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Abstract In this work we present a general framework
for obtaining exact solutions to the Einstein field equations
describing strange stars obeying a colour-flavour-locked
(CFL) equation of state. Starting off with a spherically sym-
metric metric in isotropic coordinates describing the interior
of the star, we impose a CFL equation of state to reduce the
problem to a single-generating function of the gravitational
potentials. Our approach leads to an infinite class of solutions
of the field equations. In order to test the physical viability
of our solutions, we subscribe a particular model to stringent
stability tests. In particular, we show that a linear equation of
state described by the MIT Bag model mimics the CFL equa-
tion of state describing strange stars with interacting quark
matter. This is an interesting result which connects the more
robust and mathematically tractable linear equation of state
to the fundamental physics describing nuclear matter in the
quark regime.

1 Introduction

Compact objects such as neutron stars and pulsars are natu-
ral laboratories for testing our understanding of fundamental
interactions arising in particle physics. There has been huge
strides in explaining the physical attributes such as compact-
ness, radii, redshifts and luminosities of these objects based
on microphysics. This interplay between the microphysics
and the macrophysics (quite literally on an astronomical
scale) has come to the fore quite frequently in the recent
past. Delgaty and Lake constructed a catalogue containing
all analytic solutions that describe isolated static spherically
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symmetric perfect fluid solutions [1]. It is interesting to note
that out of the 127 solutions scrutinised, a mere 16 are phys-
ically viable in their description of a bounded stellar config-
uration. Furthermore, a paltry 9 solutions obey the causality
condition. Despite the consistency of this small number of
relevant solutions describing stellar objects there is very lit-
tle or no connection to the microphysics governing the fluid
composition.

A fruitful and physically plausible approach to stellar
modeling within the framework of classical general relativity
(CGR) is to adopt an equation of state (EoS) a priori. The
EoS intimately connects the matter variables, for example,
the energy density and the pressure of the stellar fluid [2–
4]. In the past the natural and simplest EoS related the fluid
density and pressure via an ad-hoc linear relation. The MIT
Bag model motivated by work in QCD centred on quark con-
finement and asymptotic freedom [6] is essentially a linear
EoS of the form p = (ρ − 4B)/3, where B is the Bag con-
stant [7,8]. The MIT Bag model has been employed in sev-
eral recent works to generate models of anisotropic spheres
[9,10]. As pointed out by [11], this EoS cannot adequately
account for the deconfinement of quarks at high density. Fur-
thermore, the magnitude of the Bag constant is not abso-
lute but rather depends on the compact objects being mod-
eled [12]. An interesting study of compact objects in CGR
using the Vaidya-Tikekar ansatz revealed a linear relationship
between the energy density and the isotropic pressure. In this
work, the gravitational behaviour and pressure isotropy were
specified at the outset. The resulting solution when tested for
physical viability revealed the presence of a linear EoS.

Polytropes and their stability have been studied by Chan-
drasekhar who worked out the requirement for the stability of
a self-gravitating sphere. Solutions to the Einstein field equa-
tions admitting a polytropic equation of state are not common
with physical viable solutions being a rarity [13]. This high-
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lights the nonlinearity of the Einstein field equations and the
difficulty associated with solving them. Recently, researchers
have been successful in modeling compact objects obeying a
quadratic EoS of the form pr = αρ2 +γρ −β with α, γ and
β being constants [14–16]. Sharma and Ratanpal modeled
anisotropic spheres by employing the Finch and Skea ansatz
for one of the gravitational potentials. In order to close the
system of equations they chose a physically plausible form
for the radial pressure which facilitated the integration of
the governing equation to admit the remaining gravitational
potential. It is quite remarkable that such an approach leads
to a class of physically viable solutions obeying a quadratic
EoS [16]. A novel approach to constructing compact objects
was used by Pant et al. in which they studied core-envelope
models with the core obeying a linear EoS and the outer
matter regions of the star described by a quadratic EoS. They
show that such a composite configuration is stable and meets
all the physical requirements for a physical realizable stellar
structure [17]. They observed that an increase in mass leads
to higher core density and more compact objects signifying
the role played by gravity in the presence of larger masses.

By appealing to the microphysics associated with strange
matter, Rocha et al. [5–23] adopt a CFL EoS of the form

pr = αρ + βρ
1
2 − γ which generalises the MIT Bag model.

Rocha et al. invoked the Durgapal and Banerjee transforma-
tion and a simple ansatz for one of the gravitational potentials
to obtain an exact solution describing a compact object obey-
ing a CFL EoS. In this study we model spherically symmetric
compact objects by adopting an isotropic line element which
is simultaneously comoving. The interior matter configura-
tion is described by an anisotropic fluid with unequal stresses
in the radial and tangential directions. The CFL EoS allows
us to integrate the field equations thus reducing the problem
to a single generating function of one of the gravitational
potentials. By appealing to regularity, stability and physical
viability of the gravitational and thermodyamical variables
required for a realistic description of compact objects we
present a tractable stellar model. We examine the behaviour
of the CFL model in the linear approximation and show that
the more robust linear EoS mimics the CFL EoS to a very
good approximation.

2 Spherical symmetry

The interior spacetime of the stellar model takes the form

ds2 = −A2(r)dt2 + B2(r)
[
dr2 + r2dΩ2

]
(1)

where dΩ2 = dθ2 + sin2 θdφ2 and the metric functions,
A(r) and B(r) are yet to be determined. In this paper we
consider a model which represents a spherically symmetric,

anisotropic fluid configuration. For our model the energy-
momentum tensor for the stellar fluid is

Tab = diag (−ρ, pr , pt , pt ) (2)

where ρ, pr and pt are the proper energy density, radial
pressure and tangential pressure respectively. The fluid four–
velocity u is comoving and is given by

ua = 1

A
δa0 (3)

The Einstein field equations for the line element (1) are

ρ = − 1

B2

(
2
B ′′

B
− B ′2

B2 + 4

r

B ′

B

)
(4)

pr = 1

B2

[
B ′2

B2 + 2
A′

A

B ′

B
+ 2

r

(
A′

A
+ B ′

B

)]
(5)

pt = 1

B2

[
A′′

A
+ B ′′

B
− B ′2

B2 + 1

r

(
A′

A
+ B ′

B

)]
(6)

where primes represent differentiation with respect to the
radial coordinate r . In generating the above field equations we
have utilized geometrized units where the coupling constant
and the speed of light are taken to be unity. The system (4)–
(6) comprises three independent equations with five variables
(A(r), B(r), ρ, pr and pt ). The mass contained within a
radius r of the sphere is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω (7)

For a physically realistic relativistic star we expect that
the matter distribution should satisfy a barotropic equation
of state pr = pr (ρ). In this paper our object is to model
an anisotropic compact sphere with CFL matter distribution.
The EoS for CFL matter was well motivated by Rocha et
al. [22] in which they assumed that the stellar interior was
composed entirely of CFL matter. In order to make the prob-
lem mathematically tractable but without losing the essential
physics at play, they were able to write the CFL EoS entirely
as a function of the fluid density

pr = 1

3
ρ + 2η

π
ρ1/2 −

(
3η2

π2 + 4

3
B

)
(8)

where

η = −m2
s

6
+ 2Δ2

3
(9)

with ms being the quark mass, B is the MIT Bag constant
and Δ represents the quark interactions. In this regard we
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assume the EoS obeyed by our model takes the form

pr = αρ + βρ
1
2 − γ (10)

where α, β and γ are real constants. The EoS of the form
(10) has been used to model compact stars with CFL quark
matter [22,23]. Substituting (4) and (5) into (10) we obtain
the master equation

A′

A
= −

[
2α

B ′′

B
+ (1 − α)

B ′2

B2 + 2(1 + 2α)
1

r

B ′

B

+γ B2 + βB

(
−2B ′′

B
+

(
B ′

B

)2

− 4

r

B ′

B

) 1
2
⎤
⎦

×
⎡
⎣ 1

2
(

1
r + B′

B

)
⎤
⎦ (11)

The solution of which yields the gravitational behaviour of
our model. On integrating (11) we obtain

A = d exp

[
−1

2

∫
F(r)dr

]
(12)

where

F(r) =
[

2α
B ′′

B
+ (1 − α)

B ′2

B2 + 2(1 + 2α)
1

r

B ′

B
+ βB2

+ βB

(
−2B ′′

B
+

(
B ′

B

)2

− 4

r

B ′

B

) 1
2
⎤
⎦

(
1

1
r + B′

B

)

(13)

and d is a constant of integration. Hence the line element (1)
can be written as

ds2 = −d2 exp

[
−

∫
F(r)dr

]
dt2 + B2

[
dr2 + r2dΩ2

]

(14)

where F(r) is given in (13). Hence, any solution describing
static spherically symmetric anisotropic matter distribution
with CFL equation of state in isotropic coordinate can be
easily determined by a single generating function B(r).

3 Uniform density sphere

If we assume that the density of the interior matter distribu-
tion is constant, ρ = μ = constant , (4) becomes

μ = − 1

B2

(
2
B ′′

B
− B ′2

B2 + 4

r

B ′

B

)
(15)

This equation admits the solution

B = 2
√

3 c√
μ(1 + c2r2)

(16)

where c is an arbitrary constant. This solution was first
derived by Wyman in 1946 [24]. Substituting (16) in (11)
we obtain

A = d

[
1 + c2r2

1 − c2r2

]μ(1+3α)−3(γ+β
√

μ)

2μ

(17)

In this case the metric (1) take a particular form

ds2 = −d2
[

1 + c2r2

1 − c2r2

]μ(1+3α)−3(γ+β
√

μ)

μ

dt2

+χ2
[
dr2 + r2dΩ2

]
(18)

where χ2 = 12c2

μ(1+c2r2)2

4 Compact stellar model

If we set B = a√
1+br2 , from (11) we obtain

A = d(1 + br2)
(1+5α)

4

(√
1 + br2 +

√
6 + br2

)− 5aβ
4
√
b

× exp
[
(b(1 + α) − a2γ )(1 + br2)

− aβ
√
b
√

1 + br2
√

6 + br2

(
1

4b

)]
(19)

In this case the matter variables can be explicitly written as

ρ = b(6 + br2)

a2(1 + br2)
(20)

pr = α
b(6 + br2)

a2(1 + br2)
+ β

a

√
b(6 + br2)

(1 + br2)
− γ (21)

pt = (1 + br2)

a2

[
A′′

A
+ A′

r A
− 2b

(1 + br2)2

]
(22)

Δ = pt − pr (23)

where Δ = pt − pr is the measure of anisotropy. It is noted
that the matter variables are given in terms of elementary
functions that facilitate for a detailed physical analysis of the
model. In this case the (28) takes form

m(r) =
br3 + 15

(
r − arctan[√br ]√

b

)

6a2 (24)
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5 Physical analysis

We are now in a position to discuss the physical features of our
model. It is noted that the model generated should satisfy the
following physical requirements to describe a realistic star:

(i) regularity of the gravitational potentials at the origin;
(ii) positive definiteness of the energy density and the

radial pressure at the origin;
(iii) vanishing of the pressure at some finite radius;
(iv) monotonic decrease of the energy density, the radial

pressure and tangential pressure with increasing
radius;

(v) interior metric match smoothly with the exterior met-
ric:

ds2 = −
(
1 − M

2r

)2

(
1 + M

2r

)2 dt
2 +

(
1 + M

2r

)4

[dr2 + r2dΩ2]

(25)

across the boundary r = R, where M is the total mass
of the sphere;

(vi) casuality condition: both the radial and tangential
speed of sound is less than the speed of light through-
out the interior of star i.e., 0 ≤ V 2

r = dpr
dρ ≤ 1 and

0 ≤ V 2
t = dpt

dρ ≤ 1;

(vii) satisfy the stability condition: −1 ≤ V 2
t − V 2

r ≤ 0;
(viii) a physically reasonable energy-momentum tensor has

to obey the conditions ρ − pr − 2pt ≥ 0 and ρ +
pr + 2pt ≥ 0;

(ix) ratio of trace of stress tensor to density, pr+2pt
ρ

, should
decrease from centre to the surface of star.

Now we show that the models generated in Sect. 4 satisfy the
above listed physical properties.

(i) Since A2(0) = d2(1+√
6)

−5αβ

2
√
b exp

[
b(1+α)−a2γ−αβ

√
6b

2b

]
,

B2(0) = a2 which are constants and (A2(r))′ =
(B2(r))′ = 0 at the origin r = 0, the gravitational poten-
tials are regular at the origin.

(ii) Since ρ(0) = 6b
a2 and pr (0) = 6αb

a2 + β
√

6b
a −γ , the energy

density and radial pressure are positive at the origin.
(iii) At the boundary of the star r = R the condition pr (r =

R) = 0 impose the restrictionα
b(6+br2)

a2(1+br2)
+ β

a

√
b(6+br2)

(1+br2)
−

γ = 0 on the parameters a, b, α, β and γ .

(iv) Since
dρ

dr
= − 10b2r

a2(1 + br2)2 < 0, the energy density is

a decreasing function of r . The radial pressure pr is also
a decreasing function as pr and ρ are related on a linear
EoS.

Fig. 1 Variation of density with radial coordinate

(v) Matching of interior metric (1) and exterior metric (25)
at the boundary r = R leads to the constrains

A(R) =
(
1 − M

2R

)
(
1 + M

2R

) (26)

B(R) =
(

1 + M

2R

)2

(27)

where

M = m(R) =
bR3 + 15

(
R − arctan[√bR]√

b

)

6a2 (28)

The condition (26) imposes the following restriction on
the constant of integration

d =
12a2R −

[
bR3 + 15

(
R − arctan[√bR]√

b

)]

12a2R +
[
bR3 + 15

(
R − arctan[√bR]√

b

)]

×
[
1 + bR2

]− (1+5α)
4

× exp

[
−[b(1 + α) − a2β](1 + bR2)

4b

]

The condition (27) implies

a√
1 + br2

=
⎡
⎣1 +

bR3 + 15
(
R − arctan[√bR]√

b

)

12a2R

⎤
⎦

2

(29)

These impose a restriction on the parameters a, b and
can be solved for one of the parameter if the values for
the radius of the sphere and the remaining parameter are
specified.

(vi) The surface redshift Zs = (1 − 2M
R )−1/2 − 1 [28]

decreases with increasing radius of the sphere.
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Fig. 2 Variation of radial pressure with radial coordinate

Due to the complexity of the solution, we show graphically
that the matter variables are well behaved throughout the inte-
rior of the star. The figures were plotted in a way to compare
the effect of CFL matter EoS with linear EoS. To plot the
figures for both CFL matter and linear EoSs we fixed the val-
ues for the parameters a = 1.49399, b = 0.0024, α = 0.5
and β = 0.001, γ = 0.00235 for CFL matter EoS and
β = 0, γ = 0.00228 for linear EoS. From Fig. 1 we observe
that the energy density is a monotonically decreasing func-
tion of the radial coordinate. In our construction of our stellar
model the energy density is the same in both the CFL and
linear regimes. The radial pressure is displayed in Fig. 2. As
expected the pressure drops off monotonically from the cen-
ter of the star and vanishes for some finite value of the radial
coordinate. The radial pressures for both the CFL and linear
models are indistinguishable at each interior point of the fluid
configuration. The tangential pressure is plotted in Fig. 3. We
observe that the tangential pressure decreases monotonically
outwards towards the boundary of the star with the linear
EoS pressure dominating its CFL counterpart throughout the
stellar interior. We observe an interesting behaviour of the
anisotropy parameter in Fig. 4. While Δ ≥ 0 throughout
the interior for the linear EoS, we note that the anisotropy
parameter changes sign within the CFL configuration. This
implies that force associated with anisotropy can be repul-
sive (pt > pr ) or attractive (pt < pr ). Figure 4 shows that
the central regions experience an attractive force due to pres-
sure anisotropy making these regions more unstable. As one
moves outwards towards the surface layers of the star, the
anisotropy changes sign, becoming positive. The surface lay-
ers of the object are subjected to a repulsive force due to pres-
sure anisotropy thus making this region more stable against
the inwardly acting gravitational attraction. Figures 5 and 6
show the variation of the square of the radial and tangential
speeds respectively. These quantities play an important role
in determining stable and unstable regions within the object
as proposed by Herrera [25]. According to Abreu et al. the
condition for stable regions to exist within the core, we must
have −1 < V 2

t − V 2
r ≤ 0 [26]. Figure 7 shows that the star

is composed of stable regions as one moves from the centre

Fig. 3 Variation of tangential pressure with radial coordinate

outwards towards the boundary. In addition, the linear EoS
predicts more stable regions than the CFL EoS. It is well
known that the ratio of the specific heats for an anisotropic
fluid is given by

Γ <
4

3
−

[
4

3

pr − pt
|pr ′|r

]

max
(30)

We note that the anisotropy increases the instability of the
collapsing system when pr < pt . We obtain the classical
Newtonian result, Γ < 4

3 in the case of isotropic pressure,
pr = pt as a measure of the instability of the stellar con-
figuration. Figure 8 shows that Γr > 4

3 throughout the fluid
configuration indicative of a stable object. As pointed out in
Fig. 4, the anisotropy changes sign in different regions of the
configuration. The change in sign of the anisotropic factor is
not sufficiently large to render the configuration unstable as
supported by the trend in Fig. 8. We also observe that the adi-
abatic stability index is indistinguishable for both the linear
and CFL EoS’s. For the anisotropic fluid configurations, the
strong energy condition ρ − pr − 2pt ≥ 0 has to be satis-
fied within the stellar interior. Figures 9 and 10 show that the
weak and strong energy conditions are satisfied throughout
the matter distribution. It has been shown that the generated
model satisfy all the physical requirements listed above to
represent a realistic star in both CFL and linear EoS’s. The
mass profile is displayed in Fig. 11. We observe that the mass
vanishes at the centre of the configuration and increases as
the radial coordinate increases. In Fig. 12 we have plotted
the surface redshift as a function of the proper radius. The
surface redshift decreases as the radius increases. This trend
is in agreement with findings reported by Zhao and Jia [27]
who studied surface redshifts of neutron stars.

6 Fixing parameters

In this section we turn our attention to fixing the free param-
eters in our model. In order to obtain the radius of the star,
we require the vanishing of the radial pressure for some finite
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Fig. 4 Variation of anisotropy with radial coordinate

Fig. 5 Variation of radial speed with radial coordinate

Fig. 6 Variation of tangential speed with radial coordinate

Fig. 7 Variation of stability with radial coordinate

Fig. 8 Variation of Γr with radial coordinate

Fig. 9 Variation of weak energy condition as a function of the radial
coordinate

Fig. 10 Variation of the strong energy condition as a function of the
radial coordinate

r = R. This requirement yields

Rcf l =
√

−12b3 − 18a4bγ 2 + 21b2ψ + 15
√

3
√

ζ

b2(b2 − 3bψ + 9a4γ 2)
(31)

where we have defined ψ = 3β2 +2a2γ and ζ = b4β2(ψ +
2a2γ ). For the linear EoS the radius is given by

Rl = √
3

√
2b − a2γ

−b2 + 3a2bγ
(32)
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Fig. 11 Variation of mass with radial coordinate

Fig. 12 Variation of surface redshift with radial coordinate

From (32) we arrive at the following restrictions

a2γ

2
≤ b < 3a2γ (33)

We further note from (20) that the constant b can be written
in terms of the central density, ρc as

b = a2ρc

6
(34)

and in the light of (33) we have

3γ < ρc < 18γ (35)

In order to plot M vs R, we use (28) which depends on
(a, b, R). There are various ways to fit our model to observa-
tional data. If we choose the central density to be some mul-
tiple of the nuclear saturation density, then we can write b in
terms of a, with γ being fixed in the process. The difficulty in
this approach is that the effect of the vacuum term in the vari-
ation of the mass is lost. A second approach due to Rocha
et al. [22] is to choose various values for the quark mass,
ms and the gap term, Δ, representing the quark interactions
while keeping the MIT Bag constant fixed. This generates
different values of γ . From (34) we are able to obtain differ-
ent values for b in terms of a which encodes the contribution
from the microphysics. This facilitates comparison between
different models which are distinguished by the quark inter-
actions in the stellar fluid. At this point we should point that

the constant, a is still free. This implies that there is sufficient
freedom in our model to reconcile with observational data.
We can conclude that it is always possible to fit characteris-
tics of our model with observations because of the numerous
degrees of freedom. On the flip side, physical characteris-
tics of compact objects such as masses and radii depend on
the observational techniques employed [29]. At best we can
claim that these are toy models which allow us to get insights
into the behaviour of the thermodynamical and gravitational
behaviour of compact objects as evidenced in Figs. 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11 and 12. As to the fixing of the model
parameters to observational data we must err on the side of
caution and must distinguish between measured and inferred
values.

7 Conclusion

This study focused on the comparison between the CFL and
linear EoS exact solutions for compact stars consisting of the
strange matter phase and allowing anisotropy in the pressure.
The CFL phase is modeled as a charge free and colourless
gas of quark Cooper pairs that allows this matter to be the
true ground state. There is a large number of works, as those
referenced in [1], that propose different classes of solutions
for the Einstein field equations using toy models. The feature
of our work is to provide a realistic linear EoS for the com-
pact object, thus connecting micro and macrophysics and
finding exact descriptions. In summary, we have provided
two anisotropic pressure models made of CFL strange mat-
ter. This was achieved by obtaining a master equation from
the CFL EoS by substituting for density and radial pressure.
The following ansatz for one of the gravitational potentials,
B = a√

1+br2 was used to obtain the other potential which
then completes the gravitational behaviour of the model. The
field equations satisfy all the physical requirements for a real-
istic star. By making β = 0 the CFL EoS becomes a linear
EoS thus allowing us to obtain a new set of field equations.
By plotting the various thermodynamical quantities, stability
criteria and energy conditions we show that the linear EoS
gives a reasonable approximation to the CFL EoS.
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