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Abstract We present a detailed investigation of the Rastall
gravity extension of the standard �CDM model. We review
the model for two simultaneous modifications of different
nature in the Friedmann equation due to the Rastall grav-
ity: the new contributions of the material (actual) sources
(considered as effective source) and the altered evolution
of the material sources. We discuss the role/behavior of
these modifications with regard to some low redshift ten-
sions, including the so-called H0 tension, prevailing within
the standard �CDM. We constrain the model at the level of
linear perturbations, and obtain the first constraints through a
robust and accurate analysis using the latest full Planck cos-
mic microwave background (CMB) data, with and without
including baryon acoustic oscillations (BAO) data. We find
that the Rastall parameter ε (null for general relativity) is
consistent with zero at 68% CL (with a tendency towards pos-
itive values, −0.0001 < ε < 0.0007 (CMB+BAO) at 68%
CL), which in turn implies no significant statistical evidence
for deviation from general relativity, and also a precision of
O(10−4) for the coefficient −1/2 of the term gμνR in the
Einstein field equations of general relativity (guaranteeing
the local energy-momentum conservation). We explore the
consequences led by the Rastall gravity on the cosmologi-
cal parameters in the light of the observational analyses. It
turns out that the effective source, with a present-day den-
sity parameter �X0 = −0.0010±0.0013 (CMB+BAO, 68%
CL), dynamically screens the usual vacuum energy at high
redshifts, but this mechanism barely works due to the oppo-
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sition by the altered evolution of cold dark matter. Conse-
quently, two simultaneous modifications of different nature
in the Friedmann equation by the Rastall gravity act against
each other, and do not help to considerably relax the low red-
shift tensions, including the so-called H0 tension. Our results
may offer a guide for the research community that studies the
Rastall gravity in various aspects of gravitation and cosmol-
ogy.

1 Introduction

The most successful description of the dynamics and the
large-scale structure of the Universe via excellent agreement
with a wide variety of the currently available data [1–5], in
the literature so far, is known to be presented by the stan-
dard (base) Lambda cold dark matter (�CDM) model that
relies on the inflationary paradigm [6–13]. Despite its great
success, in addition to the notoriously challenging theoret-
ical issues related to � (cosmological constant) [14–17], it
has recently begun to suffer from some persistent tensions of
various degrees of significance between some existing data
sets (see, e.g., [18–22] for further reading). Such tensions
have received immense attention as these could be signaling
new physics beyond the well established fundamental the-
ories of physics underpinning the standard �CDM model.
For example, the value of the Hubble constant H0 predicted
by the cosmic microwave background (CMB) Planck data
[2,5] within the framework of the standard �CDM model
is in serious disagreement with the direct local distance lad-
der measurements [23–26]. This tension becomes even more
compelling as it worsens (relieves only partially) when the
� is replaced by the simplest minimally coupled single-field
quintessence (phantom or quintom models), see [27–30] and
[31] for further references. Surprisingly, it has been reported
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that the H0 tension – as well as a number of other persistent
low-redshift tensions – may be alleviated by a dynamical
dark energy (DE) whose density can assume negative values
or vanish at high redshifts [31–44]. The fact that the CMB
Planck data favor positive spatial curvature – which imitates
a negative energy density source – on top of the standard
�CDM model in contrast to the inflationary paradigm might
also be signaling a need for such DE sources [5] (see also
[45–47]).

The constraint on H0 from CMB data is inferred by ana-
lyzing the separation/distances in the acoustic peak posi-
tions, which depend on the angular scale θ� = r�/DM,
where r� = ∫ ∞

z�
cs H−1dz is the comoving sound horizon at

recombination – the comoving distance traveled by a sound
wave from the reheating to the recombination epoch deter-
mined by the pre-recombination (z > z�) physics – and
DM = ∫ z�

0 H−1dz is the comoving angular diameter distance
at recombination – determined by the post-recombination
physics, viz., by the H(z) for z < z� [48]. As DE (generi-
cally, described by the equation of state (EoS) of the form
p ∼ −ρ) is negligible at large redshifts, it does not affect
the pre-recombination physics, viz., r�. Also, Planck satel-
lite measures θ� very robustly and almost independently of
the cosmological model with a high precision [5]. Therefore,
DM must remain the same in different DE models (with an
exception of the Early Dark Energy models [49], which mod-
ify r�). Thus, a DE assuming negative energy density values
at large redshifts – when it is still not negligible (say when
z � 2) – will lead to a decrease in H(z) compared to the
standard �CDM model at large redshifts (for z � 2), more
than the phantom/quintom DE models could achieve. The
compensation of this decrease, viz., keeping DM unaltered,
then implies an enhanced H(z) for z � 2, i.e., H0 as well.
Moreover, the sign change in the DE density can even lead
to a non-monotonic behavior of H(z), say, at z ∼ 2, which
in turn may reconcile such models with the Ly-α forest mea-
surement of the baryon acoustic oscillations (BAO) data as
well. Indeed, the DE that assumes negative density values at
large redshift came to the agenda first when it turned out that,
within the standard �CDM model, the Ly-α forest measure-
ment by the BOSS collaboration prefers a smaller value of
the dust density parameter compared to the value preferred
by the CMB data [32]. They then reported a clear detection
of DE consistent with � > 0 for z < 1, but with a preference
for negative energy density values for z > 1.6, and argued
that this Ly-α data from z ≈ 2.34 can be described by a non-
monotonic evolution of H(z), which is difficult to achieve in
any model with non-negative DE density [33]. The Planck
collaboration excludes the Ly-α data from their default BAO
compilation as it persistently remains in large tension with
the standard �CDM model [5]. They argue, in line with [33],
that it is difficult to construct well-motivated extensions to the
standard �CDM model that can resolve the tension with the

Ly-α data, and suggest further work to assess whether this is
a statistical fluctuation caused by small systematic errors, or
is a signature of new physics. Of course, an actual (physical)
DE source with a negative density would be physically ill,
which might be pointing a necessity of considering modified
theories of gravity (see [50–56] for reviews on DE and mod-
ified theories of gravity), from which an effective DE source
with desired features could be defined. In line with all these,
it was argued in [34] that the Ly-α data could be in tension
not only with the standard �CDM model but also with stan-
dard DE models – restricted to positive energy density values
and based on the standard Friedmann equation of general rel-
ativity (GR) – , which might be implying (i) DE assuming
negative energy density values at high redshifts, (ii) there
is a non-conservation of matter source, or (iii) the standard
Friedmann equation of GR is inadequate since one could be
dealing with a modified gravity theory. An example of (iii)
is provided by models in which the � is screened (or com-
pensated) by a dynamically evolving counter-term, which
arises in the Friedmann equation due to the modified gravity.
Such examples are in fact familiar from an effective source
defined by the collection of all modifications to the usual
Einstein field equations in scalar-tensor theories of gravita-
tion, namely, when the cosmological gravitational coupling
strength gets weaker with increasing redshift [57,58]. See,
e.g., Refs. [59–62] suggesting larger H0 values in the light
of observational analyses when the Brans-Dicke theory or its
extensions are considered. There is a wide range of exam-
ples, related to these three possibilities, that exist (i) in the-
ories in which � relaxes from a large initial value via an
adjustment mechanism [63–65], (ii) in the models in which
� itself spontaneously switches sign [42,66], (iii) in cosmo-
logical models based on Gauss-Bonnet gravity [67], (iv) in
braneworld models [68,69], (v) in loop quantum cosmology
[70,71], (vi) in higher-dimensional cosmologies that accom-
modate dynamical reduction of the internal space [72–75],
(vii) in generalisations of the form of the matter Lagrangian in
a non-linear way [76–78], (viii) in some constructions within
the unimodular gravity violating the local energy-momentum
conservation law [44].

In this paper, we carry out a detailed theoretical and obser-
vational investigation of the Rastall gravity [79,80], which
presents a simple mathematical generalization of GR lead-
ing to physically rich features that could be related to the
cosmological points discussed above. As it was pointed out
in [81], an equivalent of a cosmological model constructed
within the Rastall gravity can always be achieved by intro-
ducing a particular non-minimal coupling between the cos-
mological constant and matter stresses within the usual GR,
which, however, could be neither trivial nor economical (see
Sect. 3). Although the Rastall gravity presents a simple gen-
eralization of GR (derived from Einstein–Hilbert action) at
the level of the field equations, there is no consensus on that it
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could be derived from an action of a well established funda-
mental theory, but some attempts in this direction have been
made. It was shown in [82] that its field equations can be
derived from a variational principle in a Weyl–Cartan the-
ory, in which the metricity condition for the connection is
dropped and the torsion is allowed. Some Lagrangian for-
mulations for it have been proposed within the framework of
f (R, T ) and f (R,Lm) gravities [83,84].

The original physical idea behind the Rastall gravity
was the fact that the tight constraints on the local energy-
momentum conservation law (∇μTμν = 0) in flat-spacetime
do not necessarily imply that this law is valid in curved-
spacetime (e.g., in an expanding Universe on cosmologi-
cal scales) as well [79,80]. This idea was then followed
by the introduction of the relation ∇μTμν ∝ ∇νR between
the energy-momentum tensor (EMT) and the scalar curva-
ture (the simplest curvature invariant of a Riemannian man-
ifold). This leads to a simple mathematical generalization
of the standard Einstein field equations of GR adding the
term gμνR to the field equations with an arbitrary coeffi-
cient, the so-called Rastall gravity: Rμν − αgμνR = Tμν

with α being a real constant. The particular case α = 1
2 lead-

ing to the Einstein tensor Gμν of GR is unique as it, through
the twice-contracted Bianchi identity, yields ∇μGμν = 0,
and therefore guarantees the local conservation of the EMT
of the total material content, i.e., ∇μTμν = 0. Therefore,
any deviation from α = 1

2 (GR) will lead to two simultane-
ous modifications of different nature in the standard Einstein
field equations: (i) The new term εgμνR (with ε = α − 1

2 ) of
the form of the usual vacuum energy of quantum field the-
ory (QFT) (Tμν = gμν�) appears in the spacetime geometry
side of the Einstein field equations of GR. (ii) The evolution
of the energy density of an actual material source gets altered
from its usual one in GR, in a certain way owing to the non-
conservation of the EMT described by ∇μTμν = −ε∇νR.
These two simultaneous features tempted us to carefully
study the extension of the standard �CDM model replac-
ing the gravity theory from GR to Rastall gravity due to the
following reasons: The new term εgμνR could dynamically
screen the usual vacuum energy at high redshifts for a cer-
tain range of ε as suggested, e.g., in [34]. In addition, this
extension could also modify inverse proportionality of the
dust (e.g., the CDM) energy density to the comoving volume
scale factor. It is not clear whether these two simultaneous
modifications in the Friedmann equation will support or act
against each other, and then whether these together could
address the low redshift tensions.

The Rastall gravity has been attracting a lot of attention by
the communities in the field of gravitation and cosmology in
the recent years. See, for instance, [85] for black hole solu-
tions, [86] for gravitational collapse, [87] for thermodynamic
analysis, and [88–91] for some cosmological applications. It
has been suggested in [90] that, when the Renyi entropy of

non-extensive systems is attributed to the horizon of spatially
flat Friedmann-Robertson-Walker Universe in Rastall grav-
ity, the late time acceleration can be generated from the non-
conservation of dust. It was argued in [91] that Rastall theory
provides a proper platform for generalizing the unimodular
gravity (the trace-free Einstein gravity) [92,93], wherein the
usual vacuum energy does not gravitate but the cosmologi-
cal constant arises as an integration constant. The authors of
Ref. [89] impose the Rastall gravity contributions from the
non-conservation of dust upon DE which makes it clustering.
Then, it is suggested in [94,95] that this model resembles the
standard �CDM model at the background level (with an ε not
strictly constrained, provided that the DE yields an equation
of state parameter very close to minus unity), while in [96]
that the evolution of the growth index displays a significant
deviation from that in the standard �CDM model. One of the
main motivations behind such attempts is that observational
signatures of non-conservation in the dark sector is expected
in the non-linear regime on intermediate or small scales, and
is not inconsistent with the currently available cosmological
data (see [97] for details). In fact, just upon the proposal of the
Rastall gravity, the Rastall parameter has been quite tightly
constrained from local physics, relying basically on the non-
conservation property of the model, to be |ε| � 10−15, which
suggests that the Rastall gravity deviates from GR only negli-
gibly and thereby it is rather unattractive [98]. Using realistic
equations of state for the neutron star interior, an astrophysi-
cal constraint is placed on the Rastall gravity suggests that it
is well consistent with GR as |ε| � 10−2 [99]. In contrast, the
study [100] on much larger scales, using 118 galaxy-galaxy
strong gravitational lensing systems, reports the constraint
ε = −0.163 ± 0.001 (68% CL) excluding GR.

Here, we study the robust and accurate observational
constraints on the Rastall gravity extension of the standard
�CDM model. These would not only be important to see
whether the Rastall gravity is a good candidate for study-
ing the cosmological tensions discussed above or not, but
also, as being robust and accurate, may provide a guide for
the research community that studies the Rastall gravity in
various aspects of gravitation and cosmology. Accordingly,
we first construct the Rastall gravity extension of the base
�CDM model at the background level (Sect. 2) and eluci-
date its general relativistic equivalence (Sect. 3). We carry
out a preliminary investigation of the model which provides
a guide to its working and parameters (Sect. 4). After deriv-
ing the linear perturbation equations (Sect. 5), we constrain
the model parameters using the latest full Planck CMB data,
with and without including BAO data, in comparison to the
standard �CDM model (Sect. 6). We finally present a sta-
tistical comparison of the fit via Bayesian evidence (Sect. 7)
and conclude our findings (Sect. 8).
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2 Rastall gravity extension of the base �CDM model

The Rastall gravity offers a simple generalization of the stan-
dard Einstein field equations of GR by relaxing the contribu-
tion of the term gμνR to the field equations and leads to the
following modified Einstein field equations:

Rμν −
(

1

2
+ ε

)

gμνR = κTμν, (1)

where κ is Newton’s constant scaled by a factor of 8π (and
henceforth κ = 1) and units are used such that c = 1, Rμν is
the Ricci tensor, R is the curvature scalar, gμν is the metric
tensor, and Tμν is the EMT describing the material content.
The real constant ε is the Rastall parameter that measures the
deviation from GR (ε = 0).

This modification in the spacetime geometry side (l.h.s.)
of the Einstein field equations of GR corresponds to two
simultaneous modifications of different nature in the mate-
rial content side (r.h.s.): (i) Firstly, this modification is math-
ematically equivalent to adding, in a certain way, new contri-
butions of the actual material sources to the right hand side
of the standard Einstein field equations, which then can be
interpreted as an effective source accompanying to the actual
material sources considered in the model. For, we can rewrite
(1) in a mathematically equivalent way as follows:

Rμν − 1

2
gμνR = Tμν + T̂μν, (2)

where

T̂μν = − ε

1 + 4ε
gμνT (3)

is the EMT describing the effective source that arises from
the actual material source. Here, we have made use of the
relation T ≡ gμνTμν = −(1 + 4ε)R between the trace
of the EMT of the actual material source and the curvature
scalar, obtained by contracting (1) with the inverse metric
tensor gμν . (ii) Secondly, this modification leads, in general,
to a violation of the local conservation of the EMT of an
actual material source (therefore, that of the effective source
as well), as its divergence is not necessarily null, viz.,

∇μTμν = −ε∇νR = ε

1 + 4ε
∇νT . (4)

It implies that the evolution of the energy density of an actual
material source is, in general, modified compared to its usual
evolution in general relativistic models. The reason is that
only the covariant derivative of the Einstein tensor (Gμν ≡
Rμν − 1

2gμνR) part of the Rastall gravity (1) is guaranteed
to be null ∇μGμν = 0 through the twice-contracted Bianchi
identity.

In this work, we study the Rastall gravity extension of
the standard (the six-parameter base) �CDM model param-
eterized by only one additional degree of freedom, the
Rastall parameter ε, while keeping all the constituents (e.g.,
the physical ingredients of the Universe, the laws of the
local physics) of the standard model as usual. Accordingly,
we consider the spatially maximally symmetric and flat
Friedmann-Robertson-Walker (FRW) spacetime

ds2 = −dt2 + a2(t) dx2, (5)

where the scale factor a(t) is function of proper time t only.
For describing the standard material content of the Universe,
as usual, we consider the perfect fluid EMTs:

Tμν
i = (ρi + pi )u

μuν + pi g
μν, (6)

where the index i runs over the different actual sources
described by the EoS of the form pi/ρi = wi = const.
(with ρi and pi being the energy density and the pressure of
the i th fluid, respectively), uμ = (−1, 0, 0, 0) is its veloc-
ity in the comoving frame (rest frame of the fluid) satisfying
uμuμ = −1 and ∇νuμuμ = 0.

We proceed with writing the modified Friedmann equa-
tions in a proper manner, namely, in a manner clearly iden-
tifying and handling the two simultaneous modifications of
different nature in the material content side (r.h.s.) of the Ein-
stein field equations of GR due to the Rastall gravity. We first
note that the EMT describing the effective source is always
of the form that of the usual vacuum energy of QFT:

T̂μν
i = p̂i g

μν. (7)

This could be deduced from

ρ̂i = − p̂i = ε

1 + 4ε
(3wi − 1)ρi , (8)

which is obtained by using (6) in (3) along with the trace of
the EMT of the i th fluid Ti = ρi (3wi − 1).

The Einstein field equations of the model under consider-
ation can explicitly be written as a set of two linearly inde-
pendent differential equations with the unknown functions
H and ρi as follows;

3H2 =
∑

i

ρi + ρX, (9)

−3H2 − 2Ḣ =
∑

i

wiρi + pX, (10)

where H = ȧ
a is the Hubble parameter and the overdot

denotes the derivative with respect to t . Note that ρX = ∑
i ρ̂i

and pX = ∑
i p̂i (satisfying pX = −ρX) stand for the total

energy density and pressure of the usual vacuum energy-like
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effective source accompanying to the actual sources and are
not independent functions but are fully determined by the
actual sources through (8).

The dynamics of the actual sources – and hence the
dynamics of the effective source as well – can directly be
obtained from the continuity equation (4), which explicitly
is

∑

i

[
ρ̇i + 3H(1 + wi )ρi

] = ε

1 + 4ε

∑

i

ρ̇i (1 − 3wi ). (11)

It is reasonable to suppose that the fluids (actual sources)
on cosmological scales are minimally interacting, i.e., inter-
acting only gravitationally, which implies the separation of
(11) for each type of fluid. In this case, we find the follow-
ing redshift (z = −1 + 1/a) dependency for the background
evolution of the energy density of the i th fluid (actual source):

ρi =ρi0 (1 + z)
3(wi+1)

[
1+ε

1−3wi
1+3ε(1+wi )

]

. (12)

Here and henceforth a subscript 0 denotes the present-day
(z = 0) value of any quantity. We see that, except the cases
wi = −1 and 1

3 , the redshift dependence of the energy den-
sity of an actual source is modified with respect to its stan-
dard dependence ρi = ρi0(1 + z)3(1+wi ). Thus, we have
the usual relations ρvac = ρvac0 = const. for the usual
vacuum energy (wvac = −1) and ρr = ρr0(1 + z)4 for
radiation

(
wr = 1

3

)
, while a modified redshift dependence

ρm = ρm0(1 + z)3+ 3ε
1+3ε for dust (wm = 0).

Next, considering (8) and (12), it turns out that despite
the fact that the effective source resembles the usual vacuum
energy with an EoS parameter pX

ρX
= wX = −1, its energy

density is not a constant, but

ρX = ε

1 + 4ε

∑

i

(3wi−1)ρi0 (1 + z)
3(wi+1)

[
1+ε

1−3wi
1+3ε(1+wi )

]

.

(13)

This obviously results from the non-conservation of the EMT
of the actual material sources, see (4). Consequently, we have

ρX = ρ̂vac + ρ̂r + ρ̂m, (14)

where

ρ̂vac = − 4ε

1 + 4ε
ρvac0, ρ̂r = 0 and

ρ̂m = − ε

1 + 4ε
ρm0 (1 + z)3+ 3ε

1+3ε .

(15)

Note that ρ̂r = 0 due to the fact that radiation is traceless
(T = 0). Therefore, it does not contribute to the effective

source, i.e., to ρX, as like it has been preserving its usual evo-
lution ρr ∝ (1 + z)4. The usual vacuum energy (wvac = −1)
of the QFT, on the other hand, still contributes to the Fried-
mann equation (9) like a cosmological constant, albeit with
a rescaled value as ρ� = ρvac + ρ̂vac = 1

1+4ε
ρvac. According

to this, for a positive vacuum energy, ρvac > 0, to contribute
to the Friedmann equation like a positive cosmological con-
stant, ρ� > 0, there is a condition ε > − 1

4 . In what follows,
we stick to this condition considering the fact that the recent
observations provide a clear detection of DE consistent with
ρ� > 0 in the vicinity of present-day Universe, viz., for
z < 1 (see, for instance, [33]). The further condition ε > 0
leads to ρX < 0 (viz., ρ̂vac < 0 and ρ̂m < 0). Namely, under
this condition, we have ρX(z = 0) = − ε

1+4ε
(4ρvac+ρm0) <

0, and ρX continuously growing in larger negative values in
the past. Thus, in this case (ε > 0), the effective source
ρX dynamically screens the vacuum energy ρvac in the finite
past, and in particular, the complete screening (viz., when
ρvac + ρX = 0) takes place at the redshift:

z∗ =
(

1

ε

ρvac0

ρm0

) 1+3ε
3+12ε − 1. (16)

This situation achieved for ε > 0 is of particular interest and
tempting for its further theoretical and observational inves-
tigation, as it has recently been reported in [31–44] that a
number of persistent low-redshift tensions, including the H0

tension, may be alleviated by a dynamical DE that assumes
negative energy density values (or in cosmological models
wherein the cosmological constant is dynamically screened)
at finite redshift (see Sect. 1).

Finally, the modified Friedmann equation (9) for the
Rastall gravity extension of the standard �CDM (Rastall-
�CDM) reads

3H2 = ρvac0 + ρm0 (1 + z)3+ 3ε
1+3ε + ρr0 (1 + z)4 + ρX,

(17)

where

ρX = − ε

1 + 4ε

[
4ρvac0 + ρm0 (1 + z)3+ 3ε

1+3ε

]
. (18)

This can be rewritten in terms of density parameters, �i0 =
ρi0

3H2
0

, as follows:

H2

H2
0

= �vac0 + �m0 (1 + z)3+ 3ε
1+3ε + �r0 (1 + z)4

+ �X0
4�vac0 + �m0 (1 + z)3+ 3ε

1+3ε

4�vac0 + �m0
,

(19)
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where

�X0 = − ε

1 + 4ε
(4�vac0 + �m0) , (20)

and the consistency relation �vac0 + �m0 + �r0 + �X0 = 1
is satisfied.

3 General relativistic equivalence: non-minimally
coupled � and matter

As it was pointed out in [81], an equivalent of a cosmological
model constructed within the Rastall gravity can always be
constructed within the usual GR. But, this must be under-
stood correctly. This does not imply that the Rastall gravity
and GR are equivalent – namely, that the same set of sources
leads to the same cosmological models –, but that the cosmo-
logical model in the presence of a certain set of sources con-
structed within the Rastall gravity can be reproduced upon a
particular setup in the matter sector of the usual GR. When
we compare the Einstein field equations of the usual GR,
Rμν − 1

2gμνR + �gμν = κTμν , to the Rastall gravity field
equations (1), it turns out that the Rastall parameter ε sets the
relation �gμν → εRgμν between the cosmological ‘con-
stant’ and scalar curvature – the two parameters that are of
the same in nature –, which implies

� = −εR, (21)

and then – through the twice-contracted Bianchi identity
∇μ(Rμν − 1

2gμνR) = 0 leading to the relation ∇μ(κTμν +
gμν�) = 0 – a non-minimal interaction between the cosmo-
logical ‘constant’ and matter fields as

∇μTμν = Quν and ∇ν� = −Quν, (22)

described by the energy-momentum transfer function

Quν = ε

1 + 4ε
∇νT . (23)

Thus, the Rastall gravity extension of the standard �CDM
(Rastall-�CDM) model under consideration in this study,
corresponds to a very particular cosmological setup within
the usual GR, namely, to a uniquely tailored extension of
the standard �CDM model, wherein the cosmological ‘con-
stant’ now is a dynamical quantity – relying on its non-
minimal interaction with the matter fields – in a particular
way that guarantees it to remain proportional to the curva-
ture scalar. Namely, in principle, we could have constructed
exactly the same cosmological model under consideration
here well within the usual GR from the beginning. Indeed,

one may check that it is equivalent to a general relativis-
tic cosmological model wherein the energy transfer func-
tion between the cosmological ‘constant’ and matter fields is
given in the following cumbersome form:

Q = ε

1 + 4ε
H(z)(1 + z)

∑

i

(1 − 3wi )
dρi

dz

=
√

3ε

1 + 3ε
ρm0 (1 + z)3+ 3ε

1+3ε

×
[

1

1 + 4ε
ρvac0 + 1 + 3ε

1 + 4ε
ρm0 (1 + z)3+ 3ε

1+3ε

+ ρr0 (1 + z)4
]1/2

.

(24)

Indeed, it is obvious that the Rastall-�CDM model – wherein
we simply control the coupling strength of the curvature
scalar to the gravity via the Rastall parameter ε – is com-
pletely different than the standard �CDM model, and more-
over the alternative construction of this model within the
usual GR from the beginning, is neither trivial nor eco-
nomical. Yet we have learned one another important les-
son from this discussion: The model under consideration
here presents a particular example of general relativistic cos-
mological models wherein there is non-minimal interaction
within the dark sector [101,102] – i.e., between the ‘cold’
dark matter and DE (in our case �). Such cosmological
models are of particular interest in the current cosmological
studies [103–109] as it has recently turned out that they are
potential candidates for addressing the so-called H0 tension
prevailing within the standard �CDM model. Therefore, it
is conceivable that the Rastall-�CDM model must also be a
potential candidate for addressing the H0 tension. Indeed, we
will show in what follows, without switching to the GR con-
struction of the model, that the deviation term in the Rastall
gravity, εgμνR, can dynamically screen the usual vacuum
energy at high redshifts, which in turn leads to larger H0

values compared to the standard �CDM.

4 A preliminary investigation

In this section, we present a preliminary investigation for a
demonstration of how the Rastall-�CDM model works, and
a guide to the values of the parameters of it. We first derive
some useful parameters that we shall use to discuss some
features/limitations of the model.

First of all, since the usual radiation evolution is not
affected from the Rastall gravity extension, we can safely use
the relevant standard equations. The photon energy density
today ργ 0 is then still well constrained, relying on a simple

relation: ργ = π2

15 T
4
CMB with the CMB monopole tempera-

ture [48], which is very precisely measured to be TCMB0 =
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2.7255 ± 0.0006 K [110]. We suppose, in line with standard
particle physics, three neutrino species (Neff = 3.046) with
minimum allowed mass

∑
mν = 0.06 eV. Then, the radi-

ation density parameter can be given in the standard way:
�r0 = �γ 0 + �ν0 = 4.18343 × 10−5h−2, where h is the
dimensionless reduced Hubble constant parametrizing the
Hubble constant via H0 = 100 h km s−1 Mpc−1 [48]. Using
a reasonable value, for instance, H0 = 68 km s−1 Mpc−1, we
find that the density parameter of the radiation today is negli-
gible, viz., �r0 = 9.0472×10−5. Neglecting this small con-
tribution of radiation today, we have �vac0+�m0+�X0 = 1.
Using this relation with (20), we can write the present-day
density parameter of the effective source as follows:

�X0 = −4ε + 3 ε �m0. (25)

From this, we read off ρX0
ρm0

= −ε
(

4
�m0

− 3
)

, while we have
ρX
ρm

≈ − ε
1+4ε

for z � 0, say, in the early Universe, see (12)
and (15). Using the relation (25) along with (16), the redshift
at which the vacuum energy is completely screened by the
effective source reads as

z∗ =
(

1

ε �m0
+ 4

�m0
− 1

ε
− 3

) 1+3ε
3+12ε − 1. (26)

Since the evolution of radiation remains unaltered in the
Rastall gravity, we basically do not expect any modification
in the standard history of the Universe throughout the radi-
ation epoch. Yet, the modified evolution of dust would have
consequences on the transition from radiation to dust domina-
tion. The radiation-matter (dust) transition is one of the most
important epochs in the history of the Universe, as it alters
the growth rate of density perturbations: during the radiation
epoch, which yields H2(z) ∝ (1 + z)4, perturbations well
inside the horizon are nearly frozen but once matter domina-
tion commences as H(z) flattens to yield H2(z) ∝ (1 + z)3

during the dust epoch, perturbations on all length scales are
able to grow by gravitational instability and therefore it sets
the maximum of the matter power spectrum. The modified
matter-radiation equality (ρr = ρm) redshift reads

zeq =
(

�m0

�r0

)1+3ε

− 1, (27)

where, for a given value of the ratio of the density parameters
– of course, we suppose �m0

�r0
> 1 – positive (negative) ε val-

ues shift zeq to larger (smaller) values. This in turn shifts the
turnover in the matter power spectrum via a highly sensitive
parameter to the modifications to GR, namely, the wavenum-
ber of a mode that enters the horizon at the radiation-matter

transition:

keq = Heq

1 + zeq
= H0

√
2 + 7ε

1 + 4ε
�m0

(
�m0

�r0

)1+6ε

, (28)

where we have ignored �vac0 since its contribution is safely
negligible.

Note that the condition ε > − 1
4 that we introduced for

ρ� > 0 in the previous section, ensures the real positive

values of keq and H2(z) ∝ (1 + z)3+ 3ε
1+3ε during the dust

era to be flatter than H2(z) ∝ (1 + z)4 during the radiation
era. These two parameters, Heq and keq, are not expected
to deviate much from the ones obtained within the standard
�CDM model. Therefore, these are very useful to give an
opinion whether a cosmological model is well behaved at
high redshifts, for instance, with regard to the CMB data
relevant to z ∼ 1100.

We can now make use of the parameters derived here for
a preliminary investigation of the model: The values of these
parameters may be utilized for making estimations on ε by
manipulating the late time dynamics of the Universe in our
model, for instance, to better describe the existing model
independent H0 data as well as the BAO data from z � 2.4.
We, of course, must also check the price paid for this manip-
ulation from the chosen ε value in the dynamics of the earlier
Universe, for instance, in the cosmological parameters phys-
ically related/sensitive to the presence/amount of radiation.

We proceed with a reasonable set of values: �m0 = 0.31
and H0 = 68 km s−1 Mpc−1, acceptable with regard to both
the recent Planck predictions [5] and the model independent
tip of the red giant branch (TRGB) H0 value [26], along
with the choice of ε = 0.06. We find, for the present-day
Universe, a considerable amount of negative contribution of
the effective source, �X0 = −0.184 [see (25)], which is
then compensated by the increased value of the usual vac-
uum energy, �vac0 = 0.874, so that to yield a cosmological
constant-like contribution, ��0 = 0.69, as in the standard
�CDM (ε = 0). On the other hand, this enhanced amount
of the usual vacuum is completely screened by the effective
source at z∗ = 2.4 [see (26) and Fig. 1], which is pretty
close to the values suggested in [33,34,42] for relaxing a
number of persistent low-redshift tensions, including the H0

tension, that arise within the standard �CDM model. It is
worth noting that, as may be seen in the same figure, for
z∗ > 2.4, the dust energy density assumes values larger than
the total energy density of the Universe. Yet, the ratio of the
energy density of the effective source to that of the dust is
ρX0
ρm0

= −0.59 today but it settles in a value pretty close to

zero, ρX
ρm

≈ −0.048, at high redshifts (z � 0). This implies
that the impact of the effective source on the dynamics of the
Universe diminishes (yet not completely) with the increas-
ing redshift. However, the price (due to the modification in
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Fig. 1 Plot of ρ/ρc0 vs z for different combinations of energy densities.
In all cases, we use �m0 = 0.31 and H0 = 68 km s−1 Mpc−1 and
ε = 0.06. Here the vertical dashed line refers to the redshift z∗ = 2.4,
at which the effective source ρX completely screens the usual vacuum
energy ρvac

the EMT conservation) we paid for this tempting result (say,
the screening of the vacuum energy) is that the dust energy
density grows considerably faster than it does in the usual
GR, ρm ∝ (1 + z)3.15 (which is also tracked by the effec-
tive source at high redshifts), whereas the radiation energy
density always grows as usual, ρr ∝ (1 + z)4. This leads to
unrealistic values for the key parameters relevant to the early
Universe, namely, zeq = 15303 and keq = 0.04470 Mpc−1,
which are extremely different than the values zeq = 3391
and keq = 0.01045 Mpc−1 obtained in the case of the stan-
dard �CDM model (ε = 0). This situation signals that the
Rastall-�CDM model with ε = 0.06, which is tempting as it
leads to z∗ = 2.4 in line with [33,34,42], is not well behaved
at large redshifts. Thus, it is conceivable that the high redshift
cosmological data would not allow such large positive values
of ε.

Next, we proceed to have a closer look at the dynam-
ics of the Universe by focusing on a narrow redshift range
0 ≤ z ≤ 3, within which we can, in a relatively straight-
forward way, compare the H(z) function of the Rastall-
�CDM model with the model independent H0 measure-
ments, e.g., H0 = 69.8±0.8 km s−1 Mpc−1 from the TRGB
H0 [26], and the latest high precision BAO data: H(z =
0.57) = 97.9±3.4 km s−1 Mpc−1 [111] and H(z = 2.34) =
222.4 ± 5.0 km s−1 Mpc−1 [32]. To do so, along with these
data points, we plot the function H(z)/(1+z) versus z in Fig.
2 considering four different pair of values of the parameters ε

and H0 as mentioned in the legend of this figure, wherein we
keep �m0 = 0.31 in all the cases (two of which correspond to
the cases in Fig. 1). First, we notice that the Rastall-�CDM
model (green curve, ε = 0.06, H0 = 68 km s−1 Mpc−1,
which leads to z∗ = 2.4) does better than the GR-�CDM

Fig. 2 Plot of H(z)/(1 + z) vs z for some selected values of ε and
H0 as shown in the legend. In all cases, we use �m0 = 0.31. The
three error bars stand for H0 = 69.8 ± 0.8 km s−1 Mpc−1 from the
TRGB H0 [26], H(z = 0.57) = 97.9 ± 3.4 km s−1 Mpc−1 [111], and
H(z = 2.34) = 222.4 ± 5.0 km s−1 Mpc−1 from the latest BAO data
[32]

(red curve, ε = 0, H0 = 68 km s−1 Mpc−1) to describe the
lower-redshift BAO data (z = 0.57), but the faster growth
of H(z)/(1 + z) at high redshifts leads to an increased ten-
sion of the Rastall-�CDM model with the high-redshift BAO
Ly-α data (z = 2.34) compared to the standard �CDM
model. This seems to suggest that negative values of ε can
help better representation of the high-redshift BAO Ly-α
data (z = 2.34) in the Rastall-�CDM model, which of
course implies compromise from the feature of screening
the usual vacuum energy by the effective source at a finite
redshift. For, we see that the Rastall-�CDM model (blue
solid curve, ε = −0.06, H0 = 68 km s−1 Mpc−1) better
represents the high-redshift BAO Ly-α data (z = 2.34) due
to slow growth of H(z)/(1 + z) at higher redshifts. But
in this case, this model worsens in representing the lower-
redshift BAO data (z = 0.57) compared to the GR-�CDM
model. However, surprisingly, if we use a larger H0 value as
well, for instance, H0 = 70 km s−1 Mpc−1 very close to the
model independent TRGB H0 measurement, it turns out that
the Rastall-�CDM model (blue dashed curve, ε = −0.06,
H0 = 70 km s−1 Mpc−1) reconciles with all the three data
points simultaneously. This makes negative ε values promis-
ing with regard to addressing the so called H0 tension on
top of a good description of the both BAO data (the standard
�CDM model has known to be suffering from). However,
most likely, it would lead to an inconsistency with the CMB
data, as the values of ε leading to a significant improvement
in this direction would give rise to unacceptable amount of
shifts in the values of zeq and keq. Indeed, ε = −0.06, that
we have used just to develop an opinion, leads to the unac-
ceptable values zeq = 790 and keq ∼ 0.025 Mpc−1, which
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obviously signals spoiling of a successful description of the
early Universe.

The lesson we learned in this section may be summarized
as follows: Through this preliminary investigation, it is not
possible to reach to a decisive conclusion whether the H0

and/or BAO data show tendency of ε deviating from zero
(GR) in a certain direction. Moreover, a significant improve-
ment with regard to H0 and/or BAO data would most likely
lead to spoiling of a successful description of the early Uni-
verse, which signals that CMB data would keep ε values close
to zero. Therefore, we expect only an insignificant deviation
from the standard �CDM model when it is extended via
the Rastall gravity. A conclusive answer, of course, cannot
be given unless we rigorously confront the model with the
observational data.

5 Linear perturbations

In this section, we derive the general form of the equations
which describe small cosmological perturbations within the
Rastall-�CDM model. We consider the perturbed RW met-
ric, gμν = g(0)

μν + hμν , where g(0)
μν indicates the background

of the spatially flat RW metric (5) with a small fluctuation,
hμν , and we choose the synchronous gauge (hμ0 = 0). The
line element has the form

ds2 = a(η)2
[
−dη2 + (

δ jk + h jk
)

dx jdxk
]
, (29)

where x j , with j = (1, 2, 3), are the spatial components
in Cartesian coordinates and η is the conformal time. The
comoving coordinates are related to the proper time t and
positions r by dx0 = dη = dt

a(η)
, dx = dr

a(η)
. We introduce

the perturbations as follows:

ρi = ρ
(0)
i + δρi , pi = p(0)

i + δpi , ui = u(0)
i + δui , (30)

where the superscript (0) indicates the background func-
tions and δρi , δui and δpi are the perturbed quantities in
energy density, four-velocity and pressure, respectively. We
also introduce the following definitions:

δi ≡δρi

ρi
, c2

s,i = δpi
δρi

, θ ≡ ∂kδu
k , h ≡ hkk

a2 , (31)

where c2
s,i is adiabatic sound speed squared.

Within the formalism, the continuity equation reads

∑

i

[

δ′
i

[
1 + 3ε(1 + wi )

1 + 4ε

]

+ 3H
(
c2
s,i − wi

)
δi

+ (1 + wi )

(

θi + h′

2

) ]

= 0,

(32)

from the perturbations of the actual EMT conservation equa-
tion [see (4)] for ν = 0. Here the prime denotes derivative
with respect to η and H = a′

a . For ν = i , Euler equation
reads:

∑

i

[

θ ′
i + 1 − 3wi

1 + 3ε(1 + wi )
Hθi

− k2δi

(1 + 4ε)(1 + wi )

[
ε + (1 + ε)c2

s,i

] ]

= 0.

(33)

The relativistic species remain unaltered in Rastall gravity
both at the background and perturbative levels. Thus, the
Boltzmann hierarchy for the relativistic relics follows the
standard procedures as described in [112] (see also [113]).
We suppose that the evolution of baryons (wb = c2

s,b =
0) is not altered by the Rastall gravity but that of the cold
dark matter (wcdm = c2

s,cdm = 0), for which we modify the
procedures given in [112,113] accordingly [114]. And, the
first order continuity and Euler equations from (32) and (33)
read

δ′
cdm

1 + 3ε

1 + 4ε
+ θcdm + h′

2
= 0, (34)

θ ′
cdm + 1

1 + 3ε
Hθcdm − ε

1 + 4ε
k2δcdm = 0. (35)

6 Observational constraints

Considering the background and perturbation dynamics pre-
sented above, in what follows, we explore the full parame-
ter space of the Rastall-�CDM model – namely, the Rastall
gravity extension of the six-parameter base �CDM based on
GR via the Rastall parameter ε –, and, for comparison, that
of the standard �CDM (GR-�CDM) model. The baseline
seven free parameters set of the Rastall-�CDM model is,
therefore:

P =
{
ωb, ωcdm, θs, As, ns, τreio, ε

}
,

where the first six parameters are the baseline parameters of
the standard �CDM model, namely: ωb and ωcdm are respec-
tively the dimensionless densities of baryons and cold dark
matter; θs is the ratio of the sound horizon to the angular
diameter distance at decoupling; As and ns are respectively
the amplitude and spectral index of the primordial curva-
ture perturbations, and τreio is the optical depth to reion-
ization. The uniform priors used for the model parameters
are ωb ∈ [0.018, 0.024], ωcdm ∈ [0.10, 0.14], 100 θs ∈
[1.03, 1.05], ln(1010As) ∈ [3.0, 3.18], ns ∈ [0.9, 1.1],
τreio ∈ [0.04, 0.125], and ε ∈ [−0.04, 0.04].

In order to constrain the models, we use the latest Planck
CMB and BAO data: we use the recently released full Planck-

123



1050 Page 10 of 20 Eur. Phys. J. C (2020) 80 :1050

2018 [5] CMB temperature and polarization data which com-
prise of the low-l temperature and polarization likelihoods at
l ≤ 29, temperature (TT) at l ≥ 30, polarization (EE) power
spectra, and cross correlation of temperature and polarization
(TE). The Planck-2018 CMB lensing power spectrum like-
lihood [119] is also included. Along with the Planck CMB
data, we consider the measurements of BAO provided by the
distribution of galaxies in galaxy-redshift surveys. We use
BAO distance measurements probed by (i) Six Degree Field
Galaxy Survey (6dFGS) at effective redshift zeff = 0.106
[120], (ii) the Main Galaxy Sample of Data Release 7 of
Sloan Digital Sky Survey (SDSS-MGS) at effective redshift
zeff = 0.15 [121], (iii) the LOWZ and CMASS galaxy sam-
ples of Data Release 11 (DR11) of the Baryon Oscillation
Spectroscopic Survey (BOSS) LOWZ and BOSS-CMASS
at effective redshifts zeff = 0.32 and zeff = 0.57, respec-
tively [111], (iv) correlation of Lyman-α forest absorption
and quasars at zeff = 2.35 obtained in SDSS DR14 [122].
Also, we use the measurement obtained in [123], where the
BAO scale is measured at zeff = 2.34.

We have implemented the model in publicly available
CLASS [113] code, and used the Multinest [124] algo-
rithm in the parameter inference Monte Python [125]
code with uniform priors on the model parameters to obtain
correlated Monte Carlo Markov Chain samples and Bayesian
evidence. Further, we have used the GetDist Python pack-
age to analyze the samples. We obtain the observational con-
straints on all the Rastall-�CDM model parameters by using
first only the CMB data and then the combined CMB+BAO
data. For comparison purposes, we also show the constraints
on the GR-�CDM model parameters. The CMB data set
alone is known to well constrain the six baseline parameters
of the GR-�CDM model. The Rastall-�CDM model car-
ries an additional parameter, namely ε. Therefore, we also
combine the BAO data with CMB in order to obtain possibly
tighter constraints on the Rastall-�CDM model parameters,
and also to break any possible degeneracy of the new param-
eter ε with the other baseline parameters.

Table 1 displays the constraints, at 68% and 95% con-
fidence levels (CLs), on the baseline seven free parameters
and some derived parameters of the Rastall-�CDM model
and, for comparison, on those of the GR-�CDM model,
both from the CMB and combined CMB+BAO data sets. For
these constraints presented for both models in the same table,
Fig. 3 shows the one-dimensional marginalized distributions
and Fig. 4 shows the two-dimensional (68% and 95% CLs)
marginalized distributions of the derived parameters with
regard to the baseline free parameters. From all these, we
immediately notice that, as it is the case for the GR-�CDM
model as well, the CMB+BAO data set puts tight constraints
on the parameters of the Rastall-�CDM model, when com-
pared to the constraints put by CMB data set alone. On the
other hand, in contrast to the GR-�CDM model, when the

Table 1 Constraints (68% and 95% CLs) on the free and some derived
parameters of the Rastall-�CDM and GR-�CDM models for CMB
and CMB+BAO data. The parameter H0 is measured in the units of km
s−1 Mpc−1. The entries in blue color represent the constraints on the
corresponding GR-�CDM parameters

Parameter CMB CMB + BAO

102ωb 2.246+0.016+0.031
−0.016−0.031 2.238+0.014+0.028

−0.014−0.028

2.236+0.013+0.026
−0.013−0.026 2.245+0.012+0.025

−0.012−0.024

ωcdm 0.1235+0.0028+0.0055
−0.0028−0.0055 0.1185+0.0012+0.0023

−0.0012−0.0023

0.1202+0.0012+0.0023
−0.0012−0.0022 0.1189+0.0010+0.0019

−0.0010−0.0018

100θs 1.0418+0.0003+0.0006
−0.0003−0.0006 1.0420+0.0003+0.0006

−0.0003−0.0005

1.0419+0.0003+0.0006
−0.0003−0.0006 1.0420+0.0003+0.0006

−0.0003−0.0006

ln 1010As 3.042+0.011+0.025
−0.013−0.026 3.050+0.013+0.028

−0.015−0.025

3.046+0.012+0.026
−0.014−0.025 3.051+0.013+0.027

−0.014−0.026

ns 0.961+0.004+0.008
−0.004−0.008 0.967+0.003+0.006

−0.003−0.006

0.964+0.003+0.007
−0.003−0.007 0.967+0.003+0.006

−0.003−0.006

τreio 0.053+0.006+0.013
−0.007−0.012 0.058+0.007+0.014

−0.008−0.014

0.055+0.006+0.014
−0.008−0.013 0.059+0.007+0.014

−0.007−0.014

ε −0.0010+0.0008+0.0015
−0.0008−0.0015 0.0003+0.0004+0.0008

−0.0004−0.0008

[0] [0]

�m0 0.347+0.024+0.054
−0.027−0.047 0.304+0.009+0.019

−0.009−0.017

0.316+0.007+0.014
−0.007−0.013 0.308+0.006+0.011

−0.006−0.011

�vac0 0.650+0.029+0.052
−0.026−0.058 0.697+0.010+0.020

−0.010−0.021

0.684+0.007+0.013
−0.007−0.014 0.692+0.006+0.011

−0.006−0.011

�X0 0.0030+0.0023+0.0045
−0.0023−0.0046 −0.0010+0.0013+0.0026

−0.0013−0.0026

[0] [0]
��0 0.653+0.028+0.048

−0.024−0.055 0.696+0.009+0.018
−0.009−0.019

0.684+0.007+0.013
−0.007−0.014 0.692+0.006+0.011

−0.006−0.011

H0 65.10+1.80+3.50
−1.80−3.50 68.31+0.76+1.50

−0.76−1.50

67.30+0.51+0.98
−0.51−0.96 67.92+0.43+0.83

−0.43−0.82

σ8 0.792+0.017+0.035
−0.017−0.032 0.818+0.011+0.021

−0.011−0.022

0.812+0.006+0.012
−0.006−0.011 0.810+0.006+0.012

−0.006−0.011

BAO data set is not included, we notice larger error bounds
(loose constraints) on some of the Rastall-�CDM model
parameters, for instance, the error bounds of ωcdm and the
derived parameters are larger in the Rastall-�CDM model
compared to the GR-�CDM model, as a consequence of the
deviation of the Rastall parameter ε from zero. It turns out
that the parameter of our main concern, the Rastall parameter
ε measuring the deviation from GR, is constrained as

ε = −0.0010 ± 0.0008 ± 0.0015 from CMB,

ε = 0.0003 ± 0.0004 ± 0.0008 from CMB+BAO,

at 68% and 95% CLs. The constraints from the CMB data as
well as the combined CMB+BAO data set suggest that, in line
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Fig. 3 One-dimensional marginalized distributions of the free and some derived parameters of the Rastall-�CDM and GR-�CDM models

with our conclusion reached via a preliminary investigation
in Sect. 4, the Rastall parameter ε is well consistent with zero
at 95% CL, which in turn implies that there is no significant
statistical evidence for deviation from GR via Rastall gravity.
We note however that, as may be seen from the probability
regions and mean values of ε, the Rastall parameter prefers
negative values in the case of CMB data while positive values
when BAO data set is included (CMB+BAO data). Further,
although they are mostly minor, the Rastall gravity extension
of the standard �CDM has some consequences on the cos-
mological parameters, which deserve further discussion that
could be informative about the features of the Rastall gravity
and/or whether it is a promising modified gravity theory or
not.

In Fig. 5, we present the two-dimensional (68% and 95%
CLs) marginalized distributions that show how the six of the
baseline parameters of the GR-�CDM model are affected by
the Rastall gravity extension, i.e., ε. We observe that ε is neg-
atively correlated with ωcdm and ωb for both the CMB data

and the combined CMB+BAO data sets. Other four parame-
ters, θs , As , ns and τreio seem to have minor positive correla-
tions with ε in the case of CMB data but no correlation in the
case of CMB+BAO data. Accordingly, in Table 1 and Fig. 3,
one may notice the shifts in the mean values and one dimen-
sional probability distributions of different parameters. Also,
see Fig. 4 for the consequences of the Rastall gravity exten-
sion, i.e., ε, via the two-dimensional marginalized distribu-
tions of the derived parameters with regard to the baseline
free parameters. The last column of the same figure is of par-
ticular interest as it displays the two-dimensional marginal-
ized distributions of the derived parameters with regard to
the constraints on the Rastall parameter ε. We notice that
smaller values of ε lead to larger values of the present-day
density parameter of matter �m0 because of the negative cor-
relation between these two parameters. It is in line with (12)
which suggests that matter energy density dilutes less effi-
ciently with time in a universe with negative values of ε,
and thereby leading to larger matter density parameter in the
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Fig. 4 Two-dimensional (68% and 95% CLs) marginalized distributions of the free and some derived parameters of the Rastall-�CDM and
GR-�CDM

Fig. 5 Two-dimensional (68% and 95% CLs) marginalized distributions of ε with the other baseline parameters of the Rastall-�CDM model

present-day Universe. Accordingly, in the case of CMB data,
where ε has higher probability to lie in the negative range, we
see higher values of �m0 in the Rastall-�CDM when com-
pared to the GR-�CDM. Namely, the CMB data set predicts
�m0 = 0.347+0.024

−0.027 for the Rastall-�CDM model, while

�m0 = 0.316+0.007
−0.007 for the GR-�CDM. On the other hand,

the combined CMB+BAO data set prefers larger probabil-
ity region of ε in the positive range, and thereby it predicts
smaller values of �m0 in the Rastall-�CDM when com-
pared to the GR-�CDM. For, the combined CMB+BAO

data set predicts �m0 = 0.304+0.009
−0.009 for the Rastall-�CDM

model, while �m0 = 0.308+0.006
−0.006 for the GR-�CDM model,

see Table 1. We notice a positive correlation between the
present-day density parameter of the usual vacuum energy
and the Rastall parameter for the both data sets. The CMB
(CMB+BAO) data set favors smaller (larger) values of the
density parameter of the usual vacuum energy density, viz.,
�vac0 = 0.650+0.029

−0.026 (�vac0 = 0.697+0.010
−0.010) for the Rastall-

�CDM while �vac0 = 0.684+0.007
−0.007 (�vac0 = 0.692+0.006

−0.006)
for the GR-�CDM. This reduced (enhanced) amount of the
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Fig. 6 Two-dimensional posterior distributions of {�m0, �vac0} colour
coded by �X0 with CMB+BAO data. The line across the contours is
given by �m0 + �vac0 = 1

usual vacuum energy density parameter is however com-
pensated just slightly by that of the effective source (which
behaves like a cosmological constant at z ∼ 0) as the CMB
(CMB+BAO) data set favors its positive (negative) values
owing to the almost perfect negative correlation between its
present-day density parameter �X0 and the Rastall parameter
ε. Namely, the constraint on total present-day density param-
eter of those of the usual vacuum energy and the effective
source reads �vac0 +�X0 = 0.653+0.027

−0.024 (68% CL) from the
CMB data set, and �vac0 +�X0 = 0.696 ± 0.009 (68% CL)
from the combined CMB+BAO data set. Figure 6 displays
the two-dimensional posterior distributions of {�m0,�vac0}
colour coded by the �X0, at 68% and 95% CLs for the com-
bined CMB+BAO data set. Here, we notice that the posterior
distribution sample points of �X0 (and the corresponding
contours for 68% and 95% CLs) pretty much cluster around a
line that deviates from the GR-�CDM line �m0+�vac0 = 1,
due to the presence of �X0.

We note that while the CMB data set by alone favors
positive energy density values for the effective source ρX

accompanying to the actual energy sources due to the Rastall
gravity extension, the CMB+BAO data set including BAO
data (relatively low-redshift data compared to the CMB data
set) favors negative energy density values for it, namely,
�X0 = 0.0030 ± 0.0023 (68% CL) from the CMB data
set, and �X0 = −0.0010 ± 0.0013 (68% CL) from the
combined CMB+BAO data set. This shows that, when the
BAO data set is included, the effective source ρX indeed
screens the usual vacuum energy at finite redshift and that
the Rastall gravity may be counted among the cosmolog-
ical models [31–44] that were suggested for alleviating a
number of persistent low-redshift tensions, including the H0

tension, by a dynamical DE that assumes negative energy
density values (or by a mechanism dynamically screening

the cosmological constant) at finite redshift. In Fig. 7, in
order to visualize the screening mechanism, we show the
evolution of the total energy density of the effective source
plus the usual vacuum energy (scaled to the present-day crit-
ical energy density), (ρX + ρvac)/ρc0, versus the redshift
with probability regions up to 95% CL (the darker the more
probable), using the fgivenx python package [126]. We
see that the effective source completely screens the usual
vacuum energy, ρX + ρvac = 0, at a redshift z∗ > 13.65
(68% CL) and z∗ > 11.68 (95% CL). However, these are
too large compared to the z∗ values suggested in, e.g., Refs.
[33,34,42]. This might be signaling that this mechanism does
not work efficiently enough in the Rastall-�CDM model. For
instance, we indeed observe almost a perfect positive corre-
lation between H0 and ε, which implies that larger values of
ε would correspond to larger values of H0. We see in Table 1
that, in comparison to the GR-�CDM model, the combined
CMB+BAO data set favors a slightly larger mean value for H0

in the Rastall-�CDM model, which seems to be an improve-
ment for a better agreement with, e.g., the model indepen-
dent H0 values measured from the distance ladder measure-
ments (e.g., H0 = 69.8±0.8 from a recent calibration of the
TRGB applied to Type Ia supernovae [26]), see Figs. 8 and
9. However, a more careful look reveals that this improve-
ment is not robust. The combined CMB+BAO data set pre-
dicts H0 = 68.31+0.76+1.50

−0.76−1.50 km s−1 Mpc−1 for the Rastall-

�CDM model, while H0 = 67.92+0.43+0.83
−0.43−0.82 km s−1 Mpc−1

for the GR-�CDM model. We note that, in contrast to the
GR-�CDM model, H0 in the case of the Rastall-�CDM
model, even at 68% CL, agrees with the TRGB H0 value.
This may be found promising, but, this is because of the
large widening in the one-dimensional marginalized proba-
bility distribution of H0, viz., largely increased errors, while
a minor shift to the larger mean value of H0. This shows that
the Rastall-�CDM model offers a relaxation to the so called
H0 tension prevailing within the GR-�CDM model, though
not robustly. In Fig. 9, we plot H(z)/(1 + z) to display the
situation with respect to TRGB H0 and BAO data by con-
sidering the constraints from the combined CMB+BAO data.
We see only a slightly better representation of the three data
points by the Rastall-�CDM model.

It seems that, as we have discussed in Sect. 4, the screen-
ing mechanism provided via the effective source due to the
Rastall gravity when ε > 0 does not work efficiently as the
altered redshift dependence of dust (due to the violation of
the local energy-momentum conservation) opposes that by
keeping ε close to zero, and the CMB data set (as well as
the Ly-α data, see the discussion in Sect. 4) tends ε towards
negative values. Next, we observe that both data sets lead to
a positive correlation of ε with σ8, similar to H0. Therefore,
the larger (smaller) values of ε would correspond to larger
(smaller) values of both H0 and σ8, which in turn implies that
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Fig. 7 Plot of (ρX + ρvac)/ρc0 vs z with 68% and 95% error regions
in the case of CMB+BAO data

Fig. 8 Two-dimensional (68% and 95% CLs) marginalized distribu-
tions of H0 versus �X0 for the Rastall-�CDM model. The horizon-
tal blue band is for the model independent TRGB H0 measurement
H0 = 69.8 ± 0.8 km s−1 Mpc−1 [26]

Fig. 9 H(z)/(1+z) vs z with 68% and 95% error regions in the case of
CMB+BAO data. Here, the red curve stands for the GR-�CDM model
corresponding to the mean values of the parameters. The three error
bars stand for H0 = 69.8 ± 0.8 km s−1 Mpc−1 from the TRGB H0
[26], H(z = 0.57) = 97.9 ± 3.4 km s−1 Mpc−1 [111], and H(z =
2.34) = 222.4 ± 5.0 km s−1 Mpc−1 from the latest BAO data [32]

both the so called H0- and σ8-tensions prevailing within the
GR-�CDM model cannot be relaxed together in the Rastall-
�CDM model (see, e.g., [107] achieving a simultaneous
relaxation of the two tensions by a non-minimal interaction
in the dark sector).

Finally, we have a look at the situation of the wavenum-
ber of a mode that enters the horizon at the radiation-matter

Fig. 10 One-dimensional marginalized distribution of keq for the
Rastall-�CDM and GR-�CDM models

transition, keq, which is a highly sensitive parameter to the
modifications to GR, and related to the dynamics of the Uni-
verse at a redshift larger than the redshifts related to the
CMB data. In the case of the Rastall-�CDM model, we
find the constraints keq = 0.010427 ± 0.000078 Mpc−1

from CMB data, and keq = 0.010406 ± 0.000081 Mpc−1

from CMB+BAO data. On the other hand, for the GR-
�CDM model, CMB data provide keq = 0.010448 ±
0.000081 Mpc−1, and the CMB+BAO data provide keq =
0.010354 ± 0.000068 Mpc−1. Figure 10 shows one dimen-
sional marginalized distributions of keq in the four cases.
We notice that keq probability curves of the Rastall-�CDM
model are bit together but we see a larger shift among the ones
for the GR-�CDM model when compared to the Rastall-
�CDM model. Though this shift is not significant, but may
be signaling a better consistency of the Rastall-�CDM model
with both the data sets in comparison to the GR-�CDM
model.

For a better understanding of the results we obtained for
the Rastall-�CDM model, it may be useful to elucidate the
reason behind the fact that the CMB data (CMB+BAO data)
favor smaller (larger) H0 values compared to the GR-�CDM
model. As mentioned in the introduction, the constraint on
H0 from CMB data depends on the angular scale on the sky,
θ� = r�/DM, where r� = ∫ ∞

z�
cs H−1dz is the comoving

sound horizon at recombination – determined by the pre-
recombination (z > z�) physics – and DM = ∫ z�

0 H−1dz is
the comoving angular diameter distance at recombination –
determined by the post-recombination (z < z�) evolution of
H(z) [48]. We notice that none of the terms in (19) scale
faster than the radiation (within the allowed region for ε by
the observations, see Table 1 for the constraints) and keq is
almost the same in both models – whether the constraints
from the CMB data or the combined CMB+BAO are con-
sidered –, which in turn imply almost the same r� value in
all cases as the pre-combination physics/dynamics does not
differ in any case – recall that the radiation dominated Uni-
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verse solutions do not differ in the Rastall gravity and GR.
Also, Planck satellite measures θ� (cf. θs, see Table 1 for
constraints) very robustly and almost independently of the
cosmological model with a high precision. Therefore, DM

must be almost the same in all cases. Now, we notice that
the CMB data by alone favor slightly negative values of ε

accompanied by an enhancement in ωcdm, which then result
in an enhancement in �m0 and positive �X0, see, e.g. Fig. 3.
One may check that, in comparison to the GR-�CDM when
the constraints on the parameters given in Table 1 are con-
sidered, despite the fact that the slightly negative mean value
of ε leads the dust-like contributions in H(z) [see (19)] to
scale slightly slower than the usual (1 + z)3 dependence, the
enhanced �m0 value and the positivity of �X0 – i.e., reduced
�vac0 – lead H(z) to grow faster for z < z� and become
larger for the interval 0 � z < z�. The compensation of this
enhanced H(z) in the interval 0 � z < z� in turn implies a
diminished H(z) for z ∼ 0 – a smaller H0 as well – to keep
DM (almost) unaltered. This situation leads to a strong cor-
relation between H0 and ε, which can be seen in Fig. 4. The
inclusion of the BAO data, in addition to the CMB data, in our
analyses not only decreases the errors on ε but also brings its
mean value to a value just slightly larger than zero, which in
turn yields smaller errors on H0 and its slightly larger mean
value than the one predicted within the GR-�CDM model,
though it is not significant enough to relax the so-called H0

problem (see Table 1, and Figs. 3 and 8).
In the case of CMB data, we notice larger error regions of

all the six baseline parameters (except θs , As and τreio) and
other derived parameters in the Rastall-�CDM model when
compared to the GR-�CDM model. Indeed, the additional
parameter ε in the Rastall-�CDM model penalizes the sta-
tistical fit of this model to the data when compared to the
GR-�CDM model. However, inclusion of BAO data, that is,
CMB+BAO data put tight constraints on all the model param-
eters, and thereby reduce the error regions of the parameters
considerably in both the models. In the following section, we
calculate Bayesian evidences of the two models, and thereby
do a comparison of the statistical fit.

7 Bayesian evidence of the fit

For comparing statistical fit of the models under considera-
tion in this work to the observational data, we use Bayesian

Table 2 Bayesian evidences of the Rastall-�CDM and GR-�CDM
models, where ln ERastall,GR = ln ERastall − ln EGR

CMB CMB+BAO

ln ERastall −1407.02 ± 0.21 −1413.67 ± 0.21

ln EGR −1404.56 ± 0.19 −1413.30 ± 0.19

ln ERastall,GR −2.46 ± 0.28 −0.37 ± 0.28

evidence. In this regard Bayes’ theorem reads

P(�|D,M) = L(D|�,M)π(�|M)

E(D|M)
, (36)

for a given model M with the set of parameters � and the
cosmological data D. Here, P(�|D,M) is the posterior
distribution of the parameters �; L(D|�,M) is the likeli-
hood function; π(�|M) is the prior probability of the model
parameters, and E(D|M) is the Bayesian evidence calcu-
lated as

E(D|M) =
∫

M
L(D|�,M)π(�|M)d�. (37)

Further, we compute the ratio of the posterior probabilities
for a model Ma with respect to a reference model Mb as

P(Ma |D)

P(Mb|D)
= Bab

P(Ma)

P(Mb)
, (38)

where Bab is the Bayes’ factor, evaluated as

Bab = Ea
Eb . (39)

The Jeffreys’ scale [127] is used to interpret the Bayes’
factor by calculating | ln Bab|. The value of | ln Bab| lying
in the range [0,1) implies the strength of the evidence to
be weak or inconclusive, while a definite or positive evi-
dence is implied by the values in the range [1,3). Further,
the strength of the evidence is strong for | ln Bab| lying
in [3,5), and is the strongest for | ln Bab| greater than 5.
Table 2 displays the Bayesian evidence of Rastall-�CDM
in comparison with the GR-�CDM model in the case of
CMB and CMB+BAO data, where ERastall and EGR, respec-
tively stand for the Bayesian evidences of the Rastall-�CDM
and GR-�CDM models. We observe a definite evidence
(| ln ERastall,GR| ∈ [1, 3)) in the case of CMB data, whereas
weak evidence (| ln ERastall,GR| ∈ [0, 1)) is observed in the
case of the CMB+BAO data. Thus, the GR-�CDM model
finds a better fit to the CMB data in comparison to the Rastall-
�CDM model, but the weak evidence in the case of the
combined CMB+BAO data, suggests that both the models
fit equally well to the CMB+BAO data, as expected.

8 Conclusions

We have constructed the extension of the standard �CDM
model (GR-�CDM) by switching the gravity theory from
GR to the Rastall gravity (Rastall-�CDM), see Sect. 2. We
then have reviewed it – via a preliminary investigation of its
features for a demonstration of how it works, and a guide to
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the values of its parameters – in a proper manner, namely, in
a manner clearly identifying and handling the two simultane-
ous modifications of different nature in the material content
side of the Einstein field equations of GR, see Sects. 2, 3 and
4. It has then turned out that it is not possible to reach a deci-
sive conclusion only through a preliminary investigation, for
instance, whether the H0 and/or BAO data show tendency of
ε deviating from zero (GR) in a certain direction. Further, we
also have learned that a significant improvement with regard
to H0 and/or BAO data would most likely lead to spoiling
of a successful description of the early Universe, which sig-
nals that CMB data would keep ε values close to zero. These
inspections have led us to expect only an insignificant devi-
ation from the standard �CDM model when it is extended
from GR via the Rastall gravity, and persuaded us that a con-
clusive answer cannot be given unless the model is rigorously
confronted/constrained with the observational data.

Considering the background and perturbation dynamics
(Sect. 5), we have explored the full parameter space of the
Rastall-�CDM model – viz., the Rastall gravity extension
of the six-parameter base GR-�CDM described by the addi-
tional parameter ε – using the latest CMB data set as well
as the latest combined CMB+BAO data set, see Sect. 6.
Also, for comparison, we have presented the correspond-
ing constraints/results on the GR-�CDM model. It turned
out that, as it is the case for the GR-�CDM model as well,
the CMB+BAO data set puts tight constraints on the param-
eters of the Rastall-�CDM model and that, in contrast to
the case for the GR-�CDM model, the CMB data set by
alone puts loose constraints (larger error bounds) on some of
the Rastall-�CDM model parameters – particularly, on the
dimensionless density of cold dark matter ωcdm and all of
the derived parameters – as a consequence of a wider range
of deviation of the Rastall parameter ε from zero. Yet, both
analyses suggest that, in line with our conclusion reached
via a preliminary investigation in Sect. 4, the Rastall param-
eter ε is well consistent with zero at 95% CL, which in turn
implies that there is no significant statistical evidence for
deviation from GR via the Rastall gravity. We note however
that, as may be seen from the probability regions and mean
values of ε, the Rastall parameter prefers negative values in
the case of CMB data while positive values when BAO data
set is included (CMB+BAO data). Despite the fact that they
are basically minor within the allowed small range of the
Rastall parameter from the data, we have explored the con-
sequences of/tendencies led by the Rastall gravity on the cos-
mological parameters in the light of the observational anal-
yses. Our results can be a guide for the research community
that studies the Rastall gravity in various aspects of gravi-
tation and cosmology, where, in general, as we have found
in this work that the Rastall parameter cannot be out of the
range −0.0001 < ε < 0.0007 at 68% CL. Being that range
an observational boundary imposed from high precision full

CMB data set along with the BAO data set, it, in princi-
ple, must be obeyed as a new bound in any qualitative study
within this modified theory of gravity. Finally – in support of
our conclusions here – comparing statistical fit of these two
models to the observational data by using Bayesian evidence,
the GR-�CDM model finds a better fit to the CMB data in
comparison to the Rastall-�CDM model, but the weak evi-
dence in the case of the combined CMB+BAO data, suggests
that both the models fit equally well to the CMB+BAO data.

It also is worth mentioning as one of our conclusions that,
if we assume that the standard physical ingredients of the Uni-
verse considered here are the true physical ingredients of the
actual Universe, our finding that the term gμνR contributes to
the Einstein field equations (1) with a coefficient in the range
(−0.5001,−0.4993) from the combined CMB+BAO data at
68% CL, i.e., a coefficient equal to −1/2 with a precision
of O(10−4), can be taken as another new demonstration of
the power of general relativity (which guarantees the local
conservation of the total energy-momentum tensor relying
on the twice-contracted Bianchi identity).

On the other hand, the Rastall gravity, in fact, possesses
interesting features that could be of interest in the context of
cosmology, for instance, to address some of the tensions pre-
vailing within the standard �CDM model based on GR. One
particular example may be that, for positive values of ε, the
effective source arising due to the Rastall gravity assumes
negative energy density values and screens the usual vac-
uum energy in line with Refs. [31–44], which suggest such
a scenario for alleviating a number of persistent low-redshift
tensions, including the so called Hubble constant H0 ten-
sion (deficiency). Indeed, our observational analyses show an
almost perfect positive correlation between H0 and ε, which
implies that larger values of ε would correspond to larger
values of H0. And, as the combined CMB+BAO data set
favors slightly positive values of ε, this feature of the model
works in the right direction and leads to predictions of larger
H0 values (compared to the GR-�CDM model) consistent
with, for instance, the model independent TRGB H0 mea-
surements. However, a more careful look revealed that this
improvement is not robust as it arises from the large widening
in the one-dimensional marginalized probability distribution
of H0, viz., largely increased errors, while a minor shift to
the larger mean value of H0. We remind that the effective
source comes along with a modification in the energy density
redshift dependence of the actual matter source (viz., CDM)
due to the EMT non-conservation feature of the Rastall grav-
ity. Such a modification would obviously be more and more
effective on the dynamics of the Universe with the increasing
redshift. Therefore, in the case of the combined CMB+BAO
data, it is conceivable that the high redshift data (viz., the
CMB data relevant to z ∼ 1100), in particular, tend to keep
the redshift dependence of the actual matter source very close
to its usual (1+ z)3 dependence, i.e, ε values almost equal to
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zero, and then does not allow the Rastall gravity to success-
fully realize a scenario wherein the usual vacuum energy is
dynamically screened by the effective source. The lesson we
learned from this is that, as we have seen the first signs in
this direction in our preliminary investigations of the Rastall-
�CDM model, the two simultaneous modifications of differ-
ent nature in the material content side of the standard Einstein
field equations, arising from the relaxation of the contribu-
tion of the term gμνR on the spacetime geometry side, act
against each other. And, through a further modification of
the Rastall gravity, it could probably be possible to reach a
new modified theory of gravity which is relaxed from such
a dichotomy between the two simultaneous modifications of
different nature in the material content side of the standard
Einstein field equations arising from a modification in the
spacetime geometry side. We find this result important as
such situations may exist in some other similar type of mod-
ified gravity theories.
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