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tating electric field. In the strong coupling regime such system is formulated holographically

in a top-down model constructed by intersecting D3- and D5-branes along 2+1 dimensions,

in the quenched approximation, in which the D5-brane is a probe in the AdS5 × S5 ge-

ometry. The system has a non-equilibrium phase diagram with conductive and insulator

phases. The external driving induces a rotating current due to vacuum polarization (in the

insulator phase) and to Schwinger effect (in the conductive phase). For some particular

values of the driving frequency the external field resonates with the vector mesons of the

model and a rotating current can be produced even in the limit of vanishing driving field.

These features are in common with the (3+1) dimensional setup based on the D3-D7 brane

model [26, 27] and hint on some interesting universality. We also compute the conductivi-

ties paying special attention to the photovoltaic induced Hall effect, which is only present

for massive charged carriers. In the vicinity of the Floquet condensate the optical Hall

coefficient persists at zero driving field, signalling time reversal symmetry breaking.
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1 Introduction

The physics of periodically driven quantum systems has been the subject of intense study

in recent years (see [1–4] for reviews with tons of citations). Several reasons back up this

interest, a very relevant one being technological in origin: the possibility of manipulating

quantum systems in a controlled way by using time-periodic external fields. This approach

goes under the name of Floquet engineering [5, 6], following from the Floquet theorem, a

temporal analogue of the Bloch theorem. The artificial setup involves mainly irradiating

the system with a circularly polarised laser, or shaking it around. With appropriate pe-

riodic drivings, new phases of quantum materials have been created and non-equilibrium

phenomena have emerged. Examples include light-induced superconductivity [7, 8] and

Floquet topological insulators [9, 11, 13–17]. Moving on to (3+1) dimensions, artificial

Weyl semimetals have also been reported [18–20].

In this paper we study the behavior of a strongly-coupled (2 + 1)-dimensional gauge

theory under the influence of a external electric field ~E rotating in the xy plane as

Ex + i Ey = E eiΩt . (1.1)

We will address this problem in the context of the holographic AdS/CFT correspon-

dence [21] (see [22–25] for reviews), and will follow closely the pioneering work in

refs. [26, 27] in their study of (3 + 1)-dimensional systems. In the first of these two refer-

ences, the authors studied the massless D3-D7 flavour system and computed the artificially

induced Hall conductivity. In the second they extend part of the analysis to massive flavours

where an interesting phase space shows up. Our paper streamlines the same analysis in

(2+1) dimensions, extending the analysis to encompass the optical and static conductiv-

ities also for massive flavours. The (2 + 1)-dimensional theory in place is realised as a

codimension-one defect in N = 4 supersymmetric SU(Nc) super Yang-Mills theory in four

dimensions. The field content and lagrangian was explicitly constructed in [28]. It con-

tains a matter hypermultiplet living in the defect which couples to the fields of the ambient

four-dimensional theory. In String Theory, this model can be realized as the intersection

of D3- and D5-branes along 2 + 1 dimensions. In this setup the 4d gauge theory on the

D3-branes is holographically dual to the AdS5× S5 geometry, while the D5-branes provide

(2+1)-dimensional flavors, i.e., fields living in the fundamental representation of the gauge

group [29–31]. We will work in the quenched probe approximation and will hence neglect

the backreaction of the D5-branes on the AdS5×S5 geometry. The fluctuation of the fields

living on the brane are dual to the mesonic excitations of the gauge theory. In ref. [32] the

complete analysis of these fluctations was performed for the D3-D5 system and the exact

spectrum of mesons was found (see [34] for a similar analysis in the D3-D7 case).

When an external electric field acts on a medium, a vacuum polarization due to virtual

charged particles (quarks) is produced. As a consequence, an oscillating polarization cur-

rent is induced. If the external field is weak enough, the medium will remain in an insulator

gapped phase in which the induced current is always perpendicular to the applied field.

There is no Joule heating and the system is dissipation-less. When the external field is large

enough the vacuum is unstable against the creation of quark-antiquark pairs (Schwinger
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effect). In the conductive phase the current becomes dissipative, and the driving induces

a Joule heating.

For an external oscillating electric field as in (1.1) the critical value Ec at which

the insulator-conductor transition takes place depends on the frequency Ω, i.e., Ec =

Ec(Ω) [33]. Remarkably, for some values Ω = Ωc of the frequency, the transition occurs

for vanishing external electric field, i.e., Ec(Ωc) = 0. At this point of the phase space the

rotating current j is not zero, in spite of the fact that the external driving field vanishes.

Physically, for these frequencies the driving field enters in resonance with the vector meson

excitations of the gauge theory. Actually, this resonating states with zero electric field

and non-zero current also occur in the conductive pase in a finite range of frequencies

Ωc < Ω ≤ Ωm. Following [27], where this behaviour was first found in the D3-D7 model,

we will call a configuration with E = 0 and j 6= 0 a zero field Floquet condensate of vector

mesons, or simply a vector meson Floquet condensate. Such stable rotating state is a fixed

point of time evolution, namely a non-thermal fixed point [35].

In our holographic setup the flavor degrees of freedom are modeled as the excitations

of a probe D5-brane embedded in the AdS5 × S5 ten-dimensional background. The probe

brane extends along an AdS4 × S2 submanifold of the ten-dimensional background. The

holographic duality in the D5-brane worldvolume relates the fields at the boundary of AdS4

to those of the dual (2 + 1)-dimensional gauge theory. In particular, to model the rotating

field (1.1) we have to switch on an electric gauge field on the worldvolume attaining the

value (1.1) as we approach the AdS4 boundary (the subleading term near the boundary

determines the current j). The D5-brane with this world-volume gauge field has a non-

trivial profile which can be found by solving the equations of motion of the probe brane.

The leading value of the profile function at the boundary determines mass of the quarks,

while the subleading term is related to the quark condensate.

A probe brane with an electric field in his worldvolume can develop an event horizon

in the effective (open string) metric on its worldvolume. This is analogous, but not the

same, to the case in which the brane is embedded in a black hole background geometry

with a non-zero Hawking temperature [37–39]. Accordingly, we can borrow the terminology

of the non-zero temperature case and classify the configurations of the brane depending

on whether or not it crosses or not the effective horizon. In the so-called Minkowski

embeddings the brane reaches the origin of AdS4 without developing the effective horizon.

These Minkowski configurations are dual to the insulating phase of the defect gauge theory.

On the contrary, in the conductive phase the induced horizon forms at a finite radial

distance from the D3-brane system. The flavour mesons are deconfined and a current can

set up in response to an external electric field. At the interface between these two cases we

find the critical embeddings, in which the probe develops the effective horizon right at its

IR endpoint. In this work we study both types of embeddings in order to determine the

stable non-equilibrium phases of the theory. In this task we will employ both numerical

and analytic techniques.

The rest of this paper is organized as follows. In section 2 we present our setup, find

the equations of motion for the probe D5-brane and study the boundary behavior of the

different functions and their relation to the observables of the gauge theory. In section 3 we
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analyze the different types of embeddings and determine the IR boundary conditions that

regular solutions must satisfy. We also determine in this section the effective metric and

the effective Hawking temperature. The numerical integration of the equations of motion

and the structure of the phase diagram of the theory is presented in section 4.

When either the mass is zero or the driving frequency is large, the equations of motion

can be solved analytically in the linearized approximation. The exact analytical solutions

are presented in section 5. Section 6 deals with the analysis of the AC and DC conduc-

tivities of the model, which are obtained by studying the response of the brane to an

additional probe electric field which is treated in a linearized approximation. We end up

with a summary and some concluding remarks in section 7. The paper is supplemented

with some appendices. In appendix A we give details about the derivation of the regularity

conditions of the brane embeddings at the pseudo-horizon. In appendix B, we find approx-

imate analytic solutions of the equations of motion when the mass is small. The different

embeddings when the equations of motion are linearized are studied in appendix C. The

exact conductivities for the massless case are obtained in appendix D.

2 Setup and ansatz

In order to analyze the Floquet states in the strong coupling regime, we will engineer a

holographic brane setup in which two sets of branes intersect along 2+1 dimensions. More

concretely we will consider the intersection of two stacks of D3- and D5-branes according

to the following array

1 2 3 4 5 6 7 8 9

D3 : × × ×
D5 : × × × × ×

(2.1)

In (2.1) the D3- and D5-branes share the spatial directions 1 and 2, whereas the direction

3 is parallel to the D3-brane and orthogonal to the D5-brane. The field theory dual to

the brane setup (2.1) is well-known [28–31]. It consists of a supersymmetric theory with

Nf matter hypermultiplets (flavors) living on the (2 + 1)-dimensional defect and coupled

to the ambient N = 4 theory realized by the stack of Nc color D3-branes. We will adopt

the approximation in which the D5-branes are probes in the geometry generated by the

D3-branes, so Nf � Nc. The latter is the standard holographic dual of four-dimensional

N = 4 super Yang-Mills, namely AdS5 × S5 with flux. Let us start by recalling this

geometry

ds2
10 =

ρ2 + w2
1 + w2

2 + w2
3

R2

(
− dt2 + dx2 + dy2 + dz2

)
+ (2.2)

+
R2

ρ2 + w2
1 + w2

2 + w2
3

(
dρ2 + ρ2 dΩ2

2 + dw2
1 + dw2

2 + dw2
3

)
,

where dΩ2
2 = dθ2 +sin2 θdφ2 is the metric of a unit two-sphere and R is the common radius

of the AdS5 and S5 factors (in what follows we will take R = 1). In order to embed a

D5-brane wrapping a AdS4 × S2 submanifold we choose the following set of worldvolume
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coordinates

ξa = (t, x, y, ρ, θ, φ) , (2.3)

and the following ansatz for the transverse scalars

z = constant , w1 = w(t, ρ) , w2 = w3 = 0 . (2.4)

The induced metric on the D5-brane woldvolume now takes the form

ds2
6 = −

(
ρ2 + w2

)(
1− ẇ2(

ρ2 + w2
)2
)
dt2 + (ρ2 + w2)(dx2 + dy2) +

+
1

ρ2 + w2

(
(1 + w′ 2)dρ2 + 2 ẇ w′ dtdρ+ ρ2 dΩ2

2

)
, (2.5)

where the dot denotes derivative with respect to t and the prime with respect to the

holographic coordinate ρ. The main objective to study the response of this system to the

driving of an external circularly polarized electric fied

~E(t) =

(
Ex(t)

Ey(t)

)
=

(
cos Ωt − sin Ωt

sin Ωt cos Ωt

)(
Ex
Ey

)
≡ O(t) ~E , (2.6)

with ~E = ~E(t = 0). This will source of a worldvolume gauge field with one-form potential

2π α′A = ax(t, ρ) dx+ ay(t, ρ) dy , (2.7)

whose field strength is

2π α′F = ȧx dt ∧ dx+ a′x dρ ∧ dx+ ȧy dt ∧ dy + a′y dρ ∧ dy . (2.8)

The action of the probe brane is given by the DBI action

S = −NfT5

∫
d6ξ

√
− det

(
g6 + 2πα′F

)
, (2.9)

where T5 is the tension of the D5-brane. In the following we will adhere to the notation

and reasoning advocated in [26, 27], with slight modifications. To start with, the following

switch from vector to complex notation is useful

E = Ex + iEy , a = ax + iay . (2.10)

Now, computing the determinant − det(g6 + 2πα′ F ), the DBI action becomes

S ∼ −
∫
dt dρ

ρ2

ρ2 + w2

[
(1 + w′ 2)

(
(ρ2 + w2)2 − |ȧ|2

)
− ẇ2

(
1 + |a′|2

)
+

+ |a′|2 (ρ2 + w2)2 + 2 ẇ w′( Re(ȧ a′ ∗)−
(
Im(ȧ a′ ∗)

)2 ] 1
2
. (2.11)

Another convenient switch is to represent the complex gauge field a in the rotating frame

E = EeiΩt , a(t, ρ) = b(t, ρ) ei(Ωt+χ(t,ρ)) . (2.12)
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In the new variables, (b, χ) the DBI action (2.11) becomes

S ∼ −
∫
dt dρ

ρ2

ρ2 + w2

[
(1 + w′ 2)

(
(ρ2 + w2)2 − ḃ2 − (Ω + χ̇)2 b2

)
−

−ẇ2
(
1 + b′ 2 + b2 χ′ 2

)
+ (ρ2 + w2)2

(
b′ 2 + b2 χ′ 2

)
+

+2 ẇ w′
(
ḃ b′ + (Ω + χ̇)χ′ b2

)
− b2

(
ḃ χ′ − (Ω + χ̇) b′

)] 1
2
. (2.13)

Since the action does not depend on t explicitly, taking the functions b, χ and w as inde-

pendent of the time is a consistent ansatz1

b = b(ρ) , χ = χ(ρ) , w = w(ρ) . (2.14)

By removing the terms with the time derivative from the action, we can rewrite it in a

much more simplified fashion as S ∼
∫
dρL , where now

L =
ρ2

ρ2 + w2

√(
(ρ2 + w2)2 − Ω2 b2

)(
1 + b′ 2 + w′ 2

)
+ (ρ2 + w2)2 b2 χ′ 2 . (2.15)

We first notice that χ is a cyclic variable which means that q, defined as

q = Ω
∂L
∂χ′

= Ω
ρ4

L
b2 χ′ , (2.16)

is independent of ρ. The Euler-Lagrange equations derived from L are

ρ(ρ2 + w2)
[
(ρ2 + w2)2 − Ω2 b2

]
b′′ =

= −(1 + b′ 2 + w′ 2)
[
2(ρ2 + w2)3 b′ + Ω2 b

(
ρ(ρ2 + w2)− 2w2 b b′

)]
+

+b(ρ2 + w2)3(ρ− 2bb′)χ′ 2 ,

ρ(ρ2 + w2)
[
(ρ2 + w2)2 − Ω2 b2

]
w′′ =

−2 (1 + b′ 2 + w′ 2)
[
(ρ2 + w2)3w′ − Ω2 b2w (ρ+ ww′)

]
− 2 b2 (ρ2 + w2)3w′ χ′ 2 ,

bρ(ρ2 + w2)
[
(ρ2 + w2)2 − Ω2 b2

]
χ′′ =

−2χ′
[
(ρ2 + w2)3

(
b3 χ′ 2 + ρ b′ + b(1 + b′ 2 + w′ 2)

)
−

−Ω2 b3
(

2ρ2 + 2ρww′ + w2(1 + b′ 2 + w′ 2)
)]
. (2.17)

The last equation in (2.17) is redundant, since we can use the first integral (2.16) to obtain

the value of χ′ in terms of the other functions

χ′ 2 =
q2
[
(ρ2 + w2)2 − Ω2 b2

]
(ρ2 + w2)2 b2

[
Ω2 ρ4 b2 − q2

] (1 + b′ 2 + w′ 2) . (2.18)

We can next use this last equation to eliminate χ′ in the first two equations in (2.17). The

resulting equations for w and b depend on q (alternatively one could Legendre transform

and obtain the corresponding Routhian).

1This of course does not preclude the existence of time dependent solutions. For example, at special

points in phase space, instabilities may trigger first order phase transitions that can occur between Black

Hole and Minkowski embeddings.
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2.1 Boundary conditions

Let us now study the equations of motion of the gauge field at the UV ρ → ∞. It is

convenient to define the new complex combination

c(ρ) = b(ρ) eiχ(ρ) , (2.19)

hence a(ρ, t) = c(ρ)eiΩt. In terms of c(ρ) the lagrangian density L gives

L ∼ ρ2

ρ2 + w2

[
(1 + w′ 2)

[
(ρ2 + w2)2 − Ω2 |c|2

]
+ (ρ2 + w2)2 |c′|2− Ω2

[
Re (c c′ ∗)

]2
] 1

2

, (2.20)

and the equation of motion for c(ρ) derived from L is

∂ρ

[
ρ4

(ρ2 + w2)2 L

(
(ρ2 + w2)2 c′ − Ω2 Re (c c′ ∗) c

)]
+ (2.21)

+ Ω2 ρ4

(ρ2 + w2)2 L

(
(1 + w′ 2) c+ Re (c c′ ∗) c′

)
= 0 .

Near the UV at ρ → ∞ we can show that L ≈ ρ2 and the equation of motion reduces

to ∂ρ(ρ
2 c′) = 0, whose general solution is of the form c(ρ) = a1 + a2/ρ. Redefining the

constants a1 and a2, we can write asymptotically

c(ρ) = b(ρ) eiχ(ρ) =
i E

Ω
+
j

ρ
+ · · · , (2.22)

where E is the complexified electric field defined in (2.12), and j the related current.

Proceeding similarly, the embedding function w(ρ) behaves near the UV boundary ρ →
∞ as

w(ρ) ∼ m+
C
ρ

+ · · · , (2.23)

where m and C are constants related to the quark mass and quark condensate respectively.

We will actually refer to them as such. The relation between E, j, m and C and the electric

field EYM(t), the electric current JYM(t), quark mass mq and quark condensate 〈Om〉 in

the boundary theory are

EYM(t) =

√
λ

2π2
eiΩ tE , JYM(t) =

Nf Nc

π2
eiΩ t j , (2.24)

mq =

√
λ

2π2
m, 〈Om〉 = −

Nf Nc

π2
c , (2.25)

where λ = g2
YMNc is the ’t Hooft coupling of the N = 4 theory. The integration constant

q defined in (2.16) can be written in terms of the field c and c∗

q = i
Ω ρ4

2L
(
c c′ ∗ − c∗ c′

)
, (2.26)

and can be easily related to UV data. As w(ρ) ∼ m + C/ρ when ρ → ∞, it follows that

L ≈ ρ2 for large ρ. Moreover, from (2.22) c′ ∼ −j/ρ2 and, therefore

q = Re(E j∗) = jxEx + jy Ey , (2.27)
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which endows q with the physical interpretation of the Joule heating. If we assume that

the driving effectively heats the system we should expect that q ≥ 0, and from (2.16) this

implies Ωχ ′ ≥ 0. We can see that this result is consistent with the ingoing boundary

condition at the pseudohorizon, which can be argued as follows. The wavefront of the

complexified gauge potential a(t, ρ) in (2.12) is the surface χ(ρ) + Ω t = constant (we are

in the case in which χ does not depend on t). By performing a generic variation of this

condition, it follows that

δ ρ = − Ω

χ ′
δ t . (2.28)

Requiring that our gauge potential represents an infalling wave at the pseudo-horizon

implies δρ < 0 for δt > 0 which, following (2.28), only occurs when Ωχ ′ ≥ 0 and, therefore,

q ≥ 0.

The equations of motion (2.17) and the UV boundary conditions (2.22) and (2.23)

have the following scaling symmetry

t→ t/α , ρ→ αρ , w → αw , b→ αb , χ→ χ ,

Ω→ αΩ , E → α2E , j → α2 j , (2.29)

m→ αm , C → α2 C , q → α4 q .

The Lagrangian and the action transform homogeneously L → λ2L and S → λ2S. By

choosing α = 1/m in (2.29) we can make m = 1 and deal with the remaining quantities in

units of (the appropriate powers of) m.

3 Types of embeddings

The equations of motion written in (2.17) are potentially singular when

b0 =
w2

0 + ρ2
c

Ω
, (3.1)

where b0 = b(ρ = ρc) and w0 = w(ρ = ρc). The point ρ = ρc where the condition (3.1)

holds will be referred to as the pseudohorizon. Indeed, we will show below that ρ = ρc is

the event horizon of the induced open string metric on the D5-brane. The IR behaviour of

the bulk fields when approaching this pseudohorizon determines three types of embeddings

(see figure 1). We can have black hole embeddings (which cross the horizon), Minkowski

embeddings (which do not intersect the pseudohorizon and reach the point ρ = 0) and

critical embeddings (for which the brane reaches the ρc at ρc = 0). In order to avoid the

singularity at ρ = ρc the first derivatives of the functions w(ρ), b(ρ) and χ(ρ) have to be

adjusted properly for black hole and critical embeddings.

3.1 Black hole embeddings

Expanding the functions w(ρ), b(ρ) and χ(ρ) around ρ = ρc as

w(ρ) = w0 + w1 (ρ− ρc) + · · · ,
b(ρ) = b0 + b1 (ρ− ρc) + · · · , (3.2)

χ(ρ) = χ0 + χ1 (ρ− ρc) + · · · ,

– 8 –
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0 1 2 3
0

0.5

1

1.5

Minkowski embedding

Critical embedding

Black hole embedding

Figure 1. Profiles of the different types of embeddings for E = Ω = 1.

we obtain coefficients w1, b1 and χ1 whose explicit expressions are given in appendix A.

Notice that χ1 appears in the expression of the on-shell lagrangian density L0 evaluated

at the pseudohorizon ρ = ρc

L0(ρc) = ρ2
c b0 χ1 . (3.3)

We can use this expression to obtain the Joule heating q in (2.16). Indeed as q is constant,

we can evaluate it at the pseudohorizon, with the result

q = Ω ρ2
c b0 . (3.4)

which only depends on b0. Using (3.1), we get

q = ρ2
c

(
w2

0 + ρ2
c

)
. (3.5)

3.2 Minkowski embeddings

In this case there is no ρc that solves (3.1) and the brane reaches the origin ρ = 0. We

can therefore evaluate the Joule heating constant q by taking ρ = 0 in (2.18) and, since

the right-hand side of this equation contains a ρ4 factor we get q = 0. Thus, for these

embeddings there is no net energy flux on the boundary theory. Moreover, from (2.18) one

readily concludes that the phase function χ(ρ) is in fact a constant. Expanding b(ρ) and

w(ρ) around ρ = 0

b(ρ) = b0 −
b0 Ω2

6
(
w4

0 − Ω2 b20
) ρ2 + · · · ,

w(ρ) = w0 +
b20 Ω2

3w0

(
w4

0 − Ω2 b20
) ρ2 + · · · . (3.6)

3.3 Critical embeddings

When the effective horizon reaches the origin, ρc = 0, the embedding is critical. The value

of the b field at the horizon is b0 = w2
0/Ω, χ(ρ) is also here constant and we can expand

– 9 –
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b(ρ) and w(ρ) around ρ = 0, with the result

b(ρ) =
w2

0

Ω
− Ω

2
√

Ω2 + 4w2
0

ρ+ · · ·

w(ρ) = w0 +
w0√

Ω2 + 4w2
0

ρ+ · · · . (3.7)

3.4 Effective metric

The effective open string metric γab is defined as [40]

γab = hab + (2πα′)Fac Fbd h
cd , (3.8)

where we now denote by hab the induced metric (2.5). Explicitly, for our ansatz, we have

γab dξ
a dξb =−F (ρ) dt2 +

1 + w′ 2 + |c′|2

ρ2 + w2
dρ2 − 2Ω Im(c c′ ∗)

ρ2 + w2
dt dρ+ F (ρ) e+ e− +

+
ρ2 + w2

4(1 + w′ 2)

(
e− c

′ + e+ c
′ ∗)2 +

Ω2

4(ρ2 + w2)

(
e− c+ e+ c

∗)2 +
ρ2

ρ2 + w2
dΩ2

2 ,

(3.9)

with F (ρ) given by the following function

F (ρ) ≡ (ρ2 + w2)2 − Ω2 |c|2

ρ2 + w2
, (3.10)

and e± are complex 1-forms

e± = e∓ iΩt
(
dx± idy

)
. (3.11)

The (t, ρ) part of the metric gets diagonalized by means of the following change of coordi-

nates

dτ = dt−A(ρ) dρ , dρ∗ = B(ρ) dρ , (3.12)

where A(ρ) and B(ρ) are the following functions:

A(ρ) = −
Ω Im

(
c c′ ∗

)
(ρ2 + w2)2 − Ω2 |c|2

, B(ρ) =
(ρ2 + w2)L0

ρ2
[
(ρ2 + w2)2 − Ω2 |c|2

] . (3.13)

The new coordinate ρ∗ is just the Eddington-Finkelstein tortoise coordinate. In these

coordinates, the transformations in (2.29) act as a rescaling (τ, ρ∗) → λ−1(τ, ρ∗), and the

effective metric takes the form

γab dξ
a dξb = −F (ρ) (−dτ2 + dρ2

∗ ) + F (ρ) e+ e− +
ρ2 + w2

4(1 + w′ 2)

(
e− c

′ + e+ c
′ ∗)2 +

+
Ω2

4(ρ2 + w2)

(
e− c+ e+ c

∗)2 +
ρ2

ρ2 + w2
dΩ2

2 . (3.14)

The function F (ρ) vanishes at ρ = ρc and, therefore, this function acts as a blackening

factor for the effective metric (3.14), with ρ = ρc playing the role on an event horizon. The

effective Hawking temperature TH is given by

TH =
κ

2π
= − γ′tt

4π γtρ

∣∣∣∣∣
ρ=ρc

. (3.15)
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Figure 2. Electric field of the critical embeddings versus driving frequency. The frequencies for

which E vanish are the critical frequencies Ωc of the vector meson Floquet condensates. The blue

dots signal the frequencies (4.1) of the vector meson spectrum for different values of the principal

quantum number n. On the right hand side, the three dimensional version of the left plot, focussing

close to the first critical point, which stretches into a segment Ω/m ∈ (1.496, 1.732).

Using the values of γtt and γtρ found above, we get the TH in terms of near horizon data

TH =
2(ρc + ww′)− Ω b′

2π χ′ b

∣∣∣∣∣
ρ=ρc

=
2(ρc + w0w1)− Ω b1

2πχ1 b0
. (3.16)

4 Phase diagram

In the previous section we have addressed the different types of embedding according to the

IR boundary conditions. On the other hand, the phase diagram is constructed out of the UV

boundary data that contain information about the sources and the responses. The analysis

of the generic case proceeds by numerically integrating the system of equations (2.17). In

this section we will obtain the precise boundary of the phase space of solutions presented

in figures 2 and 3. Although the qualitative results are the same as the ones found in [27],

we need the precise values of these boundaries in order to locate interesting places where

to look for conductivity properties in the next section. As usual, integration proceeds

from the IR to the UV. Indeed, enforcing regularity conditions found in section 3 as initial

conditions at the pseudohorizon ρ = ρc and integrating out up to the boundary yields a

unique solution. For a given frequency Ω we can specify b0 = b(ρ = ρc) and w0 = w(ρ = ρc)

and use the values of w1, b1 and χ1 computed in appendix A(for Minkowski embeddings

ρc = 0 and χ(ρ) is constant). From the UV behavior of the solutions b(ρ), χ(ρ) and w(ρ)

when ρ → ∞ one can extract E, j, m and C. Due to the scaling symmetry (2.29) these

quantities are not independent. It is natural to measure all quantities in terms of the quark

mass m. Accordingly, we will present our results for Ω/m, |E|/m2, j/m2 and C/m2.

In figure 2 we show the phase diagram in the parameter space (Ω/m, |E|/m2). The solid

curve is the locus of critical embeddings. We can think of it roughly as a boundary between

the conductive phase (above) made of black hole embeddings, and insulator phase (below)

– 11 –
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Figure 3. Logarithmic version of the plot in figure 2. The high Ω/m fitting is derived in section C.3

(see eq. (C.43)).
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Figure 4. Electric current versus electric field for Ω ≤ Ωc (left) and Ω > Ωc (right) around the first

vector meson resonance. The solid curves correspond to the insulator (Minkowski) phase, whereas

the dotted curves represent the conductive (black hole) phase. On the right curve we show that E

can only vanish for j 6= 0 for Minkowski embeddings with Ωc = 1.4965 ≤ Ω ≤ 1.732 = Ωmeson.

made of Minkowski embeddings.2 In figure 4 we plot the electric current versus the electric

field for driving frequencies around the firs resonance. In figure 5 we represent the quark

condensate for Minkowski and black hole embeddings and different driving frequencies.

We notice in figures 2 and 3 that |E|/m2 has a series of maxima whose values decrease as

Ω/m increases. Moreover, for some discrete values Ωc/m of the frequency the electric field

vanishes and, as shown in figure 4, the corresponding rotating current is non-zero.

Thus, for these frequencies we have a vector meson Floquet condensate of the type men-

tioned in the introduction. Actually, these E = 0 Floquet states exist also for Minkowski

embeddings in a finite range of frequency Ωc < Ω ≤ Ωmeson, where Ωmeson is the mass of

a vector meson in the defect theory. This mass spectra was computed in [32] and is given

2Although it is pretty clear from figure 1 that the critical embeddings lie in between Minkowski and

Black Hole embeddings, the spiralling multivaluedness in the vicinity of the solid line (see figure 4 below)

implies that one can find Black Hole embeddings closely below it, and also Minkowski embedding above.

– 12 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
3

1.2

1.3

1.49653

0 0.04 0.08 0.12

0

-0.025

-0.05

-0.075

-0.1

1.51

1.65

1.7

1.8

0 0.04 0.08 0.12 0.16

0

-0.025

-0.05

-0.075

-0.1

Figure 5. Quark condensate as a function of the electric field for several Ω around the first

resonance. The curves on the left (right) are for Ω ≤ Ωc (Ω > Ωc). Solid (dashed) curves correspond

to Minkowski (black hole) embeddings.
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Figure 6. The Joule heating q as a function of the electric field E for black hole embeddings and

several frequencies around the first resonance. On the left (right) plots Ω ≤ Ωc (Ω > Ωc).

by a tower of values depending on a principal quantum number n

Ωmeson/m = 2

√(
n+

1

2

)(
n+

3

2

)
, n = 0, 1, 2, · · · . (4.1)

In section 5.2 and appendix C we obtain these frequencies by means of a linear analysis of

the equations of motion. The first four values of the critical resonant frequencies and of

the meson masses are

Ωc/m = 1.4965 , 3.5308 , 5.5676 , 7.5851 · · · (4.2)

Ωmeson/m = 1.7320 , 3.8730 , 5.9161 , 7.9372 , · · · . (4.3)

In figure 6 we plot the Joule heating q as a function of the electric field, whereas in

figure 7 the Joule heating for black hole embeddings is plotted versus the driving frequency

for several values of the electric field.

To get further insight on the structure of the phase diagram of the model, it is inter-

esting to analyze in detail the relation between the current j and the electric field E. Since

j and E are vector quantities with two components in the xy plane, we expect to have a
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Figure 7. The Joule heating q as a function of the frequency Ω for black hole embeddings and

several values of the electric field.

relation of the type: (
jx
jy

)
=

(
γxx γxy
−γxy γxx

) (
Ex
Ey

)
, (4.4)

where the form of the matrix is dictated by the rotational symmetry in the xy plane. The

matrix elements γxx and γxy are susceptibilities, defined in analogy with the longitudinal

and transverse (Hall) conductivities. From the definitions (4.4) it is immediate to find γxx
and γxy in terms of the components of E and j:

γxx =
Ex jx + Ey jy
E2
x + E2

y

=
|j|
|E|

cos δ , γxy =
Ey jx − Ex jy
E2
x + E2

y

=
|j|
|E|

sin δ , (4.5)

where δ is the angle formed by the vectors (jx, jy) and (Ex, Ey) in the xy plane. The

quantity γxx is related to the Joule heating q. Indeed, one has γxx = q/|E|2. Given this,

and the fact that we have profusely illustrated the behaviour of q in figures 6 and 7, we

shall focus on the study of γxy.

For massless black hole embeddings γxy vanishes, since in this case j and E are colinear,

as we demonstrate analytically in section 5.1 below. On the other hand γxy 6= 0 for

Minkowski embeddings since there is no Joule heating in this case and the vectors j and E

are orthogonal. This behavior can be verified by studying γxy for black hole embeddings

as a function of ρc (see figure 8). When ρc is large enough γxy → 0, whereas it reaches

a non-vanishing value as ρc → 0. Interestingly, the sign of γxy(ρc → 0) changes at a

discrete set of values of the driving frequency. We have identified these values as the

critical resonant frequencies Ωc of (4.3), as well as those for which the current j vanishes

for critical embeddings. These last frequencies with j = 0 are very close to the maxima

of the lobes in the |E|/m2 versus Ω/m plot of figure 2. The first numerical values of the

frequencies which make E maximal and j zero for critical embeddings are:

Ω

m
(j = 0) = 2.5080 , 4.5489 , 6.5769 , 8.5960 , · · · ,

Ω

m
(Emaximal) = 2.4008 , 4.4772 , 6.5270 , 8.5638 , · · · (4.6)
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Figure 8. The susceptibility coefficient γxy as a function of ρc for black hole embeddings and

different driving frequencies. On the left we plot the values for frequencies close to the first critical

resonant frequency Ωc/m = 1.49. On the right we represent γxy for driving frequencies around

Ω/m = 2.5, which is frequency of the first zero of j for critical embeddings.
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Figure 9. On the left we plot |E|/m2 and j/m2 versus the driving frequency for critical embeddings.

On the right we depict the value of sin δ for embeddings with ρc = 0.

In figure 9 we plot together the |E|/m2 and j/m2 curves as a function of Ω/m. We notice

that the current curve also displays a lobe-shaped structure, displaced with respect to the

|E|/m2 curve, whose maxima (zeros) are very close to the zeros (maxima) of the |E|/m2

curve. We have also checked that sin δ(ρc → 0) = ±1 and changes discontinuously its sign

at the discrete set of frequencies described above (see figure 9).

5 Analytic solutions

There are two limits where the equations are amenable to analytic solution. These are the

low mass limit m→ 0, and the high frequency limit Ω→∞. In the first case all embeddings

are of black hole type. In the second, the three types of embeddings can occur.

5.1 Massless embeddings

Let us consider the particular case of massless black hole embeddings, which correspond to

putting the embedding function w(ρ) = 0. By inspection one easily concludes that w = 0
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is a consistent truncation of the equations of motion in (2.17). In this massless case, the

lagrangian density (2.15) takes the form

L0 =
√

(ρ4 − Ω2 b2)(1 + b′ 2) + ρ4 b2 (χ′)2 . (5.1)

As in the general case, χ(ρ) is a cyclic variable which, according to (2.18), is now given by

χ′ =
q

ρ2b

√
(ρ4 − Ω2 b2)(1 + b′ 2)√

Ω2 ρ4 b2 − q2
. (5.2)

Let us now eliminate χ(ρ) by introducing the Routhian R0, defined as

R0 = χ′
∂L0

∂ χ′
− L0 . (5.3)

After some calculation, R0 as a function of b(ρ) and q becomes

R0 = −

√(
1− q2

Ω2 ρ4 b2

)
(ρ4 − Ω2 b2)

√
1 + b′ 2 . (5.4)

As usual in this flavour brane setup, demanding reality of the Routhian fixes transport

coefficients in terms of horizon data [50]. Indeed, at ρc the two factors under the square

root must change sign, and therefore vanish, simultaneously. This enforces b0 = b(ρc) and q

to satisfy both equations (3.1) with w0 = 0, and (3.4). Combined together, these equation

entail, in the massless case

q = Ω2b20 . (5.5)

Let us look for solutions to the Euler Lagrange equations in which b(ρ) is constant.

Writing these equations in the following form

∂

∂b

[(
1− q2

Ω2 ρ4 b2

)
(ρ4 − Ω2 b2)

]
= −2

b

(
Ω2 b2 − q2

Ω2 b2

)
, (5.6)

it’s clear that there is a chance to have b(ρ) constant precisely if it is equal to b0 related to

q as in (5.5). Plugging this value of b = b0 into the right-hand side of (5.2) we find

χ′ 2 =
Ω2

ρ4
, (5.7)

that can be integrated right away

χ = −Ω

ρ
+ χ0 , (5.8)

with χ0 constant. The minus sign is consistent with a positive Joule heating q, see (2.16),

and infalling boundary conditions, see (2.28). Then c(ρ) = beiχ ends up being

c(ρ) =
ρ2
c

Ω
eiχ0 e

−i Ω
ρ . (5.9)
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The extreme simplicity of this solution must be contrasted with the need for numerical

integration in the D3-D7 setup [26]. By expanding near the UV as in (2.22), the electric

field and current at the boundary are equal and given by

E = j = −i ρ2
c e

iχ0 . (5.10)

Hence, in the massless case, the rotating electric field and the induced current are aligned.

The effective Hawking temperature for this massless case can be obtained from (3.16)

TH =
ρc

π b0 χ′(ρc)
. (5.11)

Using (5.7) and (3.1) this simplifies into

TH =
ρc
π

=
q

1
4

π
. (5.12)

Black hole embeddings with a small non-vanishing mass can be studied as perturbations

of the exact massless solutions of this section. This analysis is carried out in detail in

appendix B.

5.2 High frequency limit

If the frequency Ω is large, the boundary condition at the UV (2.22) fixes that |c(ρ →
∞)| = E/Ω� 1 and this enforces c(ρ) to be small for all values of ρ. The gauge field can

then be treated as a perturbation around the state with c = 0 and, as we shall see, admits

an analytical solution. To start with, using the scaling symmetry (2.29) we can choose

to linearize the equations of motion derived from (2.20) near the solution with c = 0 and

w = 1. Writing w = 1 + δw we get

c′′ +
2

ρ
c′ +

Ω2

(1 + ρ2)2
c = 0 , (5.13)

δw′′ +
2

ρ
δw′ =

2Ω2

(1 + ρ2)3
|c|2 . (5.14)

where c and δw are small. Notice that, although at linear order the equations decouple, as

in [27] we have included the lowest order contribution to the coupling of modes, O(|δc|2),

in the equation of δw. The general solution of the equation of δc is

c(ρ) = c1 g1(ρ) + c2 g2(ρ) , (5.15)

where c1 and c2 are constants and g1(ρ) and g2(ρ) are the functions

g1(ρ) =

√
1 + ρ2

ρ
sin
(√

1 + Ω2 arctan(ρ)
)
,

g2(ρ) =

√
1 + ρ2

ρ
cos
(√

1 + Ω2 arctan(ρ)
)
. (5.16)
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with asymptotic behaviour as ρ→∞ given by

g1(ρ) = sin
(π

2

√
1 + Ω2

)
−
√

1 + Ω2 cos
(π

2

√
1 + Ω2

) 1

ρ
+ · · · ,

g2(ρ) = cos
(π

2

√
1 + Ω2

)
+
√

1 + Ω2 sin
(π

2

√
1 + Ω2

) 1

ρ
+ · · · . (5.17)

Similarly near ρ = 0, g1 and g2 behave as

g1(ρ) =
√

1 + Ω2 − Ω2
√

1 + Ω2

6
ρ2 + · · ·

g2(ρ) =
1

ρ
− Ω2

2
ρ+ · · · (5.18)

At the linearized level the Joule heating q of eq. (2.26) is proportional to the Wronskian

of c and c∗

q = i
Ω ρ2

2

(
c c′ ∗ − c∗ c′

)
. (5.19)

Since q is independent of ρ, we could compute it by using the expansions (5.17) around

ρ =∞ or (5.18) around ρ = 0. The result one obtains is the same and given by

q = Ω
√

1 + Ω2 Im (c1 c
∗
2) . (5.20)

The solution for w(ρ) can be written as

δw(ρ) = −2Ω2

ρ

∫ ρ

0

s2

(s2 + 1)3
|c(s)|2 − 2Ω2

∫ ∞
ρ

s

(s2 + 1)3
|c(s)|2 + c3 , (5.21)

with c3 being a new integration constant.

Since we obtained the general solution of our equations, we can now analyze the dif-

ferent types of embeddings. The details of this study are deferred to appendix C. Let us

summarize here the results that we obtain there. (i) Regularity of the Minkowski embed-

dings at ρ = 0 enforces that the constant c2 in (5.15) has to vanish. (ii) By imposing the

additional condition E = 0 to these Minkowski solutions, we obtain the resonant frequen-

cies (4.1), corresponding to the meson masses of the D3-D5 model. (iii) To construct black

hole embeddings we have to build up a pseudohorizon in our linearized theory and im-

pose the corresponding infalling boundary conditions. Although the linear approximation

breaks down for the critical embeddings, it turns out that one can use the linear Minkowski

solution to represent the critical configuration in the UV region of large ρ and use this result

to represent features of the phase diagram, such as the envelope curve of figure 3.

6 Conductivities

One of the main uses of the Floquet driving is the artificial engineering of materials ex-

hibiting transport phenomena with topological character. In this sense, the obtention of

a Hall conductivity without a magnetic field is an important hallmark. In the present

context, this has been termed photovoltaic Hall effect [9] where it’s origin has been shown
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to be topological, like the Thouless pumping. The time-reversal symmetry breaking and

hence, the nontrivial band topology, is induced by the circularly polarized light. This

proposal has been the subject of both theoretical and experimental studies during the last

decade [55–59]. In [26] the photovoltaic Hall conductivity for massless carriers was obtained

in the D3-D7 model, and speculated to behave consistently with the picture of a strongly

coupled version of a (3+1) Weyl semimetal. Our findings show similarities and departures

from their results. For example, the massless case will be shown to be trivial. However, in

the massive case, we will indeed find an intricate Hall effect.

Following the proposal in [10] we proceed to study the response of our system to a

small additional electric field on the boundary pointing in a fixed direction. From this

response we will be able to extract the AC and DC conductivities. We will closely mimic

the strategy in [26] whose main steps will be reviewed and extended here for completeness,

as our case involves three coupled field perturbations.

For the analysis it is most convenient to stick to the cartesian basis used in (2.6). On

top of this background field, the idea is to place another fixed direction electric field

~E(t) = O(t) ~E + ~ε(t) , (6.1)

with |~ε| � | ~E|, and a harmonic (AC) time dependence

~ε(t) = ~ε e−iω t . (6.2)

Our task is to extract the response of the system out of the non equilibrium steady state

(NESS) solutions spelled out in the previous sections. In particular, the currents will also

suffer a perturbation ~J (t) → O(t)~j + δ~j(t) and one of our targets will be to extract the

effective conductivity response matrix σ, such that δ~j(t) = σ · ~ε(t).
From (6.1) we expect a perturbation of the bulk gauge field, which we also write now

in cartesian components, ~a(t, ρ) → ~a(t, ρ) + δ~a(t, ρ). The idea is now to refine the ansatz,

taking into account the new driving data (6.1) and (6.2). First of all, let us reconsider

the boundary conditions of the unperturbed gauge field, ~a(t, ρ) (2.7), now in cartesian

coordinates. The near boundary expansion will be

~a(t, ρ) = −
∫ t

~E(t)dt +
~J
ρ

+ . . .

= − 1

Ω
O(t) ε ~E +

~J
ρ

+ . . . (6.3)

where ε stands for the 2× 2 antisymmetric matrix

ε =

(
0 1

−1 0

)
. (6.4)

The leading term matches the vector potential of the rotating electric field through ~E(t) =

−∂t ~a(t, ρ = ∞). This easily follows from the relation ∂tO ε = −ΩO. The boundary

condition (6.3) suggests the following ansatz for the bulk solution

~a (t, ρ) = O(t)~c (ρ) . (6.5)
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which is equivalent to (2.12) and (2.19) in cartesian basis. Near the boundary

~c(ρ) ≈ ~c0 +
~c1

ρ
+ . . . (6.6)

with3

~c0 = − 1

Ω
ε ~E , ~J (t) = O(t)~c1 . (6.7)

Considering the perturbations, now the bulk gauge potential ~a+ δ~a has to match the full

electric field (6.1) at the boundary, −∂t(~a+ δa) = ~E(t)

~a(t, ρ =∞) + δ~a(t, ρ =∞) = − 1

Ω
O(t) ε ~E − i

ω
~ε e−iω t . (6.8)

Induced by this new boundary conditions, the ansatz will assume that the static field, c(ρ),

develops a time dependent perturbation

~a (t, ρ) + δ~a (t, ρ) = O(t)
(
~c (ρ) + δ~c (t, ρ)

)
. (6.9)

When the flavour branes are massive, these fluctuations couple to a perturbation of the

brane embedding functions w(ρ) → w(ρ) + δw(t, ρ). In this case we will be dealing with

a 3 component vector of fluctuations δ~ξ(t, ρ) = (δcx, δcy, δω). The perturbed equations of

motion, linear in δ~ξ, will assume the following form, in terms of the (τ, ρ∗) coordinates (see

eq. (3.12)) (
∂2
τ − ∂2

ρ∗ + A(ρ) ∂τ + B(ρ) ∂ρ∗ + C(ρ)
)
δ~ξ = 0 . (6.10)

Here, A, B and C are 3 × 3 matrices depending on the radial coordinate ρ(ρ∗) and,

parametrically, on the rotating frequency Ω. At the pseudo-horizon ρ = ρc (ρ∗ → −∞)

one finds

A(ρ = ρc) = −B(ρ = ρc) ≡ Ac C(ρ = ρc) = 0 . (6.11)

Thus, in this limit, ρ∗ → −∞, the fluctuation equations become(
∂2
τ − ∂2

ρ∗

)
δ~ξ + Ac (∂τ − ∂ρ∗)δ~ξ = 0 , (6.12)

whose general solution takes the form

δ~ξ = ~f(τ + ρ∗) + e−Ac ρ∗ ~g(τ − ρ∗) , (6.13)

with ~f and ~g arbitrary vector functions. Imposing that ~g = 0 selects the ingoing wave

boundary condition at the pseudohorizon.

Let us now work out the boundary conditions for the fluctuations. First, we want to

keep the mass of the flavor brane fixed. After inserting (6.9) into (6.8) and multiplying by

O−1, the boundary conditions for δ~ξ(t,∞) turn out to be

δ~c (t, ρ =∞) = − i
ω
O(−t) e−iω t~ε , δω(t, ρ =∞) = 0 . (6.14)

3This replaces (2.22) with j = c1x + ic1y.
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Following [26], we expand the matrix O(t), defined in (2.6) as

O(t) = M+e
iΩt + M−e

−iΩt , (6.15)

where M± are orthogonal projectors given by

M± =
1

2

(
1 ±i
∓i 1

)
. (6.16)

Finally, defininig ω± = ω ± Ω , the boundary UV condition (6.14) of δ~c can be written as

δ~c(t, ρ =∞) = − i
ω

(
M+e

−iω+t + M−e
−iω−t

)
~ε . (6.17)

It is natural to assume that from these boundary condutions the bulk fluctuations δ~c (t, ρ)

will oscillate with frequencies

δ~c (t, ρ) = ~β+(ρ) e−iω+t + ~β−(ρ) e−iω−t . (6.18)

As a consequence of the coupling in the linearized equations, we will assume likewise that

the embedding fluctuations will resonate with the same frecuencies

δw(t, ρ) = γ+(ρ)e−iω+t + γ−(ρ)e−iω−t . (6.19)

In summary, setting δ~ξ(t, ρ)=~ξ±(ρ)e−iω±t, the 3 component vectors ~ξ±(ρ)=(β±,x, β±,y, γ±)

will satisfy the linearized ordinary differential system[
d2

dρ2
∗
−B(ρ)

d

dρ∗
+ ω2

± + iω±A(ρ)−C(ρ)

]
~ξ± = 0 . (6.20)

From (6.14), the brane fluctuations have vanishing boundary source γ±(∞) = 0 . Inserting

the boundary expansions for the fields in (6.18)

δ~c(t, ρ) ≈ δ~c(0)(t) +
δ~c(1)(t)

ρ
+ . . . , ~β±(ρ) = ~β(0) +

~β(1)

ρ
+ . . . (6.21)

and comparing we get

δ~c(0)(t) = ~β
(0)
+ e−iω+t + ~β

(0)
− e−iω−t , δ~c(1)(t) = ~β

(1)
+ e−iω+t + ~β

(1)
− e−iω−t . (6.22)

Comparing the first of these equations with (6.17) we conclude that

~β
(0)
± = − i

ω
M±~ε . (6.23)

The subleading vectors ~β
(1)
± determine the variation of the current δ ~J (t)=O(t) δ~c(1)(t).

Using (6.7), (6.15) and (6.17)

δ ~J (t) = e−iω t
(
M+

~β
(1)
+ + M− ~β

(1)
− + M+

~β
(1)
− e2 iΩ t + M− ~β

(1)
+ e−2 iΩ t

)
. (6.24)
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As usual in the AdS/CFT program, given a regular solution, the vectors ~β
(1)
± and ~β

(0)
± will

no more be independent. From the linearity of the equations of motion it follows that this

relation is also linear
~β

(1)
± = X± ~β

(0)
± = − i

ω
X±M±~ε , (6.25)

where X± are 2 × 2 matrices to be computed and (6.23) has been used. Plugging this

into (6.24) allows to find a relation between the current δJ and the applied electric field ~ε

which defines σ, σ+ and σ− as the 2×2 conductivity matrices of the three current modes,

one with frequency ω and two with ω ± 2Ω (the heterodyning mixing modes [53])

δ ~J =
[
σ(ω) e−iω t + σ+(ω) e−i(ω+2Ω) t + σ−(ω) e−i(ω−2Ω) t

]
~ε , (6.26)

where

σ(ω) = − i
ω

(M+X+M+ + M−X−M−)

σ+(ω) = − i
ω

M−X−M+ (6.27)

σ−(ω) = − i
ω

M+X+M− .

The procedure to compute X± starts by solving the differential equation system (6.20)

from the pseudohorizon ρ∗ → −∞ to the AdS boundary at ρ∗ = 0. At the horizon we

impose the ingoing boundary condition ~ξ±(ρ∗) ' ~c e−iω±ρ∗ , where ~c are constant vectors

(1, 0, 0), (0, 1, 0) and (0, 0, 1). Due to linearity of the equations we obtain in this way two

complex 3× 3 matrices P± and Q± such that ~ξ
(0)
± = P±~c±, and ~ξ

(1)
± = Q±~c±. In this way

we can solve for ~ξ
(1)
± = Q±P

−1
±
~ξ

(0)
± . Since we will be setting the source for the embedding

fluctuations to zero, i.e. ξ
(0)
±,3 ≡ γ

(0)
± = 0 and we only care about ξ

(1)
±, 1,2, the searched for

matrices X± in (6.25) will be given by the 2× 2 submatrix of the product Q±P
−1
±

X± ij = [Q±P
−1
± ]ij=1,2 .

From them, the conductivities are extracted using (6.27).

6.1 AC conductivities

The results for the photovoltaic optical Hall conductivity, σxy, as well as for the photovoltaic

optical absortion spectrum, σxx, can be seen in figure 10. We have plotted everything in

units of the carrier mass m.4 The driving laser has been set to the first resonant frequency

Ω/m = 1.496 for a discrete set of values of |E|/m2 (see the coloured dots along the vertical

dashed line in figure 12).

The behaviour in all components of σ shows oscillations whose amplitude grows for

decreasing |E|/m2. All conductivities oscillate around 0 except for Re(σxx) which does it

around a saturation value 1.

4Numerically we have performed the integration for 2 different sets of values of (E,Ω,m) in order to

verify the scaling symmetry of eq. (2.29).
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Figure 10. AC conductivities for fixed value of Ω/m = 1.496 and different values of |E|/m2.

They correspond to the vertically aligned dots in figure 12 with the same color code. In the insets,

the curves at low values of |E|/m2 → 0 deep into the critical wedge, where they develop peak

resonances. The value ω/m = Ω/m = 1.496 is signalled with a dashed vertical line.

The departure in (2+1) dimensions, from the analog (3+1) dimensional holographic

system is significant (see figure 7 and 8 in [26]). In both cases, in the large frequency

limit, the conductivity becomes proportional to the identity matrix σ(ω → ∞) = c I.
In the D3/D7 case, c is a complex linearly growing function of ω, whereas in our case c

is a constant (equal to 1 in our normalization in this section, see later however). This

asymptotic behaviour is also attained in the limit of high |E|/m2 � 1, as controlled by

the massless limit m → 0 which is analytically solvable. Not only the amplitude of the

maxima, but also their movement is different. In the D3/D7 case their positions shift to

lower frequency for decreasing external field. Here we see that they tend to approach the

critical ω = 1.496.

As |E|/m2 becomes smaller, strong oscillations develop, with the most prominent one

sharpening around the resonance value for the optical and driving frequencies ω = Ω

(signalled with a dotted vertical line in all the plots). This feature bears resemblance with

the one obtained in [10] (Fig 1b), although the behaviour of the peak amplitude with the

intensity is the opposite.
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In the limit |E|/m2 → 0 these oscillations become very sharp peaks as shown in the

insets in figures 10. As we move down towards E/m2 → 0 the shape and positions of

these peaks change rapidly. This can be appreaciated in the insets, where the curves for

E/m2 = 0.0175 and 0.001 look decorrelated. This last magenta curve shows a subseries

of peaks at frequencies ω = 1.496, 3.38, 4.87, . . . which have some overlap with the vector

meson Floquet condensate spectrum ω = 1.496, 3.53, 5.56, . . . at shifted values.

The fact that σ is dimensionless in (2+1) dimensions eases the comparison with results

in the literature. For the Hall component, σxy(ω) there is a striking similarity with the

plot in figures 8 of [12], where also the resonance peak is visible as well as secondary peaks.

Importantly, in the limit E → 0 the photoelectric Hall conductivity does not vanish. This

signals spontaneous time reversal symmetry breaking and might be a consequence of the

underlying vector meson Floquet condensate state.5

The enhancement of the oscillations and peak formation observed in figure 10 is a

universal feature as we approach the line of critical embeddings. We have followed the

movement of the peaks for a sequence of configurations very closely above the critical line,

for background frequencies in the range Ω/m ∈ (1.3, 2.32) (see figure 2). The resulting

curves are plotted in figure 11. A remarkable fact is the presence of one peak whose

position barely changes and is confined to the interval ω/m ∈ (1.4965, 1.73), i.e. among the

vector meson Floquet condensate frequency and the meson mass resonance (see figure 2

and eqs. (4.2), (4.3)). Very slightly above the critical line there are two sidewise peaks

which appear within a short interval in E/m2. They all can be seen also in figure 11. The

remarkable fact about these lateral peaks is that they shift position with the driving in such

a way that their mean value coincides with the background frequency Ω, while their splitting

is almost constant ∆ω/m ∼ 1.7. This curious result is very neatly seen on embeddings to

the right of the vector meson Floquet condensate, i.e. in the segment Ω/m ∈ (1.496, 2.32)

and, very much damped, nearby to its left. The blue curve at Ω/m = 1.496 is the same one

that can be observed in the insets of figure 10, which has E/m2 = 0.0175. At this frequency

Ω = Ωc, there are embedding solutions down to E = 0 and this gives the magenta curves

in those insets at values of E/m2 = 0.001 and even lower.

We also computed the heterodyning conductivities σ±(ω). They bear the same features

as for the normal conductivity, and the reader can found further information in appendix E.

Roughly stated, the curves for these exotic conductivities share, each of them, half of the

peaks visible in σ(ω).

6.2 DC conductivities

The zero frequency limit ω → 0 is formally singular (cf. (6.14)). However the numerical

value of the AC conductivity is well behaved and stable down to values of ω/Ω well below

10−3. Hence we will use this value to define our DC conductivity. The authors of [26]

performed a numerical analysis in the time domain and showed consistent agreement be-

tween the two prescriptions. From the plots in figures 10, it is apparent that the imaginary

5We thank T. Oka for this observation.
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Figure 11. Peaks in the AC conductivities closely above along the critical line. The exact position

of these curves in phase space can be seen in figure 12 as coloured circles. The vertical dashed

lines signal the vector meson Floquet condensate and the meson mass frequencies respectively. The

central peaks bunch in this region whereas the two lateral peaks move with ω while keeping their

separation almost constant, ∆ω/m ∼ 1.7.
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Figure 12. The dots and circles signal the points where the AC conductivities in figures 10 and 11

have been plotted respectively. Also shown are the lines with either Ω/m or |E|/m2 fixed, used to

plot the DC conductivities in figures 13 and 14. In all cases, the same color code has been used.

parts vanish in the limit ω → 0. Hence the DC conductivities are real, as follows from the

relation σ(−ω) = σ(ω)∗.

Figures 13 and 14 summarize our numerical results. In figure 13 we exhibit σ(ω = 0)

for varying Ω/m along lines of constant |E|/m2. For high enough E/m2 the limit Ω → 0

stays in the conducting phase and the direct conductivity σxx has the correct static limit
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Figure 13. DC Conductivities as a function of Ω/m for various values of |E|/m2.
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Figure 14. DC Conductivities as a function of |E|/m2 for various values of Ω/m.

obtained in [50] where it becomes a constant that only depends on m, and saturates to a

maximum value equal to one (see section 6.3 below for the correct normalization).

In figure 14 we plot σ(ω = 0), varying |E|/m2 along lines of constant Ω/m. Our results

should be compared with the condensed matter calculation in [9] (see the discussion after

figure2). For the Hall conductivity we see qualitative agreement in that, in absolute value,

|σxy| first increases with |E|/m2 and then decreases. For high Ω/m(∼ 3.53) we find values

where this conductivity has zeros, this being a remarkable feature. For σxx we find a

monotonic growth that reaches a limiting value for high |E|/m2. In contrast, authors of [9]

(see figure2b) obtained an intermediate valley which they proposed to be a reflection of

the gap opening at the Dirac points. If so, our model is too crude to capture this feature.

The comparison with the (3+1) case is complicated because the authors of [26] only

considered the massless case, which in our setup turns out to be analytic and trivial. Indeed,

taking (|E|/m2,Ω/m) → ∞ the Hall conductivity vanishes whereas the DC conductivity

asymptotes to a constant value. One important difference is the sign of σxy which in our

case comes out negative, hence opposite to the one in the (3+1) dimensional setup. This

is so, despite the fact that we have been careful in keeping all the conventions the same,

and the sign in σxx is positive as well.6

6Yet, notice a change of sign for very low values of |E|/m2 approaching the Floquet condensates. It

would be interesting to know if the configuration is unstable in this region and would decay to Minkowski

embeddings.
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The region in phase space where a significant photoelectric Hall conductivity is ob-

tained is rather small. It happens for values of the parameters in the region of Ω/m ≤ 2

and also small |E|/m2 ≤ 0.6. This corresponds roughly to the close vicinity of the first

dome to the left of the critical value Ωc = 1.496 in figure 12.

6.3 Massless limit

When the unperturbed embedding of the probe brane in massless, i.e., when w = 0, the

equations for δw and δ~c decouple and we can take safely δw = 0. The unperturbed

configuration in this case is the analytic solution discussed in section 5.1. The equations of

motion for δcx and δcy greatly simplify for this solution. Amazingly, the general solution

of these coupled equations can be obtained analytically, as shown in detail in appendix D.

Using these results one can extract the exact value of the conductivity matrices, which

turn out to be

σ(ω) = c I , σ+(ω) = σ−(ω) = 0 . (6.28)

with c = 1. As mentioned before, this analytical result controls the limits in the previous

sections where |E|/m2 and Ω/m both become very large.

Of course, the coefficient c in eq. (6.28) is not equal to 1. Using (2.24) it is easy to

derive the correctly normalised physical conductivity, relating the physical electric field

and the physical current, as

σ(ω) =

√
2NfNc

π
√
λ

I .

Up to a convention factor of
√

2 this result matches the one obtained in [50], see eq. (5.8),

were the observation is made that this conductivity is nothing else than 1/g2 in terms of

the effective defect field theory gauge coupling on the D5-brane. This normalisation should

affect all the conductivities obtained previously in this paper.

7 Summary and outlook

In this paper we employed holographic techniques to analyze the response of a (2+1)-

dimensional gauge theory to an external rotating electric field. The system can be in two

phases (insulator and conductor) depending on the type of embedding of the probe brane.

In agreement with the (3+1)-dimensional results of [26, 27] we have found that for certain

frequencies the driving field resonates with the vector meson excitations of the gauge theory

and gives rise to zero field Floquet resonances. The lobbed structure shown in figure 2 may

be a universal feature.

Transport properties are an important benchmark, and they exhibit substantial differ-

ences in the two dimensionalities. In (2+1) dimensions, the massless case turns out to be

trivial. In the massive situation, however, the conductivity tensor exhibits a rich structure.

We have investigated the AC and DC conductivities, paying special attention to the first

resonant frequency Ω = Ωc = 1.4965 which is close to the meson mass frequency. In this

situation the system creates efficiently charged carriers and holes. In experimental setups,

the asymmetry in the electron-hole pairs for different chiralities gives rise to the so called
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“optically induced valley polarization”. This might be the closest physical realization to

our setup at the resonant point. Weather the double peak structure observed in Fig: 11

may have some meaning in this direction is something that deserves further scrutiny. Oth-

erwise, it would probably mean this model is too crude to capture the chiral asymmetry

in the splitting of the Dirac point.

Many distinguishing features are present for configurations approaching the critical

line separating the conducting from the isolating phase. The strong enhancement of the

oscillations deforming into sharp peaks is one such. These peaks seem to point to bound

states that are shifted from the meson masses. At this point, a very relevant question is that

of stability of the embeddings. The exact point where, say, Black Hole embeddings decay

into Minkowski embeddings and viceversa is a problem that can be addressed in equilbrium

thermodynamics, and has a practical answer in terms of the equal area law. Here however,

the similar tools are not available from a would be periodic thermodynamics [54], and this

certainly an important aspect that will need further study in the future.

Let us now discuss possible related lines of research for the future. An interesting

avenue would be to complete the phase diagram of the D3-D5 model by studying the

system at (real) non-zero temperature and/or finite chemical potential. Moreover, we have

treated the system in the quenched approximation. Dealing with the backreaction of the

D5-branes is, in general, a tough problem. However, we could adopt some approximation,

as it is done in the smearing approach (see [41] for a review). Interestingly, the smeared

backreacted D3-D5 background has been obtained in [42] (see also [43–45]) and one could

try to generalize these results to the case in which an external rotating electric field is

acting on the flavor brane.

The comparison of our results with the D3-D7 model points towards some universality

in the phase space. To strengthen this point, a natural strategy is to extend the study to

other brane setups. Most prominently, the (2+1) dimensional ABJM model is an example of

superconformal QFT with a well stablished gravity dual [46]. The flavor branes in this case

are D6-branes [47, 48] (see [49] for an analysis of the thermodynamics of the flavor branes in

ABJM). The ABJM supergravity background has a non-trivial topological structure wich

allows to switch on fluxes of the gauge fields and realize the quantum Hall effect [51]. This

suggests that it could be the right place to find non-trivial topological effects induced by

an external driving in an holographic setup like the ones we are missing here.

Another direction worth pushing is to consider other types of drivings. The brane

picture of gauge theories allow for several possibilities. For example, instead of an electric

field we could consider a magnetic field, or let the brane oscillate periodically. Actually,

this last scenario has been considered in [52] in connection with the realization of the

chiral magnetic effect in holography. It would be good to revisit this setup and search

for possible stable non-equilibrium phases and condensates. The natural expectation is to

observe resonances with the other type of mesons of the theory, like scalar mesons.

– 28 –



J
H
E
P
1
0
(
2
0
2
0
)
0
1
3

Acknowledgments

We are indebted to Keiju Murata for many patient clarifications about his work. Also we
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A Regularity conditions

In this appendix we derive the regularity conditions for black hole embeddings. The right-

hand side of the equations (2.17) must vanish at the pseudohorizon ρ = ρc in order to avoid

the potential singularity at this point. These conditions yield the following three equations

−ρc (Ω + 2ρc b1) (1 + b21 + w2
1) + Ω b20 (ρc − 2b0b1)χ2

1 = 0 ,

ρc (ρcw1 − w0) (1 + b21 + w2
1) + Ω b30w1 χ

2
1 = 0 ,

ρ2
c (−1 + b21 + w2

1)− ρc (2w0w1 − Ωb1) + Ω b30χ
2
1 = 0 . (A.1)

From the first equation in (A.1), we get

χ2
1 =

ρc (Ω + 2ρc b1) (1 + b21 + w2
1)

Ω b20 (ρc − 2b0 b1)
. (A.2)

Using this result in the second equation in (A.1) we arrive at the following relation between

b1 and w1

b1 =
Ω

2w0

ρcw0 − (2ρ2
c + w2

0)w1

ρ2
c + w2

0

. (A.3)

Let us next plug (A.2) into the third condition in (A.1). We get

− w0b
2
1 +

(
4ρcb0 + Ωρc + 4w0b0w1)b1 + w2

0 − 2ρcw0w1 + 2(ρ2
c + w2

0)w2
1 = 0 . (A.4)

Using now (A.3) we arrive at the following quadratic equation for w1[
1 +

Ω2(ρ2
c + w2

0)

4(ρ2
c + w2

0)2 + Ω2 ρ2
c

]
w2

1 +
2ρc
w0

w1 − 1 = 0 . (A.5)

Let us write the solution of (A.5). First of all we define the quantities s and D as

s ≡
√[

4(ρ2
c + w2

0) + Ω2
] [

4(ρ2
c + w2

0)2 + Ω2ρ2
c

]
,

D ≡ 4(ρ2
c + w2

0)2 + Ω2 (2ρ2
c + w2

0) . (A.6)
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Then, we can write

w1 =
1

w0D

[
− 4ρc (ρ2

c + w2
0)2 − Ω2 ρ3

c + (ρ2
c + w2

0) s
]
. (A.7)

Let us now analyze some limiting cases of the relations found above.

A.1 Large frequency

Let us expand in powers of 1/Ω for large frequency Ω. Taking the limit Ω → ∞ in (A.6)

we get that s ≈ ρc Ω2. and D ≈ (w2
0 + 2ρ2

c) Ω2. Plugging these values in (A.7) we get that

w1 is given at leading order by

w1 =
ρcw0

2ρ2
c + w2

0

. (A.8)

Using this value of w1 to evaluate the r.h.s. of (A.3) we get that b1 → 0 as Ω → ∞.

Actually, one can prove that

b1 = − w2
0(ρ2

c + w2
0)

ρc (2ρ2
c + w2

0)

1

Ω
. (A.9)

Taking into account the values of b1 and w1 found in this large Ω limit, we get the following

value of χ′ at leading order

χ1 =
Ω√

ρ2
c + w2

0

√
4ρ2

c + w2
0

2ρ2
c + w2

0

. (A.10)

A.2 Small frequency

When Ω→ 0 the quantities s and D attain the values

s ≈ 4 (ρ2
c + w2

0)
3
2 , D ≈ 4 (ρ2

c + w2
0)2 , (Ω→ 0) , (A.11)

and one can verify readily that

w1 →
1

w0

[
− ρc +

√
ρ2
c + w2

0

]
. (A.12)

B Small mass solutions

We now consider a small perturbation around the analytic massless solution of section 5.1.

We write b(ρ) and w(ρ) as

b(ρ) = b0 + β(ρ) , w(ρ) = λ(ρ) , (B.1)

and we consider the equations of motion (2.17) at first-order in β and λ. Using (2.18) to

eliminate χ′, we arrive at the following decoupling linear equations for λ(ρ) and β(ρ)

ρ2 (ρ4 − q)λ′′ + 2ρ (ρ4 + q)λ′ − 2q λ = 0 , (B.2)

ρ2 (ρ4 − q)β′′ + 2ρ (ρ4 + q)β′ + 4 Ω2 ρ6

ρ4 − q
β = 0 . (B.3)
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(We are assuming that q > 0). Let us consider from now on the equation for λ in (B.3).

This equation can be solved analytically in terms of hypergeometric functions

λ(ρ) = c1 ρF

(
1

4
,

1

2
;

3

4
;
ρ4

q

)
+ c2 ρ

2 F

(
1

2
,

3

4
;

5

4
;
ρ4

q

)
, (B.4)

where c1 and c2 are constants. The hypergeometric functions written in (B.4) have a

logarithmic singularity as we approach the pseudohorizon at ρ = q
1
4 . Indeed, from the

general equation

F
(
α, β;α+ β; z

)
≈ − Γ(α+ β)

Γ(α)Γ(β)
log(1− z) , as z → 1− , (B.5)

we get

λ(ρ) ≈ − q
1
4

√
π

[
c1

Γ
(

3
4

)
Γ
(

1
4

) + c2 q
1
4

Γ
(

5
4

)
Γ
(

3
4

) ] log

(
1− ρ4

q

)
, as ρ→ q

1
4 . (B.6)

The absence of this logarithmic singularity imposes the following ratio between the con-

stants c1 and c2

c1

c2
= −q

1
4

4

[
Γ
(

1
4

)
Γ
(

3
4

)]2

. (B.7)

Let us now look at the UV behavior ρ→∞. In general, for large z, one has

F (α, β;α+ β; z) ≈ Γ(α+ β)

[
e−iπα

Γ(β − α)

Γ2(β)
z−α + e−iπβ

Γ(α− β)

Γ2(α)
z−β

]
. (B.8)

Applying this last equation to our case, we get the UV behavior of the two functions

in (B.4)

ρF

(
1

4
,

1

2
;

3

4
;
ρ4

q

)
≈ q

1
4 Γ

(
3

4

)[
e−

iπ
4

π
Γ

(
1

4

)
+ q

1
4
e−

iπ
2 Γ
(
− 1

4

)
Γ2
(

1
4

) 1

ρ

]
,

ρ2 F

(
1

2
,

3

4
;

5

4
;
ρ4

q

)
≈ q

1
4 Γ

(
5

4

)[
q

1
4 e−

iπ
2

Γ
(

1
4

)
Γ2
(

3
4

) + q
1
2
e−

3iπ
2

π
Γ

(
− 1

4

)
1

ρ

]
. (B.9)

Therefore, the coefficient of the leading term in λ(ρ) as ρ→∞ is

q
1
4 c1 e

− iπ
4

Γ
(

3
4

)
Γ
(

1
4

)
π

+ q
1
2 c2 e

− iπ
2 Γ

(
5

4

)
Γ
(

1
4

)
Γ2
(

3
4

) . (B.10)

The imaginary part of this leading term in the UV is zero if the ratio of c1 and c2 is

c1

c2
= −q

1
4

4

√
2 Γ
(

5
4

)
Γ3
(

3
4

) , (B.11)

which can be seen to be equivalent to (B.7). If this ratio holds, the leading term λ(ρ =∞)

is finite and given by

m ≡ q
1
4 c1

Γ
(

3
4

)
Γ
(

1
4

)
√

2π
= q

1
4 c1 . (B.12)
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Let us now look at the UV subleading term, which is of the form C/ρ. The coefficient C
(i.e., the condensate), is given by

C = q
1
2 c1 e

− iπ
2

Γ
(

3
4

)
Γ
(
− 1

4

)
Γ2
(

1
4

) + q
3
4 c2 e

− 3iπ
4

Γ
(

5
4

)
Γ
(
− 1

4

)
π

. (B.13)

The imaginary part of C vanishes if

c1

c2
= −q

1
4

Γ
(

5
4

)
Γ2
(

1
4

)
√

2π Γ
(

3
4

) , (B.14)

which again can be proven to be equivalent to (B.7). Then, the condensate C is given by

C = −q
3
4 c2

Γ
(

5
4

)
Γ
(
− 1

4

)
√

2π
= q

3
4 c2 . (B.15)

By combining (B.15), (B.12) and (B.7) we can obtain the relation between C and m

C = −q
1
4

[
2 Γ
(

3
4

)
Γ
(

1
4

) ]2

m. (B.16)

Therefore, in this small mass regime, the condensate is proportional to the mass with a

coefficient which depends on q
1
4 =
√

Ω b0. Notice that we can write the solution for w = λ

in terms of the mass and condensante as

w(ρ) =
m

|q|
1
4

ρF

(
1

4
,

1

2
;

3

4
;
ρ4

|q|

)
+
C
|q|

3
4

ρ2 F

(
1

2
,

3

4
;

5

4
;
ρ4

|q|

)
, (B.17)

where C is related to m as in (B.16). We can also obtain the value of the embedding

function at the pseudohorizon in terms of the mass

w(ρ =
√

Ωb0) =
Γ2
(

3
4

)
√

2π
m . (B.18)

Let us now integrate the equation in (B.3) for the fluctuation β of the electric field.

This equation can be solved analytically,. In order to write this solution, let us define the

following hatted quantities

ρ̂ =
ρ

q
1
4

, Ω̂ =
Ω

q
1
4

, (B.19)

and the two functions F (ρ̂) and G(ρ̂) as

F (ρ̂) ≡ Ω̂ arctan(ρ̂) , G(ρ̂) ≡ Ω̂

2
log

ρ̂− 1

ρ̂+ 1
. (B.20)

Then, the general solution for the function β is

β(ρ̂) = c1 cos
[
F (ρ̂) +G(ρ̂)

]
+ c2 sin

[
F (ρ̂) +G(ρ̂)

]
, (B.21)
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where c1 and c2 are real constants. In order to find E and j for this solution, we must study

the UV behavior of the complex potential c = b eiχ. The equation for the perturbation

δc = c− b0 e−iΩ/ρ at first order is

ρ2 (ρ4 − q) δc ′′ + 2
(
ρ(ρ4 + q) + iqΩ

)
δc ′ +

Ω2

ρ2

(
ρ4 + q − 4i ρ

q

ω

)
δc = 0 . (B.22)

It is difficult to solve this equation directly. However, the equation for δχ = χ+ Ω
ρ can be

obtained form (2.18) and is rather simple

δ χ ′ = − 2 ρ2 Ω

b0 (ρ4 − q)
β . (B.23)

Notice that δc is related to β and δχ as

δc = e
−i Ω

ρ
(
β + i b0 δχ

)
(B.24)

One can check that the second equation in (B.3), together with (B.23), imply (B.22).

Moreover, since we know the solution for β we can directly integrate (B.23). Indeed, let us

write the solution (B.21) in terms of complex exponentials as

β = d e−i(F (ρ̂)+G(ρ̂)) + d∗ ei(F (ρ̂)+G(ρ̂)) , (B.25)

with d being a complex constant. Then, we can show that δχ is

δχ = − i d
b0
e−i(F (ρ̂)+G(ρ̂)) +

i d∗

b0
ei(F (ρ̂)+G(ρ̂)) + λ , (B.26)

with λ ∈ R. Plugging β and δχ on the right-hand side of (B.24), we get

δc = 2 d e
−i Ω

q1/4

(
q1/4

ρ
+arctan(ρ/q1/4)+ 1

2
log ρ−q1/4

ρ+q1/4

)
+ i b0 λ e

−i Ω
ρ . (B.27)

Notice that the function multiplying d is an outgoing wave, whereas that multiplying λ is

an incoming wave. It is also interesting to notice that the first order variation of the Joule

heating q is zero for this solution, as it can be checked by using (2.16).

C Embeddings in the linearized approximation

In this appendix we study in detail the three types of embeddings in the linearized approx-

imation of section 5.2 (valid for large driving frequency Ω or small electric field E).

C.1 Minkowski embeddings

To obtain the Minkowski embeddings that reach ρ = 0 we impose regularity of the function

c(ρ) at ρ = 0. This implies that the constant c2 must vanish and, therefore the gauge field

c(ρ) is given by

c(ρ) = c1 g1(ρ) = c1

√
1 + ρ2

ρ
sin
(√

1 + Ω2 arctan(ρ)
)
. (C.1)
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From the boundary expansion (2.22) we find the electric field and current hence

E = −i c1 Ω sin
(π

2

√
1 + Ω2

)
, (C.2)

j = −c1

√
1 + Ω2 cos

(π
2

√
1 + Ω2

)
. (C.3)

Eliminating the constant c1 we obtain the current in terms of the electric field E

j = − i E
Ω

√
1 + Ω2 cot

(π
2

√
1 + Ω2

)
. (C.4)

We can also eliminate c1 in (C.1) using (C.2)

c(ρ) =
i E

Ω sin
[
π
2

√
1 + Ω2

] √1 + ρ2

ρ
sin
[√

1 + Ω2 arctan ρ
]
. (C.5)

Let us now look at the embedding function δw given in (5.21). Imposing δw(ρ = 0) = 0

fixes the value of the integration constant c3

c3 = 2 Ω2 |c1|2
∫ ∞

0
ds

s

(s2 + 1)3
g2

1(s) . (C.6)

Then, the resulting δw(ρ) can be written as

δw(ρ) = 2 Ω2 |c1|2
∫ ρ

0
ds

sin2
[√

1 + Ω2 arctan(s)
]

s(s2 + 1)2
−

− 2 Ω2 |c1|2

ρ

∫ ρ

0
ds

sin2
[√

1 + Ω2 arctan(s)
]

(s2 + 1)2
. (C.7)

From the UV expansion (2.23) we find the mass and the condensate

m = 1 + 2 Ω2 |c1|2
∫ ∞

0
ds

sin2
[√

1 + Ω2 arctan(s)
]

s(s2 + 1)2
,

C = −2 Ω2 |c1|2
∫ ∞

0
ds

sin2
[√

1 + Ω2 arctan(s)
]

(s2 + 1)2
. (C.8)

In terms of the electric field at the boundary, using (C.2) we obtain

m = 1 +
2 |E|2

sin2
(
π
2

√
1 + Ω2

) ∫ ∞
0

ds
sin2

[√
1 + Ω2 arctan(s)

]
s(s2 + 1)2

,

C = − |E|2

4 sin2
(
π
2

√
1 + Ω2

)
π +

sin
(
π
√

1 + Ω2
)

Ω2
√

1 + Ω2

 . (C.9)

To find the resonant frecuencies of the Floquet condensates we impose that E = 0

in (C.2), which means that the Ω’s must satisfy√
1 + Ω2

n = 2(n+ 1) , (C.10)

for n = 0, 1, 2, · · · . This gives the following discrete set

Ωn = 2

√(
n+

1

2

)(
n+

3

2

)
, (C.11)

which are the same as the masses of the vector mesons in the D3-D5 model [32].
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C.2 Black hole embeddings

We now determine c(ρ) for a black hole embedding by imposing the appropriate in-falling

boundary condition at the pseudohorizon. Now the phase χ(ρ) is not constant and, in fact,

χ′ is related to the Joule heating q. To obtain this relation in the linearized approximation,

let us take into account that c c ′ ∗ − c ∗ c ′ = −2i χ′ b2. Since the lagrangian density L = ρ2

in the linear approximation, we get from (2.16) that

χ′(ρ) =
q

Ω

1

ρ2 b2(ρ)
. (C.12)

Let us now take ρ = ρc in this last expression and use (3.1) and (3.5) to relate b0 = b(ρc)

and q to w0 = w(ρc) and ρc. We immediately get

χ′(ρc) =
Ω

w2
0 + ρ2

c

, (C.13)

which is an initial condition for χ(ρ). We begin by introducing a new variable y, related

to ρ as7

y = arctan(ρ) , (C.14)

and let yc be the y coordinate of the pseudohorizon yc = arctan(ρc). In terms of the

variable y, the initial condition (C.13), for w0 = 1, takes the form

dχ

dy

∣∣∣
y=yc

= Ω . (C.15)

We will impose the following infalling condition at the pseudohorizon

dc

dy

∣∣∣
y=yc

= iΩ c(yc) . (C.16)

Taking into account that, in general

dc

dy
=

[
i
dχ

dy
+

1

b

db

dy

]
c , (C.17)

this is equivalent to requiring that

db

dy

∣∣∣
y=yc

= 0 (C.18)

or, equivalently, that the infalling frequency is real. To simplify the calculation, let us now

introduce a new complex field

ψ(y) =
ρ√

1 + ρ2
c(ρ) . (C.19)

7The coordinate y is nothing but the tortoise coordinate ρ∗ in this linear approximation. Indeed, in

this case the function B(ρ) defined in (3.13) is B(ρ) ≈ 1/(1 + ρ2) and (3.12) is easily integrated to give

ρ∗ = arctan y, as claimed.
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As c = ψ(y)/ sin y, the infalling boundary condition (C.16) takes the following form in

terms of ψ
dψ

dy

∣∣∣
y=yc

=
(
iΩ + cot yc

)
ψ(yc) . (C.20)

Taking into account that cot yc = 1/ρc, we finally get

dψ

dy

∣∣∣
y=yc

=

(
iΩ +

1

ρc

)
ψ(yc) . (C.21)

The general solution (5.15) can be written as

ψ(y) = d1 e
iΩ y + d2 e

−iΩ y , (C.22)

where d1 and d2 are complex constants and Ω is defined as

Ω ≡
√

1 + Ω2 . (C.23)

We now impose the pseudohorizon boundary condition (C.16). It is easy to demonstrate

that (C.16) is satisfied if the ratio of the constants d1 and d2 is given by

d1

d2
=

(Ω + Ω)ρc − i
(Ω− Ω)ρc + i

e−2iΩ yc . (C.24)

To rewrite this condition in a more convenient form, define the phases Λc and Λc

Λc ≡ arctan

[
Ω− Ω

ρc

]
, Λc ≡ arctan

[
Ω + Ω

ρc

]
, (C.25)

in terms of which we can write

(Ω + Ω)ρc + i =

√
(Ω + Ω)2ρ2

c + 1 eiΛc ,

(Ω− Ω)ρc + i =

√
(Ω− Ω)2ρ2

c + 1 eiΛc , (C.26)

and d1/d2 takes the form

d1

d2
=

√
(Ω + Ω)2ρ2

c + 1√
(Ω− Ω)2ρ2

c + 1
e−2iΩ yc−iΛc−iΛc . (C.27)

It is now straightforward to relate the value of ψ at y = yc with the constant d1 and to

obtain the value of c at the pseudohorizon. We get

c(yc) =
2Ω
√

1 + ρ2
c√

(Ω + Ω)2ρ2
c + 1

d1 e
iΩ yc+iΛc (C.28)

We choose the phase of c(yc) to vanish at ρ = ρc. This requirement determines the phase

of d1, which must be of the form

d1 = |d1| e−iΩ yc−iΛc . (C.29)
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Moreover, since

|c(yc)| =
2Ω
√

1 + ρ2
c√

(Ω + Ω)2ρ2
c + 1

|d1| , (C.30)

we can fulfill (3.1) with w0 = 1 by choosing |d1| to be

|d1| =
√

1 + ρ2
c

2 Ω Ω

√
(Ω + Ω)2ρ2

c + 1 . (C.31)

The value of |d2| can be obtained from (C.27)

|d2| =
√

1 + ρ2
c

2 Ω Ω

√
(Ω− Ω)2ρ2

c + 1 . (C.32)

From these values of |d1| and |d2| one can readily check that the Joule heating q is given by

q = Ω Ω̄
(
|d1|2 − |d2|2

)
= (1 + ρ2

c) ρ
2
c , (C.33)

in agreement with (3.5), as it should. Taking into account these results, we can write d1

and d2 as

d1 =

√
1 + ρ2

c

2 Ω Ω

√
(Ω + Ω)2ρ2

c + 1 e−iΩ yc−iΛc =

√
1 + ρ2

c

2 Ω Ω

[
(Ω + Ω)ρc − i

]
e−iΩ yc ,

d2 =

√
1 + ρ2

c

2 Ω Ω

√
(Ω− Ω)2ρ2

c + 1 eiΩ yc+iΛc =

√
1 + ρ2

c

2 Ω Ω

[
(Ω− Ω)ρc + i

]
eiΩ yc , (C.34)

and the complexified gauge potential c(y) is given by

c(y) =

√
1 + ρ2

c

2 Ω Ω sin y

[√
(Ω + Ω)2ρ2

c + 1 eiΩ (y−yc)−iΛc +

+

√
(Ω− Ω)2ρ2

c + 1 e−iΩ (y−yc)+iΛc
]
. (C.35)

This expression can also be rewritten as

c(y) =

√
1 + ρ2

c

2 Ω Ω sin y

[[
(Ω + Ω)ρc − i

]
eiΩ (y−yc) +

[
(Ω− Ω)ρc + i

]
e−iΩ (y−yc)

]
. (C.36)

From (C.36) we can obtain the phase χ

tanχ(y) =
ρc Ω sin

[
Ω(y − yc)

]
ρc Ω cos

[
Ω(y − yc)

]
+ sin

[
Ω(y − yc)

] . (C.37)

Finally, we can expand this result near ρ =∞ to obtain the electric field E

E = −i
√

1 + ρ2
c

2 Ω

[√
(Ω + Ω)2ρ2

c + 1 e−iΩ (yc−π2 )−iΛc +

+

√
(Ω− Ω)2ρ2

c + 1 eiΩ (yc−π2 )+iΛ̄c

]
, (C.38)
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and the current j

j = −i
√

1 + ρ2
c

2 Ω

[√
(Ω + Ω)2ρ2

c + 1 e−iΩ (yc−π2 )−iΛc −

−
√

(Ω− Ω)2ρ2
c + 1 eiΩ (yc−π2 )+iΛ̄c

]
. (C.39)

As a check one can verify that these results reduce to the ones obtained for Minkowski

embeddings when we take ρc = yc = 0.

C.3 Critical embeddings

According to our general analysis of section 3.3, the critical solutions satisfy Ω b(ρ = 0) =

w2
0. Therefore, if we define the parameter ε as

ε ≡ Ω b(ρ = 0) , (C.40)

these embeddings must satisfy ε = w2
0. In our linearized analysis we have w0 = 1. Thus,

we are tempted to describe the critical embeddings by means of the solution g1(ρ) of (C.1)

with ε = 1. Indeed, contrary to the other solution g2(ρ), the function g1(ρ) is regular at

ρ = 0 and one can easily find ε as a function of Ω and the constant c1

ε = Ω c1

√
1 + Ω2 . (C.41)

Plugging this relation in (C.1), we get c(ρ) as

c(ρ) =
ε

Ω
√

1 + Ω2
g1(ρ) . (C.42)

It turns out, however, that this linearized solution cannot describe accurately the critical

embedding near ρ = 0. Indeed, we found in section 3.3 that the b field behaves linearly in

ρ around its value at ρ = 0, whereas the function g1(ρ) behaves quadratically (see (5.18)).

As argued in [27] for the analogous D3-D7 case, the critical solutions behave highly non-

linearly around ρ = 0. Nevertheless the linear solution can describe rather accurately the

true non-linear solution for ρ � 1 if we change the value of ε from its naive value ε = 1.

To illustrate this we compare the linear analytic solution for ε = 1/2 with the numerical

results. In figure 15 we plot the values of c(ρ) calculated by these two procedures.

For a general value of ε, the electric field E, the current j and the condensate C in the

linear approximation are

E = −i ε√
1 + Ω2

sin

(
π

2

√
1 + Ω2

)
, (C.43)

j = − ε
Ω

cos

(
π

2

√
1 + Ω2

)

C = −1

4

ε2

1 + Ω2

π +
sin
(
π
√

1 + Ω2
)

Ω2
√

1 + Ω2

 .
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Figure 15. Comparison of the critical solution for c obtained by numerically solving the non-linear

full equation of motion and (C.42) for Ω = 100, m = 1 and ε = 1
2 , using z2 = 1

1+ρ2 .
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Figure 16. E and C for critical solutions obtained numerically and using (C.43) with ε = 1/2.

In figure 16 we compare the approximate linear expressions (C.43) for E and C (again for

ε = 1/2) to the numerical result of the full non-linear calculation. A reasonable agreement

for large Ω is found. The discrepancies can be attributed to the intrinsic non-linearity

of the critical solutions. In particular, eq. (C.43) implies that the critical electric field

decreases as (Ω/m)−1 for large Ω/m. We can also use (C.43) to estimate the susceptibility

parameter γxy (defined in (4.4)) for critical embeddings:

γxy =
Im
(
E j∗

)
|E|2

=

√
1 + Ω2

Ω
cot

(
π

2

√
1 + Ω2

)
. (C.44)

This expression explains qualitatively well the change of sign of γxy pointed out in section 4

and reproduces quite accurately the numerical results of γxy for large values of the driving

frequency Ω.

D Conductivities in the massless case

In the massless case the fluctuations δw of the embedding function decouple from those of

the gauge field δ~c. Therefore, since we are interested in computing conductivities, we can
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concentrate in studying the equations for δcx and δcy. In order to write these equations in

a more convenient form, let us define the following differential operators

O1 ≡ ∂2
t +

ρ4(ρ4
c − ρ4)

ρ4
c + ρ4

∂2
ρ −

2ρ4
cρ

2

ρ4
c + ρ4

∂t∂ρ +
4ρ4

cρ

ρ4
c + ρ4

∂t − 2ρ3∂ρ ,

O2 ≡ −2∂t +
2ρ4

cρ

ρ4
c + ρ4

(
ρ∂ρ − 2

)
. (D.1)

Then, δcx and δcy satisfy the following system of coupled second-order differential equations(
O1 − Ω2

)
δcx + ΩO2 δcy = 0 ,

(
O1 − Ω2

)
δcy − ΩO2 δcx = 0 . (D.2)

To decouple these equations, let us consider the following complex combinations of δcx
and δcy

η(t, ρ) ≡ δcx(t, ρ) + iδcy(t, ρ) , η̃(t, ρ) ≡ δcx(t, ρ)− iδcy(t, ρ) . (D.3)

Notice that η̃ is not the complex conjugate of η since δcx and δcy are not necessarily real.

It is straightforward to verify that the equations for η and η̃ are indeed decoupled and

given by (
O1 − Ω2

)
η − iΩO2 η = 0 ,

(
O1 − Ω2

)
η̃ + iΩO2 η̃ = 0 . (D.4)

Let us now separate variables as

η(t, ρ) = β(ρ) e−iω t , η̃(t, ρ) = β̃(ρ) e−iω t , (D.5)

for some frequency ω. Then, remarkably, one can find the following general solutions

η(t, ρ) = e−iω t e
i ω−Ω

ρ

[
A+B e

i ω−Ω
ρc

(
arctan

(
ρ
ρc

)
+ 1

2
log ρ−ρc

ρ+ρc

)]
,

η̃(t, ρ) = e−iω t e
i ω+Ω

ρ

[
Ã+ B̃ e

i ω+Ω
ρc

(
arctan

(
ρ
ρc

)
+ 1

2
log ρ−ρc

ρ+ρc

)]
, (D.6)

where A, B, Ã and B̃ are complex constants which are determined by imposing boundary

conditions both at the IR and UV. First of all, let us look at the regularity conditions at

the pseudo-horizon ρ = ρ∗. These conditions are better studied by using the tortoise coor-

dinates (τ, ρ∗), related to (t, ρ) in this massless case by the following differential relations

d ρ∗ =
ρ2

ρ4 − ρ4
c

dρ , dτ = dt− ρ4
c

ρ2(ρ4 − ρ4
c)
dρ , (D.7)

which can be integrated as

ρ∗ =
1

2ρc

[
arctan

(
ρ

ρc

)
+

1

2
log

ρ− ρc
ρ+ ρc

− π

2

]
,

τ = t− 1

ρ
− 1

2ρc

[
arctan

(
ρ

ρc

)
+

1

2
log

ρ− ρc
ρ+ ρc

− π

2

]
. (D.8)

Notice that the second of these equations can be simply rewritten as

τ = t− 1

ρ
− ρ∗ . (D.9)
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The new radial coordinate ρ∗ varies from ρ∗ = −∞ at the pseudohorizon to ρ∗ = 0 at the

UV boundary. Actually, one can prove that in these regions it can be related to ρ as

ρ∗ = −1

ρ
+O(ρ−5) , (ρ→∞) , ρ∗ ∼

1

4ρc
log(ρ− ρc) , (ρ→ ρc) . (D.10)

Inspecting the expression of η in (D.6) one easily demonstrates that, in terms of the tortoise

variable, it can be simply written as

η(τ, ρ∗) = e
−iΩ

ρ

[
Ae−iω(τ+ρ∗) +B∗ e

−2iΩ ρ∗ e−iω(τ−ρ∗)
]

(D.11)

where B∗ is a new constant, related to B as B∗ = exp[ iπ(ω−Ω)
2ρc

]B. It is now clear that

η(τ, ρ∗) is the superposition of ingoing and outgoing waves at the pseudohorizon. The

infalling regularity condition requires that B∗ (and thus B) vanishes. Then, writing η in

our original (t, ρ) coordinates, we have

η(t, ρ) = Ae
i ω−Ω

ρ e−iω t . (D.12)

We can proceed similarly with η̃ and conclude that we should require that B̃ = 0. Therefore

η̃(t, ρ) = Ã e
i ω+Ω

ρ e−iω t . (D.13)

Therefore, we obtain that the fluctuations δcx and δcy regular at the pseudohorizon are

δcx(t, ρ) =
1

2

[
Ae

i ω−Ω
ρ + Ã e

i ω+Ω
ρ

]
e−iω t , δcy(t, ρ) =

1

2i

[
Ae

i ω−Ω
ρ − Ã e

i ω+Ω
ρ

]
e−iω t ,

(D.14)

Let us now impose the boundary conditions at the UV. These conditions are those

written in (6.17) and can be fulfilled if we add two solutions of the form (D.14) with

frequencies ω+ = ω + Ω and ω− = ω − Ω with amplitudes ~β
(0)
± at the UV given by (6.23),

which can be explictely written as follows

~β
(0)
+ =


εx+iεy

2 iω

− εx+iεy
2ω

 , ~β
(0)
− =


εx−iεy

2 iω

εx−iεy
2ω

 . (D.15)

Let A± and Ã± denote the constants in (D.14) for the frequency ω±. From the leading

UV term of our solution, we get that

~β
(0)
± =


A±+Ã±

2

A±−Ã±
2i

 . (D.16)

Let us now compare the expressions of ~β
(0)
+ in (D.16) and (D.15). They only match if the

constants A+ and Ã+ are given by

A+ = − i
ω

(εx + iεy) , Ã+ = 0 . (D.17)
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By expanding around ρ = ∞ in (D.14) we can now obtain the amplitude ~β
(1)
+ of the

subleading term

β
(1)
+,x =

i

2
(ω+ − Ω)A+ =

i

2
ωA+ , β

(1)
+,y =

1

2
(ω+ − Ω)A+ =

1

2
ωA+ . (D.18)

Using (D.17) we can obtain ~β
(1)
+,x in terms of ~ε

~β
(1)
+ = M+~ε , (D.19)

where M+ is the matrix defined in (6.16). Thus, the matrix X+ introduced in (6.25) in

this massless case is given by

X+ = i ω I . (D.20)

Proceeding similarly for the frequency ω−, we obtain that the constants A− and Ã− must be

A− = 0 , Ã− = − i
ω

(εx − iεy) , (D.21)

and the corresponding amplitude for the subleading term takes the form

β
(1)
−,x =

i

2
(ω− + Ω) Ã− =

i

2
ω Ã− , β

(1)
−,y = −1

2
(ω− + Ω) Ã− = −1

2
ω Ã− , (D.22)

which, after using (D.21), can be related to ~ε as

~β
(1)
− = M−~ε . (D.23)

Comparing (6.25) and (D.23) we immediately conclude that

X− = i ω I . (D.24)

Using these values of X+ and X− we can now obtain the conductivities from (6.27). As

M+X+M+ + M−X−M− = iω
[
M2

+ + M2
−
]

= iω
[
M+ + M−

]
= iω I ,

M∓X±M± = iωM∓M± = 0 . (D.25)

This can be summarized as follows:

σ(ω) = I , σ+(ω) = σ−(ω) = 0 . (D.26)

E More on optical conductivities

In figure 17 we show some plots for the heterodyning optical conductivities σ±(ω). As

proven in [26], a set of non-trivial relations among the components of σ and σ± allows to

take as independent components σxx, σxy and σ±xx. The relation σ(−ω) = σ(ω)∗ implies

that the DC conductivity will be real. For the heterodyning conductivities, in contrast,

σ±(−ω) = σ∓(ω)∗ and, hence, the associated DC limits will be complex.

They exhibit a similar pattern of oscillations whose amplitude increases as we approach

the critical point. Eventually they sharpen into peaks as well. Comparing for example the

peaks in σ±xx with those in σxx in figure 10 it seems apparent that they share half of them

each. This is apparent in the heterodyning version of figures 11 shown below in figure 18.

Namely, while σ−xx has only the central stable peaks, σ+
xx has the external peaks whose

average value is Ω. In figure 19 we plot σ±xx at ω = 0 as a function of Ω/m and |E|/m2.
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Figure 17. AC Conductivities for fixed value of Ω/m = 1.496 and different values of |E|/m2.

They correspond to the vertically aligned dots in figure 12 with the same color code. In the insets,

the curves for low values of |E|/m2 → 0 deep into the critical wedge, where they develop peak

resonances. The value ω/m→ Ω/m = 1.496 is signalled with a dashed vertical line.
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Figure 18. Peaks in the AC conductivities along the critical line to the right of the first Floquet

condensate (see figure 12). The vertical dashed lines signal the critical Floquet and the meson mass

frequencies respectively. The central peaks bunch in this region whereas the two lateral peaks move

with ω while keeping their inter-spacing almost constant.
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Figure 19. DC conductivities σ±
xx as function of either Ω/m or |E|/m2.
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[35] J. Berges, S. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93 (2004)

142002 [hep-ph/0403234] [INSPIRE].

[36] C. Heinisch and M. Holthaus, Adiabatic preparation of Floquet condensates, J. Mod. Opt. 63

(2016) 1768 [arXiv:1605.08199].

[37] V.P. Frolov, Merger Transitions in Brane-Black-Hole Systems: Criticality, Scaling, and

Self-Similarity, Phys. Rev. D 74 (2006) 044006 [gr-qc/0604114] [INSPIRE].

[38] D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental

matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].

[39] D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007)

067 [hep-th/0701132] [INSPIRE].

[40] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142] [INSPIRE].
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