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We studied the dynamics of the order parameter and the winding numbers W formation of a quenched
normal-to-superconductor state phase transition in a finite size holographic superconducting ring. There is a
critical circumference C̃ below which no winding number will be formed; then, C̃ can be treated as the
Kibble-Zurek mechanism (KZM) correlation length ξ, which is proportional to the fourth root of its quench
rate τQ, which is also the average size of independent pieces formed after a quench.When the circumference
C ≥ 10ξ, the key KZM scaling between the average value of absolute winding number and the quench rate

hjWji ∝ τ−1=8Q is observed. At smaller sizes, the universal scaling will be modified; there are two regions.

The middle size 5ξ < C < 10ξ result hjWji ∝ τ−1=5Q agrees with a finite size experiment observation, while

at ξ < C ≤ 5ξ, the average value of absolute winding number equals the variance of winding number, and
there is no exponential relationship between the quench rate and the average value of absolute winding
number. The winding number statistics can be derived from a trinomial distribution with Ñ ¼ C=ðfξÞ trials,
and f ≃ 5 is the average number of adjacent pieces that are effectively correlated.
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Phase transition that traverses the critical point at a finite
rate is a nonequilibrium process, and the critical dynamics
of the out-of-equilibrium process is one of the most
interesting and important problems in modern physics
[1]. Because of the relaxation time’s divergence near the
critical point (critical slowing down), the formation of
topological defects by taking into account finite speed of
propagation of the relevant information was predicted by
the Kibble-Zurek mechanism (KZM) [2–9]. The original
idea of KZM is from Kibble’s insight into the role of
causality in structure formation in the early Universe [2,3].
Later, Zurek found that condensed-matter systems offer a
test bed to study the dynamics of symmetry breaking [4–6].
He first predicted the formation of independent regions
with their average size controlled by the correlation length ξ
at the point when the frozen time ends; ξ scales with the
linear quench rate τQ in which the phase transition is
crossed as a universal power law,

ξ ∝ ταQ; ð1Þ

and the power-law exponent α ¼ ν=ð1þ νzÞ is set by a
combination of the dynamic and correlation-length (equi-
librium) critical exponents denoted by z and ν, respectively.
In a spatial d-dimensional system, the average density ñ of
the resulting topological defects scales with the linear
quench rate as a universal power law,

ñ ∝ τ−dαQ ; ð2Þ

this is the key prediction of KZM.
In three-dimensional (3D) and two-dimensional (2D)

systems, the topological defects are usually vortex strings
[10] and vortices [11,12], respectively, with zeroth order
parameter inside the vortex cores. In a one-dimensional
(1D) system with real order parameter, kinks are the
topological defects with zero order parameter in the center
[13]. In a 1D systems with a complex order parameter
undergo a phase transition that breaks the Uð1Þ gauge
symmetry, winding numbers W ¼ H

C dθ=2π are expected
to form, but the amplitude of the order parameter keeps
uniform [9]. W admits a Gaussian distribution with
hWi ¼ 0; however, the average absolute winding number

hjWji ∝
ffiffi
1
ξ

q
∝ τ−α=2Q [14,15]. Numerical experiments in a
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quenched superfluid/superconductor have supported
Eq. (2) in three dimensions [10], two dimensions
[12,16,17], and one dimension [14,15]. In the laboratory,
the Eq. (2) has also been confirmed in liquid crystals
[18–20], 3He superfluids [21,22], Josephson junctions
[23–26], thin-film superconductors [27,28], a linear optical
quantum simulator [29], and also in a strongly interacting
Fermi superfluid [30]. Recently, Adolfo del Campo et al.
found the universal statistics of topological defects formed
in a quantum phase transition beyond KZM [31,32], which
has been confirmed by a 1D quantum simulation [33].
Despite the progress, little attention has been devoted to

the case when the size of the system approaches the order of
ξ. Except in experiment [34], the size effect results were
reported by L. Corman et al. in Bose gases through a
temperature quench of the normal-to-superfluid phase tran-
sition. Large size C ≫ ξ observation matches the KZM
prediction by using the mean field theory critical exponents
z ¼ 2; ν ¼ 1=2, where hjWji ∝ τ−1=8Q at fixedC and hjWji ∝ffiffiffiffi
C

p
at a fixed τQ [14,15]. However, at small size C < 10ξ,

hjWji ∝ τ−0.2Q at fixed C and hjWji ∝ C0.8 at a fixed τQ were
also reported in Ref. [34]. Now, a theoretical model and even
a numerical simulation are still lacking to address the
experimental observation. Also, the KZM does not include
the case when the system size is not an integer multiple of ξ
since at large sizes the remainder can be ignored, and the
number of KZMpiecesN is always an integer. However, at a
finite size close to ξ, one has to consider the case of a
fractional N. Furthermore, equilibrium phase transitions at
finite size can still have universal scaling laws, as confirmed
in a 3He superfluid phase transition [35] and a strongly
coupled holographic superconductor [36]; then, it is of
importance to study the finite size effect in KZM.
To study the finite size KZM, we adopt a holographic

superconductor ringmodel in the frameworkof gauge/gravity
duality, focusing on the spontaneous formation of winding in
the superconducting ring after a temperature quench. The
holographic duality [37–39] that relates strongly interacting
quantum field theories to theories of classic gravity in higher
dimensions has been proven to be a new and useful scheme
to study strongly interacting condensed-matter systems in
equilibrium [40,41] and also to study the real-time dynamics
when the system is far away from equilibrium [42–44].
Then, it is very suitable to study the phase transition dynamics
happening at a finite rate [15–17,45–50]. The well-studied
holographic superconductor model defined in an anti-
de Sitter black hole is [51–53]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 − ðjDΨj2 −m2jΨj2Þ

�
: ð3Þ

The metric of the anti-de Sitter black hole in the Eddington
coordinates is ds2 ¼ l2

z2 ð−fðzÞdt2 − 2dtdzþ dx2 þ dy2Þ ,
where fðzÞ ¼ 1 − ðz=zhÞ3, and the temperature of the black

hole is T ¼ 3=ð4πzhÞ. There is a critical value of the black
hole temperature below which the charged scalar develops a
finite value in the bulk while its dual field theory operator has
a finite expectation value hOi, which breaks the Uð1Þ
symmetry in the boundary field theory. Working in 1D
spatial boundary geometry by only turning on coordinate x
dependence of all the fields in the equations of motion, using
the periodic boundary condition in the x coordinate, we are
effectively studying a superconducting ring. By solving the
dynamic equations by decreasing the black hole temperature
cross Tc, the quench induced winding number formation
process can bemonitored in detail [54].One sample result of a
quench from 1.1Tc to 0.82Tc is given in Fig. 1, where τQ ¼
e3 and C ¼ 20. After the quench, the order parameter
amplitude approaches the equilibrium value, while the phase
develops a stable configuration, thewindingnumberW ¼ −1.
From the phase configuration in Fig. 1, we can label the
position where the phase field increases from −π toþπ to be
“þ” and the positionwhere the phase field decreases fromþπ
to −π to be “−” as shown in the last plot, and we find that

W ¼ nþ − n− ¼ 1 − 2 ¼ −1; ð4Þ

where nþ is the number ofþ and n− is the number of −. We
confirmed that thewinding number counted from this method
always equals exactly the one by integrating dθ in the closed
superconducting ring. Also, the nþ þ n− is found to be
proportional to C, which matches the KZM’s prediction.
To see how quench rate affects the formation ofW, people

always refer to its variance σ2ðWÞ, which is proportional to
the number of independent pieces N ¼ C=ξ ∝ τ−1=4Q using
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FIG. 1. Winding up a superconducting ring after a temperature
quench τQ ¼ e3, the circumference C ¼ 20. In the four rows, we
show the magnitude of the order parameter jhOij and its phase θ
configuration in the dynamic process. The system finally enters
an equilibrium state with constant amplitude of order parameter
and a stable configuration of phase field θðxÞ.
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the mean field exponents z ¼ 2 and ν ¼ 1=2 in Eq. (1). At
large N, hjWji can be computed from the Gaussian distri-
bution, and then we obtain the key prediction at a fixed
size [14]

σðWÞ ¼
ffiffiffiffiffiffiffiffiffiffi
hWi2

q
∝ hjWji ∝ τ−1=8Q ; ð5Þ

at a fixed rate hjWji ∝ σðWÞ ∝ ffiffiffiffi
N

p
.

Figure 2 (left) plots σ2ðWÞ as a function ofC for different
quench rates (τQ ¼ e4; e5; e6; e7), average over 100,000
times calculation. According to KZM, since the system
inherits an infinite relaxation time at the critical point, then
it cannot catch the speed of a quench, and as a result, the
superconducting ring will be divided into many indepen-
dent pieces with their average size being ξðτQÞ. The
topological defects forms at the positions where the
independent pieces meet, and it is natural to conclude that
there will be a critical value of circumference C̃ ¼ ξðτQÞ
below which there is only one piece and then no winding
number will be formed. The numerical result of C̃ con-
firmed ξðτQÞ ∝ τ0.244Q (Fig. 2 inset). Also, from the KZM
picture, σ2ðWÞ½C� for different rates can be scaled to
exactly one line by transforming C to be the number of
pieces formed [Fig. 2 (right)], and in a formula, it can be
expressed as

σ2ðWτQ1
Þ½C1� ¼ σ2ðWτQ2

Þ½C2�; ð6Þ

when C1=ξðτQ1Þ ¼ C2=ξðτQ2Þ ¼ N. Also, the linear rela-
tionship σ2ðWÞ ∝ N between the variance of the winding
number and number of regions can be seen when the size of
regions is roughly larger than 5. Until now, we confirmed
the KZM mechanism from another perspective from the

size dependent results and the scaling of critical circum-
ference C̃ rather than computing Eq. (2) directly. Note that
the agreement also confirmed that a holographic super-
conducting phase transition is always of the mean field
class [55–57].
Besides the perfectly matched KZM results, from Fig. 2,

one also finds that σ2ðWÞ ∝ N cannot hold anymore when
the ring size is reducing. Figure 3(b) shows that the non-
KZM region is 1 < N ≤ 5. Also in this region, there is
another interesting feature that σ2ðWÞ ¼ hjWji, since the
winding number can have only three values: −1, 0, and 1.
One thing that needs to be emphasized is that in this region,
though the KZM pieces N can be larger than 1,W does not
take a value larger than 1, and this indicates that the
formation of topological defects in a size N ≤ 5 is
effectively correlated, which is probably due to the growth
of correlation length in the presence of diffusion [13].
Still, in Figs. 3(b) and 3(c), at a larger size 5 < N < 10,

σ2ðWÞ has a linear dependence of N, but

hjWji ∝ N0.8: ð7Þ

This is different from the large size result hjWji ∝ N0.5

[14]. Then, one can conclude that the Gaussian distribution
is not good anymore to capture the statistic distribution of
winding number at this region. We compared the discrete
distribution and the corresponding Gaussian distribution
with the variance of W in Fig. 4, which shows the winding
distribution at three different numbers of regions N ¼ 8,
18, 30. The discrete distribution approaches a Gaussian one
when increasing N. Since N < 10, jWj has only three
values from 0 to 2, the deviation from Gaussian distribution
is expected. Combining Eq. (7) and
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FIG. 2. Size dependence of variance σ2ðWÞ. Left: size depend-
ence of σ2ðWÞ for four quench rates, from top to bottom,
τQ ¼ e4; e5; e6; e7. The inset shows the scaling of the critical
circumference. Right: σ2ðWÞ as a function of pieces number N;
all quench rate results are identical to each other.
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FIG. 3. Size-dependent σ2ðWÞ and hjWji. (a) σ2ðWÞ and hjWji
as a function of N and their fit from trinomial distribution
Eq. (10); when N < 5, the two have the same values. (b) Log-
arithmic relationship between σ2ðWÞ and N. (c) Logarithmic
relationship between hjWji, and N. k is the linear fit slop.
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ξ ¼ C
N

∝ τ1=4Q ; ð8Þ

we get exactly the beyond KZM scaling between average
absolute winding number and quench rate found in experi-
ment [32] when 5 < N < 10

hjWji ∝ τ−0.2Q : ð9Þ

Because the winding number W ¼ nþ − n− and we can
label the independent pieces to be “þ” “−” or “0,” it is
natural to expect that the distribution of nþ; n− can be
captured by a trinomial distribution. The probability of the
trinomial distribution of trials Ñ reads

PðÑ; nþ; n−Þ ¼ Ñ!

n0!nþ!n−!

�
p
2

�
nþþn−

ð1 − pÞn0 ; ð10Þ

where n0 ¼ Ñ − ðnþ þ n−Þ; n0 is the number of pieces
without either þ or −. ðnþ; n−; n0Þ ≤ Ñ, and Ñ equals the
largest value of nþðn−Þ, which can be defined as the
number of effectively unrelated pieces. p=2 is the proba-
bility for both þ and − since the two have the same
distribution [58], while 1 − p is the 0 probability. From the
largest number of nþðn−Þ of a fixed integral N, we find

that Ñ ¼ nþð−Þ
max ¼ N=5. Furthermore, we consider the case

when the Ñ is not an integral; by increasing from Ñ from a
smaller integral number M to M þ 1, the σ2ðWÞ is

increasing continuously without a jump. To understand
the continuousness of σ2ðWÞ, we use the mathematical
theorem in which the factorial in Eq. (10) can be expressed
by the Gamma function

M! ¼ ΓðM þ 1Þ ¼
Z

∞

0

yMe−ydy: ð11Þ

With the trinomial distribution, we can calculate the
probability PðjWjÞ; for example, PðW ¼ 0Þ is the summa-
tion of the cases where nþ ¼ 0 ∪ n− ¼ 0 and nþ ¼ n− in
Eq. (10). PðjWj ¼ 1Þ equals the summation of the cases
where nþ ¼ n− � 1. PðjWjÞ as a function of Ñ ¼ N=5
obtained from the trinomial distribution can basically
match the numerical results as shown in Fig. 4d, and the
best fit parameters were found to be p ¼ 0.324. The
PðjWj ¼ 0Þ will keep decreasing when jWj takes larger
maximal values due to the increasing numbers of pieces.
PðjWj ¼ 1Þ ¼ 0 when N < 1, when N > 1 PðjWj ¼ 1Þ
keeps increasing to its maximal value at about Ñ ¼ 2.
PðjWj ¼ MÞ can only have a finite value when N >
5MðÑ > MÞ. Another check of the trinomial distribution
can be done by computing σ2ðWÞ and hjWji from PðWÞ
obtained from Eq. (10); compare the results to the numeri-
cal simulation in Fig. 3. We find good agreement when
N ≥ 5ðÑ ≥ 1Þ. The deviation is obvious when N <
5ðÑ < 1Þ, and in this region with only one effectively
independent KZM piece, there are only three possibilities:
nþ ¼ n− ¼ 0; nþ ¼ 1; n− ¼ 0; and nþ ¼ 0; n− ¼ 1. Then,
hjWji ¼ σ2ðWÞ ¼ Pðnþ ¼ 1Þ þ Pðn− ¼ 1Þ ¼ p, and the
probability p is increasing from zero at N ¼ 1 to a constant
p ¼ 0.324 at N ¼ 5.
In summary, the numerical experiment in a finite size

superconducting ring not only confirms the KZM predic-
tions but also presents new findings of dynamics of phase
transition in a superconducting ring. First, the finite size
distribution of W is different from Gaussian distribution;
then, the KZM scaling law of hjWji will be modified [34].
Second, a continuous version of trinomial distribution with
a fractional Ñ trial was proposed to understand the size-
dependent statistic distribution of W. Furthermore, the
numerical results indicate the effective independent pieces
Ñ ¼ L=5ξ, where Ñ still admits the scaling law predicted
by the Kibbe-Zurek mechanism. Finally, the nonlinear
dependence between σ2ðWÞ (topological defect number
in other condensed-matter systems) and N was found at
small size Ñ ≤ 1, which is expected to be a universal
property in finite size KZM that can be checked by
experiments.
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FIG. 4. PðWÞ and PðjWjÞ. (a–c) Histogram of PðWÞ for N ¼ 8,
18, 30 respectively, when τQ ¼ e4. (d) Numerical results of
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respectively) and their fitted curves derived from Eq. (10)
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