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Among the solutions of string theory and supergravity which preserve some fraction of supersymmetry,
the best known are those that leave one half of the supersymmetry unbroken, and there is a large number of
field theory models with this pattern of supersymmetry breaking. However, a lot of brane configurations
exist which preserve only 1=4, 1=8, or more exotic fractions of supersymmetry, and field theory side of
these systems remains largely unexplored. To find whether the formalism of nonlinear realizations is useful
in construction of models of this type, we consider the systems of some N0 scalar and vector N ¼ 1, d ¼ 3

Goldstone supermultiplets. We find that it is possible to construct an SOðN0Þ invariant theory of N0 scalar
multiplets with N0 broken supersymmetries. For N0 ¼ 3 or N0 ≥ 5 its action is not of Nambu-Goto type
and its structure remains universal for arbitrary N0. The cases of N0 ¼ 1, 2 correspond to the membranes in
D ¼ 4 andD ¼ 5, respectively, while for N0 ¼ 4 some arbitrariness in the action remains, and with proper
choice of parameters, it is possible to obtain the action of the membrane in D ¼ 7 in the bosonic limit. It is
also shown that the SOðN0Þ invariant action of N0 vector multiplets with 1=N0 pattern of supersymmetry
breaking does not exist for arbitrary N0.

DOI: 10.1103/PhysRevD.102.026011

I. INTRODUCTION

Studies of systems with partial spontaneous breaking of
global supersymmetry (PBGS) make up an important branch
of all supersymmetry studies. Systems with PBGS play
an important role in string theory and supergravity where
a lot of solutions that satisfy the Bogomol'nyi-Prasad-
Sommerfield (BPS) condition and preserve some fraction
of supersymmetry can be found. The best known solutions
preserve one half of the supersymmetry and comprise the
brane scan [1–3]. For many of these solutions (D-branes,
p-branes) the effective actions, superfield or component,
which can be determined by the invariance with respect to
both broken and unbroken supersymmetries, are known.
However, there are a lot of other solutions with different
patterns of supersymmetry breaking, which correspond to
intersecting branes. Solutions were found that preserve the
n=32 fraction of supersymmetry, where n ¼ 0; 1; 2; 3;
4; 5; 6; 8; 16 (see [4], where also the 3=4 fraction was
proposed, and references therein). For systems with these
patterns of breaking, the effective actions are much less
known. These include particles with tensorial central charges

[5–7], but attempts to construct field theory actions were
only briefly outlined and were not truly successful [8]. The
κ-symmetric theories with the 3=4 and even the ðn − 1Þ=n
patterns of breaking can be found in [9,10]. Thus, it would be
of interest to try to employ the formalism of nonlinear
realizations to construct component actions for systems with
unusual patterns of supersymmetry breaking extending the
ideas of works [11,12].
The idea of constructing component actions of theories

with partial breaking of supersymmetry is related to the
fact that one can realize transformations of the super-
space coordinates, Goldstone fermions and, optionally,
Goldstone bosons by multiplications in some coset space.
If the field and coordinate transformations are to form the
standard extended Poincaré superalgebra, one can para-
metrize the coset space in such a way that the trans-
formations of superspace coordinates have standard form,
the transformations of the fermionic superfields mimic
those of the Volkov-Akulov field [13,14], and the odd
coordinates of the superspace do not transform with respect
to broken supersymmetry. Thus, the first component of the
Goldstone fermionic superfield also transforms according
to the Volkov-Akulov law, while the bosonic components
remain inert with respect to broken supersymmetry. As a
result, one can construct a broken supersymmetry invariant
action with arbitrary bosonic limit by covariantizing
integration measure and derivatives and adding the
Wess-Zumino terms and then fix the action completely
by invariance with respect to unbroken supersymmetry.
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One can note that this scheme does not explicitly depend on
the number of supersymmetries involved, as it is easy to
construct the Volkov-Akulov action for an arbitrary number
of Goldstone fermions.
To check feasibility of this idea, it would be desirable to

study the simplest possible field theoretic models which
realize patterns of supersymmetry breaking different from
1=2. Thus, we do not concentrate on the already known
systems of branes with unusual amounts of preserved
supersymmetry but study the three-dimensional models
with one unbroken N ¼ 1 supersymmetry and some N0

number of spontaneously broken supersymmetries, which

are realized by the shifts of the Goldstone fermionic fields.
Two separate cases can be studied as the Goldstone
fermions can belong to either scalar or vector multiplets.

II. SCALAR MULTIPLETS

A. Basic formulas

Let us begin the study with the system of some N0 scalar
multiplets. The superalgebra under consideration is a direct
sum of N0 þ 1 copies of N ¼ 1, d ¼ 3 superalgebra, with
some central charges Zi:

fQα; Qβg ¼ 2ðσAÞαβPA; fSiα; Sjβg ¼ 2δijðσAÞαβPA; fQα; Siβg ¼ 2ϵαβZi: ð1Þ

Here, α; β;… ¼ 1, 2 and A; B;… ¼ 0, 1, 2 are SOð1; 2Þ Majorana spinor and vector indices, respectively, and
i ¼ 1;…; N0. The σ matrices, used here, satisfy the property

ðσAÞαγðσBÞγβ ¼ ηABδβα þ ϵABCðσCÞβα; ϵABC ¼ ϵ½ABC�; ϵ012 ¼ 1: ð2Þ

Spinor and vector indices are raised and lowered by the tensors

ϵαβ ¼ −ϵβα; ϵαγϵ
γβ ¼ δβα; ϵ12 ¼ −ϵ12 ¼ 1; ðϵαβÞ† ¼ ϵαβ; ηAB ¼ diagð1;−1;−1Þ: ð3Þ

The algebra (1) can also be extended by Lorenz SOð1; 2Þ and SOðN0Þ generators, which together form the algebra of
external automorphisms of (1).
We consider spontaneous breaking of N ¼ N0 þ 1, d ¼ 3 supersymmetry to N ¼ 1, d ¼ 3, with so far arbitrary N0. For

this purpose, it is natural to parametrize the coset element as

g ¼ eix
APAeθ

αQαeψ
iαSiαeiq

iZi
: ð4Þ

Here, xA and θα are the usual coordinates of theN ¼ 1, d ¼ 3 superspace, while qi and ψ iα are theN ¼ 1, d ¼ 3 superfields
that depend on xA, θα. The invariant Maurer-Cartan forms can now be easily calculated as

g−1dg ¼ i△xAPA þ dθαQα þ dψ iαSiα þ i△qiZi;

where △xA ¼ dxA þ iðdθαθβ þ dψ iαψ iβÞðσAÞαβ; △qi ¼ dqi þ 2idθαψ i
α: ð5Þ

Transformations in the coset space (4) are supposed to be induced by the left multiplication, g0g ¼ g0h, where h is the
element of small subgroup, which contains Lorentz and SOðN0Þ generators. In the most interesting cases, unbroken and
broken supersymmetries, h ¼ 1:

gQ ¼ eϵ
αQα ⇒ δQθ

α ¼ ϵα; δQxA ¼ iϵαθβðσAÞαβ; δQψαi ¼ 0; δQqi ¼ 0;

gS ¼ eε
iαSiα ⇒ δSψαi ¼ εαi; δSxA ¼ iεαiψβiðσAÞαβ; δQθ

α ¼ 0; δQqi ¼ iεiαθα: ð6Þ

Using the invariant forms△xA and dθα, one can establish a set of derivatives, which are covariant with respect to N0 þ 1
supersymmetries:

∇A ¼ ðE−1ÞAB∂B; EA
B ¼ δBA þ i∂Aψ iμψ iνðσBÞμν;

∇α ¼ Dα − i∇αψ iμψ iνðσBÞμν∂B; Dα ¼
∂
∂θα − iθβðσCÞαβ∂C: ð7Þ

The derivatives (7) satisfy the following commutation relations:
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f∇α;∇βg ¼ −2iðσAÞαβ∇A − 2i∇αψjμ∇βψjνðσCÞμν∇C;

½∇A;∇α� ¼ −2i∇Aψjμ∇αψjνðσBÞμν∇B;

½∇A;∇B� ¼ 2i∇Aψjμ∇BψjνðσBÞμν∇B: ð8Þ

As the dθα and△qi differential forms are covariant with respect to both supersymmetries, the dθα projection of△qi can
be put to zero:

dθαð∇αqi þ 2iψ i
αÞ ¼ 0 ⇒ ψ i

α ¼
i
2
∇αqi: ð9Þ

Thus, the fermionic Goldstone fields are not independent and can be expressed in terms of the derivatives of the Goldstone
bosons. This is an example of the inverse Higgs effect [15].
Studying the ∇β derivative of relation (9), we find that the spinorial derivatives of ψαi are also constrained:

∇αψ i
β þ∇βψ i

α ¼
i
2
f∇α;∇βgqi ¼ ðσCÞαβ∇Cqi þ∇αψjμ∇βψjνðσCÞμν∇Cqi: ð10Þ

Substituting here ∇αψ
i
β as a sum of its antisymmetric and symmetric parts,

∇αψ i
β ¼ ϵαβAi þ 1

2
ðσCÞαβJiC; ð11Þ

we find that the Ai superfields are not constrained by Eq. (10), while the vectors JiA satisfy the nonlinear equation

JiA ¼
�
1þ AkAk −

1

4
JkCJ

Ck

�
∇Aqi þ 1

2
JkAJ

Bk∇Bqi − ϵA
BC∇BqiJmCA

m: ð12Þ

B. Broken supersymmetry

The components of N0 scalar N ¼ 1, d ¼ 3 multiplets can be found as the first components of each of the mentioned
superfields:

qi ¼ qijθ→0; ψ iα ¼ ψ iαjθ→0; Ai ¼ Aijθ→0; JiA ¼ JiAjθ→0: ð13Þ

Relation (12) for the components implies

JiA ¼
�
1þ AkAk −

1

4
JkCJ

Ck

�
DAqi þ

1

2
JkAJ

BkDBqi − ϵA
BCDBqiJmCA

m: ð14Þ

Here, EA
B ¼ EA

Bjθ→0 and DA ¼ ðE−1ÞAB∂B is the usual broken supersymmetry covariant derivative, which acts on the
components. Indeed, as θα do not transform under broken supersymmetry, the active transformation laws δ⋆Sf ¼
δSfjθ→0 − δxAjθ→0∂Af of the components read

δ⋆Sqi ¼ −UC∂Cqi; δ⋆Sψ iα ¼ εiα −UC∂Cψ
iα; δ⋆SAi ¼ −UC∂CAi;

δ⋆SJiA ¼ −UC∂CJiA; UA ¼ iεkμψkνðσAÞμν: ð15Þ

It is now easy to check that

δ⋆SEA
B ¼ −∂AUCEC

B − UC∂CEA
B; δ⋆SðE−1ÞAB ¼ DAUB − UC∂CðE−1ÞAB;

δ⋆SDAqi ¼ −UC∂CDAqi; δ⋆S det E ¼ −∂CðUC det EÞ: ð16Þ

As one can recognize Ai as auxiliary components of the scalar multiplets, some covariant equations of motion should be
provided for them (or, equivalently, some terms in the Lagrangian that contain these fields and are invariant with respect to
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broken supersymmetry and the shifts of the fields qi).
Moreover, the terms in both cases should be dimensionless
and Lorentz invariant. The number of terms that satisfy
these requirements is very large. To simplify the consi-
deration, let us assume that all the terms in the Lagrangian
are also SOðN0Þ covariant. Then one can still construct
many invariant terms, such as AiAi, AiDBqiDBqjAj and
terms with higher powers of DAqi, but if no odd powers of
Ai are present in the action, they lead to the homogeneous
equation of motion of Ai, which implies simply Ai ¼ 0. If
one wants to avoid explicit breaking of SOðN0Þ invariance,
it is not possible to construct a term containing odd powers
of Ai for arbitrary N0. Thus, we remove Ai from Eq. (14) by
taking Ai ¼ 0 as an equation of motion. However, the
invariant linear term ∼ϵABCDAqiDBqjDCqkϵijklAl can be
constructed for N0 ¼ 4, and this case should be studied
separately.
The component approach to the actions with partial

spontaneous breaking of supersymmetry involves the con-
struction of the ansatz for the action invariant with respect
to broken supersymmetry, and fixing of remaining arbitra-
riness by demanding its invariance with respect to unbroken
supersymmetry.
The broken supersymmetry leaves much freedom in the

action. Its main effect is fixing the way how the action
depends on the Goldstone fermionic fields while leaving
the bosonic core undetermined. To explain this, let us recall
that acceptable terms in the Lagrangian can be divided into
two types according to their broken supersymmetry trans-
formation properties. The terms of the first, standard, type
transform with respect to the active laws (15), (16) into a
full derivative proportional to the term itself, just like det E.

Indeed, looking at the transformation law of covariant
derivative of qi, it is easy to note that an arbitrary
function of DAqi transforms with respect to broken super-
symmetry as δ⋆SFðDAqiÞ ¼ −UC∂CFðDAqiÞ and, there-
fore, δ⋆S½det EFðDAqiÞ� ¼ −∂C½UC det EFðDAqiÞ� is a full
derivative for any F. Construction of such terms essentially
follows the Volkov-Akulov recipe [13,14] of modifying
derivatives and integration measure in the bosonic action
with the matrix EA

B. As we are interested in the SOðN0Þ
invariant action, it should be assumed that the function F in
the Lagrangian depends on three possible independent
SOðN0Þ and Lorentz invariants

L0 ¼ − det EFðtrd; trd2; trd3Þ; dAB ¼ DAqiDBqi;

trd ¼ dAA; trd2 ¼ dABdBA; trd3 ¼ dABdBCdCA:

ð17Þ

This part of the Lagrangian transforms with respect to
broken supersymmetry proportionally to itself

δ⋆SL0 ¼ −∂CðUCL0Þ: ð18Þ

The function F is so far arbitrary and should be fixed later
by demanding invariance of the complete action with
respect to the unbroken supersymmetry.
The second type of terms, acceptable in the proper

Lagrangian, are the Wess-Zumino terms. They transform
into full derivative which is not proportional to the term
itself. One can note that there is only one SOðN0Þ invariant
of this type, with no room for arbitrary function:

LWZ ¼ i det EϵABCDAqiDBqjðψ iαDCψ
j
α − ψ jαDCψ

i
αÞ ⇒

δ⋆SLWZ ¼ −∂KðUKLWZÞ þ i det EϵABCDAqiDBqjðεiαDCψ
j
α − εjαDCψ

i
αÞ

¼ −∂KðUKLWZÞ þ i∂CðϵABC∂Aqi∂Bqjðεiαψ j
α − εjαψ i

αÞÞ: ð19Þ

Some freedom still remains in this case too. This term can be added to the Lagrangian with an arbitrary coefficient CWZ

which should be determined, together with the function F, by demanding invariance of the whole action S ¼ R
d3xðL0 þ

CWZLWZÞ with respect to the unbroken supersymmetry.

C. Unbroken supersymmetry

The transformation laws of the first components of the superfields in the case Ai ¼ 0 can be found with the help of the
formula:

δ⋆Qf ¼ ϵγDγfjθ→0 ¼ ϵγ∇γfjθ→0 þHC∂Cf; HA ¼ i
2
ϵγψ i

γJAi þ
i
2
ϵABCϵμψ iνJiBðσCÞμν: ð20Þ

Therefore, the transformations of the basic components qi and ψ iα under unbroken supersymmetry read

δ⋆Qqi ¼ −2iϵγψ i
γ þHC∂Cqi; δ⋆Qψ iα ¼ 1

2
ϵγðσCÞγαJiC þHC∂Cψ

iα: ð21Þ
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The transformations of the most essential ingredients of the action can now be calculated in a straightforward way:

δ⋆QEA
B ¼ HM∂MEA

B þ ∂AHMEM
B − iϵγ∂Aψ

i
γJiB − iϵμ∂Aψ

iνðσDÞμνJiCϵBCD;
δ⋆Q det E ¼ ∂MðHM det EÞ − i det EϵγDCψ

i
γJiC − i det EϵμDBψ

iνðσDÞμνJiCϵBCD;
δ⋆QDAqi ¼ −2iϵγDAψ

i
γ þ iϵγDAψ

k
γJkBDBqi þ iϵμDAψ

kνðσDÞμνJkCDBqiϵBCD þHM∂MDAqi: ð22Þ

The variation of the action under unbroken supersymmetry transformations is a combination of variations of the main part
and of the Wess-Zumino term. Let us study them separately.
As the transformation laws of theDAqi explicitly contain JiA and it is not possible to solve Eq. (14) for JiA in a convenient

way, let us present the main part of the action as a function of JiA:

L0 ¼ − det EF̃ðtrX; trX2; trX3Þ; XAB ¼ JiAJ
i
B;

trX ¼ XA
A; trX2 ¼ XA

BXB
A; trX3 ¼ XA

BXB
CXC

A: ð23Þ

This makes sense as Eq. (14) is linear with respect to DAqi and can be solved in a straightforward way:

JiA ¼ MA
BDBqi; MA

B ¼
�
1 −

1

4
trX

�
δBA þ 1

2
XA

B ⇒ DAqi ¼ ðM−1ÞABJiB;

DAqi ¼
1

detM

��
1þ 1

16
ðtrXÞ2 − 1

8
trX2

�
JiA −

1

2

�
1þ 1

4
trX

�
XA

BJiB þ 1

4
ðX2ÞABJiB

�
;

detM ¼ 1 −
1

4
trX þ 1

16
ðtrXÞ2 þ 1

192
ðtrXÞ3 − 1

8
trX2 −

1

32
trXtrX2 þ 1

24
trX3: ð24Þ

Using this formula, one can express trd, trd2, trd3 in terms of trX, trX2, trX3, and also find the variations of trd, trd2, trd3 in
terms of JiA. Then the transformation laws of trX, trX2, trX3 under unbroken supersymmetry can be found as a solution of
the system of linear equations:

δ⋆Qtrd ¼ ∂trd
∂trX δ⋆QtrX þ ∂trd

∂trX2
δ⋆QtrX2 þ ∂trd

∂trX3
δ⋆QtrX3;

δ⋆Qtrd2 ¼
∂trd2
∂trX δ⋆QtrX þ ∂trd2

∂trX2
δ⋆QtrX2 þ ∂trd2

∂trX3
δ⋆QtrX3;

δ⋆Qtrd3 ¼
∂trd3
∂trX δ⋆QtrX þ ∂trd3

∂trX2
δ⋆QtrX2 þ ∂trd3

∂trX3
δ⋆QtrX3: ð25Þ

The most practical way to perform this calculation is to use a computer analytical calculation package such asMathematica.
The result, however, is too complicated to be written explicitly. One can still note that (i) terms with HA are combined into
full divergence ∂AðHAL0Þ regardless of the explicit form of the function F̃ and (ii) the variation of det EF̃ can be written as a
sum of six linearly independent terms with coefficients that depend on F̃ and its derivatives:

det EϵαDAψ
i
αJiA; det EϵαDAψ

i
αXABJiB; det EϵαDAψ

i
αðX2ÞABJiB;

det EϵαDAψ
iβðσDÞαβJiCϵCDA; det EϵαDBψ

iβXB
AðσDÞαβJiCϵCDA; det EϵαDBψ

iβðX2ÞBAðσDÞαβJiCϵCDA: ð26Þ

The terms in the first line can not be combined into full divergence, even in the first approximation in the fermions and when
rewritten as functions of ∂Aqi. Therefore, their coefficients should vanish completely. This condition is strong enough to
determine the function F̃ up to a numerical multiplier; we normalize it as

F̃ ¼ −
2ð1 − trX=4Þ2

detM
: ð27Þ

The variation of the main part of the Lagrangian, up to full divergence, can now be written as
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δ⋆QL0 ¼ 2i
det E
detM

�
1 −

1

4
trX

�
ϵαDAψ

iβMB
AðσDÞαβJiCϵBCD: ð28Þ

The variation of the Wess-Zumino term (19)

LWZ ¼ iϵABC∂Aqi∂Bqjðψ iα∂Cψ
j
α − ψ jα∂Cψ

i
αÞ ð29Þ

with respect to unbroken supersymmetry can be written as

δ⋆QLWZ ¼ 2iϵABC∂Aδ
⋆
Qq

i∂Bqjðψαi∂Cψ
j
α − ψαj∂Cψ

i
αÞ þ 2iϵABC∂Aqi∂Bqj∂Cðψ iαδ⋆Qψ

j
αÞ þ 4iϵABC∂Aqi∂Bqjδ⋆Qψ iα∂Cψ

j
α

¼ 2iϵABC∂A½δ⋆Qqi∂Bqjðψαi∂Cψ
j
α − ψαj∂Cψ

i
αÞ� þ 2iϵABC∂Aqi∂Bqj∂Cðψ iαδ⋆Qψ

j
αÞ

þ 4iϵABC½HM∂Mqi∂Aqj∂Bψ
iα∂Cψ

j
α þ ∂Aqi∂BqjHM∂Mψ

iα∂Cψ
j
α�

− 2iϵABC∂Aqi∂BqjϵαðσDÞαβ∂Cψ
jβJiD þ 8ϵABCϵβψ i

β∂Aqj∂Bψ
iα∂Cψ

j
α: ð30Þ

Looking at this result, one can note that only the last line is essential as terms with HM can be proven to vanish due to the
identity ϵABCHM ¼ ϵMBCHA þ ϵAMCHB þ ϵABMHC, and the other two terms are just total divergences.
The first term in the last line of (30) can be transformed further. Restoring det E and the covariant derivatives in it and

taking into account that DAqi ¼ ðM−1ÞABJiB, one can find that

i det EϵABCDAqiDBqjϵαðσDÞαβDCψ
jβJiD ¼ i

det E
detM

ϵABCJiAJ
i
DJ

j
Bϵ

αðσDÞαβMC
KDKψ

jβ

¼ 2i det EϵABCDBqjϵαðσAÞαβDCψ
jβ

þ 2i
det E
detM

�
1 −

1

4
trX

�
ϵABCϵαJiAðσBÞαβMC

KDKψ
jβ: ð31Þ

Here, we used the fact that JiAJ
i
D ¼ XAD ¼ 2MAD − 2ð1 − trX=4ÞηAD. Moreover, the term with the derivative of qi is

combined with the last term in the last line of (30) into full divergence:

− 4iϵABC∂BqjϵαðσKÞαβEA
K∂Cψ

jβ þ 8ϵABCϵβψ i
β∂Aqj∂Bψ

iα∂Cψ
j
α

¼ −4iϵABCðσAÞαβϵα∂Cψ
jβ∂Bqj − 2ϵABC∂Bqjϵα∂Aðψ i

λψ
iλÞ∂Cψ

j
α: ð32Þ

Therefore, the variation of the Wess-Zumino term (30), up to the total derivative, could be written just as

δ⋆QLWZ ¼ −4i
det E
detM

�
1 −

1

4
trX

�
ϵABCϵαJiAðσBÞαβMC

KDKψ
iβ: ð33Þ

Therefore, the combination L0 þ 1=2LWZ is invariant with respect to unbroken supersymmetry.

D. Comments on the general action

The action of N0 scalar N ¼ 1, d ¼ 3 supermultiplets, which is invariant with respect to one unbroken and N0

spontaneously broken supersymmetries as well as the SOðN0Þ group, reads

S ¼ −
Z

d3x det E
2ð1 − trX=4Þ2

detM
þ i
2

Z
d3x det EϵABCDAqiDBqjðψ iαDCψ

j
α − ψ jαDCψ

i
αÞ: ð34Þ

Its structure is uniquely fixed by the mentioned requirements.
It is worth noting that (34) actually depends on q, not on J, while rewriting it in terms ofDAqi is not easy in general. This

can be done most easily in the particular cases of N0 ¼ 1 and N0 ¼ 2, when relation (14) can be solved for JiA analytically.
For N0 ¼ 1, we find the action of the membrane in d ¼ 4:
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JA ¼
�
1 −

1

4
JBJB

�
DAqþ 1

2
JAJBDBq ⇒ DAq ¼ JA

1þ JBJB=4
; JA ¼ 2DAq

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −DBqDBq

p ;

SN0¼1 ¼ −
Z

d3x det Eð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −DAqDAq

q
Þ: ð35Þ

These formulas can be obtained by setting trX2 ¼ ðtrXÞ2, trX3 ¼ ðtrXÞ3 in the general formulas above. This result,
obviously, coincides with one obtained in [11].
For N0 ¼ 2, one still can express trX3 in terms of the traces of the lower powers of X by noting that detX ¼ 0. Therefore,

introducing the notation

q1 ¼ qþ q̄; q2 ¼ iðq − q̄Þ; ψ1
α ¼

1ffiffiffi
2

p ðψα þ ψ̄αÞ; ψ2
α ¼

iffiffiffi
2

p ðψα − ψ̄αÞ; ð36Þ

we obtain exactly the component action of the membrane in D ¼ 5 [12]:

SN0¼2¼−2
Z

d3xdetE
1−1=4trX

1þðtrXÞ2=16− trX2=8
þ i
2

Z
d3xdetEϵABCDAqiDBqjðψ iαDCψ

j
α−ψ jαDCψ

i
αÞ

¼−
Z

d3xdetEð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðηAB−2DAqDBq̄−2DAq̄DBqÞ

p
Þ−2i

Z
d3xdetEϵABCDAqDBq̄ðψαDCψ̄α− ψ̄αDCψαÞ: ð37Þ

Thus, this action is invariant with respect to additional
hidden unbroken N ¼ 1, d ¼ 3 supersymmetry and
we again deal with breaking of just one half of the
supersymmetry.
For N0 ≥ 3, the effects of the unusual fraction of

supersymmetry breaking become nontrivial and the action
(34) can not be written in standard Nambu-Goto form,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðηAB −DAqiDBqiÞ

p
is not even a rational fraction in J.

While it is not possible to solve Eq. (14) for JiAðDBqjÞ for
general N0 in closed form, one still can reduce the problem
to one scalar equation and obtain the general matrix
structure. Let us slightly rewrite Eq. (14) as

JiA ¼ ΛDAqi þ
1

2
JkAJ

BkDBqi; Λ ¼ 1 −
1

4
JkCJ

Ck ð38Þ

and use Λ as a parameter. Now substituting JiA ¼
MA

BðdÞDBqi,�
1

2
MA

BdBCMCD −MA
D þ ΛδAD

�
DDqi ¼ 0: ð39Þ

If N0 ≥ 3, this equation implies that the matrix in brackets
is zero. Also noting that M and d commute, one can solve
this simple quadratic equation. The solution, which is not
singular when DBqi → 0, is

MA
B ¼ 2Λ

�
1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Λd

p
�

A

B
: ð40Þ

As trM ¼ 3 − 1
4
JiAJ

Ai ¼ 2þ Λ, the parameter Λ can be
found as a function of DAqi by solving the equation

2þ Λ ¼ 2Λtr
�

1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1 − 2Λd

p Þ

�
: ð41Þ

Finally, one can explicitly write the bosonic part of the
general Lagrangian (34) as

L ¼ −
1

4Λ
detð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Λd

p
Þ: ð42Þ

Unfortunately, it is not known how to solve Eq. (41)
nonperturbatively. The function Λ and the bosonic
Lagrangian still can be written as power series

Λ ¼ 1þ
�
−
1

4
trd

�
þ
�
−
1

4
trd2 þ 1

8
ðtrdÞ2

�
þ
�
−

5

16
trd3 þ 5

16
trd2trd −

5

64
ðtrdÞ3

�

þ
�
−

1

32
ðtrd2Þ2 − 11

96
trdtrd3 þ 7

64
trd2ðtrdÞ2 − 7

384
ðtrdÞ4

�
þ…;

L ¼ −2þ
�
1

2
trd

�
þ
�
1

4
trd2 −

1

8
ðtrdÞ2

�
þ
�
1

24
ðtrdÞ3 − 3

16
trdtrd2 þ 5

24
trd3

�

þ
�

7

384
ðtrdÞ4 − 3

32
ðtrdÞ2trd2 þ 1

32
ðtrd2Þ2 þ 1

12
trdtrd3

�
þ… ð43Þ
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E. Special case N0 = 4

As mentioned before, the case N0 ¼ 4 offers a
specific possibility of combining SOðN0Þ invariance with
the nontrivial equation of motion for the auxiliary
field. We assume that this equation can be cast into the
form

Ai ¼ ΦϵABCϵijklJjAJ
k
BJ

l
C: ð44Þ

Let us note that up to the functionΦ this relation is the most
general possible, as JiBA

i ¼ 0 for (44) and it can not be
multiplied by matrices like JAmJiA. Indeed, such a multi-
plication leads to the expression

JiAJ
j
BJ

k
CJ

l
Dϵ

ijkl ¼ 0; ð45Þ

being antisymmetric in A, B, C, D. The property JiBA
i ¼ 0

also simplifies the relation between JiA and DBqi:

JiA ¼ M̃A
BDBqi; M̃A

B ¼
�
1 −

1

4
trX þ 36Φ2 detX

�
δBA þ 1

2
XA

B; ð46Þ

as the ϵABC term is now absent.
With the ϵijkl symbol at hand, one can construct one more Wess-Zumino term in addition to the general one (19):

LWZ2 ¼ i det EϵABCϵijklDAqiDBqjψkαDCψ
l
α: ð47Þ

The proof of its invariance with respect to broken supersymmetry is completely analogous to the proof of invariance of the
general term (19). The ansatz for the Lagrangian in the case N0 ¼ 4, therefore, reads

LN0¼4 ¼ − det EFðJÞ þ 2iC1 det EϵABCDAqiDBqjψ iαDCψ
j
α þ iC2 det EϵABCϵijklDAqiDBqjψkαDCψ

l
α: ð48Þ

Unbroken supersymmetry transformations can be treated using the same idea as in the previous section. The
transformation laws of qi and ψ i

α under unbroken supersymmetry now read

δ⋆Qqi ¼ −2iϵγψ i
γ þ H̃C∂Cqi; δ⋆Qψ iα ¼ 1

2
ϵγðσCÞγαJiC − ϵαΦϵijklϵABCJjAJ

k
BJ

l
C þ H̃C∂Cψ

iα;

H̃A ¼ −iΦϵμψ iνϵijklϵPQRJjPJ
k
QJ

l
RðσAÞμν þ

i
2
ϵγψ i

γJAi þ
i
2
ϵABCϵμψ iνJiBðσCÞμν: ð49Þ

New linearly independent terms appear in the variation of the action, in addition to (26):

ϵABCϵijklJjAJ
k
BJ

l
Cϵ

μðσKÞμνDKψ
iν; ϵABCϵijklJjAJ

k
BJ

l
Cϵ

μðσKÞμνDLψ
iνXL

K;

ϵABCϵijklJjAJ
k
BJ

l
Cϵ

μðσKÞμνDLψ
iνðX2ÞLK:

Subsequent analysis in the lowest approximation in fermions shows that to make the system invariant with respect to
unbroken supersymmetry, the following two conditions should be satisfied:

F ¼ det M̃−1
�
4C1

�
1 −

1

4
trX

�
2

þ 18 detXΦðC2 þ 8C1Þ
�
1 −

1

4
trX

��
;

− C2 þ C1Φð24 − 6trX þ 864 detXΦ2Þ ¼ 0: ð50Þ

In contrast to the usual case, the Lagrangian is not a rational function of the JiA variables and the constants that accompany
the Wess-Zumino terms are not fixed (one of them is irrelevant as it would be fixed by properly normalizing the action).
With the special choice of the constants, one can find that the bosonic limit of Lagrangian is the one of the membrane in
D ¼ 7:

C1 ¼
1

2
; C2 ¼ � 1

2
⇒ L ∼ −1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδBA − ∂Aqi∂BqiÞ

q
: ð51Þ

In this case, one can expect enhancement of unbroken supersymmetry.
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III. VECTOR MULTIPLETS

Obviously, one can dualize the scalar fields in the action
(34) and obtain the action of N0 electromagnetic fields.
However, to properly check that the resulting system
possesses broken and unbroken supersymmetries, it is
desirable to construct it from the first principles. This,
however, appears to be problematic.
The standard N ¼ 1, d ¼ 3 vector multiplet in the case

of one spontaneously broken supersymmetry is described
by a spinor superfield ψα subjected to the irreducibility
condition ∇αψα ¼ 0 [16]. It is natural to generalize this
condition to the case of N0 broken supersymmetries
as ∇αψαi ¼ 0.
It is worth noting that if one wishes to keep N0 arbitrary

and the whole system SOðN0Þ invariant, it is not possible to
modify this relation. Indeed, one can try to introduce some
function of ∇αψβj to the right-hand side. Let us note that
this function should depend on the traceless part of ∇αψβj,
as the terms with trace parts are combined into the term
Nij∇αψαj and the matrix Nij can be factorized out. As
terms with structure Nij∇αψαj should be avoided, the only
candidate cubic term ∇αψβk∇βψγk∇γψαi is zero as
∇αψβk∇βψγk ∼ δγα if∇αψβk,∇βψγk are traceless. The terms
with higher powers of ∇αψβk also reduce to zero for the
same reasons.
It turns out, however, that the introduced condition is not

consistent. It should be used to find the proper Bianchi
identity for the field strength. In the bosonic limit it leads to
the following condition on the bosonic component of the
multiplet:

∇β∇β∇αψαi ¼ 0 ⇒ f∇α;∇βg∇αψ iβ þ fermions ¼ 0:

ð52Þ

In the vector notation the first component of (52) reads

∂AVAi

�
1 −

1

4
Vj
BV

Bj

�
þ 1

2
VAjVBj∂AVi

B ¼ 0;

∇αψ i
βjθ→0 ¼

1

2
ðσAÞαβVi

A:

ð53Þ

Contrary to the expectation, this identity is not equivalent to
the usual one ∂AFAi ¼ 0 and the inconsistency appears
already in the cubic approximation in V. Indeed, the last
term in identity (53) can be rewritten as

∂AðVAjVBjVi
BÞ − ∂AVAjVBjVi

B − VAjVBi∂AV
j
B: ð54Þ

The first term in (54) contributes to the field strength and
the second one can be compensated by multiplying the
identity by a suitable matrix with indices i, j. The last one,
however, could not be compensated unless the equation of
motion for the field strength ϵABC∂BVi

C þ… ¼ 0 is taken
into account.
The natural way to solve this problem is to assume that

the system under consideration can be defined only on-
shell, refuse to use the superfield formalism completely and
try to formulate this system in terms of fermionic fields and
vector potentials. However, even this approach, with some
moderate assumptions, seems to be unable to produce the
correct transformation laws.
To find the transformation laws of fermions and vector

potentials, a good starting point would be to consider
broken supersymmetry. It would be natural to keep the
broken supersymmetry transformation law of the fermions,
obtained within the coset approach, as it is valid for any
number of broken supersymmetries

δ⋆Sψ i
α ¼ εiα − UC∂Cψ

i
α; UA ¼ iεjμψ jνðσAÞμν: ð55Þ

As for the vector potential, it is natural to assume that it
does not experience an inhomogeneous shift under broken
supersymmetry and its transformation law combines a
standard term that is induced by the variation of the
coordinates with a compensating term to make the whole
variation gauge invariant:

δ⋆SAi
A ¼ UB∂AAi

B − UB∂BAi
A ¼ ϵABCUBFCi;

FAi ¼ ϵABC∂BAi
C: ð56Þ

The algebra of these transformations closes on both
fermions and potentials without any use of the equations
of motion:

½δ⋆S1; δ⋆S2�ψ i
α ¼ −2iεμk2 ενk1 ðσAÞμν∂Aψ

i
α and ½δ⋆S1; δ⋆S2�Ai

A ¼ 2iεμk2 ενk1 ðσBÞμνð∂AAi
B − ∂BAi

AÞ:

The commutator of broken supersymmetry transforma-
tions, acting on Ai, produces not only a shift but also a
gauge transformation. As the transformation laws of
fermions are standard, the broken supersymmetry covariant
derivative should be defined asDA ¼ ðE−1ÞAB∂B. Also note
that the quantity FAi is invariant with respect to broken
supersymmetry

FAi ¼ det E−1EB
AFBi; δ⋆SFAi ¼ −UC∂CFAi: ð57Þ

The next natural point would be to find the general ansatz
for unbroken supersymmetry variations, which would
commute with broken supersymmetry. The structure of
the fermionic field variation can be fixed easily by assum-
ing that ½δ⋆S; δ⋆Q�ψ i

α ¼ 0. At first, one can find δ⋆Sδ⋆Qψ i
α
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δ⋆Sδ⋆Qψ i
α¼δ⋆Qδ⋆Sψ i

α¼−iεjμδ⋆Qψ jνðσBÞμν∂Bψ
i
α−UA∂Aδ

⋆
Qψ

i
α:

ð58Þ

Now it is straightforward to show that

δ⋆S dδQψ i
α ¼ −UC∂C

dδQψ i
α;dδQψ i

α ¼ δ⋆Qψ i
α þ iψ jμδ⋆Qψ jνðσBÞμνDBψ

i
α: ð59Þ

The quantity dδQψ i
α is a broken supersymmetry invariant

and should be some function of the unbroken supersym-
metry parameter ϵα and the covariantized field strength FAi.
The complete variation δ⋆Qψ i

α can be expressed in terms
of it,

δ⋆Qψ i
α ¼ dδQψ i

α −HC∂Cψ
i
α; HA ¼ iψ jμ dδQψ jνðσAÞμν:

ð60Þ

It again has the usual structure, and the relation
½δ⋆S; δ⋆Q�ψ i

α ¼ 0 is satisfied without any reference to the
equations of motion.
Now its natural to assume that the transformation law of

the vector potential can be written as

δ⋆QAi
A ¼ dδQAi

A þ ϵABCHBFCi: ð61Þ

Commuting it with the broken supersymmetry law, one can
obtain that

½δ⋆Q; δ⋆S�Ai
A ¼ −δ⋆Sð dδQAi

AÞ þUB∂Að dδQAi
BÞ

−UB∂Bð dδQAi
AÞ þ ∂AðUBHCFDiϵBCDÞ:

ð62Þ

To close the algebra properly, the right-hand side should
reduce to a gauge transformation, and the last term already

has this form. To reconstruct dδQAi
A completely, one

should note that the leading term in it should coincide
with the transformation law of A in the free case,dδ⋆QAi

A ≈ iϵαψβiðσAÞαβ. Thus, relation (62) should be used
to restore higher order fermionic terms in the transforma-
tion law.
The ansatz for the transformation law with the

most general cubic term that does not assume the
equations of motion could be, up to a gauge transformation,
written as

dδQAi
A ¼ iϵαψβiðσAÞαβ þ aϵα∂Aψ

i
αψ

jβψ j
β þ bϵαψ iβψ j

α∂Aψ
j
β:

ð63Þ

Indeed, for any combination of ϵψ iψ jψ j and the derivative
with the external index A one can employ a gauge trans-
formation to make sure that the derivative acts on the
fermion with index j. Then only three following combi-
nations could be devised:

ϵαψ i
αψ

jβ∂Aψ
j
β; ϵαψ iβψ j

α∂Aψ
j
β; ϵαψ iβψ j

β∂Aψ
j
α:

ð64Þ

The third one is algebraically related to two others and can
be excluded. Then the first can be integrated by parts to
obtain (63).
Substituting it into (62), one can find that the following

equation should be satisfied:

−iϵαεβiðσAÞαβ þ ϵαεjαψβj∂Aψ
i
β þ ϵαεjβψ j

α∂Aψ
i
β − 2aϵαεjβψ j

β∂Aψ
i
α − bϵαεiβψ j

α∂Aψ
j
β þ bϵαεjαψ iβ∂Aψ

j
β ¼ ∂Afi: ð65Þ

The constant term can be presented as a derivative of
−iϵαεβiðσAÞαβxA. The term bϵαεiβψ j

α∂Aψ
j
β is not a deriva-

tive and has no analogues, and, therefore, b ¼ 0. Finally,
representing

ϵαεβjψ j
α∂Aψ

i
β ¼ ϵαεjαψ jβ∂Aψ

i
β þ ϵαεβjψ j

β∂Aψ
i
α; ð66Þ

one can find that the result is not a full derivative regardless

of a. Thus, the commutator of Q and S transformations,
acting on Ai

A, can not be closed properly. Even the use of
the equations of motion could not help here. The equation
of motion of the fermionic field in the lowest approxima-
tion implies that ∂Aψ

i
αðσAÞβγ is symmetric in α, β, γ. As the

terms that should be compensated in (65) have a derivative
with index A, we should consider combinations which
contain ∂αμψ

j
βðσAÞαβ. Four of them can be found,

ϵαψ iβψ j
β∂αμψ

j
νðσAÞμν; ϵαψ i

αψ
jβ∂βμψ

j
νðσAÞμν; ϵαψ iβψ j

α∂βμψ
j
νðσAÞμν; ϵαψ jβψ j

β∂αμψ
i
νðσAÞμν: ð67Þ

Their variations, after applying the equation of motion, read
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2ϵαεiβψ j
β∂Aψ

j
α þ 2ϵαεjβψ i

β∂Aψ
j
α; 2ϵαεiαψ

jβ∂Aψ
j
β − 2ϵαεjβψ i

α∂Aψ
j
β;

2ϵαεiβψ j
α∂Aψ

j
β − 2ϵαεjαψ iβ∂Aψ

j
β; 4ϵαεjβψ j

β∂Aψ
i
α: ð68Þ

Regardless of arbitrary coefficients taken in front of these
combinations, one can not obtain a full derivative by adding
them to (65).

IV. CONCLUSION

The field theory side of nonhalf breaking of global
supersymmetry remains a relatively unexplored subject. To
test whether it is possible to construct a usual field theory
action with various patterns of supersymmetry breaking,
we have considered the systems of multiple scalar and
vector N ¼ 1, d ¼ 3 Goldstone superfields.
In a simpler case of N0 scalar superfields, it was

determined with the usual method of nonlinear realizations
that N0 fermions enter into the action as the standard
Volkov-Akulov matrix EA

B ¼ δA
B − iψ iα∂Aψ

iβðσBÞαβ, as
well as the Wess-Zumino term. By assuming overall
SOðN0Þ invariance of the action, which in the case of
arbitrary N0 uniquely selects ∇α∇αqijθ→0 ¼ 0 as the
equation of motion of the auxiliary field, the unbroken
supersymmetry transformation laws were found. They
determine the action uniquely. In the case of N0 ¼ 1 and
N0 ¼ 2, they appear to be the usual static gauge Nambu-
Goto actions of the membranes in D ¼ 4 and D ¼ 5,
respectively. For N0 ≥ 3 the action is not of Nambu-Goto
type, though its general structure remains universal. Most
remarkably, it exists for arbitrary N0. Some peculiarity
appears in the case of N0 ¼ 4 when it is possible to
consider the SOðN0Þ invariant action with the nontrivial
equation of motion of the auxiliary field. This relaxes the
requirements on the action and allows one, with proper
choice of the parameters, to obtain the action of the
membrane in D ¼ 7 (in the bosonic limit).

Contrary to the result above, it appears to be impossible
to construct an action of an arbitrary number of vector
multiplets, at least SOðN0Þ invariant one. In this case, one
should derive the Bianchi identity for the field strength as a
consequence of the irreducibility conditions, but the only
possible condition implies the identity that could not be
brought to the standard form without the use of the
equations of motion. Moreover, further analysis of this
system, formulated in terms of the vector potential, shows
that it is not possible to find the transformation law
of the potential which would commute with broken
supersymmetry.
As further development of this topic, it would be of

interest to construct higher dimensional analogs of scalar
systems, which seems to be a rather plausible possibility.
Also, it would be desirable to relax the requirement of
SOðN0Þ symmetry. When it comes to the vector multiplets,
additional possibilities are to consider the actions for some
particular values of N0, as well as hybrid systems that
contain scalars and one or two vector multiplets. The next
task could be adaptation of this framework to describe
particular systems with unusual patterns of supersymmetry
breaking, which are abundant in the literature. Also, it
would be interesting to construct a superfield action using
the ideas of paper [17]. As a last point, it would be
interesting to know whether models for arbitraryN0 admit a
string theory interpretation.
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