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We perform a study of the y.;(3872) line shape using the data samples of ete™ — yy.(3872),
2c1(3872) — D°D°7°, and ntz~J/y collected with the BESIII detector. The effects of the coupled
channels and the off-shell D*? are included in the parametrization of the line shape. The line shape mass
parameter is obtained to be My = (3871.63 + 0.13fg:856) MeV. Two poles are found on the first and second
Riemann sheets corresponding to the D*9D° branch cut. The pole location on the first sheet is much closer
to the D**D threshold than the other, and is determined to be 7.04 & 0.15%0% MeV above the D°D°z°
threshold with an imaginary part —0.19 & 0.08 )15 MeV.

DOI: 10.1103/PhysRevLett.132.151903

The y.,(3872) state, also known as X(3872), was
discovered in B* — [r.(3872) = ntz~J/y]K* decay
processes by the Belle experiment [1], and confirmed by
CDF [2], DO [3], and BABAR [4]. As the first candidate of
an exotic charmoniumlike state, it has been studied in
numerous experimental analyses over the past two decades.
Along with a well-established quantum number J”¢ = 1+
[5], many remarkable features of the y.;(3872) have been
observed, including a mass almost exactly at the D**D°
threshold, an extremely narrow width [6], and an isospin-
violating decay pattern [7-9]. For the nature of the
c1(3872), many theoretical interpretations have been
proposed, including a hadronic molecule [10,11], a com-
pact tetraquark state [12], a conventional charmonium state
Xc1(2P) [13], a mixture of a molecule, and an excited
charmonium state [14—16].

The line shape of the y.;(3872) contains essential
information, since from its parameters it is possible to
extract the pole locations, the effective range of the particle
interaction, and the scattering length. Here, the pole of a
physical state refers to the corresponding single pole of the
off-shell 7 matrix in the complex energy plane, where the
amplitude becomes infinite. Recently, the LHCb experi-
ment performed a line-shape study based on a high-
statistics y.1(3872) —» ntz~J/y data sample, with both
Breit-Wigner and Flatt¢é models [17]. However, the line
shapes based on these two models cannot be distinguished
once the mass resolution is considered. Because of the
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proximity to the D*D threshold, the line shape of the
%01(3872) in the D*D° channel is significantly distorted,
making this channel more sensitive to the behavior of the T’
matrix. A study of y,,(3872) — D*D has previously been
performed by Belle [18]; however, the off-shell effect of the
D*0 was not taken into account due to a mass constraint
applied to the D°z° and D%y systems coming from the D*°,
which forced the distribution to start from the D**D°
threshold. In the meantime, data samples of both
2c1(3872) = ata~J/w and y.,(3872) — D°D°z° chan-
nels were acquired by BESIII [19], allowing a simultaneous
fit, taking into account the coupled-channel effect and the
width of the D**, which can improve the y.,(3872) line-
shape measurement.

In this Letter, we present a study of the y.;(3872) line
shape using e'e™ annihilation data collected with the
BESIII detector at center-of-mass energies ranging from
4.178 to 4.278 GeV, already used in previous y.;(3872)
studies [19]. The total integrated luminosity is 9.0 fb~!
[20,21]. The data samples used have center-of-mass ener-
gies around the Y(4230) mass peak, since these energies
correspond to a maximum in the y.(3872) production
cross section. The pole locations of the y.(3872) are
determined based on a simultaneous fit to the data samples
of y.1(3872) — D°D°z° and y,(3872) — n*n~J/y, with
the y.;(3872) produced in the e™ e~ — yy.(3872) process.
For D°D%z° channel, |M(D°z°) — mp-o| < 4 MeV/c? is
required [19], where mp.o is the mass of DY [6].
Throughout this Letter, the charge conjugations are always
included and the notations D*°D° and D** D~ denote both
themselves and their charge conjugations.

The parametrization scheme in this analysis is developed
based on the framework described in Ref. [22], taking into
account the effects of the D*® width. In this framework, the
%c1(3872) decays into the three-body final state D°D°z° via
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FIG. 1. Distributions of (a) D°D°z° and (b) z* 2~ J /y invariant mass. The black dots with error bars are the data from Ref. [19]; the

blue continuous lines are the probability density functions at the best estimation; the red dotted lines are the signal shapes; the green
dashed lines are the background shapes; and the black dashed lines represent the line shape without the mass resolution considered,
normalized to the signal height for comparison. (c) The y.;(3872) line shape at the best estimation. Here, dBr/dE is (g X kg +
T'y)/|D(E)|? in arbitrary units (a.u.). The cyan shaded band indicates the statistical uncertainty and the vertical dashed line indicates the

position of the D**DO threshold.

intermediate  D*°D°. The differential decay rate is
written as
dBr(D°D°z")  Br(D*® - D°z°) x g x keg(E)
dE B |D(E)? ’
dBI‘(n’"‘ﬂ:_J/l[/) _ Brﬂ+ﬂ_J/g/ ’ (1)
dE |D(E)]|

where the denominator is

D(E) = E - Ex + 5 gl(cun(E) + ik (E))

(k& (E) + ik (E)] + 50 (2)
In the above equations, all the details of the y. (3872)
production are assumed to be absorbed in a global constant
factor B, while Br denotes the branching fractions, and g
denotes the effective coupling constant of the y.;(3872) to
neutral and charged D*D. The energy E (Ey) is measured
with respect to the three-body D°D°z° threshold, and is
related to the invariant mass of the final states [the mass of
the y.1(3872)1 by M x) = mpo + mpo + mo + E x), where
Mpo, Mg, and m,o are the masses of DY, D°, and z° quoted
from the Particle Data Group [6]. The constant ') includes
the width of all channels except D*D, and is composed of
three parts: I'y = I_‘II+IT_J/1// + 'enown + T unknown = (1 +ﬁ+(1)
Uiy Here, Ui - 175 Dinown @nd Dypnown are the partial
widths of the ztz~J/w channel, the other measured
channels [yJ/w, yw(3686), 7., and wJ/y], and the
unknown channels, respectively. Because of limited statis-
tics, the ratio @ = [ypknown/T 7+ 77y 1s fixed at 8 and the
ratio f = Dvuown/T 725y 1s fixed at 2.8, according to a

global analysis of y.,(3872) decays [23]. The Ké?lc)(E) and

kgf)(E) in Eq. (2) (the superscript ¢ indicates the charged

D** D7) are self-energy correction from . (3872) — D*D,
with unstable D* [22]. The parametrization of them can be
found in the Supplemental Material [24].

The expected numbers of signal events in the two decay
channels, ppopo,0 and py+ 5~y /,,, are related to the number of
produced eTe™ — yy,(3872) events, ﬂ)‘zi’ésm, as follows:

_ o _ _ prod
Hpoposo = €popoyo X RDODOIL'O X 'u)m(3872)’

d
Hatrd)y = €xtndjy X Rﬂ+ﬂ7-’/l// X /'t;lz(l)(3872)' (3)

Here, €popo,o (€4+4-7,,) represents the efficiency of the
D°D°7° (ztx~J/y) channel multiplied by the branching
fractions of the decay chains D° — K=z, K-z’
K2ntn 2% - yy (J/y — ete ,utu),ie., 1.31 x 1073
(3.78 x 107%2) according to Refs. [6,9,19], while
Rpopogo (Ryiq-y,,) Tepresents the branching fraction of
201(3872) = D°D°7° [x.,(3872) = ntn~J/y] derived
from the line-shape analysis.

The mass resolutions of the two channels are studied
based on Monte Carlo (MC) simulation. The MC samples
are generated with zero y.,(3872) width and a series of
mass values in the range of interest. For the D°D°z°
channel, the mass resolution is modeled as a Gaussian
function, with a constant mean and a linear mass-dependent
width. For the ntz~J/y channel, the mass resolution is
modeled by a Gaussian function, whose parameters are
determined by the control sample eTe™ — yr[p(2S) —
nt 7~ J /y] and calculated at 3.872 GeV. The values of mass
shift and resolution can be found in the Supplemental
Material [24].
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TABLE 1. Summary of the y,(3872) line-shape fit parameters.
Parameter Symbol Value
Coupling constant g Fit
Partial width of z*z~J/w | G- Fit
Physical mass of y,,(3872) My Fit
Mass of D*0 e 2.006 85 GeV
Width of D*0 55.9 keV
Width of D** e 83.4 keV
1—‘known/Fﬂ‘ﬂ‘l/u/ ﬂ 2.8
1—‘unknown/1—‘71'+7r’1/1// a 8
rod 1

Total number of y,(3872) ”;};:(3872) Fit
Efficiency correction® €100 0 1.31 x 1073 [19]

€xmtpy  378%x 1072 [9]

*Multiplied with branching fractions of daughter particles’
decay.

An unbinned maximum likelihood fit is performed
simultaneously to the invariant mass distributions of
M(zxtn=J/y) and M(D°D°z°), whose parameters are
summarized in Table I. In the fit, to improve the mass
resolution, the variable M(z"n~J/w) = M(a*z~ ") —
M(I"I7) 4 my,, is used, where /"]~ stands for e*e™ or
uu~, and m,,, is the J /y mass [6]. The signal shapes for
the D°D%z° and ztz~J/y channels are modeled as
their corresponding differential rates [Eq. (1)] convoluted
with the resolution functions. The background shapes for
the D°D°z° and zt2~J/w channels are described,
respectively, by an ARGUS function [25] with threshold
parameters fixed at the D°D°z° nominal mass, and by a
second order Chebyshev function. The obtained line-

shape parameters are shown in Table II, and the number

of produced y.,(3872) is determined to be ﬂ)‘;‘]’égm =

(9.8 +3.9) x 10*. Here, the floating parameter in the fit is
[yt 4~y and its value is transformed into I'y = (1 + a +
/) pu— 1 throughout the Letter for convenience. The fit
result is shown in Figs. 1(a) and 1(b), and the obtained
x01(3872) line shape, adding all channels together, is
shown in Fig. 1(c), with a full width at half maximum
(FWHM) of 0.44 MeV.

The systematic uncertainties are estimated as follows.

The uncertainty caused by the choice of the ratios
a:Funknown/ Uoin /v and f :Fknown/ Doins /v is evaluated

TABLE II. The fit results of the line-shape parameters and the
correlation matrix.

Parameters g 'y MeV) My (MeV)
Fit results 0.16 = 0.10 2.67+1.77 3871.63 £0.13
g 1.00 0.89 —0.60

Ty 1.00 —-0.29

My 1.00

TABLE III. Systematic uncertainties of the line-shape param-
eters.

Source g 'y MeV) My (MeV)
a +1.08-0.10 +6.54-0.65 +40.05-0.04
I'po e +0.05 - 0.07 e
Efficiency +0.05-0.03 +0.35-0.24

Resolution o +0.02 o
Background +0.05 +0.51 -0.24 +0.01

M (D) e +0.11 — 0.09 +0.03
Ecns +0.29 +4.57 —-0.01
Simulation +0.02 +0.26 +0.01
Sum +1.12-0.11 +8.01-0.82  +0.06 —0.05

by varying a4+ f in the range (4.2, 21.8), according
to Ref. [23].

The D*° nominal width is quoted from an evaluation
based on heavy quark symmetry [26]. The corresponding
uncertainty is estimated by varying the value in the range
(50, 70) keV in the line-shape models, where the range is
determined according to various calculations of the D*°
width (55.9 keV in Ref. [26], 53.7 keV in Ref. [27], and
68 keV in Ref. [28]).

The relative uncertainty from the efficiency ratios of the
D°D°z° and #t7~J/y decays is assigned to be 10%
according to the uncorrelated uncertainties in Refs. [9,19],
and is propagated to the line-shape parameters by changing
the corresponding values in Eq. (3).

The discrepancy in the D°DPz° mass resolution
between MC simulation and data (referred to as
Resolution” in Table III) is studied using the control
sample ete™ — [D** — D°z°DC. The discrepancy is para-
metrized as a Gaussian function and extracted from the
distribution of M w01 = |2Pp + Pao|, Where po and pp
denote the four-momentum of the 7z° and of the D°
decaying from D*0, respectively. The obtained Gaussian
function is convoluted additionally with the line shape for
uncertainty evaluation. For the z*z~J /y channel, since the
MC invariant mass has been modeled to data by using the
control sample, the related systematic uncertainty is treated
as negligible.

For the background models (referred as “Background” in
Table III), the uncertainty is evaluated by changing the
ARGUS function to a third order polynomial, and changing
the order of the Chebyshev function from second to third.

The uncertainty of the D° mass, 50 keV [6], is propa-
gated to the line-shape parameters by changing the D° mass
by +50 keV in the analysis procedure.

The center-of-mass energies of the eTe™ collisions for
the datasets used in this work are obtained from a
measurement of di-muon events, as described in Ref. [29].
A common uncertainty of 0.8 MeV for each dataset is
adopted, and it is propagated to the line-shape parameters
by changing the values of the center-of-mass energies
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accordingly when applying the kinematic constraints in the
event selection.

The uncertainties caused by MC simulation configura-
tions (referred as “Simulation” in Table III), including the
input cross sections and the generator models used in the
decay chains, are evaluated as follows. For the input cross
sections of ete™ — yy.(3872), the measured cross sec-
tions of Ref. [9] are used, instead of using the ¥ (4230) line
shape quoted from the Particle Data Group; for the
¥xc1(3872) angular distribution, it is changed from an
El transition to a pure S wave; the z"z~ pair in the
a7~ J /w channel is assumed to come from a p° decay, and
for the pJ/y angular distribution from y ., (3872) the partial
wave analysis result of Ref. [5] is adopted, instead of the
original S-wave assumption.

For each of the above mentioned sources of systematic
uncertainties, the largest differences caused by varying the
values or modifying the inputs with respect to the nominal
values are taken as systematic uncertainties, and are treated
as independent. The systematic uncertainties of the line-
shape parameters are summarized in Table III, where the
last row is obtained by summing each term in quadrature.

The analytic structure of the amplitude and the corre-
sponding pole locations are studied by extending the
energy E from the real axis to the whole complex plane.
According to the simplified form in the Supplemental
Material [24], there are two Riemann sheets with respect
to the D**D° threshold, defined by the sign of the D**D°
self-energy term

).
Sheet I: —g\/—2<E—ER+’ é"’) + T,

T,
’;(’) Fily.  (4)

Sheet II: + g\/—z (E —Egr+

The numerical results on the pole locations are obtained
using a complex roots finding algorithm [30]. The pole

Im E (MeV)
s
n
o

6 62 64 66 68 7 72 74 76 78
Re E (MeV)

(a) Sheet I: By = 7.04 — 0.19i MeV

-15 -1 -05 0 05
Re E (MeV)

(b) Sheet II: Eyp = 0.26 — 1.71i MeV

locations are visualized by plotting the phase of the
amplitude, as shown in Fig. 2, where the phase is indefinite
around the poles and discontinuous across the branch cut.
With the nominal line-shape parameters, two poles are
found: one is on Sheet I, denoted as E}, while the other is on
Sheet I, denoted as Ey;. As shown in Fig. 2, the location of
E; is much closer to the D*°D° threshold than Ej;.

The pole locations on the k plane are also investi-
gated. The momentum k is defined by k= ,/2u,
\/E — Eg + (il'p0/2), where p,, is the two-body reduced
mass, and D(E) in Eq. (2) can be rewritten as a function of

k and expand near the threshold as power series of k, so-
called the effective range expansion (ERE),

1
D(k) :Z—ik+%k2+(9(k3), (5)

where a is the scattering length and r, is the effective
range [31]. The O(k®) term occurs due to the presence of
charged channels. By doing so, the poles can be displayed
in one plane, as shown in Fig. 2(c). The pole location on the
upper half plane is k™ = (—12.6 4+ 12.3i) MeV, and that
on the lower half plane is k= = (14.1-115.3i) MeV.

The statistical uncertainties of the pole locations, propa-
gated from the line-shape parameters g, [y, and My, are
obtained by sampling the line-shape parameters according
to their covariance matrix. Here, since the uncertainties are
large, g and T';+,-;/, could become negative in the 3o
confidence region, which exceeds the physical boundary.
The events with negative g or I';+ -/, are dropped when
calculating the statistical uncertainties of the pole locations
(and other related parameters, as described as follows).
The systematic uncertainties are obtained using the same
treatment as that of the line-shape parameters. The detailed
information of statistical and systematic uncertainties can
be found in the Supplemental Material [24]. The pole
locations including uncertainties are determined to be
E; = (7.04 £0.155007) + (=0.19 £ 0.08713)i MeV and

1 15 2 25 -60 -40 -20 0 20 40

Rek (MeV)

(c) k plane: k* = —12.6 + 12.3i MeV and
k— =14.1 — 115.3¢ MeV

FIG. 2. The phase of the amplitude on (a) Sheet I and (b) Sheet II with respect to complex energy. The solid cyan line starting from the
point 7.033-0.027i MeV is the branch cut, the dashed cyan line is the real axis and the red trajectory approaching the real axis is obtained
by continuously decreasing ' to 0. (c) The phase of the amplitude with respect to k. The upper (lower) half-plane corresponds to Sheet |

(Sheet II).
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Ey = (0.26 £5.7413/%,) 4+ (=1.71 £ 0.9078)i MeV on
the Riemann sheets, and k* = (—12.6+5.5789) + (12.3 &+
6.8700)iMeV and k™ = (14.1 £58%37) + (-1153 &
44.61755%)i MeV on the k plane.

The relative ratio of the branching fractions of
zta~J/w and D°D°7° is determined to be [[(y.;(3872) —
at 1 JJw) /T (1 (3872) — D°D*0)] = 0.05 £ 0.01:39,
which is consistent with the global fit result 0.08 £ 0.04
[23] and 2020 BESIII result 0.08 % 0.02 [19] within 1o, but
lower than the value used as a Gaussian constraint in
LHCb’s work 0.11 £ 0.03 [17]. Compared to the previous
result in Ref. [19], the ratio is smaller mainly due to the
inclusion of the D** D~ term in the model, which extends
the tail of the line shape in the D°D°z° channel and results
in a larger signal yield.

We have estimated the ERE parameters, i.e., the scatter-
ing length a and the effective range r, in Eq. (5). We
consider a simplified case, according to the discussion in
Ref. [32], by setting Iy and I'p- to be 0. The amplitude
contains the contribution from D*D only with a stable D*.
After the simplification, the Eq. (5) can be used to extract
ERE parameters, which are a = (—16.577:°735 ) fm and
o= (41992 i

Based on the obtained results, we can do a comparison
between the y.;(3872) and the deuteron. The ERE param-
eters are related to the field renormalization constant Z by

_2(1-2)1 )
a —m;—FO(ﬁ 1)7 (6)

zZ 1 _
re:—m;—k(’)(ﬁ b, ()

where y = | /2u, E, with E the binding energy; the scale
 measures the momentum scale of the binding interaction,
which cannot be calculated without knowing the details of
the interaction, but can be estimated to be of the order of the
pion mass m, for both neutron-proton and D*D inter-
actions, i.e., 1/f~1/m, ~1.4 fm.

In the limit of Z — 0, the effective range should be
positive and dominated by the range correction [32-35]. It
was found that this case is compatible with the measured
ERE parameters of the deuteron, which is known to be a
predominantly molecular state [33]. However, in the case of
the y.;(3872), we see that a negative effective range can fit
the data well, which is different from the deuteron case
(+1.75 fm) and also suggests an elementary component in
the y.1(3872) [32]. Given that the range correction is less
important in the case of the y.(3872), one can solve
Egs. (6) and (7) for Z by neglecting O(5~'), and obtain
Z = 0.18. Besides, according to Ref. [34], r, is subject to
the large correction from charged D*D channel, after the
subtraction of this charged contribution, r, becomes
—2.5 fm and Z becomes 0.12. However, in the case of

the deuteron, it would be impossible to solve Egs. (6)
and (7) for Z in a model independent way since the range
correction term is non-negligible for r,. Despite this, using
the generalized compositeness X, proposed in Ref. [35],
we find both the y.,(3872) and the deuteron have similar
compositeness. Nevertheless, there are still large uncer-
tainties in the ERE parameters, which prevent us from
drawing strong conclusions on the nature of the y.;(3872).
More statistics would be helpful.

In summary, we measure the line shape of the y,.;(3872)
by performing a simultaneous fit to the decay channels
D°D°z° and ntz~J/w. The line-shape parameters are
determined to be ¢=0.16+0.107)/7, Ty= (2.67+
1.77559) MeV, and My = (3871.63 £0.13700¢) MeV,
where the first and second uncertainties are statistical
and systematical, respectively. The FWHM of the line
shape is determined to be (0.447013%97%) MeV.
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