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We study CP violation in b-baryon decays of �−
b → �− D with D = D0, D̄0 and Di (i = 1, 2). We find 

that these baryonic decay processes provide an ideal opportunity to measure the weak phase due to the 
absence of the relative strong phase. Explicitly, we relate ρ̄ and η̄ the CKM elements with the decay rate 
ratios of Ri = �(�−

b → �− Di)/�(�−
b → �− D0) without the charge conjugate states. As a complementary, 

we also examine the decay distributions of �b → �(→ pπ−)D . There are in total 32 decay observables, 
which can be parameterized by 9 real parameters, allowing the experiments to extract the angle γ ≡
arg(−V ud V ∗

ub/V cd V ∗
cb) in the CKM unitarity triangle. In addition, the feasibilities of the experimental 

measurements are discussed. We find that ρ̄ and η̄ can be extracted at LHCb Run3 from �−
b → �− D , 

and a full analysis of �b → �(→ pπ−)D is available at LHCb Run4.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

To complete the understanding of the standard model (SM), one of the important tasks is to measure the Cabibbo-Kobayashi-Maskawa 
(CKM) quark mixing matrix elements. So far, the experimental value of γ ≡ arg(−V ud V ∗

ub/V cd V ∗
cb) in the CKM unitarity triangle comes 

exclusively from the B meson decays [1], utilizing the D0 − D
0

mixing. The simplest ways are the methods [2,3] of using the D me-
son two-body sequential decays for CP and flavor taggings. However, their sensitivities are limited by the smallness of the two-body 
decay branching ratios. To reduce the statistical uncertainties, one can analyze the Dalitz plot in the D meson multibody decays for the 
two tagging methods [4]. Currently, the most precise value of γ is 

(
65.6+0.9

−2.7

)◦
and (65.8 ± 2.2)◦ from the CKMfitter [5] and UTfit [6], 

respectively.
On the other hand, the experimental interests on the b-baryon decays have been increasing rapidly. The evidences of CP violation 

have been found in various multibody decays [7], while the decay width of �b → �+
c τ−ντ has been measured for the first time [8]. 

Besides the branching ratios, the polarizations of the baryons provide fruitful observables in the experiments. In addition, the forward-
backward asymmetry of �b → �μ+μ− has been studied at LHCb [9]. Notably, the polarization asymmetry of � in �b → �γ has been 
measured at LHCb for the first time [10]. Recently, a complete analysis of �b → �(→ pπ−) J/ψ(→ μ+μ−) has been performed [11], 
where the polarization fraction is found to be around 3% at the center-of-mass energy of 13 TeV in pp collisions. Despite these progresses, 
measurements on the decays associated with a neutral D meson are still lacking.

On the theoretical aspect, the spin nature of the baryons is a double-edge sword, as it provides fruitful phenomenons [12–14], but 
increases the complexity of the quantitative studies. Most of the theoretical studies are performed by the factorization ansatz, within 
which the color-allowed decays can be estimated reliably [15–17]. However, for the color-suppressed decays, one often has to introduce 
an effective color number by hand to explain the experiments. Fortunately, with the helicity formalism, we can analyze the kinematical 
systems without knowing the dynamical details [18].

The extraction of γ via �b → �D with D = D0, D0
, D1,2 has been given in Refs. [19,20]. However, a systematic study of the sequential 

decays is still missing. In this work, we would use the helicity formalism to explore the sequential modes in the b-baryon decays. In 
contrast to the orbital angular momentum analysis, the helicity formalism is perfectly compatible with special relativity, and it allows us 
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to extract the information about the baryon spin in a systematic way [11]. The difference between the orbital angular momentum and the 
helicity approaches is discussed in Appendix A.

As mentioned, the extraction of γ comes exclusively from B meson decays, and the motivations to extend it to baryon sectors are 
twofolds. On the theoretical aspect, it is important to study CP violation in baryons, since the matter-antimatter asymmetry in our 
universe is directly related to them, which can not be explained in the SM. On the experimental aspect, as baryons carry a spin quantum 
number, it provides us fruitful observables, allowing us to probe the SM further. For instance, the time-reversal violating observables can 
be constructed even for two-body baryonic decays. In our present work, we concentrate on �b and �b decays. As mentioned previously, 
a lot of observations of �b have been made at LHCb, and after the upgrade, there will also be enough �b to be created. This opens a 
new window to reexamine γ obtained from the meson sectors. We propose to extract γ from baryon sectors, by the means of measuring 
�b → �D, �b → �D and their sequential decays.

This paper is organized as the follows. In Sec. 2, we present the formalism related to the possible physical observables. In Sec. 3, we 
show the numerical results based on the factorization ansatz. We also explore the experimental feasibilities for our results. We conclude 
the study in Sec. 4.

2. Formalism

We analyze the decays of Bb → Bn D with the helicity amplitudes defined by

Hλ
j ≡ 〈Bn D j, pẑ, λ|Hef f |Bb, J z = λ〉 , (1)

where Bn(b) = �(b) and �0,−
(b)

, λ and pẑ are the helicity and 3-momentum of Bn , respectively, j = 0, 0, 1, 2 denote the D mesons, and J z is 
the z component of the angular momentum. The derivation and physical meaning of the helicity amplitudes are sketched in Appendix A. 
In general, the positive helicity amplitudes have the ratios

H+
0 : H+

0
: H+

1 : H+
2 = √

2 : √2r+V : 1 + r+V : 1 − r+V , (2)

where r+ is defined by Eq. (2) itself, and V corresponds to the ratio of the CKM elements, given by V = V ud V ∗
ub/V cd V ∗

cb = |V |e−iγ

with Vqq′ and γ being the CKM elements and unitarity triangle, respectively. The ratios of the negative helicity ones can be obtained by 
substituting “−” for “+” in the superscripts. The amplitudes are related to the CP conjugates as

H+
0 = −H

−
0 , H−

0 = −H
+
0 , (3)

where we have taken V cd V ∗
cb to be real. The helicities flip signs due to the space inversion, and the minus signs are attributed to the 

parity of the D mesons.
The amplitude ratios among the charge conjugates are

H
−
0 : H

−
0 : H

−
1 : H

−
2 = −√

2r+V ∗ : −√
2 : −1 − r+V ∗ : 1 − r+V ∗ , (4)

with the positive helicity ones given by interchanging “±” in the superscripts. Combining Eqs. (2)-(4), the 16 complex amplitudes are 
parameterized by one real and four complex parameters, given by

|H+
0 | , H̃ = H−

0

H+
0

, r± , V , (5)

which remarkably simplify the analysis.
The decay widths for Bb → Bn D j are given as

� j = |
p|
16π MBb

(∣∣∣H+
j

∣∣∣2 +
∣∣∣H−

j

∣∣∣2
)

, (6)

where 
p is the 3-momentum of the daughter particle, and MBb denotes the mass of Bb . The full sequential decays Bb → Bn(→ B′
nπ)D j , 

where B′
n = �(p) for Bb = �b(�b), offer three additional observables in the angular distributions. The derivation is given in Appendix A, 

and the result is sorted as follows:

D j( 

) = 1

� j

∂3� j

∂ cos θ∂ cos θ1∂φ
= 1

8π
[1 + Pbαn cos θ cos θ1+

α j(αn cos θ1 + Pb cos θ) + Pbαn(β j sinφ − γ j cosφ) sin θ sin θ1],
(7)

where Pb is the polarized fraction of Bb , depending on its production, and the definitions of the angles are shown in Fig. 1 with (θ, φ)

and θ1 determined at the rest frames of Bb and Bn , respectively. In Eq. (7), αn is the up-down asymmetry parameter of Bn → B′
nπ , and 

α j , β j and γ j are given as

α j = 1 − |H̃ j|2
1 + |H̃ j|2

, β j = −2Im(H̃ j)

1 + |H̃ j|2
, γ j = 2Re(H̃ j)

1 + |H̃ j|2
, (8)

respectively, where H̃ j are defined by

H̃ j = H−/H+ , (9)
j j

2
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Table 1
The parameterization of H̃ j .

D H̃ j(Bb → Bn D) H̃ j(Bb → Bn D)

D0 H̃ r+
r− H̃−1

D
0 r−

r+ H̃ H̃−1

D1
1 + r+ V
1 + r− V

H̃ 1 + r+ V ∗
1 + r− V ∗ H̃−1

D2
1 − r+ V
1 − r− V

H̃ 1 − r+ V ∗
1 − r− V ∗ H̃−1

Fig. 1. Decay planes for Bb → Bn(→ B′
nπ)D .

with the explicit parametrizations in Table 1, α j describe the polarized asymmetries of the daughter baryons, and β j represent T violation 
for the absence of strong phases [17].

To measure α j , β j and γ j , it is convention to recast them in the forms based on the numbers of events, N , given as

α j = 2

αn

N(p̂B′
n
· p̂D j < 0) − N(p̂B′

n
· p̂D j > 0)

N(p̂B′
n
· p̂D j > 0) + N(p̂B′

n
· p̂D j < 0)

,

β j = 8

Pbαnπ

N
(
(p̂B′

n
× p̂D j ) · n̂Bb > 0

) − N
(
(p̂B′

n
× p̂D j ) · n̂Bb < 0

)
N

(
(p̂B′

n
× p̂D j ) · n̂Bb > 0

) + N
(
(p̂B′

n
× p̂D j ) · n̂Bb < 0

) , (10)

γ j = 8

Pbαnπ

N
(
(p̂D j × n̂Bb ) · (p̂D j × p̂B′

n
) > 0

) − N
(
(p̂D j × n̂Bb ) · (p̂D j × p̂B′

n
) < 0

)
N

(
(p̂D j × n̂Bb ) · (p̂D j × p̂B′

n
) > 0

) + N
(
(p̂D j × n̂Bb ) · (p̂D j × p̂B′

n
) < 0

) ,

respectively, where the equations hold at the limit of N → ∞.
The CP violating asymmetries are constructed as

AC P
j = � j − � j

� j + � j

, �ξ j = 1

2

(
ξ j + ξ j

)
, �γ j = 1

2

(
γ j − γ j

)
, with ξ j = α j, β j, (11)

where the overlines on � j , ξ j and γ j correspond to the charge conjugate ones of the baryons, and j = 0, 0, 1, 2 for j = 0, 0, 1, 2, respec-
tively. Note that AC P

j are the direct CP asymmetries, and the others are the CP violating observables in the decay angular distributions.
To get a clearer view of �ξ j as well as �γ j , we rewrite the decay parameters as

ξ C P
j = �ξ j + 1

2
AC P

j

(
ξ j − ξ j

)
, γ C P

j = �γ j + 1

2
AC P

j

(
γ j + γ j

)
, (12)

with

ξ C P
j = ξ j� j + ξ j� j

� j + � j

, γ C P
j = γ j� j − γ j� j

� j + � j

. (13)

As there is only one weak phase in the decay channels with D0 and D
0

, we have

AC P
0 = AC P

0
= ξ C P

0 = ξ C P
0

= γ C P
0 = γ C P

0
= 0 , (14)

derived from Eqs. (2)-(4). The right sides of the two equations in Eq. (12) can be measured from the experiments, whereas the left ones 
can be written down in compact ways as

AC P
1,2 = ±2X+

〈H2
1,2〉

, αC P
1,2 = ±2X−

〈H2
1,2〉

, βC P
1,2 = ±2Re(Y)

〈H2
1,2〉

, γ C P
1,2 = ±2Im(Y)

〈H2
1,2〉

, (15)

where
3
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Fig. 2. Quark diagrams of the b-baryons decays.

X± = −Im(V )Im
(

r+ ± |H̃|2r−)
, Y = Im(V )H̃ j

(
r+∗ − r−)

,

〈H2
1,2〉 = 1 + |H̃|2 ± 2Re(r+ + r−|H̃|2)Re(V ) +

(
|r+|2 + |H̃r−|2

)
|V |2 . (16)

It is then straightforward to see that the observables defined in Eq. (11) are CP odd, as they are proportional to Im(V ).
It is not a coincidence that the CP violating asymmetries of D1 and D2 differ minus signs in the numerators of Eq. (15), as can be seen 

from the following identities:

(�1 + �1)ξ
C P
1 + (�2 + �2)ξ

C P
2 = (�0 + �0)ξ

C P
0 + (�0 + �0)ξ

C P
0

= 0 ,

(�1 + �1)γ
C P

1 + (�2 + �2)γ
C P

2 = (�0 + �0)γ
C P

0 + (�0 + �0)γ
C P

0
= 0 . (17)

In Eq. (17), the first equality comes from that the physical quantities are independent of the basis (either flavor or CP), and the second 
one is due to Eq. (14).

3. Numerical results

To analyze the decays quantitatively, we begin with the effective Hamiltonian [22], given by

Hef f = G F√
2

[
V cb V ∗

us

(
C1 O c

1 + C2 O c
2

) + V ub V ∗
cs

(
C1 O u

1 + C2 O u
2

)] + h.c. , (18)

with

O c
1 = (cβuα)V −A(dαbβ)V −A , O c

2 = (cαuα)V −A(dβbβ)V −A ,

O u
1 = (uβcα)V −A(dαbβ)V −A , O u

2 = (uαcα)V −A(dβbβ)V −A , (19)

where G F is the Fermi constant, C1,2 are the Wilson coefficients, α and β correspond to the color indices, and h.c. represents the 
Hermitian conjugate. Note that we have used the Fierz transformation to sort the operators.

The quark diagrams of Bb → Bn D are shown in Fig. 2. There is only one possible type of quark diagrams for �−
b → �−D (the left 

one in FIG. 2). In contrast, the decays of �b have two extra nonfactorizable diagrams (the middle and right ones in FIG. 2), which would 
introduce different strong phases and increase the complexity of the analysis. In the following, unless stated otherwise, we concentrate on 
�−

b → �−D .

The amplitude ratios of �−
b → �−D can be naively read off in a model independent way from Fig. 1. As �−

b → �−D0 and �−
b → �−D

0

share the same diagram, they receive the same corrections from the strong interactions. Thus, we deduce that r± = 1 in Eq. (2) for 
�−

b → �−D , leading to

�0 : �0 : �1 : �2 = 2 : 2ρ2 + 2η2 : 1 + 2ρ + ρ2 + η2 : 1 − 2ρ + ρ2 + η2 , (20)

to O(λ4) precision with λ, ρ and η the Wolfenstein parameters1 for the CKM matrix [5]. As the total branching ratios are independent of 
the basis (flavor or CP), we have

�0 + �0 = �1 + �2 , (21)

which can also be easily seen from Eq. (20). Hence, there have only two independent ratios along with the two parameters (ρ, η). Clearly, 
it is possible to extract both ρ and η from the experiments, given by

ρ = 1

2
(R1 − R2) , η =

√
R1 + R2 − 1

4
(R1 − R2)

2 − 1 , (22)

with R1,2 = �1,2/�0. Remarkably, the extractions do not require the charge conjugate states. We emphasize that Eqs. (20) and (22) are 
model independent based on the analysis from the quark diagrams.

To estimate the results in the experiments, we adopt the framework of the naïve factorization. The amplitudes are then read as

G F√
2

a2 V cb V ∗
us〈D0|(cu)V −A |0〉〈�−|(sb)V −A |�−

b 〉 , (23)

1 Here, λ = |V us|/
√|V ud|2 + |V us|2 and ρ̄ + iη̄ = −(V ud V ∗

ub)/(V cd V ∗
cb).
4
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Table 2
Decay widths and observables.

Baryon D �/�0 106B α j γ ′
j

�−
b → �− D0 ≡ 1 9.7 ± 1.6 −0.99 ± 0.01 0.06 ± 0.02

D1 0.71 ± 0.02 6.9 ± 1.2
D2 0.43 ± 0.01 4.2 ± 0.7

D0 0.14 ± 0.01 1.4 ± 0.3

�b → � D0 ≡ 1 6.6 ± 0.6 −0.99 ± 0.01 0.06 ± 0.02
D1 0.71 ± 0.02 4.7 ± 0.5
D2 0.43 ± 0.01 2.9 ± 0.3

D0 0.14 ± 0.01 0.9 ± 0.1

where a2 is the effective Wilson coefficient for the color-suppressed decays. For the numerical results, we take the large Nc limit leading 
to a2 = c2 = −0.365 [22]. The baryon transition matrix elements can be further decomposed as

〈�−|sγ μb|�−
b 〉 = u

(
f1(M2

D)γ μ − f2(M2
D)iσμν

pν
D

M�−
b

+ f3(M2
D)

pμ
D

M�−
b

)
ub ,

〈�−|sγ μγ 5b|�−
b 〉 = u

(
g1(M2

D)γ μ − g2(M2
D)iσμν

pν
D

M�−
b

+ g3(M2
D)

pμ
D

M�−
b

)
γ 5ub , (24)

where u(b) is the Dirac spinor of �−
(b)

, MD(�−
b ) and pμ

D are the masses and the 4-momentum of D(�−
b ), respectively, and f i and gi are the 

form factors with i = 1, 2 and 3. The helicity amplitudes are related to the form factors as

H±
0 = Q + A ∓ Q −B , (25)

where

Q ± =
√

(M�−
b

± M�−)2 − M2
D

A = G F√
2

a2 f D V cb V ∗
us

[(
M�−

b
− M�−

)
f1 + M2

D

M�−
b

f3

]
,

B = G F√
2

a2 f D V cb V ∗
us

[(
M�−

b
+ M�−

)
g1 − M2

D

M�−
b

g3

]
. (26)

The rest of the amplitudes can be obtained by taking r± = 1 in Eq. (2).
In this work, the form factors are calculated by the homogeneous bag model [17], in which the center motions of the hadrons are 

removed by the linear superposition of infinite bags, allowing the form factors to be calculated consistently. Particularly, with the homo-
geneous bag model, the experimental branching ratios of �b → �+

c π+/K + and �b → pπ+/K + can be well explained [14,17]. All the 
model parameters can be extracted from the mass spectra, given as [23]

R = (4.6 ± 0.2) GeV−1 , Mu,d = 0 , Ms = 0.28 GeV , Mb = 5.093 GeV , (27)

where R is the bag radius. For the detail derivations, the readers are referred to Ref. [17].
In Table 2, we list our numerical of the decay widths and observables. At the chiral limit, the emitted s quark due to the weak 

interaction is essentially left-handed, leading to α j ≈ −1. As a result, we have that β j = 0 for H̃ being real within the factorization 
framework. In addition, as there is no relative strong phase, the CP violating effects are absent.

The results of �b → �D , estimated with the naïve factorization, are also given to compare with those in the literature. Our prediction 
of B(�b → D0�) is roughly 1.2 times larger than the one in Ref. [19] and twice larger than that in Ref. [16]. It is attributed to the use of 
a larger a2 in our study. Since α j are independent of a2, the predicted values of α j are well consistent with those in Ref. [16], which are 
direct consequences from the factorization approach.

The possible sequential decays for the flavor and CP taggings are [24]

D0 : K −π+ , K −π+π0 , K −π+π+π− , K −e+νe ,

D1 : K 0
Sπ

0 , K 0
Sη , K 0

Sω , K 0
Sη

′ ,
D2 : K +K − ,π+π− , K 0

Sπ
0π0 , K 0

L π
0 ,π+π−π0 .

(28)

By crunching up their branching ratios, the ideal efficiencies are 30% for the flavor tagging and (3.8, 4.0)% for D1,2. Accordingly, we give 
estimations in Fig. 3 through

N(�b → �(→ pπ−)D) = N�b × B(�b → �(→ pπ−)D) × εDtag × εexp,

N(�−
b → �−(→ �π−)D) = N�−

b
× B(�b → �−(→ �π−)D) × εDtag × εexp, (29)

where N represent the numbers of the observed events, while NBb are the produced numbers of Bb = �b, �−
b , at the experiments. 

The estimated values of NBb can be found in Appendix B. Here, εexp are taken to be 7.25% and 0.96% for �b → �(→ pπ−)D and 
�b → �(→ pπ−)D [25], respectively.
5
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Fig. 3. The estimated values of N(�b → �(→ pπ−)D) and N(�−
b → �−(→ �π)D) at LHCb, where the red ones represent the statistical uncertainties.

From the figure, we have that N(�−
b → �−(→ �π−)D0, D0

, D1) = (200, 50, 20) at LHCb Run3, which are sufficient for measuring η
and ρ via Eq. (22). At LHC Run4, N(�b → �(→ pπ−)D0) and N(�b → �(→ pπ−)D1,2) would be 2 × 104 and 2 × 103, respectively, 
providing enough data points to reconstruct the full angular distributions, and allowing the experiments to extract γ .

4. Conclusion

We have systematically studied the decays of Bb → Bn D , and discussed the feasibilities of the experimental measurements. Remarkably, 
the process of �−

b → �−D contains only one quark diagram, and therefore provides an ideal place to extract the weak phase. We have 

shown that the Wolfenstein parameters of the CKM matrix can be extracted by ρ = (R1 − R2)/2 and η =
√

R1 + R2 − 1
4 (R1 − R2)2 − 1, 

which are feasible to be measured at LHC Run3.
As the baryons can be polarized, we have demonstrated that the decays of the b-baryons provide much richer observables compared 

to the mesons. All the possible observables have been parameterized with 9 real parameters, which allows the future experiments to 
extract the CP violating unitarity angle of γ in the CKM matrix. At LHCb Run4, a complete study of �b → �(→ pπ−)D on the angular 
distribution has shown to be promising.

On the other hand, to get quantitative results, the decay observables have been studied with the factorization ansatz. In particular, 
we have found that B(�−

b → �−D) = (9.7 ± 1.6, 1.4 ± 0.3, 6.9 ± 1.2, 4.2 ± 1.7) × 10−6 for D = D0, D0
, D1, D2, respectively. We have also 

estimated the numerical results of �b → �D , which are compatible with those in the literature.
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Appendix A. Angular analysis and helicity formalism

In this appendix, we would like to compare the pros and cons between the traditional approach and the helicity formalism. First, we 
briefly review the traditional approach toward the angular distribution [26].

According to the Lorentz structure, the amplitudes of Bb → Bn D are traditionally parameterized as

M = iu (A − Bγ5) ub , (A.1)

where A and B are parameters to be determined by theories or experiments. Notice that with Eq. (A.1), we have chosen the spinor 
representations for Bb,n . Traditionally, Eq. (A.1) is recasted as

M = χ
†
n(S + Pσ · q)χb, (A.2)

with

S = i
√

2Mb(En + Mn)A , P = −i
√

2Mb(En − Mn)B (A.3)

where χb(n) is the two-component spinor of Bb(n) , and q is the unit vector of the Bn ’s 3-momentum at the Bb rest frame. The symbols 
of “S” and “P ” are related to L = 0 and L = 1, respectively, where L stands for the orbital angular momentum. However, it is well known 
that the orbital angular momentum is ill-defined for massless particles, and thus incompatible to the special relativity.
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By squaring the amplitudes and noting

χbχ
†
b =

(
1

2
+ 1

2
sb(n) · σ

)
, (A.4)

we arrive

1 + α jq · (sb + sn) + (sb · q)(sn · q) + β jsb × q · sn + γ jq × (sb × q) · sn, (A.5)

where sb(n) satisfies(
sb(n) · σ )

χb(n) = χb(n) . (A.6)

Naively, one would tend to interpret sb(n) as the spin of Bb(n) . Nonetheless, if we adopt such interpretation, Eq. (A.5) would force us to 
commit (sb,n)x , (sb,n)y and (sb,n)z commute with each others, as the notation suggests that Bb,n are the eigenstates of them simultaneously. 
Although the outcomes might be correct, the interpretation is fatally wrong on the theoretical aspect [13,14]. Moreover, in the experiments, 
spins can not be measured directly, and it is hard to deduce physical observables from Eq. (A.5).

In comparison, the helicity formalism is outstanding on many aspects. It is perfectly compatible with massless objects, and the angular 
distributions of sequential decays can be easily deduced. For two-body systems, the eigenstates of helicities and angular momenta are 
constructed as

|λ1 , λ2, J , J z〉 = 1

(2 J + 1)π

∫
d cos θdφ|p, θ,φ,λ1 , λ2〉ei J zφd J (θ) J z

λ1−λ2 , (A.7)

with

|p, θ,φ,λ1, λ2〉 = Rz(φ)R y(θ)
(| f1; 
p = p
z, λ1〉 ⊗ | f2; 
p = −p
z, λ2〉

)
, (A.8)

where f1,2 stand for the first and the second particles with opposite 3-momenta, λ1,2 are the helicities of f1,2, J and J z are the angular 
momentum and its z component of the systems, respectively, d stands for the Wigner-d matrix, and R y,z are the rotation operators 
pointing toward ŷ(ẑ).

For the weak decays of i → f1 f2, where i is an arbitrary particle pointing toward ẑ, the angular distributions are given as

∂2�

∂φ∂ cos θ
∝

∑
λ1,λ2

∣∣〈p, θ,φ,λ1, λ2|Hef f |i; J , J z〉
∣∣2

. (A.9)

The helicities of the outgoing particles must be summed over as they are not distinguishable in the experiments. By inserting the identity

1 =
∑

J , J z,λ1,λ2

4π

2 J + 1
| J , J z, λ1, λ2〉〈 J , J z, λ1, λ2| , (A.10)

we arrive at

∂2�

∂φ∂ cos θ
∝

∑
λ1,λ2

∣∣∣ei J zφd J (θ) J z
λ1−λ2 Hλ1λ2

∣∣∣2
, (A.11)

with

Hλ1,λ2 ≡ 〈 J , J z, λ1, λ2|Hef f |i; J , J z〉 . (A.12)

Here, Hλ1,λ2 can not depend on J z as Hef f is a scalar, and the exponential in Eq. (A.11) can clearly be omitted. We can see that the 
amplitudes are now decomposed into two parts; the kinematic part is described by the Wigner-d matrices, while the dynamical one by 
Hλ1,λ2 . Using the inverse of Eq. (A.7), given as

|pẑ, λ1, λ2〉 =
∑

J

| J , J z = λ1 − λ2, λ1, λ2〉 , (A.13)

we arrive at

Hλ1,λ2 = 〈pẑ, λ1, λ2|Hef f |i; J , λ1 − λ2〉 , (A.14)

which is handy in computing the numerical results.
Angular distributions of sequential decays can be obtained by applying the above method multiple times. For Bb → Bn(→ B′

nπ)D j , we 
have

D j ∝
∑
λ′

n, J z

ρ J z J z

∣∣∣∣∣∣
∑
λn

Hλn
j H ′λ′

n eiλnφd
1
2 (θ) J z

λn d
1
2 (θ1)

λn
λ′

n

∣∣∣∣∣∣ , (A.15)

where Hλn
j describes the dynamic of Bb → Bn D j and Hλ′

n of Bn → B′
nπ . Here, ρ is the polarization density matrix of Bb , given as

ρ =
( 1

2 (1 + Pb) 0
0 1

2 (1 − Pb)

)
. (A.16)

The great advantage of the helicity formalism is that we do not need to write down the explicit representations of the particles for 
obtaining the angular distributions. The whole analysis bases only on the group theory.
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Appendix B. Estimations of the numbers of the produced baryons

In this appendix, we estimate the numbers of the events that can be reconstructed by the experiments. The production ratios at LHCb 
Run1 and Run2 are reported as [25]

f�−
b

f�b

= (6.7 ± 2.1,8.2 ± 2.7) × 10−2 , (B.1)

respectively, where fBb are the production rates of Bb . At LHCb Run1 and Run2, taking B(�b → � J/ψ) = (5.8 ± 0.8) × 10−4 [18,21] and 
N(�b → � J/ψ) = (1.33, 1.48) × 104 [25], one finds that

N�b (N�−
b
) = 5.80 × 109 (3.89 × 108), (B.2)

and

N�b (N�−
b
) = 5.86 × 109 (4.81 × 108), (B.3)

respectively. On the other hand, at LHCb Run3 and Run4, we have

N�b (N�−
b
) = 1.10 × 1011 (9.01 × 109), (B.4)

and

N�b (N�−
b
) = 1.83 × 1011 (1.50 × 1010), (B.5)

respectively. Here, we have used that the integrated luminosity of LHCb Run3 (4) is 18.75 (31.25) times larger than that of LHCb Run2 [27].
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