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We show that effective theories of matter that classically violate the null energy condition cannot be 
minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole 
thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to 
higher-curvature theories of gravity.
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1. Introduction

The null energy condition (NEC) requires that, at every point in 
spacetime,

Tμν vμvν ≥ 0 , (1)

for any light-like vector, vμ . The NEC is the weakest of the energy 
conditions; a violation of the NEC implies a violation of the weak, 
dominant, and strong energy conditions. The various energy con-
ditions play a vital role in general relativity, where they are the 
main physical assumptions in the singularity theorems [1] and in 
no-go theorems that prohibit the traversability of wormholes, the 
creation of laboratory universes [2], the building of time machines 
[3], and the possibility of bouncing cosmologies [4,5]. Perhaps most 
importantly, the energy conditions are needed in black hole ther-
modynamics [6]: the NEC is used in proving that the area of a 
black hole event horizon, like entropy, always increases, while the 
dominant energy condition is used in proving the zeroth law, that 
the surface gravity of a black hole is uniform over the system at 
equilibrium, just like temperature.

Expressed in the form of (1), the NEC appears as a property 
of matter, since it is defined in terms of the matter energy–
momentum tensor. All known forms of matter do obey the NEC 
classically, but one can wonder whether that has to be the case. 
Indeed, although NEC-violating theories often exhibit worrisome 
behavior, such as superluminal propagation [7] or unbounded neg-
ative Hamiltonians [8], they do not appear to be categorically ruled 
out by any principles of quantum field theory. In fact, it is easy to 
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come up with a counter-example. Consider a free massless ghost. 
The Lagrangian density is

L = −1

2
(ϕ̇)2 + 1

2
(∇ϕ)2 , (2)

which is simply that of a massless scalar field but with the 
“wrong” overall sign. An overall sign does not affect the classical 
equations of motion of course. In fact, the theory can be quan-
tized as well. No instability of the vacuum arises provided there 
is no coupling to other “normal” particles with positive energy. As 
this semi-trivial counter-example indicates, it is possible to vio-
late the NEC without being in conflict with QFT. The validity of 
the NEC has consequently been called into question [9,10]; indeed, 
we now know of linearly stable, non-trivial examples of interact-
ing NEC-violating theories such as theories of ghost condensates 
[11] or covariant and conformal galileons [12,13]. There are even 
theories admitting a Poincaré-invariant vacuum, with a Lorentz-
invariant S-matrix that satisfies the dispersion relations that arise 
from analyticity constraints, and in which perturbations of the vac-
uum propagate subluminally [14,15]. Thus, while all these theories 
violate (1), they seem perfectly consistent with quantum field the-
ory, at least as non-renormalizable effective field theories.

The possibility of having NEC-violating matter has led to many 
scenarios in which such matter is minimally coupled by hand to 
Einstein gravity. Of course, problems arise even with (2) since 
gravity can mediate interactions with “normal” particles. How-
ever, ghost instabilities can be mild [16,17]. If the gravitational 
coupling of NEC-violating theories is valid, then the central as-
sumption in the aforementioned gravitational no-go theorems is 
lifted, so that everything from bouncing cosmologies [18–20] to 
traversable wormholes becomes permissible.

The purpose of this paper is to argue that the naive minimal-
coupling of NEC-violating matter to Einstein gravity is quite likely 
se (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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inconsistent. It appears to be in contradiction both with black hole 
thermodynamics and with string theory. Instead, we suggest that 
NEC-violating matter could potentially be consistently coupled to 
gravity either if it is non-minimally coupled or if the gravitational 
action includes higher-curvature terms; we provide an example of 
each. In both cases, however, the advantage of NEC-violating mat-
ter in bypassing gravitational no-go theorems is lost.

2. Gravitational problems of NEC-violating theories

We have seen that it is not manifestly the case that the null 
energy condition, (1), follows from the tenets of quantum field the-
ory. However, when we now minimally couple matter to Einstein 
gravity, Einstein’s equations imply that

Rμν vμvν ≥ 0 ⇔ Tμν vμvν ≥ 0 . (3)

That is, if the null energy condition, (1), holds for matter, then

Rμν vμvν ≥ 0 , (4)

known as the null or Ricci convergence condition, holds for geom-
etry (and vice versa). Of course, within the framework of general 
relativity, there is no compelling reason why (4), should hold. Thus 
it appears that we can derive neither the left-hand side of (3)
from general relativity, nor the right-hand side from quantum field 
theory. There are, however, at least two other possible sources of 
conditions which are neither quantum field theory nor general rel-
ativity: thermodynamics and string theory. Here we will show, by 
demanding the second law of thermodynamics for black holes and 
the consistency of worldsheet string theory, that both of these re-
quire the Ricci convergence condition to hold.

The significance of the Ricci convergence condition lies in the 
null version of Raychaudhuri’s equation, which determines the fo-
cussing of light rays. Raychaudhuri’s equation states that a null 
geodesic congruence with affine parameter λ, expansion param-
eter θ , and shear tensor σ satisfies

dθ

dλ
= −1

2
θ2 − σ 2 − Rμν vμvν , (5)

where we have ignored a vorticity term for simplicity. Thus if 
the Ricci convergence condition, (4) holds, then every term on 
the right in Raychaudhuri’s equation is negative. This is the key 
requirement in proving a number of gravitational theorems. In par-
ticular, it is used in Hawking’s proof [6] of the area law that says 
that the event horizons of classical black holes can never decrease. 
For when dθ

dλ
is non-positive, an examination of (5) shows that if 

θ is ever negative it will become infinitely negative in finite affine 
time. Applied to a congruence of null generators of the event hori-
zon, this would indicate the presence of a horizon caustic, i.e. a 
naked singularity on the horizon of the black hole. Cosmic censor-
ship then dictates that θ must be positive, meaning that classical 
black holes cannot shrink:

Tμν vμvν ≥ 0 ⇒ Rμν vμvν ≥ 0 ⇒ dθ

dλ
≤ 0

⇒ θ ≥ 0 ⇒ dA

dλ
≥ 0 ⇒ dS

dλ
≥ 0 . (6)

Evidently a violation of the null energy condition would break this 
chain of logic and could potentially allow black hole event hori-
zons to shrink even classically. It would be nice if we could reverse 
the arrows to conclude that the Ricci convergence condition or the 
NEC are logical consequences of the second law of thermodynam-
ics. However, it is apparent that this does not quite follow. For 
one thing, a spacetime that contains no event horizons would be 
unconstrained. Indeed, the second law can, at best, constrain the 
energy–momentum tensor in the vicinity of a horizon; spacetimes 
for which the Ricci convergence condition was violated far away 
from any black holes would not cause any conflict with the sec-
ond law. Another difficulty is that an increase in the total area, 
dA/dλ ≥ 0 does not imply that every area element does not shrink, 
θ ≥ 0. By contrast, the NEC and the Ricci convergence condition are 
local requirements. Therefore, in order to rigorously show that the 
NEC holds everywhere in spacetime, one would need a local ver-
sion of (6); it would be very interesting to see whether (4) could 
be derived from applying the second law to local Rindler horizons, 
perhaps similar to the way Einstein’s equations themselves come 
out of assuming thermodynamics of local Rindler horizons [21,22]. 
At present, though black holes provide strong evidence in support 
of the NEC, the reasoning falls short of being a proof.

A more robust obstruction to coupling NEC-violating theories 
to Einstein gravity comes from perturbative string theory. (There 
have also been proposals, using AdS/CFT, that the null energy con-
dition in a bulk spacetime map to a kind of c-theorem in the dual 
conformal field theory [23]. However, the validity of a c-theorem 
in dimensions greater than two has not been independently estab-
lished, so the NEC is used to prove a c-theorem rather than vice 
versa.) Here we will review a direct derivation of the NEC [24]
using perturbative string theory. Worldsheet string theory is de-
scribed by a two-dimensional nonlinear sigma model in which D
scalar fields, Xμ(σ , τ ) – we focus here on bosonic string theory – 
are minimally coupled to two-dimensional Einstein gravity on the 
worldsheet. For a string propagating in an arbitrary curved space-
time, the Polyakov action is

S P [Xμ,hab] = − 1

4πα′

∫
d2σ

√
−h

[
α′
(X)Rh

+ hab∂a Xμ∂b Xν gμν(X)
]
. (7)

Here hab is the metric on the two-dimensional worldsheet and Rh
is its Ricci scalar. The background fields are gμν(X), the metric of 
D-dimensional spacetime, and 
(X(τ , σ)), the dilaton; we neglect 
the anti-symmetric Kalb–Ramond field, Bμν , for simplicity.

We now perform a background field expansion Xμ(τ , σ) =
Xμ

0 (τ , σ) + Y μ(τ , σ) where Xμ
0 (τ , σ) is some solution of the clas-

sical equation of motion for Xμ . Then, for every value of (τ , σ), we 
can use standard field redefinitions [25,26] to expand the metric in 
Riemann normal coordinates about the spacetime point Xμ

0 (τ , σ):

gμν(X) = ημν − 1

3
Rμανβ(X0)Y αY β + ... . (8)

Contracted with ∂a Xμ∂a Xν , the second and higher terms intro-
duce quartic and higher terms in the Lagrangian turning (7) into 
an interacting theory. The resultant divergences can be cancelled 
by adding suitable counter-terms to the original Lagrangian. Inte-
grating out Y , the one-loop effective action is [25,26]

S[Xμ
0 ,hab] = − 1

4πα′

∫
d2σ

√
−h

[
α′Cε
Rh

+ hab∂a Xμ
0 ∂b Xν

0 (ημν + Cεα
′Rμν)

]
. (9)

Here Cε is the divergent coefficient of the counter-terms.
Consider now the equation of motion for the worldsheet metric, 

hab . Employing light-cone coordinates on the worldsheet,

σ± ≡ τ ± σ , (10)

the equation of motion reads

0 = ∂± Xμ
∂± Xν

(
ημν + Cεα

′(Rμν + 2∇μ∇ν
)
)

. (11)
0 0
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These are the Virasoro constraints. Since Cε is divergent and cut-
off dependent, the terms that do and do not involve Cε must 
vanish separately. For the Cε -independent term, we have

0 = ∂+ Xμ∂+ Xνημν , (12)

with a similar equation with + replaced by −. Defining a vector 
field vμ

+ = ∂+ Xμ(σ , τ ), we find that

ημν vμ
+vν+ = 0 , (13)

which is to say that vμ
+ is a null vector field. Thus, worldsheet 

string theory naturally singles out spacetime null vectors. To de-
rive the Ricci convergence condition, consider then an arbitrary 
null vector vμ in the tangent plane of some arbitrary point in an 
arbitrary spacetime. Let there be a test string passing through the 
given point with ∂+ Xμ equal to vμ at the point. The terms that 
depend on Cε then read

vμ
+vν+(Rμν + 2∇μ∇ν
) = 0 . (14)

This is very nearly the Ricci convergence condition, (4), except for 
two differences: it is an equality, rather than an inequality, and 
there is an extra, unwanted term involving the dilaton.

However, the metric, gμν , that appears in the worldsheet action 
is the string-frame metric. We can transform to Einstein frame by 
defining:

gμν = e
4


D−2 g E
μν . (15)

Then we find that

R E
μν vμ

+vν+ = + 4

D − 2
(vμ

+∇ E
μ
)2 . (16)

The right-hand side is manifestly non-negative. Hence we have

R E
μν vμ

+vν+ ≥ 0 . (17)

This establishes the Ricci convergence condition [24], which is 
equivalent to the null energy condition when Einstein’s equations 
hold. It is not difficult to show that this result holds in all dimen-
sions [24].

3. How to couple NEC-violating theories of matter to gravity

We have seen that black hole thermodynamics provides evi-
dence for, and string theory requires, background spacetimes that 
satisfy the Ricci convergence condition. It may appear then that 
effective theories of matter that violate the null energy condition 
(in the form Tμνkμkν ≥ 0) can immediately be ruled out. However, 
there remains a loophole. When we write down a theory of matter 
that violates the null energy condition, we mean violation of (1). 
What appears in string theory and the black hole area law, how-
ever, is (4). These are equivalent only if the gravitational equations 
are Einstein’s equations (under which we include a possible cos-
mological constant). Thus NEC-violating matter might be allowed 
if it does not couple to gravity in the conventional way. For ex-
ample, the NEC-violating matter might be non-minimally coupled. 
Or, there could be additional higher-curvature terms in the grav-
itational action. To be clear, NEC-violating theories are typically 
effective theories which have usually been coupled by hand to 
Einstein gravity. We propose that these theories instead be gravita-
tionally coupled, again by hand, either non-minimally or to higher-
curvature terms. This would at least retain the possibility of being 
consistent with black holes and string theory.

Let us see how these modifications evade the difficulties with 
both black holes and string theory. First consider non-minimal cou-
pling. This could be for example some function of a scalar field 
multiplying the Ricci scalar, or a kinetic coupling like Rab∂aϕ∂bϕ , 
or something else. To be specific, we will consider a Jordan frame, 
in which a scalar field is coupled to the Ricci scalar via a term 
�−2(x)R . In general, when matter is non-minimally coupled, the 
distinction between matter and gravity is ambiguous: the action 
does not separate into distinct matter and gravity parts. Corre-
spondingly, the energy–momentum tensor is ambiguous. One pos-
sible way to define it is to equate it to the Einstein tensor:

G J
μν ≡ T J

μν . (18)

This ensures that T J
μν is covariantly conserved, but the right-hand 

side will now generically include terms that depend on spacetime 
curvature. Now, in Jordan frame, there is still of course a condition 
that comes from the second law, but it does not take the usual 
form of the NEC. By comparison with Einstein frame, it can be 
shown [27] that, to guarantee the second law, the needed condi-
tion is

vμvν
(

T J
μν + ∇μ∇ν ln�

)
≥ 0 , (19)

for any null vector, vμ . Thus, it can be the case that T J
μν fails 

to satisfy the NEC in its usual form, (1), without being inconsis-
tent with black hole thermodynamics so long as (19) is obeyed. 
Non-minimal coupling also eliminates the obstruction from string 
theory. It is easiest to see this by going back to string frame (in 
which the dilaton is non-minimally coupled): we then recover (14), 
which does not take the form of the Ricci convergence condition.

Next consider how higher-curvature terms in the gravitational 
action remove the NEC as a condition. A proof of the second law 
does not presently exist for black holes of higher-curvature gravity. 
Nevertheless, it is clear that the second law no longer calls for the 
Ricci convergence condition. This is because, since the Raychaud-
huri equation is valid for all theories of gravity, if the Ricci conver-
gence condition were obeyed, it would again imply that dA/dλ ≥ 0. 
However, in generalized theories of gravity, this is not the correct 
condition; in such theories, the black hole entropy is not propor-
tional to the area but is given instead by the Wald entropy [28],

S = 1

8κ

∫
dSμν Jμν , (20)

where κ is the surface gravity and Jμν is a Noether current. De-
manding that the Wald entropy increase with time will again im-
ply some condition on spacetime geometry, but it will not be the 
Ricci convergence condition. (This is similar to the situation with 
non-minimal coupling; indeed, for f (R) gravity, the theory can be 
regarded either as a higher-curvature gravity theory or as a non-
minimally coupled scalar-tensor theory.) Furthermore, the presence 
of additional terms in the gravitational equations will generically 
break the equivalence (3). The net result is that the validity of the 
null energy condition does not follow (even with all the caveats of 
the previous section) from the generalized second law in higher-
curvature theories of gravity.

In the context of string theory, the inclusion of higher-curvature 
terms is tantamount to considering higher order terms in the 
α′ expansion. These will generically add terms proportional to 
quadratic and higher powers of α′ to the Virasoro constraint, (14). 
This will again lead to some condition, but it will not be the Ricci 
convergence condition. A specific example of a NEC-violating the-
ory that is not in manifest conflict with string theory because of 
higher-curvature gravity is conformal galileon theory. This is be-
cause conformal galileons have been shown to be derivable by 
Kaluza–Klein compactification of Lovelock gravity [29], of which 
the Einstein and Gauss–Bonnet pieces are contained in the low-
energy effective action of heterotic string theory. However, since 
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the conformal galileons are the Kaluza–Klein scalars under di-
mensional reduction of Einstein–Gauss–Bonnet gravity they are 
not coupled to Einstein gravity alone but to a higher-curvature 
theory, namely Einstein–Gauss–Bonnet gravity [30]. Correspond-
ingly, a contraction of the equation of motion with null vectors 
gives Rμν vμvν +cHμν vμvν = Tμν vμvν , where Hμν is the Gauss–
Bonnet contribution to the gravitational equation of motion. The 
presence of Hμν severs the connection between the NEC and the 
Ricci convergence condition. While this permits galileons to be 
coupled to gravity, it is important to note that, in terms of evading 
gravitational no-go theorems such as those that prohibit worm-
holes or bouncing cosmologies, the benefits of violating the NEC 
are lost because of the higher-curvature terms.

In summary, there are two independent lines of evidence, com-
ing from black holes and worldsheet string theory, for the Ricci 
convergence condition. Here we have considered the implications 
for the gravitational coupling of NEC-violating matter. In the ab-
sence of a UV-complete theory that contains gravity and defini-
tively reduces to a NEC-violating effective theory [31], the precise 
relation between NEC-violating matter and gravity is unclear. In 
much of the literature, NEC-violating matter has simply been cou-
pled by hand to Einstein gravity. We have argued here that this is 
incompatible with string theory and black hole thermodynamics, 
as a corollary to the necessity of the Ricci convergence condition. 
But we have also identified methods, using non-minimal couplings 
and higher-curvature gravity, for coupling NEC-violating matter to 
gravity in a way that is not manifestly inconsistent with string the-
ory and black hole thermodynamics.
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