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Thouless-Kohmoto-Nightingale-den Nijs formula for a general Hamiltonian
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Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-
known relation between the topological number given by the Chern character of the Berry curvature and the
Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the
fermion with general U(1) gauge interactions including nonminimal couplings by an explicit calculation.
A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number,
which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over

the temporal momenta.
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I. INTRODUCTION

Topological insulators in D = 2n + 1 dimensions are
characterized by topological numbers. One characterization
is given by the Chern character of the Berry connection
from the eigenfunctions of the Hamiltonian in the valence
band [1,2], the other characterization is given by the level of
the Chern-Simons action which appears in the effective
action after integrating out the fermion coupled to a smooth
external U(1) gauge field, i.e., photon [3-9]. These two
characterizations are known to be equivalent because they
both arise from the current correlation functions and there
are explicit proofs for various cases.

For example, the famous Thouless-Kohmoto-Nightingale-
den Nijs (TKNN) number [1] describes integer Hall con-
ductivity in spatial two-dimensional systems and it is valid
for all kinds of band structures neglecting interactions
between electrons. Meanwhile, motivated by the discovery
of the domain-wall fermion [10] (see also subsequent papers
to study the anomaly inflow [11-13]) in their paper,
Golterman, Jansen, and Kaplan also gave an expression
of conductivity of Chern-Simons current for a wide class of
fermion propagators on the lattice including Wilson fermion
with odd-dimensional Euclidean spacetime and found out
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that the topological number is given by the homotopy class
for the map TP — SP [9]. They also showed that the
topological number one finds correlated perfectly with the
number of chiral edge states. The relation is well known to
many people, and in the continuum theory or in some special
models there exist studies for the relations [14,15].

In Ref. [16] a proof is given for a large class of models
for general odd dimensions, where they consider the most
general lattice action for an arbitrary free kinetic term on
the lattice which is then coupled to a U(1) gauge field in a
minimal way, i.e., with the gauge interaction in the form of

H(A) = ijnhmnemm”w'l + Zwiﬂlm’ (1)

where m, n are the lattice sites, h,,, are the hopping
parameters, and A, is the line integral of the gauge field
along the straight line connecting the sites m and n. The
advantage of this class of Hamiltonian is that the contact
interactions such as fermion-fermion-multiphoton vertices
do not contribute to the final expression so that only a set
of Feynman diagrams which appear also in the continuum
theory gives nonvanishing contributions. Of course, this
type of gauge interaction is physically motivated since it is
based on the famous method of “Peierls substitution” [17].
However, in a more general situation, the gauge interaction
may not always be described by such a single straight
Wilson line. It could be a linear combination of various
Wilson lines of arbitrary path, which can give nonminimal
coupling. In such cases, one has to include the contribution
of contact interaction vertices.

In this paper, we study the equivalence of the topological
number from the TKNN formula and that from the
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Chern-Simons coupling for the most general lattice fermion
Hamiltonian coupled to a U(1) gauge field which is bilinear
in fermion. The new feature of our study is that the
Hamiltonian is general enough to include arbitrary non-
minimal gauge interactions, which has not been considered
in the previous studies [3-9,14-16]. We give an explicit
proof of the equivalence of the two topological numbers
for gapped fermion systems with Hamiltonian on the lattice
given by the bilinear form of the fermion coupled to
external U(1) fermions. We also discuss how the relation
can give the Chern character in a higher dimensional case.

The organization of this paper is as follows. In the next
section we rewrite the level of the Chern-Simons effective
action for the gapped fermion system coupled to a U(1)
gauge field using the Feynman rule and relate it to the
winding number of a map from TP to the fermion
propagator spacein D = 2 4+ 1 and D = 4 + 1 dimensions.
In Sec. 111, we show the equivalence of the winding number
to the Chern number for the Berry curvature. Section 1V is
devoted to a summary and conclusion.

II. GAPPED FERMION SYSTEM
ON THE LATTICE

A. General gapped fermion system

We consider a gapped fermion system on a lattice (or
condensed matter systems on a translational invariant
crystal) with the following action in Euclidean space in
D = 2n + 1 dimensions (note that the time is continuous
but the space is discrete as in the condensed matter
systems):

Sp = / dtz?:yﬁ(t, 7) [gtJriAo+H(Z)};/(t, 7, (2)

where 7 runs over the 2n dimensional spatial lattice points.

We will set x = ¢ in the following. The Hamiltonian H (Z)
is given by a summation over all the possible hoppings on
the lattice which include gauge interactions with a smooth

-

external U(1) gauge field A, = (A(.A). The fermion fields
w'(t,7) and w(t, 7) give creation and annihilation operators
of fermions after quantization. We assume that when the
gauge field is turned off, the Hamiltonian is translational
invariant so that it can allow band structures. We also
assume that there are N, bands and N, bands below and
above the Fermi level, respectively. Therefore the fermion
fields have N, + N, components.

|

Ces =

(-i)’hLlgaoﬂla].“/jnan ( 0 ) o ( 0 ) «
(I’l + 1)'(2’1 + 1)' a(‘]l)ﬂl a(‘]n)ﬁ,, i=1

B. Effective gauge action

Since the fermion system is gapped with a gap size
A > 0, the effective gauge action obtained by integrating
out fermions can be expanded in terms of gauge invariant
local actions as

Sett = 3 _arSk(A). (3)
3
Here, S.(A) is defined as

o — [ Dypytes, (4)

and S;(A) are the gauge invariant actions given by the
local Lagrangian L,(A) and a, are the coefficients. By
dimensional analysis, if the Lagragian L;(A) has a mass
dimension d,, the coefficient a; is suppressed by the
dy — (2n + 1) powers in § or lattice spacing a. Many of
the Lagrangians are given in terms of a gauge invariant field
F,=0,A,-0,A, (eg, S ,= [d"*'rF,F,, with a
coefficent afiqu). Since we do not have the Lorentz-
invariance on the lattice, the structure of the coefficients
ay in the effective action heavily depend on the geometry of
the lattice.

However, there is a very special parity-violating term
called Chern-Simons action S.;(A) given by

SCS(A) - /d2n+1xe“O/jlal'“ﬁnanAaOaﬁlAal e 8ﬁnA0!n‘ (5)

This action is topological and always takes this form no
matter what the geometry of the lattice is. Topological
information of the fermion system is contained in the
effective action through the coefficient ¢ as

Seit(A) = icesSes + other gauge invariant terms.  (6)

Here the gauge invariance of the action requires that the
coefficient is quantized as (see [14] for example)

k

‘T2t

keZ. (7)

Since the Chern-Simons action is of the lowest dimension
in the parity-violating sector, the coefficient c,, can be
obtained by the following quantity:

n ) 5n+1S A
H / del-elq’xi eff( ) ) (8)
= 5Aa0 (XO)‘SAOLI (xl) o 5Aan (xn>

q;=0

In the continuum theory or in simple lattice fermions such as a Wilson fermion, this can be rewritten in terms of a fermion

path integral as
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c :—(_i)n+1€aﬂ/}lal'”/371(171n‘< 0 > ' <
T G i D\,

Tr[SF(P + f]n+1)r(1)[fln+1»050§P]SF(P) rd >[CI1,(11;P - f]l]SF(P - ‘Il) T

Here, BZ stands for the Brillioune zone, g, = ¢q; + -+ -+
4y Sp(p) is the Fourier transform of the free fermion

1
propagator m
is the fermion-fermion-photon vertex with incoming fer-
mion momentum p and incoming photon momentum gq.
However, the situation is not simple in general, since there
are also contributions from contact interactions such as
fermion-fermion-multiphoton vertices, which can naturally
arise from nonminimal gauge couplings or generic lattice
artifacts. In the following, we will explicitly show that these
contributions automatically cancel against the contributions
from the momentum derivative of vertex functions due to
the Ward-Takahashi identities.

In the next subsection, we formulate how to evaluate
Eq. (8) using fermion propagators and vertex functions for
a general Hamiltonian system.

with momentum p, and I'V[g, a; p]

C. Fermion propagator representation of Eq. (8)

The effective action can be given by the log of the
fermion determinant as
|

. 8% St
aofra 0A, (x0)5Aal (1)

1
= —€aha Tr
A=0 o { on + H, 5Aa0 (x0)0Aq, (x1)

/dp()/ d2n
n)p, Bz (27)"

(g, a,: p)]l, —o- 9)
Setr(A) = Tr(In (Do + H(A))], (10)
where D, = % + iAy. Splitting the kinetic operator

D, + H(A) into a free part and an interaction part reads as

0

Hy—T(A), (11)

where H, is the free fermion part defined as Hy=
H(A)|,—o and T'(A) is the interaction part defined as
I'(A) = —iAg— H(A) + Hy. Plugging Eq. (11) into
Eq. (10) we obtain

Ses(A) — const. i [<8xO+H0 (A)>"} (12)

1

Simple algebra shows that the following equation holds:

ST(A) }

A=0

+Tr[

L+ Hy 6A4(x) a‘—§O+HO 5A,, (x1)

ST(A) 1 ST(A) }

AZO}. (13)

From Eq. (13), we find that the Chern-Simons coupling for D = 2 + 1 dimensions is given by

(_i)zeao 1 & 0
o = — / / 52 (Te[Sp (P)TO =g ag: 41 p]
22

213!

) 841

+ Tr[Sp(p - 611)F< )[—611a ao; P]SF(P)F(I)[%, ayp— 511“}|q1:0’ (14)

where Si(p) is the fermion propagator sz

7 and I'D(g,,a;; p] and T®[q,, a5 g2, ay; p] are fermion-fermion-photon

and fermion-fermion-photon-photon vertices with incoming fermion momentum p and incoming photon momenta g;

(i =1, 2) with Lorentz index «; (i =1, 2)

F(l)[%,m;l’]

2
F(z) q ,aq, q o4 ;p = </ d2ﬂ+]xieiqi~xi> / d2”+1yeil"y s
[q1. 1. q2; 25 p) H 8A,, (x1)0A,, (x2)

i=1

:/af2n+1xleiq1-x]/d2n+1yeip-)r5£[A](x9y)

: (15)

Ag, (X1) |a0.—0

S°T[A](x. y)

(16)

A=0,x=0

Note that the contributions with multiphoton vertices vanish for the class of Hamiltonians with gauge interactions given by a
single straight Wilson line because the multiphoton vertices are symmetric under the interchange of Lorentz indices of
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photons. When contracted with the antisymmetric tensor, such contributions vanish. However, in general Hamiltonian we
must consider these contributions.
From a similar calculation, we find that the Chern-Simons level for D = 4 4 1 dimensions is given by

2r)? 0q,
+ 2Tx[Sp(p — 42T @[~ (q1 + 42). @0 41 a1 PISF(P)T Vg2, @23 p — 5]
+ Te[Sp(p + g1 + 42)TP[q1, @15 g2, a3 PISE(P)TV [=(q1 + 92), a0 p + 41 + 4o},
+2Te[Sp(p + q1)T Vg, a1: pISe(p)T Vg2, a2: p = 42]Sp(p — @) TV [=(q1 + q2). a0: p + @i}y —gym0- ~ (17)

—i 3€a a Boat & 0 0
CCS:_( )3!?; lﬂ“/( P (a—ql> ( )/}Z{TY[SF( ) <3)[—(91‘i‘Clz)vao;611’C¥1261270522PH

where ') (g1, 215 g2, a5 g3, a3; p] is the fermion-fermion-photon-photon-photon vertex with incoming fermion momentum
p and incoming photon momenta ¢; (i = 1, 2, 3) with Lorentz index «; (i = 1, 2, 3), which is given by

3 3
. . ST[A](x,y)
F(3) [ql,al,Q2;a2-C]3’a3§P] — </ d2n+1xielCIi‘xi> /d2n+1yelﬂ'y . (18)
g 5A”l (xl)éAaz(xz)5Aa3(x%)

3)1A=0,x=0

D. The case for D=2+1 dimensions (n=1)

In D =2 + 1 dimensions, i.e., the n = 1 case, the Chern-Simons coupling ¢, has contributions from the loop involving
two fermion-fermion-photon vertices and the loop involving a single fermion-fermion-photon-photon vertex (contact
interaction) as

_ (=) [ dp
N TE T G TSR (19)

where X is given as
9 @) 1) 1)
X = €40 g {Te[Sp(p)T [=q1, a0; g1, ar; p]] + Tr[Sp(p — )T WV [=q1, ao; pIS(P)T Vg1 a5 p — q1]]}. (20)
L/ B

The first term on the right-hand side is the one-loop contribution with contact interaction and the second term is the usual
one-loop contribution with simple fermion-fermion-photon vertices.
Carrying out the momentum derivative with ¢,

(g, ap;0,a;p] D0, a9: g, 13 p
X:€a0ﬂ1a1 X {Tr[SF(p)<— [ 0 1 ]+ [ 0 1 ]>:|

8‘1/}] 8qﬂ1 q=0
arDig, a,: orwio, a,;
+Tr[sF<p>( 9. 1:p] O lp])sF<p>r<1><o,ao;p>}
aqﬂ] 8pﬂl q=0
9a’
e 0. () ; 2
qp
—Tr{SF(p)F“)[O,al;p] 98cP) 1y (0, gy p ] } (21)
31’/3]

In Appendix A, we derive the Ward-Takahashi identities as follows:

0S5 (p)

o, a; p] = - 5
Pa

: (22)
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PrWk,wpl| TPk u;0,4;p)]  OT[0,4: 1, p; p) (23)

Ok, 0p, k=0 Ok, k=0 ol, 1:0.

Using these identities, we obtain
21(1) . (1) .
Xzea()/}l‘ll X {ZTF[SF([J) (a I [q7al’p]>:| +2Tr|:aSF(p) aF [q7al’p]:|
8qﬁ] dp a q=0 dp ag aqﬁl q=0
aSz' (p) ISE' (p) ISE' (p)

+Tr {S FAZS F72s Fi} } 24
F(p) apa] F(p) apﬁl F(p) apao 0 ( )

The first and the second terms on the right-hand side can be combined to give a total divergence which vanishes when we
integrate over the momentum. Therefore, one finds that the Chern-Simons coupling is given by the winding number as

(=0)*€aprar dPo & p IS5 (p) 95 (p) 0S5 (p)
= S S . 25
CCS 2'3' BZ |: ) apao F(p> apﬁl F(p) apal ( )
E. The case for D=4 +1 dimensions (n=2)
The Chern-Simons coupling can be written as
Cos = ( i)’ ds [X + X, + X5+ Xy, (26)

where X, X,, X3, X, are defined as follows:

0 0
Xl = Caofiai oy <8 ) (a > {Tr[SF( ) ( )[_(ql +Q2)»0‘0§Q1,(11;612,0‘2§P]]}|q1:q2:0’
91/ p, \992

0 0
Xo=euppen (5) () TS p=020 (0102 i3IS ()Tl =l o

0 o
X3=€ap,a,pr0 <8q1>ﬂ (8(12) {Te[Sr(p+ 41+ )T P [q1.a1:62.20: p]SE(P)TV [=(q1 4+ 42) . @0: P+ 41+ @)1} 4, — g0 —0-
1

0 0
X4:€”0ﬂ1(11ﬁ2a2<8q) (8 > {ZTT[SF(P‘FCH)F(I)[C]DOQ» ]SF(P) [Clzvazp 0:)Sr(p—a2)
1/ g, \992

XF(I)[—(CH+612)’0502P+‘11H}\q1:q2:0- (27)

Using Egs. (22), (23) as in the case of D = 2 + 1 dimensions. as well as the following Ward-Takahashi identities given in
Appendix A,

01 g, u; r.v; 0, 1; p] _ T g, psr,v;pl
aqaarﬂ a

, (28)

aqgarﬂapﬂ g=r=0

g=r=0

we obtain
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0 T[q, a;;r az'p}'
Xi+Xo+ X+ X = Coppraipras 3TI’|: P S :|
1 2 3 4 pronfs [8[9%{ Dy, 15, o F(P)
TW(g, a; r'Dig . a;
+3Tr —[aq 1:7) F(p)i[g 7 2: 7] SF(P)]
L Yp =0 ap, g0
atd .
g [[laeacpll o 0SH (P)OSe(p >H
aqﬁl q=r=0 81)052 apﬂz
i OS¢ (p) 98¢ (p) 98¢ (p) 987 (p) 887 (p)
+2Tr|S FAZS Fs FS FAZS F ” 29
_ F(P) pa F(P) pp F(P) P F(P) Ipp. F(P) Dpe, (29)

The total divergence term will vanish after integrating over the spatial momenta due to the periodicity in BZ.
Thus, we finally get

(—i)*-2 / dp dS:' (p) a5 (p) ISt (p) dS:' (p) 35?(1?)]
Tr|S S S S S .
315! (27[)5 Confionfaen F(p) apao F(p) apﬁl F(p) 8[)(1[ F(p) ap/)‘z F(p) apaz

(30)

Therefore, the Chern-Simons coupling is given by the winding number with fermion propagator also for the
D =441 case.

We expect that the relation of a Chern-Simons coupling and the winding number for a general Hamiltonian including
nonminimal coupling holds for arbitrary odd dimensions (D = 2n + 1). This will be left for future studies.

III. EQUIVALENCE OF A WINDING NUMBER AND A CHERN NUMBER

In this section, we show the equivalence of the Chern-Simons coupling given by the winding number expression and the
Chern character given by the Berry connection for the energy eigenstates in the valence bands.

The proof of this part is already given in Ref. [16], but since the proof is simple, we give it here for completeness. We give
the calculation for arbitrary odd (D = 2n + 1) dimensions, even though we have shown that the Chern-Simons coupling ¢
can be written by the winding number using Sy only for D =2 + 1 and D = 4 + 1 dimensions.

In order to simplify the notation, hereafter we abbreviate the derivative with respect to the momentum p,

A. Winding number in D =2n+1 dimensions

The result of the previous section for D =2 + 1 and D = 4 + 1 can be unified to the following results: In the expression
using the fermion propagator S(p), the Chern-Simons coupling ¢, in D = 2n + 1 dimensions is given as

-y o
== Tr|S .
s ) e ) 2a 7SO 1T sr0)

- (2n+1)(=i)""e ’”"""Z"/ d*p /dpo 1 4 1
=- ——Tr|——— ——(0.H))|. 31
(n+ D)I2n+ 1)1 o) 2 ip°+H’g i g Ot (31)

Next we insert a complete set Y, |a)(a|, where « is the label of energy. Then we have
n!( )n+2 d2np

= J. 32
‘Tt 1)(2n)! / 27)> (32)

Here J is defined as

J— Z €ili2...i2n/d_PO<al|5i,H|a2><a2|ai2H|a3>"'<azn|ai2nH|a1>

) 33
2r (ipo+Eal)2(ip0+Eaz)"'(ip0 +Ea2,,) ( )

ap,...,0,
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where iy, ..., i, stands for the spatial indices and summa-
tion over these indices are implicitly assumed following
Einstein’s contraction rule. All we have to do is to integrate
over p° using Cauchy’s theorem. In order to discuss it in
detail let us define the key integral J as follows.

B. p' integration

Here, we use a trick to simplify the integration. It is easy
to see that the expression Eq. (31) is invariant under
continuous deformation of Sp (or H) provided that the
integrand remains to have no singularities. Therefore, under
a continuous change of the Hamilitonian, the winding
number remains unchanged from its original value as long
as the energy spectrum is kept gapped throughout the
deformation.

Now, the most general Hamiltonian with N, valence
bands and N_. conduction bands is expressed as

H(P) = > E(Pla®)a(®) + 3 By (D)) (b(5)]

(34)

where |a(p)) labeled by a is the energy eigenstate in the
valence band with spatial momentum p and negative energy
eigenvalue E,(p) < 0. The state |b(p)) labeled by b is the

|

Nl,' NC
J = E § eltiriamjon
ay,....a,=1a,...,a,=1

/dﬂ) 1
2z (ip® + E,)"(ip® + E.)"

N / dp® 1
27 (ip® + E)" ' (ip® + E,)"

energy eigenstate in the conduction band with spatial
momentum p and positive energy eigenvalue Ej(p) > 0.
One can continuously deform the Hamiltonian without
hitting the singularity of S(p) (i.e., keeping the system
gapped) so that all energy eigenvalues in the conduction
bands and all energy eigenvalues in the valence bands are
degenerate and momentum independent (i.e., flat band),
respectively.

Then the deformed Hamiltonian H ., which gives the
same winding number becomes

’

H,ey(P) = E, Z la(p)){a(P)| + E. Z |b(P))(b(p)
a=1 b=1
(35)

where E, <0, E. > 0 are the momentum independent
constant. Here the eigenstates are identical to those with the
original Hamiltonian.

Using Egs. (B9) and (B10), one finds that in the insertion
of eigenstates sandwiching 0;H, if states in the conduction
bands appear in a row or if states in the valence bands
appear in a row, the matrix element vanishes. Therefore, in
Eq. (33) states in the valence bands and the states in the
conduction bands should appear in an alternating order.
Therefore, J is expressed as

(a,]0;, H|ay) (a0, Haz) % - - - x (a,|0;, H|a,)(a,|0;,H|ay)

(@110, Hl|ay)(a|0; H|ay) x - -~ x {(a,|0; Hl|a,)(a,|0; H|a,)|.  (36)

Renaming the labels for eigenstates and using the definition of the master integral in Appendix C and substituting

Egs. (B11) and (B12), we have

(a1|0;,a1)(a110;,a2) x - --
where 1" (E|, E,) is defined as

X <an|ainéln><én|aj,,al>7 (37)

dp® 1
I[m.n] E,.E E/— . 38
(1, Ex) 2z (ip® + Ey)"(ip® + Ey)" G8)
The expression of I""/(E,, E,) after p° integration is given in Appendix C.
Substituting Eq. (C3) into Eq. (37), we obtain
N Yoo (2n) . L
J== 30 ) e S a0y ) (@n]0),a2) x - x (|0 a0, an). (39)
ap,..., a,=lap,..., a,=1 :
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Using the formula for the Berry curvature in Eq. (B14), J is
finally expressed as

J —( ] ntl el ianjon
1»~Z‘1u*1 “IwZ(lnl
X ( ) ~njc'¢l1a2 .. .fanan+1 (40)
(l’l!)2 l i1 Injn
C. Results of ¢
Plugging Eq. (40) into Eq. (32)
(=1)" /
Cog = -t ch, (A), 41
) (l’l —+ 1)‘(27[)" BZ ( ) ( )

where ch,,(A) is the second Chern character defined by

1 1

(7). (42)

Comparing this expression with Eq. (7)

k
-, 43
Ty 1)12n)" (43)
we arrive at the relation
k=0 [ an(A) (44)
BZ

This means that the Chern-Simons level and the topological
number in terms of the Berry connection is shown to be
identical.

IV. SUMMARY AND CONCLUSION

We derived a general TKNN formula from a Chern-
Simons level in the effective action for a lattice system
with a general Hamiltonian bilinear in fermions in (2 + 1)
and (4 + 1) dimensions. We have shown that the Chern-
Simons level is given by the winding number of a map
from TP to the fermion propagator space. For this relation,
Ward-Takahashi identities including higher order relations
are crucial.

There has been an understanding that for the field theory
approach to work, there should be a low energy mode
which can be described by a relativistic field theory.
Therefore, the impression was that the field theory
approach works only with a special type of system with
emergent relativistic spectrum. The interesting point to note
in our proof is that one does not need to assume anything
but gauge invariance. The detailed structure of minimal or
nonminimal gauge coupling is irrelevant. Also one does

not need to assume that there exists an effective theory
described by the relativistic field theory and it applies to
any system including arbitrary bands which may be far
away from the Fermi level.

Since we have found that the two methods can equally
work well, we are now certain that we can use field theory
approach to study the topological properties for arbitrary
condensed matter systems which include interactions
where one can fully utilize the power of field theory.

There are topological materials for systems with addi-
tional symmetries and in other dimensions. Whether a
complete equivalence holds for those systems remains an
open problem. We hope to extend our study to those
systems in the future.
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APPENDIX A: WARD-TAKAHASHI IDENTITIES

In this appendix, we derive various identities among
vertex functions and the inverse fermion propagator
obtained from gauge invariance, i.e., Ward-Takahashi
identities. The finite difference operator which appears
in the hopping term of the lattice fermion system can be
expressed in terms of infinite series of derivatives. For
example, consider a gauge invariant fermion bilinear term
connected by a straight line Wilson line in the ¢ direction as

X =yl (t,%)e i [T arAR) w(t, X + aji), (A1)

where a is the lattice spacing and j is the unit vector in the y
direction. This term can be formally expanded as

S n

Mz
5@

(A2)

where D, = 9, + iA,. We assume that the Hamiltonian can
be expressed in terms of all sorts of fermion hopping terms
connected by the Wilson lines of arbitrary contours or
superpositions of them. Then, the action can be formally
expanded as

/dtZZWT LX)My .y, (D, - D

X hn=

V(LD (A3)

where summation over y, ..., , are implicit. M, .., are
some N x N matrix where N = N_. + N, is the number of
fermion degrees of freedom per site.
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Expanding this action in terms of gauge fields and making Fourier transformations, one can obtain the formal expressions
of the inverse propagator and the vertex functions in momentum space. In the following, let us denote the inverse fermion
propagator with momentum p as Sz (p) and the vertex functions with incoming fermion momentum p and n photons with
incoming momentum k; and x; components (i = 1,...,n) and outgoing fermion with momentum p + Y " k; as
T [ky, pay5- - -5 kys i p). Then the formal expression gives

n

= iMﬂl'“lln H (ipﬂ,')’ (A4)

n=0 i=1
a—1 n
Tk, s p) —IZZMM “Hamt Mt H(.(erk)u,») H (iPy,): (AS)
n=1 a= i=1 i=a+1
—1 b—1 n
Tk, il v; p) = _ZZZ Z Moyttt 1t H (i(p+k+1),) H (i(p+1)y,) H (ipy,)
n=l ab=1 i—1 i=a+1 i=b+1
-1 b—1 n
- lzz Z Myt bttty 1t H(i(p +k+1),,) H (i(p +k),,) H (iPy,): (A6)
n=1 ab=1 i=1 i=a+1 i=b+1
( )[k ﬂ’l v,r, ﬂ,p _l% Z Z “Ha=1Hfai1 Hp—1 V417 et Mei 1 Hn
"= 1 all17<5<('1
a—1 b—1 c—1 n
[T +k+1+n,) I Gp+i+n,) IT Gp+n,) T Gp+r)
i=1 i=a+1 i=b+1 i=c+1
+ [other 5 terms obtained from the permutaion of (i, k), (v, 1), (4, r)]. (A7)

Differentiating Eq. (A4) with respect to p, and taking the soft photon limit (k — 0) in Eq. (A5), one obtains

aSz' (p ) S
5p [k W p |k 0 — lz ZMM “Ha—1HHar1Hn H (lpﬂi)' (AS)
H n=1 a= i#a

This is the well-known Ward-Takahashi identity in QED, which is generalized for the lattice fermion system.

1. First order Ward-Takahashi identities

It is interesting to note that we could also obtain Ward-Takahashi identities for quantities involving higher order terms
in photon momenta and multiphoton vertex functions. In order to see that, let us take the second derivatives of Eq. (A4).
One obtains

287! =
a 8 2 Z Z Ha—1PMas1 Hp—1VHp1 7P + ('u =~ l/>] H (lpﬂi)' (A9)
Pu pv n=1 ab=1 i#ab

a<b

Let us also differentiate Eq. (AS) with &, or p, and take the soft photon limit. We obtain

aF(1>[kaﬂ7p] 2 e .
T Z Z My ppostpair oty H (ipy,) (A10)
v n=1 abbl i#a,b
Or [k, s p] T ¢
T =i Z Z g ttas syt + (S V)] H (ipy,)- (Al1)
v n=1 a,b=1 i#a,b

a<b
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Taking also the soft photon limit of Eq. (A6), we obtain

) n 1~n
@ [k7 M, l, 12 p”k,l:O = _iz Z Z [Mﬂ]"'ﬂa_lllﬂa+1"'ﬂb_]l/ﬂb+]"'ﬂn =+ (/’t <~ V)} H (lpyl) (A12)

n=1 a,b=1 i#a,b

a<b
We then obtain the following identities:
9*S5' () <<9F“)[k,u;p] ) or [k, p; p

=" Tov = ———""= =Tk uLv;pll - Al13
dp,0p, ok, ( ) o ap, o [ k=0 (A13)

2. Second order Ward-Takahashi identities
We could go even further in higher order. Taking the third derivative of Eq. (A4), we obtain

8351: 3 ) 1~n
it o oy, T+ (PEIMLAN(0, v, 4))] X (ipy,)- (A14)
3]),,8[7,,3[71 ;a;] “Ha—1HHa 17 Hp—1VHp 1 He-1AHc 417 H, i;é];!;,c H

a<b<c

The second derivatives of Eq. (AS5) with respect to k or p give

aZ]"(l)[k’ﬂ;p] 3 ® n I~n .
T ok.ok, =-r Z Z [Mﬂl"',“u—ll/l‘nﬂ"'ﬂb—liﬂbﬂ'”l‘c—lﬂﬂcﬂ"'ﬂn + (v )] x H (iPy,) (A15)
vERa k=0 n=1 a,b,bczl i#a,b,c
Tk, p: p) NN U o
~okon, | T - Z Z Moty bt sy + 0 A) + (0 A p) < (0,4, 2))] H (ipy,)
vOP; k=0 n=1 a.b.lc§1 i#a.b,c
(A16)
82F [k M p 3 ad n ) 1~n .
 9p.Op, —! Z Z BBl 1 B U B it ot (perm. in(y, v, 4))] x H (lplli)' (A17)
PLOP, k=0 n=1 a,b.c=1 i#a.b,c
a<b<c
From the first derivative of Eq. (A6) with respect to k or [ or p, we obtain
Tk, 1, v; p] PR
T 10 =-r ; a,;C:l[M/‘I"'/‘a—liﬂwr]"'ﬂb—lﬂﬂbJrl"'Mt—]”ﬂwl"'ﬂn
a<b<c
1~n
+ () & Avp) + () & @ aw)] ] (ipw) (A18)
i#a,b,c
or® [k, 3 L, v; p] -
T - nZ:: a; 1 a1 Ml Hp—1 P b1 He—1 Vi1 Ha
a<b<c
1~n
+ () & (wAv) + () < Gvp)] ] (ipw) (A19)
i#a,b,c
Or@ [k, u; 1, v; p AN O : oo
T 9p, =7 Z Z [M,ul"'/‘a—lﬂﬂzwl"'ﬂb—ll/ﬂb—l"'ﬂc—llﬂﬁrl"'ﬂn + (perm. in(y, v, 2))] H (lpﬂ;)' (A20)
Pa k=0 n=1 a.bc=1 i#a.b.c
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These equations give the following identities:

Tk, s pl| Tk, 3 1, 4; p)
0k,0p, k=0 Ok, k=0
1'*(2) . .
:8 [k, 2; 1, u; p] (A21)
ol, k=0

3. Third order Ward-Takahashi identities

Carrying out similar calculations by simply differentiat-
ing T® and I'®) given in Egs. (A6) and (A7), we can see
that the following identity holds:

Dg.ur.v; p)
8qaarﬂap/1

PTO) g, s r,v5, 25 p] oI
8q(,(9rﬁ N

q,r:O.
(A22)

q.,r,s=0

APPENDIX B: USEFUL FORMULAS FOR
ENERGY EIGENSTATE

Consider a Hamiltonian in momentum representation
H(p) and the normalized complete set of eigenstates at
momentum p labeled by index a (a runs over the states in
both the valence and the conduction bands) with the
following properties:

H(p)la(p)) = Eq(p)la(p)), (B1)
(alp) = 64p» (B2)

(a(p)H(P)IB(P)) = Ea(P)dap, (@.p=1,...,N).
(B3)

Let us consider differentiation with respect to p,. Here we
introduce the simplified notation

0 0
|0,0) = 0,|a) = . (la(p))).  0,H= . (H(p))
(B4)
Then differentiating Eq. (B2), we obtain
(0,alp) = —(al0,p). (B5)

Also, differentiating Eq. (B3) and making a little algebra,
we have

(Ea - Eﬁ)<a|a;4ﬂ> +

This means the matrix element of the momentum derivative
of the Hamiltonian is given as

<a|a;4H|ﬂ> = ayEaéaﬁ- (B6)

(a|0,H|a) = 0,E,,

(a|0,H|p) = —(Eq — Eg)(al0,p) (a# p).

1. Degenerate flat band case

Let us now consider the special case where all the
energies in the valence bands and those in the conduction
bands are degenerate and flat. Then, one can easily see that

(a(p)|0,H(p)|b(p)) = (B9)
(a(p)0,H(p)|b(P)) = (B10)
(a(P)0,H(P)|b(P)) =(E. - E,)(al0,b),  (B11)
(a(p)l0,H(p)Ib(p)) = —(E. - E,){a|0,b).
(a.b=1,...N,a.b=1,....N,), (B12)

where the states with undotted indices |a), |b) are in the
valance bands with constant energy E, < 0 and those with

dotted indices |a), |b) are in the conduction bands with
constant energy E. > 0.

Let us define the Berry connection using the negative
energy eigenstates as

At = Asbdyr = —i(a|0,b)dx" = —i(aldb). (B13)

Then the Berry curvature F is

Fb = (dA+iAA)® =

+ZZ(

— {Z(da|c><c|db) + Z:<da|&><é|db>]

c=1

- iZ(a|dc> (c|db)

Nl NE

=iy (aldc)(c|db) + i) (aldé)(|db))

c=1 c=1

—i{da|db)

){a|dc)(—=i){c|dD)

(B14)

APPENDIX C: USEFUL FORMULAS FOR p’
INTEGRATION

We define the following p° integrations:

dp® 1
E\#+E,).
2x (PO E) P+ By D17 ER)

(C1)

1m1(E Ey) = /
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Simple contour integral by adding a contour in the lower
half semi-circle in the complex p° plane and picking up
poles in the lower half plane, we obtain

(m+n=2)! O(-E\)—0(-E,)
(m—l)'(n—l)! (_E1+E2)m+n—l'
()

1By Ey) = (=1)"

In particular, when (m,n) = (n+ 1,n)

(2n)! O(-E,)-0(-E,)

I[n+1,n] E,,E,)=(-1 n+1 .
A T VAL

(C3)

holds. This formula is useful in making p° integration of
the propagator expressions for the Chern-Simons level.
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