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A R T I C L E I N F O A B S T R A C T

Editor: R. Gregory The entanglement generated for a uniformly accelerated two-atom system in vacuum during its evolution may 
increase with acceleration, while that for a static one in a thermal bath always decreases monotonically with 
temperature. This phenomenon is named as the anti-Unruh effect in terms of the entanglement generated. In this 
paper, we study the effects of the interatomic interaction induced by the electromagnetic vacuum fluctuations on 
the entanglement dynamics of two uniformly accelerated atoms. We show that the anti-Unruh phenomenon may 
exist or disappear depending critically on the configuration of the orientation of the atomic polarization and the 
directions of the uniform acceleration and the interatomic separation. This is in sharp contrast to the scalar-field 
case, in which the anti-Unruh phenomenon is always lost when the environment-induced interatomic interaction 
is considered.
1. Introduction

In quantum field theory, the vacuum state of a quantum field is ob-

server dependent. A well-known example is that the Minkowski vacuum 
defined by inertial observers is perceived as a thermal bath of Rindler 
particles by uniformly accelerated observers, i.e. the well-known Unruh 
effect [1–4]. As a result, a uniformly accelerated atom would spon-

taneously get excited in the Minkowski vacuum [5–7]. Moreover, in 
contrast to the fact that the excitation rate of static atoms immersed in 
a thermal bath increases monotonically with the bath temperature, it 
may decrease with acceleration for accelerated atoms in certain cases, 
which is named as the anti-Unruh effect [8,9] in terms of the transition 
rate.

The situation is more intriguing when two atoms are involved, since 
there may exist quantum entanglement, which is regarded as one of 
the most striking features in quantum physics. Recently, a lot of effort 
has been made to investigate the behaviors of entanglement dynam-

ics [10–19] and entanglement harvesting [20–33] in noninertial frames 
and in curved spacetimes. In particular, it is of interest to study how the 
entanglement dynamics of a uniformly accelerated two-atom system is 
affected by acceleration, and compare the result with that of a static one 
immersed in a thermal bath at the Unruh temperature. At this point, we 
note that, in general, the entanglement dynamics of uniformly accel-

* Corresponding authors.

erated atoms shows distinctive features compared with that of static 
ones in a thermal bath. Remarkably, the maximal concurrence gener-

ated for a uniformly accelerated two-atom system during its evolution 
may increase with acceleration, while that for a static one in a ther-

mal bath always decreases monotonically with temperature [14–16]. 
This phenomenon is dubbed as the anti-Unruh effect in terms of the 
entanglement generated in Ref. [16]. Note that this is different from 
the anti-Unruh effect for two entangled atoms in terms of the collective 
transition rate investigated in Refs. [34,35]. The Unruh and anti-Unruh 
effects in terms of the entanglement generated show a unique feature 
of the vacuum fluctuations viewed by two accelerated observers on the 
one hand, and suggest in principle a possibility for experimental veri-

fication of the acceleration-induced quantum effects by observing the 
entanglement dynamics of accelerated atoms on the other hand.

For a two-atom system, there are two kinds of environment-induced 
effects. The first one is the decoherence and dissipation, and the sec-

ond one is the environment-induced energy shift, including the Lamb 
shifts of the individual atoms, and an environment-induced interatomic 
interaction. However, in the works mentioned above concerning the 
anti-Unruh effect in terms of the entanglement generated [14–16], only 
the effects of decoherence and dissipation are considered, while the ef-

fects of environment-induced interatomic interaction on entanglement 
dynamics are neglected. In a recent work [36], we examined the en-
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tanglement dynamics of two uniformly accelerated atoms, and found 
that the anti-Unruh effect in terms of the entanglement generated is 
lost when the environment-induced interatomic interaction is taken 
into account. In Ref. [36], the environment is modeled as a fluctuat-

ing scalar field in the Minkowski vacuum. A realistic model would be 
two uniformly accelerated atoms coupled with fluctuating vacuum elec-

tromagnetic fields. Since the electromagnetic vacuum fluctuations are 
anisotropic as seen by accelerated atoms, the entanglement behaviors 
for atoms polarizable along different directions may be significantly 
different. In the present paper, we plan to study the entanglement 
dynamics of two uniformly accelerated atoms coupled with electromag-

netic vacuum fluctuations when the environment-induced interatomic 
interaction is taken into account. As will be shown in detail, in the 
electromagnetic-field case, the entanglement generation is crucially de-

pendent on the polarization of the atoms. Remarkably, in sharp contrast 
to the scalar-field case [36], the anti-Unruh phenomenon can survive 
the environment-induced interatomic interaction.

2. The master equation

We consider an open quantum system composed of two uniformly 
accelerated atoms coupled with a fluctuating electromagnetic field in 
the Minkowski vacuum. The Hamiltonian takes the form

𝐻 =𝐻𝑆 +𝐻𝐹 +𝐻𝐼. (1)

Here 𝐻𝑆 is the Hamiltonian of the two-atom system,

𝐻𝑆 = 𝜔

2
𝜎
(1)
3 + 𝜔

2
𝜎
(2)
3 , (2)

where 𝜎(1)
𝑖

= 𝜎𝑖 ⊗ 𝜎0, 𝜎(2)
𝑖

= 𝜎0 ⊗𝜎𝑖, with 𝜎𝑖 (𝑖 = 1, 2, 3) being the Pauli 
matrices, 𝜎0 the 2 × 2 unit matrix, and 𝜔 the energy-level spacing be-

tween the ground state |𝑔⟩ and the excited state |𝑒⟩. In Eq. (1), 𝐻𝐹 is 
the Hamiltonian of the electromagnetic fields, and 𝐻𝐼 is the interaction 
Hamiltonian describing the dipole interaction between the atoms and 
the electromagnetic field, which takes the form

𝐻𝐼 = −D(1)(𝜏) ⋅ E[𝑥(1)(𝜏)] − D(2)(𝜏) ⋅ E[𝑥(2)(𝜏)]. (3)

Here D(𝛼)(𝜏) (𝛼 = 1, 2) is the electric-dipole moment of the 𝛼th atom, 
and E[𝑥(𝛼)(𝜏)] is the electric-field strength.

In the limit of weak coupling, the Markovian master equation of 
the two-atom system takes the Gorini-Kossakowski-Lindblad-Sudarshan 
(GKLS) form [37,38],

𝜕𝜌(𝜏)
𝜕𝜏

= −𝑖
2∑

𝛼=1
�̃�𝛼[𝜎

(𝛼)
3 , 𝜌(𝜏)] + 𝑖

3∑
𝑖,𝑗=1

Ω(12)
𝑖𝑗

[𝜎𝑖 ⊗ 𝜎𝑗 , 𝜌(𝜏)]

+1
2

2∑
𝛼,𝛽=1

3∑
𝑖,𝑗=1

𝐶
(𝛼𝛽)
𝑖𝑗

[2𝜎(𝛽)
𝑗
𝜌𝜎

(𝛼)
𝑖

− 𝜎
(𝛼)
𝑖
𝜌𝜎

(𝛽)
𝑗

− 𝜌𝜎
(𝛼)
𝑖
𝜎
(𝛽)
𝑗

]. (4)

Here

�̃�𝛼 = 𝜔− 𝑖𝜇2

2
[(𝛼𝛼)(𝜔) −(𝛼𝛼)(−𝜔)], (5)

describes a renormalized energy-level spacing. The coefficient matrices 
Ω(12)
𝑖𝑗

and 𝐶 (𝛼𝛽)
𝑖𝑗

can be written respectively as follows,

Ω(12)
𝑖𝑗

=(12)(𝛿𝑖𝑗 − 𝛿3𝑖𝛿3𝑗 ), (6)

𝐶
(𝛼𝛽)
𝑖𝑗

=𝐴(𝛼𝛽)𝛿𝑖𝑗 − 𝑖𝐵(𝛼𝛽)𝜖𝑖𝑗𝑘𝛿3𝑘 −𝐴(𝛼𝛽)𝛿3𝑖𝛿3𝑗 , (7)

where

(12) = 𝑖𝜇2

4
[(12)(𝜔) +(12)(−𝜔)], (8)

𝐴(𝛼𝛽) = 𝜇2

4
[(𝛼𝛽)(𝜔) + (𝛼𝛽)(−𝜔)], (9)

𝜇2
2

𝐵(𝛼𝛽) =
4
[(𝛼𝛽)(𝜔) − (𝛼𝛽)(−𝜔)]. (10)
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In the equations above,

(𝛼𝛽)(𝜔) =
3∑

𝑚.𝑛=1
𝑑(𝛼)
𝑚
𝑑(𝛽)∗
𝑛

(𝛼𝛽)
𝑚𝑛

(𝜔), (11)

(𝛼𝛽)(𝜔) =
3∑

𝑚.𝑛=1
𝑑(𝛼)
𝑚
𝑑(𝛽)∗
𝑛

(𝛼𝛽)
𝑚𝑛

(𝜔), (12)

where 𝑑(𝛼)𝑚 = ⟨𝑔|𝐷(𝛼)
𝑚 |𝑒⟩ is the transition matrix element of the 𝛼th atom, 

and

(𝛼𝛽)
𝑚𝑛

(𝜆) = 𝑃

𝜋𝑖

∞

∫
−∞

𝑑𝜔
(𝛼𝛽)𝑚𝑛 (𝜔)
𝜔− 𝜆

, (13)

(𝛼𝛽)
𝑚𝑛

(𝜆) =

∞

∫
−∞

𝑑Δ𝜏𝑒𝑖𝜆Δ𝜏𝐺(𝛼𝛽)
𝑚𝑛

(Δ𝜏), (14)

are the Hilbert transform and the Fourier transform of the electro-

magnetic field correlation function 𝐺(𝛼𝛽)
𝑚𝑛 (Δ𝜏) = ⟨𝐸𝑚(𝜏, 𝑥𝛼)𝐸𝑛(𝜏′, 𝑥𝛽 )⟩

respectively, with 𝑃 denoting the principal value. Note that the cor-

relation function is invariant under temporal translations, i.e., they 
dependent on Δ𝜏 = 𝜏 − 𝜏′ only.

We assume that the two atoms are accelerating with the same accel-

eration perpendicular to the separation, so the trajectories of the two 
atoms can be written as,

𝑡1(𝜏) =
1
𝑎
sinh(𝑎𝜏), 𝑥1(𝜏) =

1
𝑎
cosh(𝑎𝜏), 𝑦1(𝜏) = 0, 𝑧1(𝜏) = 0,

𝑡2(𝜏) =
1
𝑎
sinh(𝑎𝜏), 𝑥2(𝜏) =

1
𝑎
cosh(𝑎𝜏), 𝑦2(𝜏) = 0, 𝑧2(𝜏) =𝐿, (15)

respectively. The Wightman function of the electromagnetic fields in 
the Minkowski vacuum takes the form

⟨𝐸𝑚(𝑥)𝐸𝑛(𝑥′)⟩ = 1
4𝜋2

(𝜕0𝜕′0𝛿𝑚𝑛 − 𝜕𝑚𝜕
′
𝑛
)

× 1
(𝑥− 𝑥′)2 + (𝑦− 𝑦′)2 + (𝑧− 𝑧′)2 − (𝑡− 𝑡′ − 𝑖𝜖)2

, (16)

where 𝜕′
𝜇

denotes 𝜕∕𝜕𝑥′𝜇 , and 𝜖→ 0+. In the proper frame of the atoms, 
the correlation functions are

𝐺(11)
𝑚𝑛

(𝑥,𝑥′) =𝐺(22)
𝑚𝑛

(𝑥,𝑥′) = 𝑎4

16𝜋2
1

sinh4( 𝑎Δ𝜏2 − 𝑖𝜖)
𝛿𝑚𝑛, (17)

and

𝐺(𝛼𝛽)
𝑚𝑛

(𝑥,𝑥′) = 𝑎4

16𝜋2
1[

sinh2( 𝑎Δ𝜏2 − 𝑖𝜖) − 𝑎2𝐿2

4

]3
×

{
[𝛿𝑚𝑛 + 𝑎𝐿𝜖𝛼𝛽3(𝑙𝑚𝑘𝑛 − 𝑙𝑛𝑘𝑚)] sinh2

𝑎Δ𝜏
2

+𝑎
2𝐿2

4

[
(𝛿𝑚𝑛 − 2𝑙𝑚𝑙𝑛) cosh2

𝑎Δ𝜏
2

+ (𝛿𝑚𝑛 − 2𝑙𝑚𝑙𝑛 − 2𝑘𝑚𝑘𝑛) sinh2
𝑎Δ𝜏
2

]}
,

(18)

for 𝛼 ≠ 𝛽, where 𝑘𝜇 = (0, 1, 0, 0), and 𝑙𝜇 = (0, 0, 0, 1).
We assume for simplicity that the magnitudes of the electric dipoles 

of the atoms are the same, i.e., |d(1)| = |d(2)| = |d|, but the directions 
may be different. Then, we obtain

𝐶
(11)
𝑖𝑗

= 𝐶
(22)
𝑖𝑗

=𝐴1𝛿𝑖𝑗 − 𝑖𝐵1𝜖𝑖𝑗𝑘𝛿3𝑘 −𝐴1𝛿3𝑖𝛿3𝑗 , (19)

𝐶
(12)
𝑖𝑗

= 𝐶
(21)
𝑖𝑗

=𝐴2𝛿𝑖𝑗 − 𝑖𝐵2𝜖𝑖𝑗𝑘𝛿3𝑘 −𝐴2𝛿3𝑖𝛿3𝑗 , (20)

Ω(12)
𝑖𝑗

=𝐷𝛿𝑖𝑗 −𝐷𝛿3𝑖𝛿3𝑗 , (21)
where
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Fig. 1. The maximum of concurrence generated for a uniformly accelerated two-atom system during its evolution with (solid) and without (dot-dashed) the 
environment-induced interatomic interaction, with 𝜔𝐿 = 3∕10 (left), 𝜔𝐿 = 3 (middle), and 𝜔𝐿 = 30 (right). Both of the two atoms are polarizable along the positive 

𝑥 axis.

𝐴1 =
Γ0
4

(
1 + 𝑎2

𝜔2

)
coth 𝜋𝜔

𝑎
,

𝐴2 =
Γ0
4

3∑
𝑖,𝑗=1

𝑓
(12)
𝑖𝑗

(𝜔,𝑎,𝐿)𝑑(1)
𝑖
𝑑
(2)
𝑗

coth 𝜋𝜔
𝑎
,

𝐵1 =
Γ0
4

(
1 + 𝑎2

𝜔2

)
,

𝐵2 =
Γ0
4

3∑
𝑖,𝑗=1

𝑓
(12)
𝑖𝑗

(𝜔,𝑎,𝐿)𝑑(1)
𝑖
𝑑
(2)
𝑗
,

𝐷 =
Γ0
4

3∑
𝑖,𝑗=1

𝑔
(12)
𝑖𝑗

(𝜔,𝑎,𝐿)𝑑(1)
𝑖
𝑑
(2)
𝑗
, (22)

with Γ0 =
𝜔3|d|2
3𝜋 being the spontaneous emission rate for inertial atoms 

in the Minkowski vacuum, and 𝑑(𝛼)
𝑖

a unit vector defined as 𝑑(𝛼)
𝑖

=
𝑑
(𝛼)
𝑖

∕|d|. See Eqs. (A.1)-(A.8) in Appendix A for the explicit expressions 
of 𝑓 (12)

𝑖𝑗
(𝜔, 𝑎, 𝐿) and 𝑔(12)

𝑖𝑗
(𝜔, 𝑎, 𝐿).

We assume that the initial density matrix is of the X form, i.e., 
the nonzero elements are arranged along the diagonal and antidiag-

onal of the density matrix. To describe the dynamics of the system, 
we write down the equations of motion of the density matrix ele-

ments in the coupled basis {|𝐺⟩ = |𝑔𝑔⟩, |𝐴⟩ = 1√
2
(|𝑒𝑔⟩ − |𝑔𝑒⟩), |𝑆⟩ =

1√
2
(|𝑒𝑔⟩ + |𝑔𝑒⟩), |𝐸⟩ = |𝑒𝑒⟩} as,

𝜌′
𝐺𝐺

= −4(𝐴1 −𝐵1)𝜌𝐺𝐺 + 2(𝐴1 +𝐵1 −𝐴2 −𝐵2)𝜌𝐴𝐴
+2(𝐴1 +𝐵1 +𝐴2 +𝐵2)𝜌𝑆𝑆,

𝜌′
𝐸𝐸

= −4(𝐴1 +𝐵1)𝜌𝐸𝐸 + 2(𝐴1 −𝐵1 −𝐴2 +𝐵2)𝜌𝐴𝐴
+2(𝐴1 −𝐵1 +𝐴2 −𝐵2)𝜌𝑆𝑆,

𝜌′
𝐴𝐴

= −4(𝐴1 −𝐴2)𝜌𝐴𝐴 + 2(𝐴1 −𝐵1 −𝐴2 +𝐵2)𝜌𝐺𝐺
+2(𝐴1 +𝐵1 −𝐴2 −𝐵2)𝜌𝐸𝐸,

𝜌′
𝑆𝑆

= −4(𝐴1 +𝐴2)𝜌𝑆𝑆 + 2(𝐴1 −𝐵1 +𝐴2 −𝐵2)𝜌𝐺𝐺
+2(𝐴1 +𝐵1 +𝐴2 +𝐵2)𝜌𝐸𝐸,

𝜌′
𝐴𝑆

= −4(𝐴1 + 𝑖𝐷)𝜌𝐴𝑆, 𝜌′
𝑆𝐴

= −4(𝐴1 − 𝑖𝐷)𝜌𝑆𝐴,

𝜌′
𝐺𝐸

= −4𝐴1𝜌𝐺𝐸, 𝜌′
𝐸𝐺

= −4𝐴1𝜌𝐸𝐺, (23)

where 𝜌𝐼𝐽 = ⟨𝐼|𝜌|𝐽⟩, 𝐼, 𝐽 ∈ {𝐺, 𝐸, 𝐴, 𝑆} and 𝜌′
𝐼𝐽

= 𝜕𝜌𝐼𝐽 (𝜏)
𝜕𝜏

. Since these 
equations are decoupled from other matrix elements such as 𝜌𝑆𝐺 , the X 
structure will be retained in the evolution.

3. Anti-Unruh effect in terms of the entanglement generated

In this section, we investigate the entanglement generation for two 
uniformly accelerated atoms coupled with fluctuating electromagnetic 
fields, focusing on the effect of the interatomic interaction induced by 
3

electromagnetic vacuum fluctuations. We measure entanglement with 
concurrence [39], which is 0 for separable states, and 1 for maximally 
entangled states. For X states, the concurrence can be calculated from 
its general definition [39] as

𝐶[𝜌(𝜏)] = max{0,𝐾1(𝜏),𝐾2(𝜏)}, (24)

where

𝐾1(𝜏) =
√

[𝜌𝐴𝐴(𝜏) − 𝜌𝑆𝑆 (𝜏)]2 − [𝜌𝐴𝑆 (𝜏) − 𝜌𝑆𝐴(𝜏)]2 − 2
√
𝜌𝐺𝐺(𝜏)𝜌𝐸𝐸 (𝜏),

(25)

𝐾2(𝜏) = 2|𝜌𝐺𝐸 (𝜏)|−√
[𝜌𝐴𝐴(𝜏) + 𝜌𝑆𝑆 (𝜏)]2 − [𝜌𝐴𝑆 (𝜏) + 𝜌𝑆𝐴(𝜏)]2. (26)

From Eq. (23), it is clear that for a two-atom system prepared in an X 
state, the entanglement dynamics is not affected by the environment-

induced interatomic interaction unless 𝜌𝐴𝑆 (0) and 𝜌𝑆𝐴(0) are nonzero. 
Therefore, to investigate the effects of environment-induced interatomic 
interaction on entanglement generation, we take the initial state of the 
two-atom system as |𝑒𝑔⟩, i.e., the nonzero density matrix elements in 
the coupled basis are 𝜌𝐴𝑆 (0) = 𝜌𝑆𝐴(0) = 𝜌𝐴𝐴(0) = 𝜌𝑆𝑆 (0) =

1
2 .

Taking the initial state above into Eq. (23), one obtains 𝜌𝐺𝐸 (𝜏) =
𝜌𝐸𝐺(𝜏) ≡ 0, and 𝜌𝐴𝑆 (𝜏) = 𝜌∗

𝑆𝐴
(𝜏) = 1

2 𝑒
−4(𝐴1+𝑖𝐷)𝜏 . Then, 𝐾2(𝜏) ≤ 0 ac-

cording to Eq. (26), and the concurrence becomes 𝐶[𝜌(𝜏)] = max{0,
𝐾1(𝜏)}, where

𝐾1(𝜏) =
√

[𝜌𝐴𝐴(𝜏) − 𝜌𝑆𝑆 (𝜏)]2 + sin2(4𝐷𝜏)𝑒−4𝐴1𝜏 − 2
√
𝜌𝐺𝐺(𝜏)𝜌𝐸𝐸 (𝜏).

(27)

So, when the environment-induced interatomic interaction is consid-

ered, there is an additional positive term sin2(4𝐷𝜏)𝑒−4𝐴1𝜏 oscillating 
in time, and the oscillation is damped during evolution. Therefore, 
compared with the case when the environment-induced interatomic in-

teraction is neglected, the entanglement generation is assisted by the 
environment-induced interatomic interaction. However, the asymptotic 
state remains unchanged, which is always disentangled for two-atom 
systems with finite separation [14,15].

In the following, we study explicitly how the maximum of con-

currence generated varies with acceleration. In particular, we focus 
on whether the anti-Unruh effect found in terms of the entanglement 
generated when the environment-induced interatomic interaction is ne-

glected [14,15] still exists when the environment-induced interatomic 
interaction is considered. As shown in Figs. 1-3, the relation between 
the maximum of concurrence and acceleration is related to the polar-

ization directions of the atoms, which we specify as follows.

(1) As shown in Fig. 1, when both of the two atoms are polarizable 
along the positive 𝑥 axis, i.e., the direction of acceleration, the maxi-

mum of the concurrence generated during evolution decreases mono-

tonically with acceleration for the two-atom systems with a separation 
much smaller than the transition wavelength (Fig. 1 (left)), no mat-

ter the environment-induced interatomic interaction is considered or 
not. However, for the two-atom systems with a separation comparable 

to (Fig. 1 (middle)) or much larger than (Fig. 1 (right)) the transition 
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Fig. 2. The maximum of concurrence generated for a uniformly accelerated two-atom system during its evolution with (solid) and without (dot-dashed) the 
environment-induced interatomic interaction, with 𝜔𝐿 = 3∕10 (left), 𝜔𝐿 = 3 (middle), and 𝜔𝐿 = 30 (right). Both of the two atoms are polarizable along the positive 
𝑧 axis.

Fig. 3. The maximum of concurrence generated for a uniformly accelerated two-atom system during its evolution with (solid) and without (dot-dashed) the 
environment-induced interatomic interaction, with 𝜔𝐿 = 3∕10 (left), 𝜔𝐿 = 3 (middle), and 𝜔𝐿 = 30 (right). The two atoms are polarizable along the positive 𝑧 axis 
and the positive 𝑥 axis respectively.
wavelength, there exist regions in which the maximum of the concur-

rence generated during evolution increases with acceleration when the 
environment-induced interatomic interaction is neglected. However, 
there is no such region when the environment-induced interatomic in-

teraction is considered. That is, there exists anti-Unruh phenomenon in 
terms of the entanglement generated when the environment-induced 
interatomic interaction is neglected. However, the anti-Unruh phe-

nomenon is lost when the environment-induced interatomic interaction 
is considered. When both of the two atoms are polarizable along the 
positive 𝑦 axis, i.e., the direction normal to the plane determined by the 
acceleration and the interatomic separation, the conclusion is essen-

tially the same. That is, when the two atoms are both polarizable along 
one of the directions vertical to the interatomic separation, the anti-

Unruh phenomenon is lost when the environment-induced interatomic 
interaction is considered. This agrees with the result in the scalar-field 
case [36].

(2) When both of the two atoms are polarizable along the positive 
𝑧 axis, i.e., the direction of interatomic separation, the maximum of 
the concurrence generated during evolution decreases monotonically 
with acceleration for the two-atom systems with a separation much 
smaller than (Fig. 2 (left)) or comparable to (Fig. 2 (middle)) the tran-

sition wavelength, regardless of whether the environment-induced in-

teratomic interaction is considered or not. When the separation is much 
larger than the transition wavelength (Fig. 2 (right)), the maximum 
of the concurrence shows an oscillatory behavior with acceleration if 
the environment-induced interatomic interaction is neglected, while it 
increases and then decreases with acceleration when the environment-

induced interatomic interaction is considered. That is, when both of 
the two atoms are polarizable along the direction of interatomic sep-

aration, the anti-Unruh phenomenon exists only when the interatomic 
separation is much larger than the transition wavelength. When one of 
the two atoms is polarizable along the positive 𝑧 axis (the direction of 
interatomic separation), while the other is polarizable along the pos-

itive 𝑥 axis (the direction of acceleration) (Fig. 3), there is no such 
restriction. For any given separation, the maximal concurrence gener-

ated during evolution increases with acceleration when the acceleration 
4

is small, regardless of whether the environment-induced interatomic 
interaction is considered or not. That is, when one of the two atoms 
is polarizable along the direction of interatomic separation, while the 
other is polarizable along the direction longitudinal to the plane de-

termined by the acceleration and the interatomic separation, the anti-

Unruh phenomenon exists when the environment-induced interatomic 
interaction is considered. This is dramatically different from that in the 
toy scalar-field case where the anti-Unruh phenomenon is lost when the 
environment-induced interatomic interaction is considered [36].

(3) When one of the two atoms is polarizable along the direction 
normal to the plane determined by the acceleration and the interatomic 
separation, while the other is polarizable longitudinally (in the 𝑥𝑂𝑧
plane), the environment-induced interaction vanishes. This can be seen 
from the expressions of 𝐷 shown in Eq. (22) and the nonzero compo-

nents of 𝑔(12)
𝑖𝑗

(𝜔, 𝑎, 𝐿) shown in Eqs. (A.5)-(A.8) in Appendix A. See also 
Ref. [40], in which the resonance interaction between two uniformly 
accelerated atoms in an entangled state is studied. Therefore, the anti-

Unruh phenomenon in terms of the entanglement generated would not 
be affected.

4. Conclusion

In this paper, we have investigated the entanglement generation 
of a uniformly accelerated two-atom system coupled with electromag-

netic vacuum fluctuations. In particular, we focus on whether the anti-

Unruh effect found in terms of the entanglement generated when the 
environment-induced interatomic interaction is neglected still exists 
when the environment-induced interatomic interaction is considered. 
When the two atoms are polarizable along the same direction vertical 
to the interatomic separation, the anti-Unruh phenomenon in terms of 
the entanglement generated disappears when the environment-induced 
interatomic interaction is considered. However, when one of the two 
atoms is polarizable along the direction of interatomic separation, while 
the other is polarizable along the direction longitudinal to the plane 
determined by the acceleration and the interatomic separation, there 
exists anti-Unruh phenomenon when the environment-induced inter-

atomic interaction is considered. That is, the anti-Unruh phenomenon in 

terms of the entanglement generated can survive the interatomic inter-
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action induced by electromagnetic vacuum fluctuations. This is dramat-

ically different from the result in the scalar-field case [36], in which the 
anti-Unruh phenomenon is always lost when the environment-induced 
interatomic interaction is considered.
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Appendix A. The expressions of 𝒇 (𝜶𝜷)
𝒊𝒋

(𝝎, 𝒂, 𝑳) and 𝒈(𝜶𝜷)
𝒊𝒋

(𝝎, 𝒂, 𝑳)

The explicit expressions of 𝑓 (𝛼𝛽)
𝑖𝑗

(𝜔, 𝑎, 𝐿) and 𝑔(𝛼𝛽)
𝑖𝑗

(𝜔, 𝑎, 𝐿) (𝛼 ≠ 𝛽) 
are shown as follows.

𝑓
(12)
11 (𝜆, 𝑎,𝐿)

= 𝑓
(21)
11 (𝜆, 𝑎,𝐿)

= 12
𝜆3𝐿3(4 + 𝑎2𝐿2)5∕2

×

{
2𝜆𝐿(1 + 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 cos

(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)

−[4 − 4𝜆2𝐿2 + 𝑎2𝐿2(2 − 𝜆2𝐿2 + 𝑎2𝐿2)] sin
(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)}
, (A.1)

𝑓
(12)
22 (𝜆, 𝑎,𝐿)

= 𝑓
(21)
22 (𝜆, 𝑎,𝐿)

= 3
𝜆3𝐿3(4 + 𝑎2𝐿2)3∕2

[
𝜆𝐿(2 + 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 cos

(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)

−(4 − 4𝜆2𝐿2 − 𝑎2𝜆2𝐿4) sin
(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)]
, (A.2)

𝑓
(12)
33 (𝜆, 𝑎,𝐿)

= 𝑓
(21)
33 (𝜆, 𝑎,𝐿)

= − 3
𝜆3𝐿3(4 + 𝑎2𝐿2)5∕2

×

{
𝜆𝐿(16 + 2𝑎2𝐿2 + 𝑎4𝐿4)(4 + 𝑎2𝐿2)1∕2 cos

(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)

−[32 − 𝑎4𝜆2𝐿6 + 4𝑎2𝐿2(5 −𝜔2𝐿2)] sin
(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)}
, (A.3)

𝑓
(12)
13 (𝜆, 𝑎,𝐿)

= −𝑓 (12)
31 (𝜆, 𝑎,𝐿) = −𝑓 (21)

13 (𝜆, 𝑎,𝐿) = 𝑓
(21)
31 (𝜆, 𝑎,𝐿)

= 6𝑎
𝜆3𝐿2(4 + 𝑎2𝐿2)5∕2

{
𝜆𝐿(2 − 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 cos

(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)

−[4 + 4𝜆2𝐿2 + 𝑎2𝐿2(4 + 𝜆2𝐿2)] sin
(2𝜆
𝑎

sinh−1 𝑎𝐿
2

)}
, (A.4)
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𝑔
(12)
11 (𝜔,𝑎,𝐿)

= − 12
𝜔3𝐿3(4 + 𝑎2𝐿2)5∕2

×

{
2𝜔𝐿(1 + 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 sin

(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)

+[4 − 4𝜔2𝐿2 + 𝑎2𝐿2(2 −𝜔2𝐿2 + 𝑎2𝐿2)] cos
(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)}
,

(A.5)

𝑔
(12)
22 (𝜔,𝑎,𝐿)

= − 3
𝜔3𝐿3(4 + 𝑎2𝐿2)3∕2

×

[
𝜔𝐿(2 + 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 sin

(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)

+(4 − 4𝜔2𝐿2 − 𝑎2𝜔2𝐿4) cos
(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)]
, (A.6)

𝑔
(12)
33 (𝜔,𝑎,𝐿)

= 3
𝜔3𝐿3(4 + 𝑎2𝐿2)5∕2

×

{
𝜔𝐿(16 + 2𝑎2𝐿2 + 𝑎4𝐿4)(4 + 𝑎2𝐿2)1∕2 sin

(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)

+[32 − 𝑎4𝜔2𝐿6 + 4𝑎2𝐿2(5 −𝜔2𝐿2)] cos
(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)}
, (A.7)

𝑔
(12)
13 (𝜔,𝑎,𝐿)

= −𝑔(12)31 (𝜔,𝑎,𝐿)

= − 6𝑎
𝜔3𝐿2(4 + 𝑎2𝐿2)5∕2

×

{
𝜔𝐿(2 − 𝑎2𝐿2)(4 + 𝑎2𝐿2)1∕2 sin

(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)

+[4 + 4𝜔2𝐿2 + 𝑎2𝐿2(4 +𝜔2𝐿2)] cos
(2𝜔
𝑎

sinh−1 𝑎𝐿
2

)}
, (A.8)

with other components being zero.
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