fluxes in Eq. (4.8) are mapped to the fluxes

F12
4 = 1, F13

2 = −1, F23
1 = 1. (4.11)

The (geometric) fluxes Fab
c are precisely the original ones and the H -flux disappears under the

O(4, 4) transformation. This is an algebra of the Drinfel’d double (in particular a semi-Abelian
double Fa

bc = 0) and we denote the Manin triple as (Ec
2|A4), where A4 denotes the four-dimensional

Abelian algebra. We can easily construct the generalized frame fields by using the group element in
Eq. (4.3). In this frame, the constant metric becomes

ĤAB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 b
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1
0 0 b 1 0 0 1 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

Then we find the supergravity fields as

gmn =
⎛
⎜⎝

1 0 y
2 0

0 1 − x
2 0

y
2 − x

2 b 1
0 0 1 0

⎞
⎟⎠, Bmn =

⎛
⎜⎝

0 0 − y
2 0

0 0 x
2 0

y
2 − x

2 0 −1
0 0 1 0

⎞
⎟⎠, � = 0. (4.13)

The H -flux is

H3 = dx ∧ dy ∧ du, (4.14)

and it turns out that this background is precisely the original NW background. Here, the condition
£vaEmn = 0 for the PL symmetry is satisfied, and we can perform the PL T -duality/plurality as usual.
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4.2. Semi-Abelian double (A4|Ec
2)

Here we consider the PL T -duality of the previous example, where the Manin triple can be denoted
as (A4|Ec

2). By using the parameterization g = ex T1+y T2+u T3+v T4 , we find

ra
m = �a

m = δa
m, πab =

⎛
⎜⎝

0 v −y 0
−v 0 x 0
y −x 0 0
0 0 0 0

⎞
⎟⎠. (4.15)

The generalized metric cannot be parameterized by gmn and Bmn, but we find a solution of DFT,

HIJ (x) =
(

Gmn Gmp β
pn

−βmp Gpn Gmn − βmp Gpq β
qn

)
, d(x) = 0, (4.16)

where

Gmn(x) =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −b

⎞
⎟⎠, βmn(x) =

⎛
⎜⎝

0 −v y 0
v 0 −x 0

−y x 0 1
0 0 −1 0

⎞
⎟⎠. (4.17)

The open-string metric is flat and there is the constant Q-flux

Qx
yu = −1, Qy

xu = 1, Qv
xy = −1. (4.18)

If we make a periodic identification, such as x ∼ x + 1, this spacetime can be regarded a T -fold
[27]. In this example, it is not easy to find an Abelian O(4, 4) transformation which brings this
non-Riemannian background into a Riemannian one.

4.3. Manin triple (G1|G2)

From the algebra in Eq. (4.11), by performing the O(4, 4) transformation

CA
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.19)

we obtain another Manin triple:

F12
4 = 1, F2

13 = −1, F1
23 = 1. (4.20)

For convenience, we denote the four-dimensional algebras characterized by Fab
c and Fc

ab by G1
and G2, respectively. The constant matrix becomes

ĤAB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 b
0 0 1 1 0 0 b −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.21)
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As one can easily expect, we get a non-Riemannian background when b = 0. Assuming b �= 0 and
using the parameterization g = ex T1+y T2−(b u+2 v)T3+v T4 , we find

rm
a =

⎛
⎜⎝

1 0 0 − y
2

0 1 0 x
2

0 0 −b 0
0 0 −2 1

⎞
⎟⎠, �m

a =
⎛
⎜⎝

1 0 0 y
2

0 1 0 − x
2

0 0 −b 0
0 0 −2 1

⎞
⎟⎠, (4.22)

πab =

⎛
⎜⎜⎝

0 0 y 0
0 0 −x 0

−y x 0 x2+y2

2

0 0 − x2+y2

2 0

⎞
⎟⎟⎠, (4.23)

and the dual background is precisely the original one,

gmn =
⎛
⎜⎝

1 0 y
2 0

0 1 − x
2 0

y
2 − x

2 b 1
0 0 1 0

⎞
⎟⎠, Bmn =

⎛
⎜⎝

0 0 − y
2 0

0 0 x
2 0

y
2 − x

2 0 1
0 0 −1 0

⎞
⎟⎠, e−2� = b−1, (4.24)

up to a B-field gauge transformation and a constant shift of the dilaton. Then, we find the invariance
of the NW background under the PL T -plurality.

4.4. Manin triple (G2|G1)

The PL T -duality of the previous example gives a Manin triple (G2|G1). There, again assuming
b �= 0 and using g = e

u
b T3 ex T1+y T2+v T4 , we obtain

rm
a =

⎛
⎜⎝

cos u
b sin u

b 0 0
− sin u

b cos u
b 0 0

0 0 1
b 0

0 0 0 1

⎞
⎟⎠, �m

a =
⎛
⎜⎝

1 0 0 0
0 1 0 0

− y
b

x
b

1
b 0

0 0 0 1

⎞
⎟⎠, πab =

⎛
⎜⎝

0 −v 0 0
v 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (4.25)

The dual geometry is non-Riemannian, and we find

Gmn(x) =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −b

⎞
⎟⎠, βmn(x) =

⎛
⎜⎝

0 −v 0 0
v 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠, e−2 d(x) = b−1. (4.26)

In fact, we find that

Gmn(x) =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −b

⎞
⎟⎠, βmn(x) =

⎛
⎜⎝

0 −v −c0 y 0
v 0 c0 x 0

c0 y −c0 x 0 1
0 0 −1 0

⎞
⎟⎠, e−2 d(x) = const.

(4.27)

solves the equations of motion for an arbitrary parameter c0. Both Eqs. (4.17) and (4.27) are contained
in this one-parameter family of solutions.

4.5. Yang–Baxter deformation based on modified CYBE

Here we consider the YB deformation of the NW background in Eq. (4.13). YB deformations of the
NW model were studied in Ref. [35] by following the prescription of Ref. [36]. There, the general
solution of the (modified) CYBE was found, but the deformation can be removed by a coordinate
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transformation and a B-field gauge transformation, and a new background was not found. In other
words, the NW background was found to be invariant (or self-dual) under the YB deformation.

When the r-matrix solves the homogeneous CYBE, the YB deformation is a particular case of the
PL T -plurality. In the case of the NW background, the general solution of the homogeneous CYBE
is Abelian [35] and then the deformation is just an Abelian T -duality transformation. The only non-
Abelian solution can be found by considering a solution of the modified CYBE. Here, we consider the
YB deformation by using a solution of the modified CYBE. It seems that our deformation is different
from the one studied in Ref. [35], and we find a solution which connects the NW background and a
flat solution.

We consider a Lie algebra of the Drinfel’d double where the dual structure constants satisfy the
coboundary ansatz,

fa
bc = fad

b rdc − fad
c rdb (

rab = −rba). (4.28)

This Drinfel’d double satisfies the Jacobi identity if the following (modified) CYBE is satisfied:

fd1d2
a1 rd1a2 rd2a3 + fd1d2

a2 rd1a3 rd2a1 + fd1d2
a3 rd1a1 rd2a2 = c2 fd1d2

a1 ĝd1a2 ĝd2a3 , (4.29)

where ĝab is the inverse matrix of an invariant metric ĝab satisfying fca
d ĝdb + fcb

d ĝad = 0. Here,
we consider the Lie algebra fab

c given in Eq. (4.11) and the invariant metric

ĝab =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 b 1
0 0 1 0

⎞
⎟⎠. (4.30)

The general solution of Eq. (4.29) was found in Ref. [35], and the only non-Abelian solution is

r12 = c

2
, (4.31)

which gives the structure constants

f12
4 = 1, f13

2 = −1, f23
1 = 1, f1

14 = η, f2
24 = η (η ≡ c/2). (4.32)

The YB deformation can be understood as the deformation of the algebra from η = 0 to η = c/2.
When the r-matrix satisfies the homogeneous CYBE (c = 0), a YB deformation is precisely an
O(4, 4) transformation

TA → CA
B TB, CA

B =
(
δb

a 0
rab δa

b

)
. (4.33)

However, when the r-matrix satisfies the modified CYBE, it is not an O(4, 4) transformation. Indeed,
if we perform the inverse transformation of Eq. (4.33), the algebra in Eq. (4.32) does not go back to
the original one in Eq. (4.11). Rather, the algebra becomes

F12
4 = 1, F13

2 = −1, F23
1 = 1, F124 = −η2, (4.34)

and this includes the R-flux Fabc (= F [abc]) in addition to the original geometric flux (see, for
example, Ref. [37] for more details of the generalized fluxes).
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Fortunately, our constant metric from Eq. (4.12),

ĤAB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 b
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1
0 0 b 1 0 0 1 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.35)

satisfies the equations of motion of DFT in Eq. (1.9) for an arbitrary value of the R-flux F124. Thus,
the fluxes in Eq. (4.32) together with the O(4, 4)-rotated constant matrix

ĤAB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −η 0 0
0 1 0 0 η 0 0 0
0 0 0 0 0 0 −1 b
0 0 0 0 0 0 0 1
0 η 0 0 η2 + 1 0 0 0

−η 0 0 0 0 η2 + 1 0 0
0 0 −1 0 0 0 0 1
0 0 b 1 0 0 1 −b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.36)

satisfy the equations of motion of DFT.
Now let us explicitly construct the YB-deformed background. Using the group element

g = ex T1+y T2 eu T3+v T4 , (4.37)

ra
m and �a

m are obtained as in Eq. (4.4) and we also find

πab =
⎛
⎜⎝

0 0 0 −η x
0 0 0 −η y
0 0 0 0
η x η y 0 0

⎞
⎟⎠. (4.38)

Since the dual structure constants are non-unimodular fbba �= 0, we find a solution of the generalized
supergravity equations of motion:

gmn =

⎛
⎜⎜⎝

1
1+η2 0 y

2 − η x
1+η2 0

0 1
1+η2 − x

2 − ηy
1+η2 0

y
2 − ηx

1+η2 − x
2 − ηy

1+η2 b + η2 (x2+y2)

η2+1
1

0 0 1 0

⎞
⎟⎟⎠, e−2� = 1 + η2,

Bmn =

⎛
⎜⎜⎝

0 − η

1+η2
y
2 − y

η2+1
0

η

1+η2 0 x
1+η2 − x

2 0
y

1+η2 − y
2

x
2 − x

1+η2 0 −1
0 0 1 0

⎞
⎟⎟⎠, I = 1

2 fb
ba va = η v4 = η ∂v. (4.39)

Interestingly, due to the degeneracy (g+B)mn I n = 0, this vector field I disappears from the equations
of motion and can be removed.6 Consequently, we obtain a one-parameter family of supergravity
solutions, Eq. (4.39), without I .

6 A similar situation was observed in Ref. [38] and studied in more detail in Ref. [39].
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By construction, this solution reduces to the NW background by choosing η = 0. Moreover, we
find an interesting special case η = ±1,

gmn =
⎛
⎜⎝

1
2 0 y−η x

2 0
0 1

2 − x+η y
2 0

y−η x
2 − x+η y

2 b + x2+y2

2 1
0 0 1 0

⎞
⎟⎠, Bmn =

⎛
⎜⎝

0 − η

2 0 0
η

2 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠, e−2� = 2, (4.40)

where the curvature tensor and the H -flux vanish. Therefore, we found a one-parameter family
of solutions which contains the NW background (η = 0) and the four-dimensional Minkowski
spacetime (η = ±1) as specific cases.

5. Conclusions

The main purpose of this paper is to point out that the target space of a WZW model can be used as a
seed solution to generate a chain of solutions through the PL T -plurality. The generalized frame fields
EA

I and the constant metric ĤAB given in Eq. (2.4) construct the WZW background, and additionally
EA

I satisfy the algebra [EA, EB]D = −FAB
C EC associated with the 2D-dimensional algebra

Fabc = Habc, Fab
c = Fb

c
a = Fc

ab = fab
c, Fa

bc = Fc
a

b = Fbc
a = 0 = Fabc. (5.1)

If we find an O(D, D) transformation which transforms this algebra into a Drinfel’d double, we obtain
a PL symmetric background, and we can construct further PL symmetric backgrounds by following
the standard procedure of the PL T -plurality. As demonstrations, we studied the PL T -plurality for
two WZW backgrounds, AdS3 with H -flux and the NW background.

In the case of AdS3 with H -flux, we considered two Drinfel’d doubles, DD2 and DD7. There are
4 + 6 inequivalent Manin triples, but all of them are related to the following four solutions through
a coordinate transformation or the standard Abelian T -duality:

Sol1: ds2 = l2 dz2 − dt2 + dx2

z2 , H3 = ±2 l−1 ∗ 1, � = 0; (5.2)

Sol2: ds2
(open) = dx2 + 4

(
dy + y dx

)
dz, β = (

y ∂x − 1
2 ∂z

) ∧ ∂y, d(x) = −x; (5.3)

Sol3: ds2 = 2 dx dy + dz2, B2 = 0, � = ±z; (5.4)

Sol4: ds2 = l2 dz2 + 2 dx+ dx−

z2 + λ (dx−)2, B2 = dx+ ∧ (l2 dx− + 2 z dz)

z2 ,

e−2� = z4, I = ∂+ (λ ∈ R) . (5.5)

The first and the third are familiar solutions, and the last one is the solution of the generalized
supergravity equations of motion known from Ref. [22]. The second one is an interesting AdS3

solution with a traceful constant Q-flux, which is non-Riemannian. This seems to be a new solution,
but as we explained around Eq. (3.22), a B-shift makes this a flat solution with a linear dilaton, and
this is essentially the same as the third solution.
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The correspondence between the Manin triples and the solutions can be summarized as

DD2: (5.i|8|1)︸ ︷︷ ︸
Sol1

∼= (8|5.i|1)︸ ︷︷ ︸
Sol2∗

∼= (60|5.iii|1)︸ ︷︷ ︸
Sol3∗

∼= (5.iii|60|1)︸ ︷︷ ︸
Sol3∗

,

DD7: SL(2) WZW︸ ︷︷ ︸
Sol1

∼= (70|4|1)︸ ︷︷ ︸
Sol4

∼= (4|70|1)︸ ︷︷ ︸
Sol1

∼= (4|2.iii|1)︸ ︷︷ ︸
Sol1∗

∼= (2.iii|4|1)︸ ︷︷ ︸
Sol4

∼= (60|4.i| − 1)︸ ︷︷ ︸
Sol4

∼= (4.i|60| − 1)︸ ︷︷ ︸
Sol1

,

(5.6)

where SL(2) WZW represents the algebra in Eq. (3.39) and ∗ denotes that Abelian T -duality was
required in order to bring the non-Riemannian backgrounds into the Riemannian frame or to make
solutions of the generalized supergravity into the standard solutions.

In the case of the NW background, we considered four Manin triples,

NW ∼= (Ec
2|A4) ∼= (A4|Ec

2)
∼= (G1|G2) ∼= (G2|G1), (5.7)

where NW denotes the algebra in Eq. (4.8). We found that NW, (Ec
2|A4), and (G1|G2) correspond to

the same NW background, while (A4|Ec
2) and (G2|G1) correspond to a non-Riemannian background

of the form in Eq. (4.27). This non-Riemannian background, Eq. (4.27), can be regarded as a flat
space with a constant Q-flux, and is a kind of T -fold if we make some periodic identification of the
spatial direction.

The most interesting solution will be the one obtained by theYB deformation based on the modified
CYBE. In this case, we found a one-parameter family of solutions which contains the NW background
and the flat Minkowski space as particular cases.

We can apply our procedure to other WZW models, such as the WZW model based on the
Heisenberg group H4:

f12
2 = 1, f13

3 = −1, f23
4 = −1. (5.8)

In Ref. [11], this WZW background was realized as a PL symmetric background by considering a
Drinfel’d double:

f12
2 = 1, f13

3 = −1, f23
4 = −1, f2

24 = 1. (5.9)

On the other hand, in our approach the flux algebra is given by

F12
2 = 1, F13

3 = −1, F23
4 = −1, F123 = 1. (5.10)

Since the two eight-dimensional algebras in Eqs. (5.9) and (5.10) are inequivalent, our procedure
will provide another way to construct the H4 WZW background based on a new Drinfel’d algebra,
and will give a new family of dual geometries. Of course, our procedure is not applicable to all of the
WZW model. For example, if we consider the SU(2)WZW model, we may start with the algebra

F12
3 = 1, F23

1 = 1, F31
2 = 1, F123 = 1. (5.11)

However, it seems to be impossible to map this algebra into any Lie algebra of a Drinfel’d double
through an O(3, 3) transformation. In such cases, our procedure does not work (see Ref. [40] for
some discussion on the PL T -duality for the SU(2)WZW model).
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In our examples, we found that many Manin triples correspond to a single background. As a
solution-generating technique this may not seem like a desirable situation, but one can take advantage
of this situation [24]. For example, one may exploit the self-duality under PL T -plurality in order
to search for a new D-brane configuration in a WZW background. An embedding of a D-brane
can be characterized by the boundary condition of the open string, and the boundary condition on
the endpoints of the open string can be characterized by the gluing matrix Rm

n which relates the
left-/right-moving derivatives on the worldsheet,

∂−xm = Rm
n ∂+xn. (5.12)

The gluing matrix for the NW model was studied in Ref. [41], and a similar analysis was done
for AdS3 with H -flux in Ref. [42], and several D-brane configurations were found in these WZW
backgrounds. Subsequently, the transformation rule of the gluing matrix transforms under the PL
T -duality was found in Ref. [43], and its extension to the PL T -plurality was found in Ref. [44].As we
found in this paper, the WZW backgrounds are self-dual under several PL T -pluralities, and a naive
expectation is that we can find new D-brane configurations by mapping the known gluing matrices
through the PL T -plurality transformations. Moreover, since the AdS3 background is related to the
flat space with the linear dilaton, it is also interesting to map the D-brane configurations in these
spaces onto each other. In addition, our PL T -plurality produced many non-Rimannian backgrounds,
but D-branes in these backgrounds have not been studied. Thus, it will be interesting to study various
D-brane configurations in non-Riemannian backgrounds using the procedure of the PL T -plurality
studied in Ref. [44].

In this paper we have restricted ourselves to the PL T -plurality, but the same idea can also be
applied to the non-Abelian U -duality [45–50]. For example, in the En(n) exceptional field theory
(EFT) with n ≤ 4, we may consider a solution of 11-dimensional supergravity where the internal
parts of the supergravity fields are given by

gij = ra
i rb

j ĝab, F4 = 1
4! Fabcd ra ∧ · · · ∧ rd (F4 ≡ dC3), (5.13)

where Fabcd is constant. In this case, we can construct the (weightful) generalized metric as MIJ =
EI

A EJ
B M̂AB by using the generalized frame fields

EA
I =

(
Ea

I

Ea1a2I√
2!

)
=
⎛
⎝ei

a − ek
a Cki1i2√

2!
0 ra1[i1 ra2

i2]

⎞
⎠, (5.14)

and a constant matrix M̂AB ∈ SL(5). We can easily check that this set of generalized frame fields
satisfies the algebra

[EA, EB]E = −XAB
C EC , (5.15)

where [·, ·]E is the generalized Lie derivative in EFT and the structure constants are given by

Xab
c = fab

c, Xabc1c2 = Fabc1c2 , Xa
b1b2

c1c2 = 4 fad
[b1 δb2]d

c1c2
,

X a1a2
bc1c2 = 6 f[c1c2

[a1 δ
a2]
b] , Xa

b1b2c = X a1a2
b

c = X a1a2b1b2C = 0. (5.16)

Under the SL(5) rotation

M̂AB → M̂′
AB ≡ CA

C CB
D ĤCD, XAB

C → X ′
AB

C ≡ CA
D CB

E (C−1)F
C XDE

F (5.17)

23/25



PTEP 2021, 103B03 Y. Sakatani

the components Xabcd may vanish and the new algebra can be regarded as an exceptional Drinfel’d
algebra [45,46]. In that case, we can construct the new generalized frame fields E′

A
I that satisfy the

algebra in Eq. (5.16) for the structure constants X ′
AB

C . Then we obtain the dual solution M′
IJ =

E′
I

A E′
J

B M̂′
AB, similar to the PL T -plurality discussed in this paper.
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