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1 Introduction

Solvable lattice models are important as exact models of statistical physics, conformal

field theory and phase transitions. For a review see [1]. These models are also connected

to domains of mathematics, being of importance in subjects such as Rogers Ramanujan

identities, knot theory, quantum algebra and probability theory.

Of particular interest, both in mathematics and physics, is the underlying algebraic

structure of solvable lattice models. Our general idea is that the algebra depends only

on the number of blocks, which is the degree of the polynomial equation obeyed by the

Boltzmann weights, and is general to all the models, independently of the details of the

model. This paper is directed towards proving this pivotal assertion.
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We started investigating this structure in the papers [2, 3], based on the initial results of

the work [4]. For two blocks, it is well known to be described by Templerley-Lieb algebra [5],

or equivalently Hecke algebra. We study here the three and four blocks cases. We base our

investigation on an ansatz for the Baxterisation put forward in ref. [4]. Using this ansatz

and the Yang-Baxter equation (YBE), we show that the three blocks case obeys a weak ver-

sion of the Birman-Murakami-Wenzl algebra (BMW) [6, 7]. This is discussed in section 2.

For the four blocks case, we find using the ansatz, an algebra which we call 4-CB

(Conformal Braiding). This algebra includes the BMW algebra, with a different skein

relation, along with one additional relation. This is described in section 3. The connection

of this algebraic structure to knot theory is described in section 4.

We check the ansatz for G2 theory, which is a four blocks theory, in section 5. We

already checked it for SU(2) with the field of isposin 3/2 in ref. [3]. We find that it holds

in both cases. We connect the algebraic structure with the tangle algebra of Kuperberg

and Kalfagianni [8, 9]. We find that Kalfagianni’s relations hold for any four blocks theory,

assuming the ansatz, YBE and BMW. This is treated in sections 6–7.

The inversion relation method to compute the free energy, that we use, was first

developed in ref. [10]. It was further elucidated by Baxter [11]. The Baxterization method

that we propose here, was first suggested by Jones for the two block case [12].

Our approach to knot invariants is quite similar to that of [13] and references therein.

These authors construct a Markov trace for any solvable lattice model and prove that it

obeys the Markov properties, thus defining a link invariant for any solvable lattice model.

An equivalent approach is that of Reshetikhin and Turaev [14]. Thes authors define a link

invariant for any quantum group and any representation. Presumably, the two approaches

give the same link invariants.

We define link invariants based on the Baxterization ansatz that we proposed. We

assume that the conjecture that we have a Markov trace, described in section 4, is correct.

Then our link invaraint differs from the above works in two ways. First, we give a tangle

algebra that allows for the practical calculation of the invariants. Second, our link invariants

depend on three arbitrary parameters, whereas the above works hold only for certain values

of the parameters, which correspond to some lattice model or quantum group.

1.1 Solvable IRF models

1.1.1 Interaction-round-the-face (IRF) models

Let I be a set, which is assumed to be finite for the purposes of this article. We assume

that I is endowed with two relations ∼h,∼v . When a ∼h b (a ∼v b) we say that (a, b)

are horizontally (vertically) admissible. In the special case ∼h≡∼v, which will be mainly

considered here, we write ∼ for ∼h,∼v and we say that a, b are admissible whenever a ∼ b.

The third piece of data we require is a function, called the Boltzmann weight, of four

elements of a, b, c, d ∈ I and a complex parameter u, which is required to satisfy

ω

(

a b

c d

∣

∣

∣

∣

u

)

= 0,
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unless the admissibility condition

a ∼h b, a ∼v c, c ∼h d, b ∼v d (1.1)

is met. The parameter u is called the spectral parameter.

An interaction-round-the-face (IRF) lattice model is defined on a two dimensional

square lattice, or its finite approximation via a M ×M box with periodic boundary con-

ditions (we will not make use in the periodicity in the algebraic treatment below, and will

keep it only for the combinatorial motivation). We denote the underlying graph in both

cases by T . A configuration is an assignment of an element of I to each vertex of T. The

partition function of the model is defined to be

Z = Z(u) = ZT (u) :=
∑

configurations

∏

faces

ω

(

a b

c d

∣

∣

∣

∣

u

)

, (1.2)

The state space of the theory is (CI)⊗N , and we denote states using the ket notation

|a1 . . . aN 〉 . Dual states are denoted using the bra notation, 〈a1 . . . aN | . A state is ad-

missible if for all i, ai ∼ ai±1 (we assume here ∼h=∼v, otherwise there are analogous

requirements, but which depend on the parity of i). Denote by Vadm the space spanned by

the admissible states.

1.1.2 Solvability, Yang-Baxter equation (YBE) and braiding

We define the ith face transfer matrix Xi(u) by

〈

a1, a2, . . . , aN |Xi(u)|a′1, a′2, . . . , a′N
〉

=





∏

j 6=i

δaj ,a′j



ω

(

ai−1 ai
a′i ai+1

∣

∣

∣

∣

u

)

. (1.3)

For any u, v, we have

Xi(u)Xj(v) = Xj(v)Xi(u), j 6= i± 1. (1.4)

The Yang-Baxter equation (YBE) is the relation

Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi+1(u). (1.5)

An equivalent formulation of this equation, in terms of the Boltzmann weights, is

∑

c

ω

(

g c

a b

∣

∣

∣

∣

u

)

ω

(

c e

b d

∣

∣

∣

∣

u+ v

)

ω

(

g f

c e

∣

∣

∣

∣

v

)

= (1.6)

=
∑

c

ω

(

a c

b d

∣

∣

∣

∣

v

)

ω

(

g f

a c

∣

∣

∣

∣

u+ v

)

ω

(

f e

c d

∣

∣

∣

∣

u

)

.

If the YBE is satisfied then transfer matrices for different spectral parameters commute.
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Remark 1. Although the point of view presented in this paper is algebraic, we make a

small digression concerning the combinatorial picture. A front in a M × M box T with

periodic boundary conditions (or equivalently a M ×M torus) is a chain of N = 2M − 2

vertices v1, . . . , vN such that vi is a neighbor of vi+1, where addition is modulo N, and

such that the projections of v1, . . . , vN on the diagonal x = −y are increasing, when the

diagonal is oriented from NW to SE. An example of a front is the standard front, which is

an arbitrary shift of the vertices

(0,M), (0,M − 1)(1,M − 1), (1,M − 2), . . . (M, 0) = (0,M)

by a lattice vector. A state can be thought of as an association of an element of I to each

vertex of the front. The state is admissible if neighboring elements are. Since all fronts are

of the same size, there are isomorphisms between their state spaces.

The ith face transfer matrix should be thought as promoting the front from

(v1, . . . , vi−1, vi, vi+1, . . . , vN ) to (v1, . . . , vi−1, vi, vi+1, . . . , vN ) by adding a square whose

four vertices are

vi, vi−1 = vi + (1, 0), vi+1 = vi + (0, 1), vi, v′i = vi + (1, 1).

We see that the face transfer matrices are operators between different, although isomorphic,

state spaces.

Starting from a standard front, applying the transfer matrix

X = X(u) = X1(u) ·X3(u) ·X5(u) · · ·

amounts to pushing the front by (1, 0) and cyclically shifting indices by 1. Thus, roughly

speaking

ZT (u) = Tr(XM ).

This means that if µ1(u), . . . , µr(u) are the eigenvalues of X, counted with multiplicities,

the partition function equals

Z(u) =
r

∑

i=1

µi(u)
M .

If one can understand the eigenvalues of the transfer matrix good enough, the model

is usually solvable, meaning that its partition function can be calculated. It follows from

direct calculation that when the Yang-Baxter equation (1.5) and the commutation equa-

tion (1.4) hold, the matrices X(u) for different u commute. This means that they have

common eigenspaces. In many occasions the combinatorics or physics of the IRF model

give rise to additional constrains on the transfer matrices, which in turn give rise to func-

tional equations satisfies by the different µi(u). Sometimes these constraints are strong

enough to determine the eigenvalues.

One such constraint may be an inversion relation which connects Xi(u) and Xi(−u).

We will consider such an inversion relation below. More details about the transfer matrix

method in statistical mechanics models, as well as different inversion relations can be found

in ref. [1].

– 4 –
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Suppose that the UV limit of the face transfer matrices

Xi = lim
u→i∞

g(u)Xi(u), (1.7)

exists and is finite and non zero, where g(u) is some function. Then the matrix coefficients

of Xi automatically satisfy the admissibility conditions equation (1.1). In addition, one

can also take the limits of equations (1.4), (1.5) to obtain

XiXj = XjXi, j 6= i± 1. (1.8)

XiXi+1Xi = Xi+1XiXi+1. (1.9)

These equations imply that X1, . . . , XN form a representation of the braid group.

1.2 RCFTs and fusion IRF models

In ref. [4] a conjectural recipe for obtaining solvable IRF models from a rational conformal

field theory was described. We review it here, but refer to ref. [4] for more details. We

begin by providing a very partial definition of conformal field theories, and recalling the

most basic properties we need for the discussion below. We refer the reader to ref. [15] for

a complete definition and extensive analysis of conformal field theories.

A conformal field theory (CFT) O is a collection of primary fields, labelled by a set

I, together with a fusion product, which is a commutative and associative product defined

via the fusion structure constants f c
ab (a, b, c are elements of I)

a× b = f c
abc.

Each primary field has a conformal dimension which is a non negative rational number

which specifies the behaviour of the field under conformal symmetries. We identify elements

of I with the corresponding primary fields. O is a rational conformal field theory (RCFT)

if I is finite.

Given a RCFT O and two fields h, v one can use the fusion product to write admissi-

bility conditions ∼h,∼v as follows:

a ∼h b ⇔ f b
ah > 0, a ∼h b ⇔ f b

av > 0.

An IRF model with a set of states I and the admissibility conditions above is called a fusion

IRF model. Such a model is completely specified by its Boltzmann weights ω

(

a b

c d

∣

∣

∣

∣

u

)

which vanish unless

f b
ah > 0, fd

ch > 0, f c
av > 0, and fd

bv > 0. (1.10)

A fusion IRF model is called a n conformal braiding (CB) IRF if the fusion product

of the primary fields h and v is a sum of n primary fields

[h]× [v] =
n−1
∑

i=0

ψi. (1.11)
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1.2.1 Braiding

We are interested in constructing solvable fusion IRF models, meaning models for which

the Bolzmann weights satisfy (1.6). As we saw above, for such a model, if one can define

the UV limit, a representation of the braid group appears, and it is a representation in

which the matrix components satisfy the admissibility conditions (1.10). To a conformal

field theory there are associated braiding matrices

Cc,d

[

h v

a b

]

. (1.12)

The matrix components of these matrices vanish unless the admissibility conditions (1.10)

holds. In addition, these matrices satisfy the hexagon relation, and when h = v, this

relation reduces to the braiding relations (1.8), (1.9).

Moreover, it can be shown that the matrix C whose components are given by (1.12)

for fixed h, v satisfies the characteristic equation

n−1
∏

i=0

(C − λi) = 0,

where n is the number of blocks, and λi are given by

λi = ǫie
iπ(∆h+∆v−∆i), (1.13)

here ∆i,∆h,∆v are the conformal dimensions of ψi, h, v respectively, and ǫi = ±1 according

to whether the product is symmetric or anti-symmetric.

1.2.2 An ansatz for Baxterization

From now on we consider h = h̄ = v. The appearance of the natural braiding matrix

suggests searching for a solvable fusion IRF model with this matrix as the UV limit. More

precisely, we start with matrices Xi, i = 1, . . . , N, which are given by equation (1.3) with

ω

(

a b

c d

∣

∣

∣

∣

u

)

replaced by C

(

a b

c d

)

:= Cc,d

[

h h

a b

]

.

These matrices satisfy the braiding equations (1.8), (1.9), the admissibility condi-

tion (1.10), and correspond to n conformal blocks, meaning

n−1
∏

p=0

(Xi − λp) = 0, (1.14)

where λi are given in equation (1.13). The goal is to construct matrices Xi(u), which

satisfy the admissibility relation (1.10), equations (1.4), (1.5), and that their UV limit is

lim
u→i∞

g(u)Xi(u) = Xi (1.15)

for some function g(u). The process of extending a representation Xi, i = 1, . . . , N of the

braid group, to a solutionXi(u), of the Yang-Baxter equation (1.5) is called a Baxterization.

– 6 –
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The ansatz of ref. [4] is the following. Observe that

Xi =
n−1
∑

a=0

λaP
a
i , (1.16)

where the projection P a
i to the ath eigenspace is given by

P a
i =

∏

p 6=a

[

Xi − λp

λa − λp

]

. (1.17)

These projections satisfy the relations

n−1
∑

a=0

P a
i = 1i, P a

i P
b
i = δa,bP

b
i . (1.18)

Remark 2. The operator 1i is just the identity on the space of admissible states, and

0 on the space spanned by the complementary states. In the algebraic analysis we will

conduct in the following sections, since we will restrict only to admissible states, and

the face transfer matrices preserve Vadm, we will be able to identify 1i with the identity

operator. The reason we still use the notation 1i is that, as was explained in Remark

1 above, although we identify state spaces of different fronts with Vadm, combinatorially

it is more accurate to consider our operators are relating state spaces of different fronts.

With this point of view 1i has the meaning of a unit face transfer matrix, which promotes

the front from (v1, . . . , vi−1, vi, vi+1, . . . , vN ) to (v1, . . . , vi−1, v
′
i, vi+1, . . . , vN ) by adding a

square whose four vertices are

vi, vi−1 = vi + (1, 0), vi+1 = vi + (0, 1), vi, v′i = vi + (1, 1),

and the field which is assigned to v′i in the admissible case is the same field that is assigned

to vi.

We define the crossing parameters as

ζi = π(∆i+1 −∆i)/2, λ = ζ0. (1.19)

The trigonometric ansatz for the Yang Baxter equations (1.5) is

Xi(u) =
n−1
∑

a=0

fa(u)P
a
i , (1.20)

where the functions fa(u) are given by

fa(u) =

[

a
∏

r=1

sin(ζr−1 − u)

][

n−1
∏

r=a+1

sin(ζr−1 + u)

]

/

[

n−1
∏

r=1

sin(ζr−1)

]

. (1.21)

With this ansatz the following inversion relation or unitarity is straight forward

Xi(u)Xi(−u) = ρ(u)ρ(−u)1i, (1.22)

– 7 –
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where the function ρ is defined by

ρ(u) =
n−1
∏

r=1

sin(ζr−1 − u)

sin(ζr−1)
. (1.23)

It is also conjectured in ref. [4] that the Boltzmann weights obey crossing symmetry

ω

(

a b

c d

∣

∣

∣

∣

λ− u

)

=

[

GbGc

GaGd

]1/2

ω

(

c a

d b

∣

∣

∣

∣

u

)

, (1.24)

where Ga is some factor and λ = ζ0 is the crossing parameter.

The IRF model given by this ansatz is called the (O, h, v) fusion IRF model.

1.3 n Conformal Braiding (CB) algebras

The algebras formed by the operators Xi(u), i = 1, . . . , N, in the n blocks case are collec-

tively called n CB algebras. We would like to understand the structure of these algebras,

what are the relations between generators, and whether there are interesting subalgebras

or quotients.

The simplest non trivial case is the n = 2 case. In this case Xi satisfy a quadratic

relation, and it is shown in ref. [4] section 7, that the algebra formed by the Xi is a

AN+1−Hecke algebra. In this case it is also proven that the ansatz provides a solution to

the YBE (1.5) and the commutation (1.4).

An example of an interesting subalgebra is an embedding of the Temperley-Lieb alge-

bra: we define the operator,

Ei = Xi(λ), (1.25)

where λ is the crossing parameter of (1.19). Assuming the crossing symmetry (1.24) holds,

it follows that

E

(

a b

c d

)

=

(

GbGc

GaGd

)1/2

δa,d,

where we denoted Ei above with its explicit indices. From this equation, it follows, that

Ei obeys the Temperley-Lieb algebra (for any n),

EiEi±1Ei = Ei, E2
i = bEi, EiEj = EjEi, if |i− j| > 1, (1.26)

where

b =
n−2
∏

r=0

sin(λ+ ζr)

sin(ζr)
. (1.27)

1.4 The main results

In this paper we analyze n CB algebras for n = 3, 4 (and h = v = h̄).

In the n = 3 case we prove that the operators Xi(u) constructed by the ansatz satisfy

the required relations (1.4), (1.5) and (1.24) if an only if the generators 1, Ei, Gi, G
−1
i , i =

1, . . . , N where G±1
i are proportional to Xi, X

t
i , form an algebra to which we call the

weak Birman-Murakami-Wenzl (BMW) algebra. This algebra which is defined below, has

– 8 –
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the property that a simple quotient of it gives the well known BMW algebra [6, 7] . We

conjecture, and have verified in many examples, that the above generators satisfy the BMW

algebra itself. We conjecture that most of the BMW algebra relations hold for all n.

In the n = 4 case, assuming this conjecture regarding the BMW relations for general

n, we describe an algebra which is a generalization of the BMW algebra over the same set

of generators, and which is equivalent to YBE.

We then consider two explicit special cases with n = 4 blocks. The first is the G2 model

and the second is SU(2) 3× 3 model. For the first model we show that by adding two new

types of generators Hi,Ki, i = 1, . . . , N the algebra formed by 1, Ei, Gi, G
−1
i , Hi,Ki, i =

1, . . . , N is the Kalfagianni-Kuperberg algebra (defined in [9], following the work of ref. [8]).

We then show that by defining Hi,Ki in an analogous way, very similar relations hold in

the case of SU(2) 3 × 3 model. The algebra we find there is new, as far as we know. We

extend the definition of the new generators Hi,Ki to any n = 4 fusion IRF model. In

sections 6, 7 we show that the relations we find also extend in a similar manner to the

general n = 4 theories.

2 n = 3 case

Consider the case of n = 3. Auppose the crossing relation

ω

(

a b

c d

∣

∣

∣

∣

ζ0 − u

)

=

(

GbGc

GaGd

)
1

2

ω

(

c a

d b

∣

∣

∣

∣

u

)

, (2.1)

where Ga is the multiplier.

Set s0 = eiζ0 , s1 = eiζ1 .

Recall equation (1.25) and the ansatz. We have

Ei = Xi(ζ0) =
sin(2ζ0) sin(ζ0 + ζ1)

sin(ζ0) sin(ζ1)
P 0
i =

(

s0
2s1

2 − 1
) (

s0
2 + 1

)

(s12 − 1) s02
P 0
i . (2.2)

Put
Gi = 4 sin(ζ0) sin(ζ1)e

−iζ0Xi = −e−2iζ0−iζ1P 0
i + e−iζ1P 1

i − eiζ1P 2
i

= −s−2
0 s−1

1 P 0
i + s−1

1 P 1
i − s1P

2
i .

(2.3)

Then

P 0
i =

(s1
2 − 1)s0

2

(s02s12 − 1)(s02 + 1)
Ei,

P 1
i =

s1
2 − 1

(s02 + 1)(s12 + 1)s02
Ei +

s1
2

s12 + 1
G2

i +
s1

3

s12 + 1
Gi

P 2
i = − (s1

2 − 1)

(s02s12 − 1)(s12 + 1)s02s12
Ei −

1

(s13 + s1)
Gi +

1

s12 + 1
G2

i ,

(2.4)

and GiEi = EiGi = l−1Ei, where l = −s20s1.

Using P 0
i + P 1

i + P 2
i = 1, we obtain

G2
i = −(s1

2 − 1)

s02s12
Ei + 1 +

(

1

s1
− s1

)

Gi. (2.5)

– 9 –
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Denote m = −2i sin(ζ1) = s−1
1 − s1. Then

Gi = −m

l
EiG

−1
i +G−1

i +m. (2.6)

This implies the skein relation

m(Ei − 1) = G−1
i −Gi. (2.7)

Using the expression for G2
i , we have

P 0
i =

(s1
2 − 1)s0

2

(s02s12 − 1)(s02 + 1)
Ei,

P 1
i = − (s1

2 − 1)

(s02 + 1)(s12 + 1)
Ei +

s1
2

s12 + 1
+

s1
s12 + 1

Gi

P 2
i = − (s1

2 − 1)

(s02s12 − 1)(s12 + 1)
Ei −

s1
(s12 + 1)

Gi +
1

s12 + 1
.

(2.8)

Therefore

Xi(u) =
1

(

s20 − 1
) (

s21 − 1
)(q1 + q2e

2iu + q3e
−2iu),

q1 = (s1
2 − 1)s0

2 + (1− s1
2)Ei + (s0

2 + 1)s1Gi,

q2 = (1− s1
2) + (s1

2 − 1)Ei − s1Gi,

q3 = −s0
2s1Gi.

(2.9)

By equations (1.26-1.27), EiEjEi = Ei, when |i − j| = 1, and E2
i = bEi, where

b = sin(2ζ0) sin(ζ0+ζ1)
sin(ζ0) sin(ζ1)

=
(s02s12−1)(s02+1)

(s12−1)s02
.

The skein relation implies that for |i− j| = 1,

(Ei − 1)EjGi =
1

m
(G−1

i −Gi)EjGi

GiEj(Ei − 1) =
1

m
GiEj(G

−1
i −Gi),

(2.10)

and

G−1
i EjGi = G−1

i (1 +
1

m
(G−1

j −Gj))Gi, GjEiG
−1
j = Gj(1 +

1

m
(G−1

i −Gi))G
−1
j . (2.11)

Therefore

EiEjGi = EjGi −
1

m
GiEjGi +

1

m
G−1

i EjGi,

GiEjEi = GiEj +
1

m
GiEjG

−1
i − 1

m
GiEjGi.

(2.12)

and G−1
i EjGi = GjEiG

−1
j .
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Using Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi+1(u) and the above relations, we

obtain 19 equations. The only two independent equations are the following equations.

(s1
2 − 1)

2
(s0

2s1
2 − s1

2 + 1)Ei − (s1
2 − 1)

2
(s0

2s1
2 − s1

2 + 1)Ei+1 (2.13)

+(s1
2 − 1)

2
s1Ei+1Gi + (s1

4 − s1
2)GiEi+1Gi + (s1

2 − 1)
2
s1EiGi+1Ei

+(s1
2 − 1)

2
s1GiEi+1 − (s1

2 − 1)
2
s1EiGi+1 + (s1

2 − s1
4)Gi+1EiGi+1

−(s1
2 − 1)

2
s1Ei+1GiEi+1 − (s1

2 − 1)
2
s1Gi+1Ei = 0,

−(s1
2 − 1)

2
(s0

4 + s0
2s1

2 − s1
2 + 1)Ei + (s1

2 − 1)
2
(s0

4 + s0
2s1

2 − s1
2 + 1)Ei+1 (2.14)

−(s1
2 − 1)

2
(s0

4 + 1)s1Ei+1Gi + (s1
2 − 1)

2
(s0

4 + 1)s1Gi+1Ei

−(s1
2 − 1)(s0

4 + 1)s1
2GiEi+1Gi − (s0

2 + 1)(s1
2 − 1)

2
s1EiGi+1Ei

−(s1
2 − 1)

2
(s0

4 + 1)s1GiEi+1 + (s1
2 − 1)

2
(s0

4 + 1)s1EiGi+1

+(s1
2 − 1)(s0

4 + 1)s1
2Gi+1EiGi+1 + (s0

2 + 1)(s1
2 − 1)

2
s1Ei+1GiEi+1 = 0.

These equations are equivalent to the following:

s0
2s1Ei − s0

2s1Ei+1 + EiGi+1Ei − Ei+1GiEi+1 = 0 (2.15)

and

(s1
2 − 1)

2
Ei − (s1

2 − 1)
2
Ei+1 + (s1 − s1

3)Ei+1Gi + (s1
2 − 1)s1Gi+1Ei

−s1
2GiEi+1Gi + (s1 − s1

3)GiEi+1 + (s1
2 − 1)s1EiGi+1 + s1

2Gi+1EiGi+1 = 0.
(2.16)

Thus, assume the crossing relation (1.24), or even only its consequence eq. (1.26). We

have proved that Xi(u) satisfies the Yang-Baxter equation

Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi(u), (2.17)

if and only if Gi, Ei satisfies the following relations:

GiGj =GjGi, |i−j| ≥ 2,

GiGjGi=GjGiGj , |i−j|=1,

m(Ei−1)=G−1
i −Gi,

GiEi= l−1Ei, (2.18)

EiGjEi− lEi−EjGiEj+ lEj =0, |i−j|=1,

m2(Ei−Ej)+m(EjGi−GjEi+GiEj−EiGj)−GiEjGi+GjEiGj =0, |i−j|=1,

where m = l−l−1

b−1 = s−1
1 − s1, l = −s20s1.

We call the above relations weak BMW relation and we call the algebra generated by

Gi, Ei subject to the weak BMW relation the weak BMW algebra.

In fact, for general n blocks, using the ansatz, the Yang-Baxter equation implies that

GiGj = GjGi, |i− j| ≥ 2,

GiGjGi = GjGiGj , |i− j| = 1,

GiEi = l−1Ei,

(2.19)

for some l.
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3 The 4-CB algebra

We focus now on the four blocks case, n = 4.

We find it convenient, for future use, to scale the braiding matrices as follows. We

have

Xi = lim
u→i∞

exp(3iu)Xi(u), Xt
i = lim

u→−i∞
exp(−3iu)Xi(u). (3.1)

We define the operators Gi, G
−1
i and Ei by,

Gi = 8e−3iζ0/2 sin(ζ0) sin(ζ1) sin(ζ2)Xi,

G−1
i = 8e3iζ0/2 sin(ζ0) sin(ζ1) sin(ζ2)X

t
i ,

Ei = Xi(ζ0).

(3.2)

The normalization is taken so that G−1
i will be the inverse of Gi,

GiG
−1
i = 1i, (3.3)

in view of the inversion relation eq. (1.22).

We can now express the projection operators P a
i in terms of Gi, G

−1
i and Ei. This is

given by solving the set of equations which are obtained from the ansatz for the Boltzmann

weights, eqs. (1.20)–(1.21),

Gi = ie−
5

2
iζ0−iζ1−iζ2

(

e2iζ0P 1
i − e2iζ0+2iζ1P 2

i + e2iζ0+2iζ1+2iζ2P 3
i − P 0

i

)

, (3.4)

G−1
i = ie

1

2
iζ0−iζ1−iζ2

(

e2iζ0+2iζ1+2iζ2P 0
i − e2iζ1+2iζ2 P 1

i + e2iζ2P 2
i − P 3

i

)

, (3.5)

Ei =
e−3iζ0

(

1 + e2iζ0
) (

−1 + eiζ0+iζ1
) (

1 + eiζ0+iζ1
)

(−1 + eiζ1) (1 + eiζ1) (−1 + eiζ2) (1 + eiζ2)

×
(

−1 + eiζ0+iζ2
)(

1 + eiζ0+iζ2
)

P 0
i , (3.6)

along with
3

∑

a=0

P a
i = 1. (3.7)

Our purpose is to describe the algebra obeyed by Gi, G
−1
i and Ei. These are defined by

Gi = 8

[

2
∏

r=0

sin(ζr)

]

e−3iλ/2Xi,

G−1
i = 8

[

2
∏

r=0

sin(ζr)

]

e3iλ/2Xt
i ,

Ei = Xi(λ).

(3.8)

By slight abusing the notations, we also call this algebra 4-CB (conformal braiding) algebra.

Due to the inversion relation, eq. (1.22) we have the relation,

GiG
−1
i = 1i. (3.9)

– 12 –



J
H
E
P
1
1
(
2
0
1
9
)
1
5
5

The phase in eq. (3.8) is arbitrary and is set to simplify the 4-CB algebra. We have also

the braiding relation,

GiGi+1Gi = Gi+1GiGi+1, GiGj = GjGi if |i− j| ≥ 2. (3.10)

We already know that Ei obeys the Temperley-Lieb algebra, eqs. (1.26)–(1.27),

EiEi±1Ei = Ei, E2
i = bEi, where b =

2
∏

r=0

sin(λ+ ζr)

sin(ζr)
. (3.11)

The next relations are,

GiEi = EiGi = l−1Ei, (3.12)

which follow by taking the ansatz eqs. (1.20)–(1.21) for Gi and using the projection rela-

tions, eq. (1.18), P a
i P

0
i = P 0

i P
a
i = δa,0P

0
i . The value of l is,

l = iei(3λ/2+ζ0+ζ1+ζ2). (3.13)

We can calculate,

G2
i = −e−5iζ0−2iζ1−2iζ2P 0

i − e−iζ0−2i ζ1−2iζ2P 1
i − e−iζ0+2iζ1−2iζ2 P 2

i − e−iζ0+2iζ1+2iζ2P 3
i .

(3.14)

We can substitute the expressions for P a
i from Gi, G

−1
i and Ei, eqs. (3.4)–(3.6). We then

find the relation expressing G2
i ,

G2
i = ie−

1

2
iζ0−iζ1−iζ2

(

1− e2iζ1 + e2iζ1+2iζ2
)

Gi + ie−
3

2
iζ0+iζ1−iζ2 G−1

i

+
e−2iζ0−2iζ1−2iζ2

(

e2iζ1 − 1
) (

1 + e2iζ0+2iζ1+2iζ2
) (

e2iζ2 − 1
)

(e2iζ0+2iζ2 − 1)
Ei

− e−iζ0−2iζ2
(

1− e2iζ2 + e2iζ1+2iζ2
)

. (3.15)

We define the coefficients α, β, γ and δ by writing this equation as

G2
i = α+ βEi + γGi + δG−1

i . (3.16)

This is the skein relation.

From the skein relation, eq. (3.16), we find the relation,

Gi±1GiEi±1 = EiGi±1Gi, (3.17)

which follows by expressing Ei = (G2
i −α−γGi−δG−1

i )/β from the skein relation eq. (3.16)

and inserting it into eq. (3.10).

The additional relations areconjectural, but hold in all examples we have checked.

These relations assume the same form as the Birman-Murakami-Wenzl (BMW) algebra [6,

7] and are summarized below.

Gi±1GiEi±1 = EiEi±1, Gi±1EiGi±1 = G−1
i Ei±1G

−1
i ,

Gi±1EiEi±1 = G−1
i Ei±1, Ei±1EiGi±1 = Ei±1G

−1
i ,

EiGi±1Ei = lEi.

(3.18)
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The last relation follows from the Yang Baxter equation, see section 1. It is

g(i, i+ 1, i) = g(i+ 1, i, i+ 1), (3.19)

where
g = a1,2,4 + a1,3,1 + a4,2,1 + iq−ζ0/2+ζ1−ζ2(a1,3,4 + a4,2,4 + a4,3,1)

+ iqζ0/2−ζ1+ζ2(a2,3,4 + a4,1,4 + a4,3,2)

+ i
qζ1+ζ2

(q2ζ1 − 1)(q2ζ2 − 1)

(

qζ0/2a1,2,1 + q−ζ0/2a2,1,2

)

+ za4,3,4,

(3.20)

where

z =
q−ζ0−2ζ1−2ζ2(q2ζ1 − 1)(q2ζ2 − 1)

q2ζ0+2ζ2−1

×
(

2q2ζ0+2ζ2 + 2q2ζ0+2ζ1+2ζ2 + q4ζ0+2ζ1+4ζ2 + 1
)

.

(3.21)

We denoted by ai,j,k(r, s, t) the element of the algebra ai[r]aj [s]ak[t] where ai[r] is

Gr, G
−1
r , Er or 1r, if i = 1, 2, 3, 4, respectively.

This summarizes all the relations of the 4-CB algebra. As we will show below, these

are all the relations that follow from the YBE and are equivalent to it. We checked these

relations for the model SU(2) fused 3 × 3 as described in ref. [3]. We also checked these

relations for the G2 model described in section 5 for q = 0.7. We find a complete agreement

with the 4-CB algebra. In section 5 we will prove this algebra for G2.

3.1 n = 4 YBE and relations (3.11)–(3.21)

Our goal now is to verify that all the relations (3.11)–(3.21), represent a certain solution of

the YBE, if(f) the parameters are fixed in appropriate way. The idea of the check is rather

simple and follows closely the analogous consideration for 3-blocks case, described in the

previous section.

Denoting s0 = eiζ0 , s1 = eiζ1 , s2 = eiζ2 , we get the projectors

P 0
i =

s30
(

s21 − 1
) (

s22 − 1
)

(

s20 + 1
) (

s20s
2
1 − 1

) (

s20s
2
2 − 1

)Ei,

P 1
i =

is2s
3
1√

s0
(

s21 + 1
) (

s21s
2
2 − 1

)G−1
i +

i
√
s0s2s1

(

s21 + 1
) (

s21s
2
2 − 1

)Gi+

+
s0

(

s21 − 1
) (

s22 − 1
) (

s20s
2
1s

2
2 + 1

)

(

s20 + 1
) (

s21 + 1
) (

s20s
2
2 − 1

) (

s21s
2
2 − 1

)Ei +

(

s22 − 1
)

s21
(

s21 + 1
) (

s21s
2
2 − 1

)1i,

P 2
i =

i
√
s0s1s2

(

s21 + 1
) (

s22 + 1
)Gi −

is1s2√
s0

(

s21 + 1
) (

s22 + 1
)G−1

i −

− s0
(

s21 − 1
) (

s22 − 1
) (

s20s
2
1s

2
2 + 1

)

(

s20s
2
1 − 1

) (

s21 + 1
) (

s20s
2
2 − 1

) (

s22 + 1
)Ei +

(

s21s
2
2 + 1

)

(

s21 + 1
) (

s22 + 1
)1i,

(3.22)

where (3.7) is used in order to eliminate P 3
i . Note that the skein relation (3.16) allows also

to use other choices of any three independent parameters.
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Taking into account the explicit form of the conjectured trigonometric solution

eqs. (1.20)–(1.21), the Yang Baxter equation (1.5) can be written in the form

Y BE ⇒
∑

r,s

CY BE
rs qr1q

s
2 = 0, (3.23)

where q1 = eiu, q2 = eiv, the integers r, s are in the region [0, 2n], and the coefficients

CY BE
rs are expressed in terms of the generators Ei, Gi, G

−1
i and 1i. Hence, in order to

fulfil the YBE for generic values of the spectral parameters u, v one has to ensure that the

coefficients CY BE
rs = 0, for all r and s.

In the 4-blocks case simple counting shows that there are 37 relations, r ∈ [0, 8] step

2, and s ∈ [Max(r − 6, 0),Min(r + 6, 8)] step 2. Taking into account the factorised form

of the coefficients fa(u) in terms of sine functions, see eq. (1.21), we note that for general

n the number of the relations is given by Hex number, i. e. by the number of partitions of

6(n− 1) into at most 3 parts, which is N(n) = 3(n− 1)n+ 1, so that for lower values of n

we have 1, 7, 19, 37, 61, 91, . . ..

In our case a few relations are written below explicitly

(r,s)= (0,0) : a1,1,1(i, i+1, i)−a1,1,1(i+1, i, i+1)=0,

(r,s)= (0,2) : s21s
2
2s

3/2
0 a4,1,1(i+1, i, i+1)−s22s

3/2
0 a4,1,1(i+1, i, i+1)

+s22s
3/2
0 a1,1,4(i, i+1, i)+s21s

3/2
0 a1,1,4(i, i+1, i)−s21s

3/2
0 a4,1,1(i+1, i, i+1)

−s21s
2
2s

3/2
0 a1,1,4(i, i+1, i)−s

3/2
0 a1,1,4(i, i+1, i)+s

3/2
0 a4,1,1(i+1, i, i+1)

−is1s2s
2
0a1,1,1(i, i+1, i)+ is1s2s

2
0a1,1,1(i+1, i, i+1)+ is1s2s0a1,1,2(i, i+1, i)

−is1s2s0a2,1,1(i+1, i, i+1)−s21
√
s0a1,1,3(i, i+1, i)+s21s

2
2

√
s0a1,1,3(i, i+1, i)

−s22
√
s0a1,1,3(i, i+1, i)+s21

√
s0a3,1,1(i+1, i, i+1)−√

s0a3,1,1(i+1, i, i+1)

−is1s2a1,1,1(i, i+1, i)+ is1s2a1,1,1(i+1, i, i+1)+
√
s0a1,1,3(i, i+1, i)

−s21s
2
2

√
s0a3,1,1(i+1, i, i+1)+s22

√
s0a3,1,1(i+1, i, i+1)=0,

(r,s)= (0,4) : s21s
2
2s

3/2
0 a3,1,1(i+1, i, i+1)−s22s

3/2
0 a3,1,1(i+1, i, i+1)

+s22s
3/2
0 a1,1,3(i, i+1, i)−s

3/2
0 a1,1,3(i, i+1, i)−s21s

3/2
0 a3,1,1(i+1, i, i+1)

+s
3/2
0 a3,1,1(i+1, i, i+1)+s21s

3/2
0 a1,1,3(i, i+1, i)−s21s

2
2s

3/2
0 a1,1,3(i, i+1, i)

−is1s2s
2
0a1,1,2(i, i+1, i)+ is1s2s

2
0a2,1,1(i+1, i, i+1)+ is1s2s0a1,1,1(i, i+1, i)

−is1s2s0a1,1,1(i+1, i, i+1)−s21
√
s0a1,1,4(i, i+1, i)+s21s

2
2

√
s0a1,1,4(i, i+1, i)

−s22
√
s0a1,1,4(i, i+1, i)+

√
s0a1,1,4(i, i+1, i)+s21

√
s0a4,1,1(i+1, i, i+1)

−is1s2a1,1,2(i, i+1, i)+ is1s2a2,1,1(i+1, i, i+1)−√
s0a4,1,1(i+1, i, i+1)

−s21s
2
2

√
s0a4,1,1(i+1, i, i+1)+s22

√
s0a4,1,1(i+1, i, i+1)=0,

(r,s)= (0,6) : a1,1,2(i, i+1, i)−a2,1,1(i+1, i, i+1)=0,

etc.

(3.24)

Here we use the notation introduced just below eq. (3.21). We do not write all the relations

since their expressions are bulky in general, while the computation is rather straightforward.
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Our next task is to implement the relations (3.11)–(3.19). We perform this gradu-

ally. First, we use the “simple” parameter-free relations, like the braiding relations (3.10),

parameter-free Temperley-Lieb algebra relations (3.11), the relation (3.18), and all the re-

lations, which follow from these relations. We chose this order not to end up with some

particular solution of the YBE, obeying softer algebraic constraints, but existing only for

special choices of the parameters. The relations are

a1,1,1(i+ 1, i, i+ 1) = a1,1,1(i, i+ 1, i), a2,1,1(i+ 1, i, i+ 1) = a1,1,2(i, i+ 1, i),

a1,1,2(i+ 1, i, i+ 1) = a2,1,1(i, i+ 1, i), a2,2,1(i+ 1, i, i+ 1) = a1,2,2(i, i+ 1, i),

a1,2,2(i+ 1, i, i+ 1) = a2,2,1(i, i+ 1, i), a2,2,2(i+ 1, i, i+ 1) = a2,2,2(i, i+ 1, i),

a3,1,1(i+ 1, i, i+ 1) = a1,1,3(i, i+ 1, i), a1,1,3(i+ 1, i, i+ 1) = a3,1,1(i, i+ 1, i),

a2,3,1(i+ 1, i, i+ 1) = a1,3,2(i, i+ 1, i), a2,4,1(i+ 1, i, i+ 1) = a1,4,2(i, i+ 1, i),

a1,3,2(i+ 1, i, i+ 1) = a2,3,1(i, i+ 1, i), a1,4,2(i+ 1, i, i+ 1) = a2,4,1(i, i+ 1, i),

a2,2,3(i+ 1, i, i+ 1) = a3,2,2(i, i+ 1, i), a3,2,2(i+ 1, i, i+ 1) = a2,2,3(i, i+ 1, i).

(3.25)

For example, to obtain the last relation a3,2,2(i + 1, i, i + 1) = a2,2,3(i, i + 1, i), which is

explicitly Ei+1G
−1
i G−1

i+1 = G−1
i G−1

i+1Ei, we multiply the equation (3.17) from both sides by

G−1
i G−1

i+1 and then use the inversion relation (3.9).

Now we are in the position to implement the relations involving parameters (like skein

relation, etc.) and also all their derivatives. In principle, this can be done in deferent ways,

our guiding principle is to exclude all linear dependent elements, simultaneously choosing

among the linear independent elements those with the maximal numbers of 1i generators.

First set of the relations is

a1,2,3(x) = αa4,3,3(x) + βa3,3,3(x) + γa1,3,3(x) + δa2,3,3(x),

a2,1,3(x) = −βla3,3,3(x)

δ
− αa2,3,3(x)

δ
− γa4,3,3(x)

δ
+

a1,3,3(x)

δ
,

a3,2,1(x) = αa3,3,4(x) + βa3,3,3(x) + γa3,3,1(x) + δa3,3,2(x),

a3,1,2(x) = −βla3,3,3(x)

δ
− αa3,3,2(x)

δ
− γa3,3,4(x)

δ
+

a3,3,1(x)

δ
,

(3.26)

which follow from the skein relation. Here x stands for either (i+ 1, i, i+ 1) or (i, i+ 1, i).

For example, in order to obtain the first one we use the relation G−1
i+1Ei = GiEi+1Ei from

eq. (3.18), and then the 4-blocks skein relation to exclude G2
i on the first place.

Similarly, we get

a3,1,3(i, i+1, i)= la4,3,4(i+1, i, i+1), a3,1,3(i+1, i, i+1)= la4,3,4(i, i+1, i),

a2,4,3(i+1, i, i+1)= la4,3,4(i, i+1, i), a2,4,3(i, i+1, i)= la4,3,4(i+1, i, i+1),

a3,4,2(i+1, i, i+1)= la4,3,4(i, i+1, i), a3,4,2(i, i+1, i)= la4,3,4(i+1, i, i+1),

a3,2,3(i, i+1, i)=
a4,3,4(i+1, i, i+1)

l
, a3,2,3(i+1, i, i+1)=

a4,3,4(i, i+1, i)

l

a1,4,3(i+1, i, i+1)=
a4,3,4(i, i+1, i)

l
, a1,4,3(i, i+1, i)=

a4,3,4(i+1, i, i+1)

l
,

a3,4,1(i+1, i, i+1)=
a4,3,4(i, i+1, i)

l
, a3,4,1(i, i+1, i)=

a4,3,4(i+1, i, i+1)

l
.

(3.27)
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In particular, the first two correspond to the last equation in (3.18) and others can be

derived from it.

We also have

a1,4,1(i± 1, i, i± 1) = αa4,4,4(i, i± 1, i) + βa4,3,4(i, i± 1, i)

+ γa4,1,4(i, i± 1, i) + δa4,2,4(i, i± 1, i),

a2,4,2(i± 1, i, i± 1) =
a4,1,4(i, i± 1, i)

δ
− βla4,3,4(i, i± 1, i)

δ

− αa4,2,4(i, i± 1, i)

δ
− γa4,4,4(i, i± 1, i)

δ
,

(3.28)

and

a3,4,3(i± 1, i, i± 1) =

(

1

βl2
− α

β
− γ

βl
− δl

β

)

a4,3,4(i, i± 1, i), (3.29)

which follow again from the skein relation, and from the relation (3.12).

And also some trivial relations involving unity operator, like

a2,4,1(i, i+ 1, i) = a2,4,1(i+ 1, i, i+ 1),

a1,4,2(i, i+ 1, i) = a2,4,1(i, i+ 1, i),

a1,4,2(i+ 1, i, i+ 1) = a2,4,1(i+ 1, i, i+ 1),

ak,s,4(i+ 1, i, i+ 1) = a4,k,s(i, i+ 1, i),

a4,k,s(i+ 1, i, i+ 1) = ak,s,4(i, i+ 1, i),

ak,4,4(i, i+ 1, i) = a4,k,4(i+ 1, i, i+ 1),

a4,4,k(i, i+ 1, i) = a4,k,4(i+ 1, i, i+ 1),

ak,4,4(i+ 1, i, i+ 1) = a4,k,4(i, i+ 1, i),

a4,4,k(i+ 1, i, i+ 1) = a4,k,4(i, i+ 1, i),

(3.30)

which are valid for any k, s. For example, the first relation is 1i1i+1 = 1i+11i, which is

obviously true.

Finally, we use

l = iq
5ζ0
2

+ζ1+ζ2 ,

α = −q−ζ0−2ζ2
(

−q2ζ2 + q2ζ1+2ζ2 + 1
)

,

β =
q−2ζ0−2ζ1−2ζ2

(

q2ζ1 − 1
) (

q2ζ2 − 1
) (

q2ζ0+2ζ1+2ζ2 + 1
)

q2ζ0+2ζ2 − 1
,

γ = iq−
ζ0
2
−ζ1−ζ2

(

−q2ζ1 + q2ζ1+2ζ2 + 1
)

,

δ = iq−
3

2
ζ0+ζ1−ζ2 ,

(3.31)

– 17 –



J
H
E
P
1
1
(
2
0
1
9
)
1
5
5

or in terms of s1, s2, s3,

l = is
5/2
0 s1s2,

α = −s21s
2
2 − s22 + 1

s0s22
,

β =

(

s21 − 1
) (

s22 − 1
) (

s20s
2
1s

2
2 + 1

)

s20s
2
1s

2
2

(

s20s
2
2 − 1

) ,

γ =
i
(

s22s
2
1 − s21 + 1

)

√
s0s1s2

,

δ =
is1

s
3/2
0 s2

.

(3.32)

Substituting the relations (3.14)–(3.21) into 37 relations obtained from the YBE,

eq. (3.24), we find that some of the YBE relations become fulfilled, and we are left with

19 relations. For these remaining relations we find that they are compatible if and only if

the relation g(i, i+ 1, i) = g(i+ 1, i, i+ 1), eqs. (3.19)–(3.20), is imposed.

4 Three parameter link invariant

Let BMW ′
n be the 4-CB algebra described in section 3 with generators 1, G1, . . . , Gn−1 and

also Ei, i = 1, 2, . . . , n− 1. Let b be as in eq. (3.11) and l as in eq. (3.13). We conjecture

the existence of a unique trace function

τ :
⋃

BMW ′
n → C,

which satisfies the following properties

1) τ(a+ b) = τ(a) + τ(b).

2) τ(ab) = τ(ba).

3) τ(1) = 1 and τ(Ei) = b.

4) τ(w ·Gn) = l−1τ(w), and τ(w ·G−1
n ) = lτ(w), where w ∈ BMW ′

n.

The existence of such trace will allow us to define a link invariant extending the results

of ref. [3]. We do it in the following way. We assign Ei and Gi to diagrams, as in figure 1.

Given a composite diagram, we assign it an expression in terms of Ei and Gi in the expected

way, and apply τ to the result. We denote by L(D) the result of this assignment, performed

on a diagram D.

From the properties of τ and the relations of BMW ′
n one can show that L has the

following properties:

1) L(O) = b,

2) L(Sr) = l−1L(S) and L(Sl) = lL(S),
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Gi 7−→ . . . . . .

1 i-1 i i+1 i+2 n

and Ei 7−→ . . . . . .

1 i-1 i i+1 i+2 n

Figure 1. The isomorphism between 4-CB and the tangle algebra.

→

Type I

→

Type II

→

Type III

Figure 2. Reidemeister moves.

3) L is unchanged by Reidemeister moves II,III, which are described in figure 2.

Here O is the standard diagram for the unknot, S is a strand and Sr (respectively

Sl) is the same strand with a right handed curl (respectively left handed) as in type I

Reidemeister move. The third property follows from the relations of the 4-CB algebra.

We correct L to form a Markov trace by putting

ν(K) = lω(K)L(K), (4.1)

where K is link, ν(K) is the link invariant, ω(K) is the writhe of the link defined as the

number of left crossings minus the number of right crossings. By properties 2),3) above we

see that ν is a link invariant.

If the conjecture is correct then the resulting link invariant belongs to a three parameter

family of invariants, where the parameters are the ζis. In section 5, we will show that the

link invariant and the 4-CB algebra follow for the case of G2.

5 G2 IRF model

We wish to check our conjecture for the IRF Boltzmann weights, eqs. (1.20)–(1.21), for

the G2 IRF model. The explicit Boltzmann weights of this model were given by Kuniba

et al. [16]. We wish to check our general ansatz, eqs. (1.20)–(1.21), specialized to the G2

case. The model is defined by taking for the RCFT O the WZW model based on the Lie

algebra G2 at level k. For the field h = v we substitute the fundamental representation

[7], which is the 7 dimensional representation. Thus the model is IRF(G2, [7], [7]). In the

fusion product of [h] and [v], eq. (1.11), we encounter four representations,

[7]× [7] = [1] + [14] + [27] + [7]. (5.1)

Thus, the G2 theory is a four blocks theory. Note that we chose this order for the fields

appearing in the product, ψ0 = [1], ψ1 = [14], ψ2 = [27] and ψ3 = [7], to be consistent with

the Boltzmann weights of Kuniba et al.

– 19 –



J
H
E
P
1
1
(
2
0
1
9
)
1
5
5

The dimensions of the fields in a WZW theory are given by

∆λ =
λ(λ+ 2ρ)

2(k + g)
, (5.2)

where λ is the highest weight of the representation, ρ is half the sum of positive roots, and

g is the dual Coxeter number.

We can now compute the crossing parameters ζi, using eq. (1.19). We find for the

dimensions of the fields ψi,

∆0 = 0, ∆1 =
12

k + 4
, ∆2 =

14

k + 4
, ∆3 =

6

k + 4
, (5.3)

where ∆i is the dimension of the field ψi.

The crossing parameters are given, by eq. (1.19), ζi = π(∆i+1 −∆i)/2,

ζ0 = λ = − 6π

k + 4
, ζ1 = − π

k + 4
, ζ2 =

4π

k + 4
. (5.4)

Note that we inverted the signs of the crossing parameters. This is always allowed since in

the ansatz, eqs. (1.20)–(1.21), we can invert the signs of the crossing parameters along with

the sign of u and the resulting Boltzmann weight is not changed (up to a possible sign).

To calculate the Boltzmann weight Xi(u) we need to know the braiding matrices of

the RCFT O. Unfortunately, this has never been calculated directly. So our idea is to

extract the braiding matrices from the solution of Kuniba et al., and then to compare that

Xi(u), as given by eqs. (1.20)–(1.21) agrees with the Boltzmann weights of Kuniba et al.

This will assure that our conjecture is correct for this theory.

We extract the projection operators P a
i from the above eqs. (3.4)–(3.6) and insert them

into our ansatz of the Boltzmann weights, eqs. (1.20)–(1.21). Now we are in a position to

compare our Boltzmann weights with those of Kuniba et al. We preform this calculation

numerically by choosing q = eiπ/(k+4) = 0.7. We compare all the Boltzmann weights for

an arbitrary spectral parameter, u. We find a complete agreement. This illustrates that

our ansatz is correct for G2 theory.

5.1 Kuperberg’s G2 link invariant

In ref. [8], Kuperberg introduced a tangle algebra for the G2 link invariant. Our claim

is that this link invariant is identical, for the special case of G2, to our link invariant in

section 4. This proves the link invariant for this case, as well as the algebraic structure we

find, namely the 4-CB algebra, for this case.

Recall from eq. (5.4) that the crossing multipliers for G2 have the form

ζ0 = − 6π

k + 4
, ζ1 = − π

k + 4
, ζ2 =

4π

k + 4
.

We find it convenient to define

q = eiπ/(k+4). (5.5)
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Thus we find from eqs. (3.11)–(3.12) that the parameters of the algebra are given by

l = iq−12, b = − [12][7][2]

[6][4][1]
, (5.6)

where we defined,

[x] = qx − q−x. (5.7)

To make contact with Kuperberg’s work we also rescale G±1
i → i±1G±1

i and Ei → −Ei.

Also, his q is our q2. We then find from eqs. (3.15)–(3.16),

G2
i = −(−q14+q12−q10+q6−q4+q2)Ei+(q−2+q4−q6)−(1−q−2+q6)Gi+q4G−1

i . (5.8)

Now, in Kalfagianni’s work [9], the algebraic relations which follow from Kuperberg’s

tangle algebra were derived. This author finds exactly the 4-CB algebra that we conjec-

tured for the case of G2, with exactly the parameters l, b, α, β, γ, δ that we calculated from

our general ansatz. This proves the 4-CB algebra for the case of G2. It also shows the

consistency of the link invariant, described in section 4, for this special case.

Actually in ref. [9] additional relations are described. As will be shown in sections 6–7,

these hold also for all 4-blocks theories.

6 H and K relations

In Kuperberg paper [8], the diagrammatic operations H and K are defined. Kalfagianni [9]

defined these algebraically. There it was shown that in the case ofG2 the operatorsH andK

obey some far reaching algebraic relations. Our purpose here is to generalize Kalfagianni’s

algebra to all the 4-blocks lattice models. We will check these relations with the SU(2)

fused 3 × 3 lattice models, assuming that if they hold both for G2 and SU(2), they are

correct generally. We prove these relations for any four blocks model in section 7.

Our starting point are the relations, which hold for G2,

Gi − q−1G−1
i = (1− q−1)(Hi + (q + q−1)Ei − 1), (6.1)

Gi − qG−1
i = (1− q)(Ki − Ei + (q + q−1)). (6.2)

where q = exp[iπ/(2(k + 4)], and k is the level. If we substitute the expressions fo Gi

and G−1
i in accordance with our ansatz eqs. (1.20)–(1.21), we find that Hi is proportional

to P 3
i , the third projection operator. Our idea to generalize the operator Hi by simply

equating it with this projection operator

Hi = P 3
i . (6.3)

To express Hi in terms of Gi, G
−1
i , Ei and 1i we simply solve the equations for them,

eqs. (3.4)–(3.6), using the relation P 1
i = 1i − P 0

i − P 2
i − P 3

i , to find P 3
i . We thus get the
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relation,

z Hi =
(

−eiζ(0)+2iζ(2) + eiζ(0)+2iζ(1)+2iζ(2) + eiζ(0)+4iζ(2) − eiζ(0)+2iζ(1)+4iζ(2)
)

Ei

+
(

−e2iζ(1)+2iζ(2) − e2iζ(0)+4iζ(2) + e2iζ(0)+2iζ(1)+4iζ(2) + e2iζ(2)
)

1i

+ ie
1

2
iζ(0)+iζ(1)+3iζ(2)Gi − ie

5

2
iζ(0)+iζ(1)+5iζ(2)Gi + ie−

1

2
iζ(0)+iζ(1)+iζ(2)G−1

i

− ie
3

2
iζ(0)+iζ(1)+3iζ(2)G−1

i , (6.4)

where z is defined by

z =
(

−1 + eiζ(0)+iζ(2)
)(

1 + eiζ(0)+iζ(2)
)(

−1 + e2iζ(1)+2iζ(2)
)(

1 + e2iζ(2)
)

. (6.5)

It is convenient to define the parameters rj as the coefficients of Hi,

Hi = r1 1i + r2Ei + r3Gi + r4G
−1
i , (6.6)

where Hi is given by eqs. (6.4)–(6.5) above. Note that Hi is defined for any values of the

crossing parameters ζi and thus for any four blocks theory.

We come now to the problem of defining Ki. We do this by imposing Kalfagianni’s

equation which holds for G2,

Ei±1EiHi±1 = Ei±1Ki, (6.7)

and assuming that it holds for any theory and not just G2. We substitute Hi from eq. (6.4)–

(6.5) and use the relations of the BMW algebra eq. (3.18). We find that this relation holds

if and only if Ki has the expression,

Ki = r2 1i + r1Ei + r4Gi + r3G
−1
i . (6.8)

Again, this relation is general for any four blocks theory.

We are now in a position to check Kalfagianni’s relations, which hold for G2, to the

other case that we investigated which is the SU(2) fused 3× 3 model. We do this using the

explicit Boltzmann weights which were given in ref. [3].

The crossing parameters for the SU(2) 3× 3 model are given by [3]

ζ0 =
π

k + 2
, ζ1 =

2π

k + 2
, ζ2 =

3π

k + 2
, (6.9)

where k is the level of the SU(2) model.
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We find that all of Kalfagianni relations hold also for SU(2) model. Below is a list of

the ‘simple’ relations that hold not only for G2 but also for SU(2).

HiEi = 0, (6.10)

KiEi = EiKi = dEi, (6.11)

KiHi = HiKi = cHi, (6.12)

K2
i = aHi + bKi + eEi + f, (6.13)

HiHj = HjHi, if |i− j| ≥ 2, (6.14)

KiKj = KjKi, if |i− j| ≥ 2, (6.15)

Gi±1GiHi±1 = HiGi±1Gi, (6.16)

Gi±1GiKi±1 = KiGi±1Gi, (6.17)

EiHi±1Ei = xEi, (6.18)

EiKi±1Ei = 0, (6.19)

Ei±1EiHi±1 = Ei±1Ki, (6.20)

Hi±1EiEi±1 = Ki±1Ei, (6.21)

Ki±1EiEi±1 = Hi±1Ei, (6.22)

Ei±1EiKi±1 = Ei±1Hi, (6.23)

EiHi±1Hi = EiKi±1Ki, (6.24)

Hi±1HiEi±1 = Ki±1KiEi±1, (6.25)

KiEi±1Hi = Hi±1EiKi±1, (6.26)

HiEi±1Hi = Ki±1EiKi±1. (6.27)

Some of these simple relations follow directly from the definition of Hi and Ki and

the BMW algebra, but not all. Here a, b, c, d, e, f and x are some coefficients which can be

easily computed from the definition eqs. (1.20)–(1.21).

We get now to the ‘complicated’ relations, following Kalfagianni. The relations are

HiHi+1Hi = Hi+1HiHi+1 − v1(HiEi+1Hi −Hi+1EiHi+1) (6.28)

− v2(HiKi+1Hi −Hi+1KiHi+1)− v3(Hi −Hi+1).

HiHi±1Ki = Ki±1HiHi±1 − x1(HiKi±1Hi −Hi±1KiHi±1) (6.29)

− x2(HiEi±1Hi −Hi±1EiHi±1)− x3(HiKi±1 −KiHi±1)

− x4(Ki±1Ei − Ei±1Ki)− x5(HiEi±1 − EiHi±1)− x6(Hi −Hi±1).

KiKi+1Ki = Ki+1KiKi+1 − z1(HiKi+1Hi −Hi+1KiHi+1) (6.30)

− z2(HiKi+1 −Hi+1Ki)− z3(Ki+1Hi −KiHi+1)− z4(Ki+1Ei −KiEi+1)

− z5(EiKi+1 − Ei+1Ki)− z6(Ki −Ki+1).

As was shown by Kalfagianni, these equations hold for the G2 model for some values of

the parameters vi, xi, zi. Our idea is to establish these relations for the SU(2) 3× 3 model,

for some values of the parameters. We substituted the Boltzmann weights and solved for
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the parameters using some configurations. We found that these relations are obeyed also

for SU(2). For the parameters we find the following general relations:

v1 = −r2, x2 = x3 = −r1, x4 = x6, (6.31)

where r1, r2 is given by eq. (6.6). We also find that the coefficients zi are the same as the

coefficients xi,

z1 = x1, z2 = z3 = x2 = x3, z4 = z5 = x4 = x6, z6 = −x5. (6.32)

For example, we give here the values of the parameters for k + 2 = 12,

v2 = −
√
2, v3 = −

√

1

12
. (6.33)

x1 =
√
3, x5 =

1

6
. (6.34)

x4 = x6 = 1/(
√
2z) =

1
2 − i

2√
2
(

−1 + e
iπ
3

) (

1 + e
iπ
3

)(

−1 + e
5iπ
6

) . (6.35)

x2 = x3 = −r1 = −(
√
3/2 + 1)1/2 + 1. (6.36)

To get the parameters for general k we solved these equations for general q =

exp[πi/(k + 2)] using symbolic manipulation, substituting some configurations. We find

the following expressions for vi.

v1 =
q11 + q9 + q7

q18 + q16 + 2q14 + 3q12 + 3q10 + 3q8 + 3q6 + 2q4 + q2 + 1
, (6.37)

v2 = − q11 + q9 + q7

q18 + q16 + q14 + q12 + q10 + q8 + q6 + q4 + q2 + 1
, (6.38)

v3 = − q6
(

q12 + q10 + q8 + q6 + q4 + q2 + 1
)

(q4 + 1) (q6 + 1)2 (q8 + q6 + q4 + q2 + 1)
. (6.39)

For xi we find the following expressions,

x1 =
q10 + q6

q16 + q12 + q8 + q4 + 1
, (6.40)

x2 = x3 = − q6

q12 + q8 + q6 + q4 + 1
, (6.41)

x4 = x6 =
q9

(

q12 + q10 + q8 + q6 + q4 + q2 + 1
)

(q2 + 1) (q4 + 1) (q12 + q8 + q6 + q4 + 1)2
, (6.42)

x5 =
q6

(

q12 + q10 + q8 + q6 + q4 + q2 + 1
)2

(q4 − q2 + 1)2 (q6 + q4 + q2 + 1)2 (q8 + q6 + q4 + q2 + 1)2
. (6.43)

The zi are given by eq. (6.32) from xi. We find that the relations eqs. (6.28)–(6.30)

are indeed obeyed for any q.
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Moreover, the following equations hold for the SU(2) 3× 3 model:

KiKi±1Hi = Hi±1KiKi±1 −
q6

(

q4 − 1
) (

q14 − 1
)

(q6 + 1)2 (q8 − 1) (q10 − 1)
(KiEi±1 − EiKi±1)

− q7
(

q4 − 1
) (

q6 − 1
)

(q6 + 1) (q8 − 1) (q10 − 1)
(Ki±1Hi −Hi±1Ki)

+
q7

(

q6 − 1
)

q20 − 1
(HiKi±1Hi −Hi±1KiHi±1), (6.44)

and

Ki+1HiKi+1 = KiHi+1Ki+

+ w1(HiKi+1 −KiEi+1Ki −KiHi+1 +Ki+1EiKi+1 +Ki+1Hi −Hi+1Ki)

+ w2(Ki+1Ei − Ei+1Ki +Hi −Hi+1 + EiKi+1 −KiEi+1)

+ w3(HiKi+1Hi −Hi+1KiHi+1) + w4(Ei − Ei+1), (6.45)

where

w1 = −
(

q4 − 1
) (

q22 − 1
)

q (q6 + 1) (q8 − 1) (q10 − 1)
,

w2 =

(

q4 − 1
) (

q4 − q8
) (

−q36 + q22 + q14 − 1
)

q2(q6 + 1)2(q8 − 1)2(q10 − 1)2
,

w3 =
q22 − 1

q (q20 − 1)
,

w4 = −
(

q4 − 1
)2 (

q12 − 1
) (

q14 − 1
)3 (

q22 − 1
)

q3 (q6 − 1) (q6 + 1)3(q8 − 1)3(q10 − 1)3
.

7 H and K relations for the general four blocks models

We write si = e
√
−1ζi , i ∈ {0, 1, 2, 3}. Let

Gi = 23s
− 3

2

0 sin(ζ0) sin(ζ1) sin(ζ2)Xi

=

√
−1P 1

i√
s0s1s2

−
√
−1P 0

i

s0
5

2 s1s2
+

√
−1s1s2P

3
i√

s0
−

√
−1s1P

2
i√

s0s2
.

Then

G−1
i = −

√
−1

√
s0P

3
i

s1s2
−
√
−1

√
s0s1s2P

1
i +

√
−1s0

5

2 s1s2P
0
i +

√
−1

√
s0s2P

2
i

s1
,

G2
i = − P 1

i

s0s12s22
− s1

2P 2
i

s0s22
− s1

2s2
2P 3

i

s0
− P 0

i

s05s12s22
.

Let

Ei = Xi(ζ0) =

(

s0
2s1

2 − 1
) (

s0
2s2

2 − 1
) (

s0
2 + 1

)

(s12 − 1) (s22 − 1) s03
P 0
i .
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The skein relation is
∑

a P
a
i = 1. That is,

G2
i =

Ei

(

s0
2s1

2s2
2 + 1

) (

s1
2 − 1

) (

s2
2 − 1

)

(s02s22 − 1) s02s12s22

+

√
−1Gi

(

s1
2s2

2 − s1
2 + 1

)

√
s0s1s2

−
(

s1
2s2

2 − s2
2 + 1

)

s0s22
+

√
−1s1G

−1
i

s0
3

2 s2
.

We also have

G−2
i = −s0

(

s1
2s2

2 − s1
2 + 1

)

s12
−

(

s0
2s1

2s2
2 + 1

) (

s1
2 − 1

) (

s2
2 − 1

)

s0
2

(s02s22 − 1) s12
Ei

−
√
−1

√
s0

(

s1
2s2

2 − s2
2 + 1

)

s1s2
G−1

i −
√
−1s0

3

2 s2
s1

Gi.

As in section 6, we let Hi = P 3
i = r11i + r2Ei + r3Gi + r4G

−1
i and Ki = r2Ei + r11i +

r4Gi + r3G
−1
i . Then

r1 =

(

s1
2 − 1

)

s2
2

(s12s22 − 1) (s22 + 1)
,

r2 = −
(

s1
2 − 1

) (

s2
2 − 1

)

s0s2
2

(s02s22 − 1) (s12s22 − 1) (s22 + 1)
,

r3 = −
√
−1

√
s0s1s2

3

(s12s22 − 1) (s22 + 1)
,

r4 = −
√
−1s1s2

(s12s22 − 1) (s22 + 1)
√
s0

.

We express Gi and G−1
i in terms of 1i, Ei, Hi, and Ki and obtain

Gi =
Ei (r1r4 − r2r3)

(r32 − r42)
− (r1r3 − r2r4)

(r32 − r42)
+

Hir3
(r32 − r42)

− Kir4
(r32 − r42)

= −
√
−1s0

3

2 s2
(

s1
2 − 1

)

(s02s22 − 1) s1
+

√
−1Ei

√
s0s2

(

s1
2 − 1

)

(s02s22 − 1) s1

+

√
−1Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
3

2 s2

(s02s24 − 1) s1
−

√
−1Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)√
s0

(s02s24 − 1) s1s2
,

G−1
i =

(r1r4 − r2r3)

(r32 − r42)
− Ei (r1r3 − r2r4)

(r32 − r42)
− Hir4

(r32 − r42)
+

Kir3
(r32 − r42)

=

√
−1

√
s0s2

(

s1
2 − 1

)

(s02s22 − 1) s1
−

√
−1Eis0

3

2 s2
(

s1
2 − 1

)

(s02s22 − 1) s1

+

√
−1Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
3

2 s2

(s02s24 − 1) s1
−

√
−1Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

)√
s0

(s02s24 − 1) s1s2
.
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We express Xi(u) in terms of 1i, Ei, Hi, Ki, e
√
−1u and obtain Xi(u) = p1A+p2A

−1+

p3A
−3 + p4A

3, where A = e
√
−1u and

p1 =
Ei

(

s1
2 − 1

)

s0
(

s0
2s2

4 + s2
2 + 1

)

(s02s22 − 1)
−

(

s1
2 − 1

) (

s0
2s2

4 + s0
2s2

2 + 1
)

(s02s22 − 1)

+
Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

) (

s0
2s2

2 + s0
2 + 1

)

(s02s24 − 1)

− Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
(

s0
2s2

2 + s2
2 + 1

)

(s02s24 − 1)
,

p2 =

(

s1
2 − 1

)

s0
2
(

s0
2s2

4 + s2
2 + 1

)

(s02s22 − 1)
− Ei

(

s1
2 − 1

)

s0
(

s0
2s2

4 + s0
2s2

2 + 1
)

(s02s22 − 1)

− Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
2
(

s0
2s2

2 + s2
2 + 1

)

(s02s24 − 1)

+
Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
(

s0
2s2

2 + s0
2 + 1

)

(s02s24 − 1)
,

p3 =
Ei

(

s1
2 − 1

)

s0
3s2

2

(s02s22 − 1)
− Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
3

(s02s24 − 1)

−
(

s1
2 − 1

)

s0
4s2

2

(s02s22 − 1)
+

Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0
4s2

2

(s02s24 − 1)

p4 =

(

s1
2 − 1

)

s2
2

(s02s22 − 1)
− Hi

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

(s02s24 − 1)

− Ei

(

s1
2 − 1

)

s0s2
2

(s02s22 − 1)
+

Ki

(

s1
2s2

2 − 1
) (

s2
2 + 1

)

s0s2
2

(s02s24 − 1)
.

Assume that Gi, G
−1
i , Ei, 1i satisfy the following relations (which are BMW relations

and the new skein relation):

GiGj = GjGi, EiGj = GjEi, |i− j| ≥ 2,

GiGjGi = GjGiGj , |i− j| = 1,

EiEi±1Ei = Ei,

GiEi = EiGi = −
√
−1

s0
5

2 s1s2
Ei,

EiGjEi =
√
−1s0

5

2 s1s2Ei, |i− j| = 1,

E2
i =

(

s0
2s1

2 − 1
) (

s0
2s2

2 − 1
) (

s0
2 + 1

)

(s12 − 1) (s22 − 1) s03
Ei

EiGi±1Gi = Gi±1GiEi±1 = EiEi±1,

Gi±1EiEi±1 = G−1
i Ei±1,

EiEi±1Gi = EiG
−1
i±1,

G−1
i±1EiG

−1
i±1 = GiEi±1Gi,
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and

G2
i =

Ei

(

s0
2s1

2s2
2 + 1

) (

s1
2 − 1

) (

s2
2 − 1

)

(s02s22 − 1) s02s12s22
+

√
−1Gi

(

s1
2s2

2 − s1
2 + 1

)

√
s0s1s2

−
(

s1
2s2

2 − s2
2 + 1

)

s0s22
1i +

√
−1s1G

−1
i

s0
3

2 s2
,

G−2
i = −s0

(

s1
2s2

2 − s1
2 + 1

)

s12
1i −

(

s0
2s1

2s2
2 + 1

) (

s1
2 − 1

) (

s2
2 − 1

)

s0
2

(s02s22 − 1) s12
Ei

−
√
−1

√
s0

(

s1
2s2

2 − s2
2 + 1

)

s1s2
G−1

i −
√
−1s0

3

2 s2
s1

Gi.

By expression Hi, Ki in terms of 1i, Gi, G
−1
i , Ei and use the above relations, it is easy

to check that the following relations hold.

E2
i =

(

s0
2s1

2 − 1
) (

s0
2s2

2 − 1
) (

s0
2 + 1

)

(s12 − 1) (s22 − 1) s03
Ei,

H2
i = Hi,

K2
i = v1Ki + v2Hi + v31i + v4Ei, (7.1)

HiEi = EiHi = 0,

KiEi = EiKi = q1Ei,

KiHi = HiKi = q2Hi,

EiKi±1Ei = 0,

EiEi±1Hi = EiKi±1,

EiEi±1Ki = EiHi±1,

HiEi±1Ei = Ki±1Ei,

KiEi±1Ei = Hi±1Ei, (7.2)

EiHi±1Ei = q1Ei,

EiHi±1Hi = q2EiKi±1 = EiKi±1Ki,

HiHi±1Ei = q2Ki±1Ei = KiKi±1Ei,

KiEi±1Hi = Hi±1EiKi±1,

HiEi±1Hi = Ki±1EiKi±1,

EiHi+1Ki − Ei+1HiKi+1 = Ei(v1Hi+1 + v2Ki+1 + v3Ei+1 + v41i)

+ Ei+1(−v1Hi − v2Ki − v3Ei − v41i),

KiHi+1Ei −Ki+1HiEi+1 = (v1Hi+1 + v2Ki+1 + v3Ei+1 + v41i)Ei

+ (−v1Hi − v2Ki − v3Ei − v41i)Ei+1, (7.3)

HiKi±1Ei − Ei±1KiHi±1 = Ki±1Ei − Ei±1Ki,

EiHi±1Ki −KiHi±1Ei = Ei(v1Hi±1 + v2Ki±1 + v3Ei±1)

− (v1Hi±1 + v2Ki±1 + v3Ei±1)Ei.
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where

q1 = −
(

s0
2s1

2s2
2 − 1

) (

−s0
6s2

6 + s0
4s2

2 + s0
2s2

4 − 1
)

(s02s22 − 1) (s12s22 − 1) (s24 − 1) s03
,

q2 =

(

s1
2 − s0

2s2
2
) (

s0
2 − 1

)

s2
2

(s02s22 − 1) (s12s22 − 1) (s22 + 1) s0
,

v1 =

(

s1
2 − 1

) (

−s0
4s2

6 − s0
2s2

4 + s0
2s2

2 + 1
)

(s02s22 − 1) (s12s22 − 1) (s22 + 1) s0
,

v2 =

(

s0
2s2

2 + 1
) (

s1
2 − s0

2s2
2
)

(s12s22 − 1) (s22 + 1) s02
,

v3 =

(

s0
2s2

4 − 1
)2 (

s0
4s1

2s2
4 − s0

2s1
4s2

2 − s0
2s2

2 + s1
2
)

(s02s22 − 1)2(s12s22 − 1)2(s22 + 1)2s02
,

v4 =

(

s0
2s2

2 + 1
) (

s0
2s2

4 − 1
)2 (

s0
2s1

2s2
2 − 1

) (

s1
2 − 1

)

(s02s22 − 1) (s12s22 − 1)2 (s22 − 1) (s22 + 1)2s03
.

The equations in (7.3) follow from the equations in (7.1) and (7.2).

We expand the Yang-Baxter equation

Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi+1(u)

using Xi(u) = p1A + p2A
−1 + p3A

−3 + p4A
3 and obtain 37 equations in terms of 1i, Hi,

Ki, Ei. Assume that Hi,Ki, Ei satisfy (7.1), (7.2), (7.3). We simplify the 37 equations

using (7.1), (7.2), (7.3) and obtain 37 equations which involve terms of the form HiHi+1Hi,

KiKi+1Hi, KiKi+1Ki, KiHi+1Hi, Ki+1HiKi+1. We combine the 37 equations and solve

the equations for HiHi+1Hi, KiKi+1Hi, Ki+1KiKi+1, KiHi+1Hi, Ki+1HiKi+1 and obtain

the following:

HiHi+1Hi = Hi+1HiHi+1 + a1(Hi −Hi+1) (7.4)

+ a2(KiEi+1Ki −Ki+1EiKi+1) + a3(HiKi+1Hi −Hi+1KiHi+1),

KiKi±1Hi = Hi±1KiKi±1 + a1(EiKi±1 −KiEi±1) (7.5)

+ a2(Hi±1Ki −Ki±1Hi) + a3(HiKi±1Hi −Hi±1KiHi±1),

Ki+1KiKi+1 = KiKi+1Ki + b1(EiKi+1 −KiEi+1 +Ki+1Ei − Ei+1Ki) (7.6)

+ b2(−Hi+1Ki +Ki+1Hi +HiKi+1 −KiHi+1)

+ b3(HiKi+1Hi −Hi+1KiHi+1) + b4(−Ki +Ki+1),

KiHi±1Hi = Hi±1HiKi±1 (7.7)

+ b1(KiEi±1 − EiKi±1 −Hi +Hi±1)

+ b2(−Ki±1Hi +Hi±1Ki +KiEi±1Ki −Ki±1EiKi±1)

+ b3(−HiKi±1Hi +Hi±1KiHi±1)

+ b4(Hi±1Ei − Ei±1Hi),
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Ki+1HiKi+1 = KiHi+1Ki (7.8)

+ c1(−HiKi+1 +KiEi+1Ki +KiHi+1 −Ki+1EiKi+1 −Ki+1Hi +Hi+1Ki)

+ c2(−Ki+1Ei + Ei+1Ki −Hi +Hi+1 − EiKi+1 +KiEi+1)

+ c3(HiKi+1Hi −Hi+1KiHi+1) + c4(−Ei + Ei+1),

where

a1 =
(s0

2s2
4 − 1)(s1

2 − 1)s2
2

(s02s22 − 1)(s12s22 − 1)(s22 + 1)2
,

a2 =
(s1

2 − 1)(s2
2 − 1)s0s2

2

(s02s22 − 1)(s12s22 − 1)(s22 + 1)
,

a3 =
(s2

2 − 1)s0s2
2

s02s26 − 1
,

b1 = −(s0
2s2

4 − 1)(s1
2 − s0

2s2
2)(s1

2 − 1)s2
2

(s02s22 − 1)(s12s22 − 1)2(s22 + 1)2s0
,

b2 = − (s1
2 − 1)s2

2

(s12s22 − 1)(s22 + 1)
,

b3 = −(s2
2 − s0

2s2
4)

(s02s26 − 1)
,

b4 =
(s0

2s2
4 − 1)

2
(s1

2 − 1)
2
s2

2

(s02s22 − 1)2(s12s22 − 1)2(s22 + 1)2
,

c1 =
(s0

4s2
6 − 1)(s1

2 − 1)

(s02s22 − 1)(s12s22 − 1)(s22 + 1)s0
,

c2 = −(s1
2 − s0

2s2
2)(s1

2 − 1)(−s0
6s2

10 + s0
4s2

6 + s0
2s2

4 − 1)

(s02s22 − 1)2(s12s22 − 1)2(s22 + 1)2s02
,

c3 =
s0

4s2
6 − 1

s03s26 − s0
,

c4 =
(s0

2s2
4 − 1)

3
(s0

4s2
6 − 1)(s0

2s1
2s2

2 − 1)(s1
2 − 1)

2

(s02s22 − 1)3(s12s22 − 1)3(s22 − 1)(s22 + 1)3s03
.

On the other hand, we verified that the equations (7.1)–(7.8) imply the Yang-Baxter

equation

Xi(u)Xi+1(u+ v)Xi(v) = Xi+1(v)Xi(u+ v)Xi+1(u).

Let K be a field. We define a K(s0, s1, s2)-algebra A generated by Hi,Ki, Ei, i ∈
{1, . . . , n} subject to the relations (7.1)–(7.8). We have the following theorem.

Suppose that Hi,Ki, Ei, i ∈ {1, . . . , n} satisfy (7.1)–(7.3). Then Xi(u) satisfies YBE

if and only if Hi,Ki, Ei satisfy the other defining relations in the algebra A.

When s0 = q, s1 = q2, s2 = q3 (SU(2) fused 3 × 3 lattice model case), the equa-

tions (7.4)–(7.8) are (6.28), (6.44), (6.30), (6.29), and (6.45) respectively. When s0 = q−6,

s1 = q−1, s2 = q4 (G2 case), the relations (7.1)–(7.8) are the corresponding relations in

section 3 of ref. [9] after some rescaling of Ei, Hi, Ki.
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Since we showed in section 3 that the YBE and BMW are obeyed if and only if the

relation g, eqs. (3.19)–(3.21), is obeyed, it follows that this relation is equivalent to the

algebra A or to the general H and K relations.

8 Conclusions

We studied in this paper the algebraic structure underlining solvable IRF (Interaction

Round the Face) lattice models. We proposed that the algebra depends only on the number

of blocks. For two blocks we obtain the Hecke AN algebra and the Temperley-Lieb (TL)

algebra. For three blocks, we found that it is the weak Birman-Murakami-Wenzl (BMW)

algebra. This algebra has a quotient which is the BMW algebra, which contains the TL

algebra, with a different skein relation. In fact, in all cases we checked the all the BMW

relations hold. We conjecture that this phenomenon is general. For four blocks, we found

that the algebra is a version of BMW algebra, with a different skein relation, along with

one additional relation. This algebra is new, to the best of our knowledge, and we plan to

further investigate it.

These results suggest the following general picture. The n block algebras, for n =

1, 2, . . . form a chain of algebras, which are quotients of the universal free algebra with

generators 1, Ei, Gi, such that the relations which define the n+1th quotient contain those

of the nth quotient, except for the skein relation which is different. We find that this

picture is established for the two, three and four blocks cases.

To further investigate this chain of algebras, it behooves us to study the five blocks

algebra, and hopefully also higher blocks, with the ultimate goal of finding the general

algebra. This we intend to pursue in future work.

If the conjecture of section 4 holds, then our results will be relevant to knot theory,

since then the algebras can be used to define new link invariants. In addition, this algebraic

structure we found sheds more light into the physics of IRF models.
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A Weights of the G2 model

The Boltzmann weights are taken from Kuniba and Suzuki, ref. [16].
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The Weyl vector ρ = (1, 1) and the weights of the seven-dimensional representation

space of Uq(G2) are

e−3 = (0, 1) , e−2 = (1,−1) ,

e−1 = (−1, 2) , e0 = (0, 0) ,
(A.1)

and

ei = −e−i .

We consider the highest weight module of Uq(G2) with the highest weight

a = (a1, a2) . (A.2)

We introduce function

G[a] = s[3a1]s[a2]s[3a1 + a2]s[3a1 + 2a2]s[3a1 + 3a2]s[6a1 + 3a2] . (A.3)

Now we introduce the Boltzmann weights. First of all, for µ 6= 0

B[a, u, µ, µ, µ, µ] =
s[1 + u]s[4 + u]s[6 + u]

s[1]s[4]s[6]
(A.4)

B[a, u,−3,−2,−3,−2] =
s[a2 − u]s[4 + u]s[6 + u]

s[a2]s[4]s[6]

B[a, u,−2,−3,−3,−2] =

(

s[a2 + 1]s[a2 − 1]

s[a2]2

)
1

2 s[u]s[4 + u]s[6 + u]

s[1]s[4]s[6]

B[a, u,−3,−1,−3,−1] =
s[3a1 + a2 − u]s[4 + u]s[6 + u]

s[3a1 + a2]s[4]s[6]

B[a, u,−1,−3,−3,−1] =

(

s[3a1 + a2 + 1]s[3a1 + a2 − 1]

s[3a1 + a2]2

)
1

2 s[u]s[4 + u]s[6 + u]

s[1]s[4]s[6]

B[a, u,−2, 1,−2, 1] =
s[3a1 + 2a2 − u]s[4 + u]s[6 + u]

s[3a1 + 2a2]s[4]s[6]

B[a, u, 1,−2,−2, 1] =

(

s[3a1 + 2a2 + 1]s[3a1 + 2a2 − 1]

s[3a1 + 2a2]2

)
1

2 s[u]s[4 + u]s[6 + u]

s[1]s[4]s[6]

B[a, u,−3, 0,−3, 0] =
s[3a1 + a2 − 2− u]s[a2 − u]s[6 + u]

s[3a1 + a2 − 2]s[a2]s[6]
+

+
s[a2 + 3]s[3a1 + a2 − 1]s[3a1 + a2 + 2]s[3a1 + 2a2 − 2− u]s[2]s[u]s[6 + u]

s[a2]s[3a1 + a2]s[3a1 + a2 − 2]s[3a1 + 2a2 + 1]s[1]s[4]s[6]

B[a, u, 0,−3,−3, 0] =
s[u]s[3 + u]s[6 + u]

s[1]s[4]s[6]
×

×
(

s[a2 − 1]s[a2 + 2]s[3a1 + a2 − 1]s[3a1 + a2 + 2]s[3a1 + 2a2 − 1]s[3a1 + 2a2 + 3]

s[a2]s[a2 + 1]s[3a1 + a2]s[3a1 + a2 + 1]s[3a1 + 2a2 + 1]2

)
1

2

B[a, u,−2,−1, 0,−3] =
s[a2 + 3 + u]s[u]s[6 + u]

s[3a1 + a2 + 1]s[4]s[6]
×

×
(

s[3a1 + 3]s[3a1 + a2 − 1]s[3a1 + a2 + 2]s[3a1 + 2a2 − 1]s[2]

s[3a1]s[3a1 + 2a2 + 1]s[a2]s[a2 + 1]s[1]

)
1

2
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B[a, u,−1,−2, 0,−3] = −s[3a1 + a2 + 3 + u]s[u]s[6 + u]

s[a2 + 1]s[4]s[6]
×

×
(

s[3a1 − 3]s[a2 − 1]s[a2 + 2]s[3a1 + 2a2 − 1]s[2]

s[3a1]s[3a1 + 2a2 + 1]s[3a1 + a2]s[3a1 + a2 + 1]s[1]

)
1

2

(A.5)

B[a, u,−2,−1,−2,−1] =

=
s[3a1 − u]s[2 + u]s[6 + u]

s[3a1]s[2]s[6]
+

s[a2 − 2]s[3a1 + a2 + 3]s[3a1 − 2− u]s[u]s[6 + u]

s[a2]s[3a1 + a2 + 1]s[3a1]s[4]s[6]

B[a, u,−3, 1,−3, 1] =
s[3a1 + 3a2 − u]s[2 + u]s[6 + u]

s[3a1 + 3a2]s[2]s[6]
+

+
s[a2 + 2]s[3a1 + 2a2 + 3]s[3a1 + 3a2 − 2− u]s[u]s[6 + u]

s[a2]s[3a1 + 2a2 + 1]s[3a1 + 3a2]s[4]s[6]

B[a, u, 1,−3, 0,−2] = −s[3a1 + 2a2 + 3 + u]s[u]s[6 + u]

s[a2 − 1]s[4]s[6]
×

×
(

s[a2 − 2]s[a2 + 1]s[3a1 + a2 − 1]s[3a1 + 3a2 − 3]s[2]

s[3a1 + a2 + 1]s[3a1 + 3a2]s[3a1 + 2a2]s[3a1 + 2a2 + 1]s[1]

)
1

2

B[a, u,−2, 0,−2, 0] =
s[3a1 + 2a2 − 2− u]s[a2 + u]s[6 + u]

s[3a1 + 2a2 − 2]s[a2]s[6]
+

+
s[a2 − 3]s[3a1 + 2a2 − 1]s[3a1 + 2a2 + 2]s[3a1 + a2 − 2− u]s[2]s[u]s[6 + u]

s[a2]s[3a1 + 2a2]s[3a1 + 2a2 − 2]s[3a1 + a2 + 1]s[1]s[4]s[6]

B[a, u, 0,−2,−2, 0] =
s[u]s[3 + u]s[6 + u]

s[1]s[4]s[6]
×

×
(

s[a2 − 2]s[a2 + 1]s[3a1 + a2 − 1]s[3a1 + a2 + 3]s[3a1 + 2a2 − 1]s[3a1 + 2a2 + 2]

s[a2 − 1]s[a2]s[3a1 + a2 + 1]2s[3a1 + 2a2 + 1]s[3a1 + 2a2]

)
1

2

B[a, u,−3, 2,−3, 2] =
s[6a1 + 3a2 − u]s[2 + u]s[6 + u]

s[6a1 + 3a2]s[2]s[6]
+

+
s[3a1 + a2 + 2]s[3a1 + 2a2 + 3]s[6a1 + 3a2 − 2− u]s[u]s[6 + u]

s[3a1 + a2]s[3a1 + 2a2 + 1]s[6a1 + 3a2]s[4]s[6]

B[a, u,−1, 0,−1, 0] =
s[3a1 + a2 + u]s[3a1 + 2a2 − 2− u]s[6 + u]

s[3a1 + a2]s[3a1 + 2a2 − 2]s[6]
+

+
s[3a1 + a2 − 3]s[3a1 + 2a2 − 1]s[3a1 + 2a2 + 2]s[a2 − 2− u]s[2]s[u]s[6 + u]

s[3a1 + a2]s[3a1 + 2a2 − 2]s[3a1 + 2a2]s[a2 + 1]s[1]s[4]s[6]

B[a, u, 0,−1,−1, 0] =
s[u]s[3 + u]s[6 + u]

s[1]s[4]s[6]

×
(

s[a2 − 1]s[a2 + 3]s[3a1 + a2 − 2]s[3a1 + a2 + 1]s[3a1 + 2a2 − 1]s[3a1 + 2a2 + 2]

s[a2 + 1]2s[3a1 + a2 − 1]s[3a1 + a2]s[3a1 + 2a2]s[3a1 + 2a2 + 1]

)
1

2

B[a, u, 3,−3, 3,−3] =
s[6a1 + 4a2 − 1 + u]s[2 + u]s[6 + u]

s[6a1 + 4a2 − 1]s[2]s[6]

− s[a2 − 2]s[3a1 + a2 − 2]s[3a1 + 2a2 − 3]s[6a1 + 4a2 + 1 + u]s[u]s[6 + u]

s[a2]s[3a1 + a2]s[3a1 + 2a2 − 1]s[6a1 + 4a2 − 1]s[4]s[6]

− G[a+ e3]

G[a]

s[6a1 + 4a2 + 5 + u]s[u]s[2 + u]

s[6a1 + 4a2 − 1]s[4]s[6]
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B[a, u, 2,−2, 2,−2] =
s[6a1 + 2a2 − 1 + u]s[2 + u]s[6 + u]

s[6a1 + 2a2 − 1]s[2]s[6]

− s[a2 + 2]s[3a1 + a2 − 3]s[3a1 + 2a2 − 2]s[6a1 + 2a2 + 1 + u]s[u]s[6 + u]

s[a2]s[3a1 + a2 − 1]s[3a1 + 2a2]s[6a1 + 2a2 − 1]s[4]s[6]
(A.6)

− G[a+ e2]

G[a]

s[6a1 + 2a2 + 5 + u]s[u]s[2 + u]

s[6a1 + 2a2 − 1]s[4]s[6]

B[a, u, 1,−1, 1,−1] =

=
s[2a2 − 1 + u]s[2 + u]s[6 + u]

s[2a2 − 1]s[2]s[6]

− s[a2 − 3]s[3a1 + a2 + 2]s[3a1 + 2a2 − 2]s[2a2 + 1 + u]s[u]s[6 + u]

s[a2 − 1]s[3a1 + a2]s[3a1 + 2a2]s[2a2 − 1]s[4]s[6]

− G[a+ e1]

G[a]

s[2a2 + 5 + u]s[u]s[2 + u]

s[2a2 − 1]s[4]s[6]

B[a, u, 0, 0, 0, 0] =
s[6− u]s[12 + u]s[3 + u]

s[6]s[12]s[3]
+

s[u]s[3 + u]s[6 + u]

s[6]s[9]s[12]
×

×
3

∑

µ=1

(

G[a+ eµ]

G[a]
B[a,−12, 0, µ, 0, µ] +

G[a+ e−µ]

G[a]
B[a,−12, 0,−µ, 0,−µ]

)

(A.7)

Taking symmetries (eq. (9a) in ref. [16]) into account, we get also

B[a, u,−3,−2,−2,−3] = B[a, u,−2,−3,−3,−2]

B[a, u,−3,−1,−1,−3] = B[a, u,−1,−3,−3,−1]

B[a, u,−2, 1, 1,−2] = B[a, u, 1,−2,−2, 1]

B[a, u,−3, 0, 0,−3] = B[a, u, 0,−3,−3, 0]

B[a, u, 0,−3,−2,−1] = B[a, u,−2,−1, 0,−3]

B[a, u, 0,−3,−1,−2] = B[a, u,−1,−2, 0,−3]

B[a, u, 0,−2, 1,−3] = B[a, u, 1,−3, 0,−2]

B[a, u,−2, 0, 0,−2] = B[a, u, 0,−2,−2, 0]

B[a, u,−1, 0, 0,−1] = B[a, u, 0,−1,−1, 0]

(A.8)

Taking symmetry eq. (9b) of ref. [16] into account

B[a, u, κ, η, µ, ν] = B[−a, u,−κ,−η,−µ,−ν] (A.9)

Notice the difference with respect to eq. (9.b) of ref. [16], where an additional factor 2ρ is

present in the r.h.s. , −a → −a− 2ρ.

And also the symmetry eq. (9c)

B[a, u, κ, η, µ, ν] = −(−1)κ−ν

√

G[a+ eκ]G[a+ eµ]

G[a]G[a+ eκ + eη]
B[a+ eµ,−6− u,−µ, κ, ν,−η] (A.10)
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