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We propose a method of extracting the Cabibbo–Kobayashi–Maskawa matrix element |Vcb| from
two-body hadronic decay processes of B → DK with precisely determined form factors of B
meson semi-leptonic decays. The amplitude M(B̄0 → D+K−) which does not include the effect
of hadronic final state interactions can be theoretically evaluated by using factorization and
form factors of semi-leptonic B decays. We can obtain all the amplitudes in an isospin relation
A(B− → D0K−) = A(B̄0 → D+K−) + A(B̄0 → D0K̄0), including the effect of hadronic
final state interactions as well as |Vcb|, using the experimental data of branching fractions of
these three processes with a truncation of the states which contribute to the hadronic final state
interactions. The extracted value of |Vcb| is (37±6)×10−3. The decay processes of B → DK∗ and
B → D∗K can also be used in the same way, and the extracted values of |Vcb| are (41±7)×10−3

and (42 ± 9) × 10−3, respectively. This method becomes possible by virtue of recent precise
determinations of the form factors of semi-leptonic B decays. The uncertainties of |Vcb| by this
method are expected to be reduced by the results of future B-factory experiments and lattice
calculations.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B51, B55, B56

1. Introduction

The precise determination of Cabibbo–Kobayashi–Maskawa (CKM) matrix elements [1,2] is one of
the approaches to test the Standard Model, and to search for the physics beyond the Standard Model.
The Standard Model predicts the unitarity relation of the CKM matrix,∑

i=u,c,t

V ∗
ibVid = 0, (1)

which gives a triangle in a complex plane. The existence of physics beyond the Standard Model may
violate this relation. The sides and angles of this triangle will be precisely measured using various
decay processes of B mesons in future B-factories [3,4]. In this work we focus on the determination
of |Vcb|.

There are two main methods to extract the value of |Vcb| from semi-leptonic B mesons. The method
using inclusive decay data gives |Vcb| = (42.00 ± 0.65) × 10−3 [5], and the method using exclusive
decay data gives |Vcb| = (38.71 ± 0.75) × 10−3 [6]. Though the difference between these values is
within 3.3 σ , it is a problem in understanding the non-perturbative physics of QCD.1 In fact, it has
been pointed out that the proper parametrization of form factors is important [8,9]. In order to analyze
exclusive decay processes B → D(∗)lν with a small amount of data, the Caprini–Lellouch–Neubert

1 It has been pointed out that this problem cannot be solved by New Physics [7].
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(CLN) parametrization of form factors [10] is precise enough. However, with much more data
recently provided by the Belle Collaboration, not only q2 distributions but also angular distributions
[11], the Boyd–Grinstein–Lebed (BGL) parametrization of form factor [12] is better than the CLN
parametrization, because the CLN parametrization may include about 10% errors from the absence
of O(1/m2

c,b) corrections [9]. Since the accuracy of recent lattice QCD results [13,14] is typically of
the order of 1%, we need to use theoretical frameworks with correspondingly high precisions.2

In this work we intend to provide another method to extract |Vcb|, which may give new information
to the above conflict in future. We propose that the hadronic decays of B mesons, especially two-
body decays of B → DK , B → DK∗, and B → D∗K , can be used to extract a precise value for
|Vcb| in future. The amplitude M(B̄0 → D+K−) which does not include the effects of hadronic
final state interactions can be theoretically evaluated by using the factorization, the form factors of
semi-leptonic B decays, and the decay constant of the K− meson. The form factors of semi-leptonic
B decays are precisely determined by the latest Belle data [11,16] and the latest lattice QCD results
[13,14] with the BGL parametrizations in Ref. [8]. The isospin symmetry provides the relation

A(B− → D0K−) = A(B̄0 → D+K−) + A(B̄0 → D0K̄0), (2)

including the effects of hadronic final state interactions. We can extract these three amplitudes as
well as the value of |Vcb| by using the amplitude M(B̄0 → D+K−) and the experimental values of
three branching fractions, B(B− → D0K−), B(B̄0 → D+K−), and B(B̄0 → D0K̄0) in Ref. [17]. In
this procedure we need to truncate the states which contribute final state interactions: not including
all the possible states, but including only two-body DK states. The processes of B → DK∗ and
B → D∗K can also be used in the same way. For B → D∗K , we use the form factor obtained by the
CLN parametrization with the latest data from the Belle Collaboration [11].

We emphasize that this method becomes possible only with recent precise determination of all the
form factors of semi-leptonic B decay. More precise experimental data of the branching fractions of
two-body hadronic B decays give a more precise value of |Vcb|. This method can be understood as an
intermediate approach between inclusive and exclusive determination of |Vcb|, since it requires the
use of several exclusive B-decay modes. It may be possible that this method will play an important
role in the problem of |Vcb| determinations with the results of future B-factory experiments and future
precise lattice calculations, if the validity of the truncation of the states in final state interactions
is established. In other words, once the value of |Vcb| is precisely determined with semi-leptonic
decays without any conflicts, this method will provide useful information to understand the final
state interactions in two-body hadronic B decays.

In the next section we investigate the amplitudes of B → DK processes in detail, and propose a
procedure to extract the value of |Vcb|. We also show that the same procedure applies to the processes
of B → DK∗ and B → D∗K . In Sect. 3 we provide a numerical analysis of extracting the value
of |Vcb| from two-body hadronic B decays by our procedure. In Sect. 4 we provide a summary and
discussion.

2 The error with CNL parametrization comes from an excessive reduction of the number of parameters in
form factors by using heavy quark symmetry. In fact, improvements are possible by including higher-order
corrections (see, for example, Ref. [15]).
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Fig. 1. Tree amplitude. For example, the M1 and M2 mesons are D+ and K−, respectively.

Fig. 2. Color-suppressed amplitude. For example, the M1 and M2 mesons are D0 and K̄0, respectively.

Fig. 3. Exchange amplitude where quark–antiquark pair creation occurs. For example, the M1 and M2 mesons
are D+ and π−, respectively.

Fig. 4. W-annihilation amplitude. For example, the B̄, M1, and M2 mesons are B−, D−, and K̄0, respectively.

2. Two-body hadronic decays of B mesons

Consider the hadronic two-body decay processes B̄ → M1M2, where M1 and M2 indicate D mesons
and K or π mesons, respectively. The quark-level Feynman diagrams of these decays are classi-
fied into four topological types [18,19]. The amplitudes from the diagrams corresponding to each
topological type are as follows:

(1) Tree amplitudes T : the diagrams have b → c weak current with the light degrees of freedom
as spectator antiquarks of the B̄ and M1 mesons, and the W boson decays into the light quark–
antiquark pairs which constitute the M2 meson (see Fig. 1).

(2) Color-suppressed amplitudes C: the W boson decays into the light quark–antiquark pairs, the
antiquark is included in the M1 meson as the spectator of the c quark, and the quark constitutes
the M2 meson with the light degrees of freedom in the B̄ meson (see Fig. 2).

(3) Exchange amplitudes E: the exchange of the W boson changes the flavor of the spectator of B̄,
and light quark–antiquark pair creation from gluons completes two mesons (see Fig. 3).

(4) W-annihilation amplitudes A: the B̄ meson decays to a W boson and the W boson decays into
a charm antiquark and a light quark, and they become constituents of M1 and M2 with a light
quark and a light antiquark from gluons, respectively (see Fig. 4).

In this paper we do not consider the process which contains the contribution of A, since it does not
include |Vcb| and is, rather, relevant to |Vub|.

In Table 1 we summarize all the hadronic two-body decays of B̄0 and B− mesons which include
the b → c transition, and the topologies of the corresponding amplitudes.
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Table 1. Two-body hadronic decays and their amplitudes. Note that the decay mode B̄0 → D+K− is the only
mode which is described by the diagram of tree topology only. The contributions of penguin diagrams are also
listed.

Decay mode Topologies Penguin Fraction (�i/�) [17]

B̄0 → D+π− T E (2.52 ± 0.13) × 10−3

D0π 0 C E (2.63 ± 0.14) × 10−4

D+
s K− C E (2.7 ± 0.5) × 10−5

D+K− T (1.86 ± 0.20) × 10−4

D0K̄0 C (5.2 ± 0.7) × 10−5

D+D− T E yes (2.11 ± 0.18) × 10−4

D+D−
s T yes (7.2 ± 0.8) × 10−3

B− → D0π− T C (4.80 ± 0.15) × 10−3

D0K− T C (3.74 ± 0.16) × 10−4

D0D− T C yes (3.8 ± 0.4) × 10−4

D0D−
s T C yes (9.0 ± 0.9) × 10−3

Fig. 5. Penguin diagram. The process of B̄0 → D−
s D+ is shown as an example.

In general, several diagrams with different topologies contribute to the amplitudes for each decay
process. We see that the amplitude of B̄0 → D+K− consists of a single diagram of topology T .
The penguin diagrams (see Fig. 5) contribute only to the amplitude of B → DD. For example, the
amplitude of B̄0 → D+D−

s consists of T , with a pollution by a penguin diagram. Until the size of
the contribution of the penguin diagram is clarified, we cannot use B̄0 → D+D−

s to extract |Vcb|
precisely.

We focus on the two-body decay B̄0 → D+K−, which is described only by the diagram of topology
T . The effective weak Hamiltonian [20] for the decay is

Heff = ηEW
GF√

2
VcbV ∗

us [C1(μ)O1(μ) + C2(μ)O2(μ)] + h.c., (3)

where ηEW is the electroweak correction, which represents the effects of short-distance QED
correction. The factors C1,2 are the Wilson coefficients, and O1,2 are the current–current operators:

O1 = c̄αγμ(1 − γ5)bβ s̄βγ μ(1 − γ5)uα , (4)

O2 = c̄αγμ(1 − γ5)bα s̄βγ μ(1 − γ5)uβ , (5)

where α and β are color indices. The amplitude is given by the matrix element

A(B̄0 → D+K−) = ηEW
GF√

2
VcbV ∗

usa1(μ) 〈D+(p′)K−(pK )| [c̄γμ(1 − γ5)b][s̄γ μ(1 − γ5)u] |B̄0(p)〉 ,

(6)
where p, p′, and pK are four-momenta of B̄0, D+, and K−, respectively. The momentum pK satisfies
q2 = (p − p′)2 = p2

K . The factor a1(μ) = C2(μ) + C1(μ)/3 represents the effects of short-
distance QCD correction, including short-distance non-factorizable QCD effects. The amplitude
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A(B̄0 → D+K−) also includes the effects of non-factorizable hadronic final state interactions (or
rescattering effects), which are non-perturbative QCD effects. Now we introduce the amplitude
M(B̄0 → D+K−), which does not include the effects of hadronic final state interactions. The
amplitude is given by factorizing the matrix element in Eq. (6), because only the diagram of topology
T contributes. The final state is written by two independent asymptotic states of D+ and K− mesons,
because we have temporarily neglected the effects of final state interactions, or long-distance non-
factorizable QCD effects. The amplitude is written as

M(B̄0 → D+K−) = ηEW
GF√

2
VcbV ∗

usa1(μ) 〈D+(p′)| c̄γμ(1 − γ5)b |B̄0(p)〉

× 〈K−(pK )| s̄γ μ(1 − γ5)u |0〉 . (7)

The B → D part of the matrix element is given by

〈D(p′)| c̄γμ(1 − γ5)b |B̄(p)〉 = f+(q2)(p + p′)μ + f−(q2)(p − p′)μ, (8)

where f±(q2) are form factors of semi-leptonic decay of B̄0. Another matrix element is described as

〈0| ūγμ(1 − γ5)s |K(pK )〉 = ipKμfK± , (9)

where fK± = 155.6 ± 0.4 MeV [17] is the decay constant of K± mesons. The absolute value of the
amplitude is written as

|M(B̄0 → D+K−)| = ηEW
GF√

2
|VcbV ∗

us|a1(μ)(m2
B̄0 − m2

D+)fK± f0(m
2
K±), (10)

where

f0(q
2) = f+(q2) + q2

m2
B − m2

D

f−(q2) (11)

and the function of f0(q2) is precisely determined in Ref. [8] for all possible q2 regions. Notice that
this amplitude depends only on one form factor, f0(q2). If we could neglect the effect of hadronic
final state interactions, the value of |Vcb| could be straightforwardly extracted from the data of the
decay rate in Ref. [17], since the decay rate is simply described as

�(B̄0 → D+K−)|no FSI = p∗

8πm2
B

|M(B̄0 → D+K−)|2, (12)

where

p∗ = 1

2mB̄0

√
{m2

B̄0 − (mD+ + mK−)2}{m2
B̄0 − (mD+ − mK−)2}. (13)

We obtain the value of |Vcb| = (32.0±1.9)×10−3, which is inconsistent with the values determined
by the inclusive and exclusive methods with semi-leptonic decays. This result indicates the failure of
“naive factorization,” and shows that the effect of hadronic final state interactions cannot be ignored
and it is important to extract |Vcb| from hadronic two-body B decays.3

3 We have also neglected the effect of non-factorizable spectator quark scattering, which violates the
factorization [21]. It has been shown in Ref. [22] that the effect is small in the heavy quark mass limit in the
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Fig. 6. Isospin relation of three amplitudes in a complex plane. We choose the direction of the amplitude
A(B− → D0K−) as that of the real axis. Non-zero strong phases of δ0 and δ1 mean non-zero area of this
triangle.

In order to consider the effect of hadronic final state interactions, we introduce a relation between
decay amplitudes which follows from isospin symmetry. The amplitudes of B− → D0K−, B̄0 →
D+K−, and B̄0 → D0K̄0 are related by isospin symmetry as

A(B− → D0K−) = A(B̄0 → D+K−) + A(B̄0 → D0K̄0). (14)

We expect that this relation should be satisfied within 1% accuracy, because the isospin breaking
effect should be proportional to (md − mu)/�QCD ∼ 0.02 or α/π ∼ 0.002. We can represent this
relation as a triangle on a complex plane (see Fig. 6). The isospin decompositions of these amplitudes
are given by

A(B− → D0K−) = A1 = |A1|eiδ1 , (15)

A(B̄0 → D+K−) = 1

2
(A1 + A0) = 1

2
(|A1|eiδ1 + |A0|eiδ0) ≡ 1

2
(|A1| + |A0|eiδs)eiδ1 , (16)

A(B̄0 → D0K̄0) = 1

2
(A1 − A0) = 1

2
(|A1|eiδ1 − |A0|eiδ0) = 1

2
(|A1| − |A0|eiδs)eiδ1 , (17)

where δ0 and δ1 are phases by the effect of hadronic final state interactions of the isospin 0 and 1
channels, respectively, and δs = δ0 − δ1 is the physical strong phase. If there is no physical effect of
hadronic final state interactions, δs = 0 and the triangle of Fig. 6 collapses. In general, neglecting final
state interactions results in not only vanishing phases of δ0 and δ1, but also changing the magnitudes
of |A0| and |A1|. If we truncate the states which contribute to the final state interactions by considering
only two-body DK states, the relation

|M(B̄0 → D+K−)| = |A(B̄0 → D+K−)|δ1,0=0 = 1

2
(|A1| + |A0|) (18)

is satisfied, because for each isospin channel there is only one final state. If we further include
the states like DKππ , for example, the effect of final state interactions cannot be represented only
by simple phases, and the magnitudes of |A0| and |A1| are also affected [23]. This truncation of
the states, or neglecting inelastic final state interactions, is the main theoretical assumption in our
method, except for isospin symmetry.

There is no justification of this assumption, since it has been known that the inelastic final state
interactions are important in B decays in general [24,25]. To be precise, we need to describe α0|A0|
and α1|A1| instead of naive |A0| and |A1| in Eq. (18), where α0 and α1 parametrize the changes of
magnitudes of the amplitudes by neglecting the effects of inelastic final state interactions. A rough
estimate α0 ∼ α1 ∼ 0.8 can be obtained by using the results of a global fit of the amplitudes and
strong phases in Ref. [18], which means about 20% errors in our final results. This is a large error,

case that the spectator quark goes to a heavy meson, as in B̄0 → D+K− decay. We neglect the effect in this
work, keeping in mind that we will need to include the small effect with precise experimental data in future.
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comparable to the error from the present measurements of branching fractions. We certainly need to
discover some methods to calculate α0 and α1 from first principles, but we leave this task for future
work because of the large experimental errors in the measurements of branching fractions at this
moment in time. Considering the other way around, if the value of |Vcb| will be precisely extracted
by other methods, our method will give a good place to investigate the final state interactions in
two-body hadronic B decays.

Once the formula of Eq. (18) has been accepted, we can extract |VcbV ∗
us| from the values of |A0|

and |A1| which, as well as cos δs, can be extracted from the measurements of three decay rates.
Now we are going to extract |Vcb| from the experimental values of decay fractions of three cor-

responding decay modes. From Eqs. (15), (16), and (17), the ratios of the decay fractions can be
described as

R1 ≡ B(B̄0 → D+K−)

B(B− → D0K−)
= K1

4

(
1 + 2

∣∣∣∣A0

A1

∣∣∣∣ cos δs +
∣∣∣∣A0

A1

∣∣∣∣
2
)

, (19)

R2 ≡ B(B̄0 → D0K̄0)

B(B− → D0K−)
= K2

4

(
1 − 2

∣∣∣∣A0

A1

∣∣∣∣ cos δs +
∣∣∣∣A0

A1

∣∣∣∣
2
)

, (20)

where the coefficients K1 and K2 are kinematical factors of

K1 = τB̄0mB−

τB−mB̄0
·
√[1 − (mD+/mB̄0 + mK−/mB̄0)2][1 − (mD+/mB̄0 − mK−/mB̄0)2]√[1 − (mD0/mB− + mK−/mB−)2][1 − (mD0/mB− − mK−/mB−)2] , (21)

K2 = τB̄0mB−

τB−mB̄0
·
√[1 − (mD+/mB̄0 + mK̄0/mB̄0)2][1 − (mD+/mB̄0 − mK̄0/mB̄0)2]√[1 − (mD0/mB− + mK−/mB−)2][1 − (mD0/mB− − mK−/mB−)2] . (22)

Equations (18), (19), and (20) are used to describe |A0| and |A1| in terms of |M(B̄0 → D+K−)| as

|A0| = 2

1 + H−1 |M(B̄0 → D+K−)|, (23)

|A1| = 2

1 + H
|M(B̄0 → D+K−)|, (24)

where

H =
∣∣∣∣A0

A1

∣∣∣∣ =
√

2(R′
1 + R′

2) − 1 (25)

and R′
i ≡ Ri/Ki with i = 1, 2. From Eqs. (19) and (20), cos δs is described only by directly

observable quantities as

cos δs = R′
1 − R′

2

H
. (26)

From Eq. (24), the absolute value of the amplitude |A(B− → D0K−)| = |A1| is given by

|A(B− → D0K−)| = |VcbV ∗
us||M′|

∣∣∣∣ 2

1 + H

∣∣∣∣ , (27)
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where

|M′| = |M(B̄0 → D+K−)|
|VcbV ∗

us|
= ηEW

GF√
2

a1(μ)(m2
B̄0 − m2

D+)fK± f0(m
2
K±) (28)

is a known quantity. Finally, we get |VcbV ∗
us|2 from the above equation and the value of the decay

rate �(B− → D0K−) as

|VcbV ∗
us|2 = 4πmB−�(B− → D0K−)√[1 − (r1 + r2)2][1 − (r1 − r2)2]

|1 + H |2
|M′|2 , (29)

where r1 = mD0/mB− and r2 = mK−/mB− . This equation is used to extract |VcbV ∗
us|2 from

experimental data.
For B → DK∗ and B → D∗K , we can extract |VcbV ∗

us|2 in the same way. The only major differences
are the concrete forms of the amplitudes M(B̄0 → D+K∗−) and M(B̄0 → D∗+K−).

For B̄0 → D+K∗−,

M(B̄0 → D+K∗−) = ηEW
GF√

2
VcbV ∗

usa1(μ) 〈D+(p′)| c̄γμ(1 − γ5)b |B̄0(p)〉

× 〈K∗−(pK )| s̄γ μ(1 − γ5)u |0〉 (30)

with the factorization procedure. The first matrix element in the amplitude is given in Eq. (8). The
second matrix element in the amplitude is simply described as

〈0| ūγμ(1 − γ5)s |K∗(pK )〉 = mK∗ fK∗±εμ(pK∗), (31)

where fK∗± and εμ(pK∗) are the decay constant and the polarization vector of K∗± mesons,
respectively. The polarization vector εμ(pK∗) satisfies ε(pK∗) · pK∗ = 0. Then, we have

|M(B̄0 → D+K∗−)| = ηEW
GF√

2
|VcbV ∗

us|a1(μ)2mB̄0p∗fK∗± f+(m2
K∗±). (32)

Notice that this amplitude depends only on the form factor f+(q2) instead of f0(q2) in the case of
B → DK .

For B̄0 → D∗+K−, the amplitude is given by

M(B̄0 → D∗+K−) = ηEW
GF√

2
VcbV ∗

usa1(μ) 〈D∗+(p′)| c̄γμ(1 − γ5)b |B̄0(p)〉

× 〈K−(pK )| s̄γ μ(1 − γ5)u |0〉 (33)

with the factorization procedure. The first matrix element in this amplitude is described as [26]

〈D∗+(p′)| c̄γμ(1 − γ5)b |B̄0(p)〉

= 2iεμναβ

mB + mD∗
ε∗
ν p′

αpβV (q2) − (mB + mD∗)

(
ε∗μ − ε∗ · q

q2 qμ

)
A1(q

2)

+ ε∗ · q

mB + mD∗

[
(p + p′)μ − m2

B − m2
D∗

q2 qμ

]
A2(q

2)

− 2mD∗
ε∗ · q

q2 qμA0(q
2), (34)
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Table 2. Inputs for the determination from B → DK .

Input Value Reference

τB0 (1.520 ± 0.004) × 10−12 s [17]
τB± (1.638 ± 0.004) × 10−12 s [17]
B(B̄0 → D+K−) (1.86 ± 0.20) × 10−4 [17]
B(B̄0 → D0K̄0) (5.2 ± 0.7) × 10−5 [17]
B(B− → D0K−) (3.74 ± 0.16) × 10−4 [17]
|Vus| 0.2248 ± 0.0006 [17]
fK± 155.6 ± 0.4 MeV [17]
f0(m2

K±) 0.671 ± 0.012 [8]

Table 3. Sources of uncertainty of |Vcb| from B → DK .

Error source Uncertainty [%]

�(B− → D0K−) 4.2
H 29.8
f0(m2

K±) 3.6
|Vcb| 30.4

where εμ(p′) is the polarization vector of the D∗ meson satisfying ε(p′) · p′ = 0, and V (q2), A1(q2),
A2(q2), and A0(q2) are form factors. Even though there are many form factors, we have a simple
expression:

|M(B̄0 → D∗+K−)| = ηEW
GF√

2
|VcbV ∗

us|a1(μ)2mB̄0p∗fK±A0(m
2
K±). (35)

Notice that this amplitude depends only on the form factor A0(q2) .

3. Numerical analyses and results

In our analysis we use the experimental data, masses and branching fractions in Ref. [17], and the form
factors f0,+(q2) in Ref. [8]. We use the value of the electroweak correction ηEW = 1.0066 in Ref. [27],
and the short-distance QCD correction a1(μ) = 1.038 at leading order with �

(5)

MS
= 225 MeV and

μ = 4.0 GeV [20]. The accuracy of a1(μ) is of the order of 1%. We do not consider the effect of
isospin symmetry breaking, expecting that the effect is very small (within 1%).

From B → DK using Eq. (29) and the experimental data in Table 2, we obtain |Vcb| = (37 ± 6)×
10−3 and cos δs = 0.60 ± 0.14. Notice that the value of |Vcb| is consistent with that determined by
both the inclusive and exclusive methods with semi-leptonic decays. The uncertainty of |Vcb| is about
30%, which is dominated by the experimental errors of the ratios B(B̄0 → D+K−)/B(B− → D0K−)

and B(B̄0 → D0K̄0)/B(B− → D0K−). Table 3 shows the sources of uncertainty of |Vcb|.
We find that the precise measurements of the branching fractions B(B̄0 → D+K−), B(B̄0 →

D0K̄0), and B(B̄− → D0K̄−) play an important role in the precise determination of |Vcb| in our
method. We note that the value of |Vcb| is determined by using the form factor, which does not
employ the CLN parametrization but the BGL parametrization. To compare the strong phase shift
cos δs with that from Ref. [18], we convert cos δs to their cos δc, where δc is defined as the phase
difference between A(B̄0 → D+K−) and A(B̄0 → D0K̄0). Our result cos δc = 0.43 ± 0.16 is
consistent with that in Ref. [18] within errors.
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Table 4. Inputs for the determination from B → DK∗.

Input Value Reference

B(B̄0 → D+K∗−) (4.5 ± 0.7) × 10−4 [17]
B(B̄0 → D0K̄∗0) (4.5 ± 0.6) × 10−5 [17]
B(B− → D0K∗−) (5.3 ± 0.4) × 10−4 [17]
fK∗± 205.6 ± 6.0 MeV see text
f+(m2

K∗±) 0.696 ± 0.012 [8]

Table 5. Inputs for determination from B → D∗K .

Input Value Reference

B(B̄0 → D∗+K−) (2.12 ± 0.15) × 10−4 [17]
B(B̄0 → D∗0K̄0) (3.6 ± 1.2) × 10−5 [17]
B(B− → D∗0K−) (4.20 ± 0.34) × 10−4 [17]
A0(m2

K±) 0.622 ± 0.062 see text

From B → DK∗ we can obtain the value of |Vcb| and the strong phase cos δs in the same way.
Using Eq. (32) and the experimental data in Table 4, we obtain |Vcb| = (41 ± 7) × 10−3 and
cos δs = 0.82 ± 0.20.

This value of |Vcb| is also consistent with both the inclusive and exclusive results. Notice that cos δs

is larger (δs is smaller) than that in B → DK . This suggests that the effect of hadronic final state
interactions between a pseudo-scalar meson and vector mesons is less important than in the case of
two pseudo-scalar mesons. The corresponding value of cos δc = −0.07 ± 0.28 is also consistent
with that in Ref. [18] within errors. We have used the form factor with the BGL parametrization in
Ref. [8]. The decay constant of the charged vector meson fK∗± is determined by the branching ratio
of τ → K∗−ντ [28]. Since the branching fraction is described as

B(τ → K∗−ντ ) = G2
Fmτ |Vus|2

8π
ττ m2

K∗± f 2
K∗±

(
1 − m2

τ

2m2
K∗

)(
1 + mK∗±

m2
τ

)2

, (36)

by using the measured values of B(τ → K∗−ντ ) = (1.20±0.07)×10−2, mτ = 1776.86±0.12 MeV,
and ττ = (290.3 ± 0.5) × 10−15 s [17] we obtain fK∗± = 205.6 ± 6.0 MeV.

From B → D∗K , in the same way, we obtain |Vcb| = (42 ± 9) × 10−3 and cos δs = 0.80 ± 0.19
using Eq. (35) and the experimental data in Table 5. This value of |Vcb| is again consistent with those
obtained by inclusive and exclusive determinations within errors. The value of the strong phase
supports the previous suggestion that the effect of hadronic final state interactions is less important
in the case with a vector meson in final state. The corresponding value cos δc = 0.63 ± 0.24
is also consistent with Ref. [18] within errors. The form factor A0(q2) is not given by the BGL
parametrization, because there are no experimental data of the differential decay rate of B → D∗τντ ,
and also no lattice QCD calculations for the form factor. We have to use the form factor A0, which
is given by the CLN parametrization instead of the BGL parametrization by fully utilizing heavy
quark symmetry. The CLN parametrization based on the heavy quark effective theory gives

A0(q
2) = R0(w)

RD∗
hA1(w), (37)
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Table 6. Summary of our results.

Mode cos δs |Vcb| × 103

B → DK 0.60 ± 0.14 37 ± 6
B → DK∗ 0.82 ± 0.20 41 ± 7
B → D∗K 0.80 ± 0.19 42 ± 9

where RD∗ = 2
√

mBmD∗/(mB + mD∗),

hA1(w) = hA1(1)[1 − 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 − (231ρ2
D∗ − 91)z3], (38)

R0(w) = R0(1) − 0.11(w − 1) + 0.01(w − 1)2, (39)

and w and z are kinetic variables defined as

w = m2
B + m2

D∗ − q2

2mBmD∗
, (40)

z =
√

1 + w − √
2√

1 + w + √
2

. (41)

The value of hA1(1) has been obtained by the unquenched lattice QCD calculation [29]. The value
of R0(1) can be obtained by using the relation, based on heavy quark symmetry [30,31],

R3(1) ≡ R2(1)(1 − r) + r[R0(1)(1 + r) − 2]
(1 − r)2 = 0.97, (42)

if we know the value of R2(1), where r = mD∗/mB. The values of R2(1) and ρ2
D∗ have been determined

by the Belle Collaboration [11] from semi-leptonic B̄0 → D∗+l−ν̄l decay as R2(1) = 0.91 ± 0.08
and ρ2

D∗ = 1.17 ± 0.15. In this way we obtain the value R0(1) = 1.08 with the uncertainty of 10%
considering unknown O(1/m2

c) corrections. Our results are summarized in Table 6.

4. Conclusions

We have proposed a method of extracting the value of |Vcb| from hadronic two-body B meson decays.
The recent precise determination of the form factor f0(q2) of semi-leptonic B meson decays in Ref. [8]
allows us to perform this method with B → DK decay processes. The main theoretical assumption in
our method, except for isospin symmetry, is that the effect of inelastic final state interactions is small.
The small effect of non-factorizable spectator quark scattering has also been neglected, and should be
included in cases with more precise experimental data. Specifically, we have neglected the possible
states except for DK two-body states in final state interactions. The quantitative investigation of this
truncation is future work which belongs to the efforts to understand non-perturbative QCD physics in
hadronic decays. The effect of isospin symmetry breaking is not included, since it is negligibly small
with the present precision of experimental data. In future, when the errors of branching fractions
will be smaller and close to 1% accuracy as well as relevant form factors, we need to include the
effect of isospin symmetry breaking. We have used form factors of semi-leptonic B meson decays
which are determined by using the BGL parametrization in Refs. [8,9] for the extraction of |Vcb|
from B → DK and B → DK∗. In the extraction of |Vcb| from B → D∗K we had to use the CLN
parametrization and heavy quark symmetry to obtain the form factor A0(q2), which may contain
possibly large uncertainties from higher-order corrections in heavy quark expansions.
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Our final results are summarized in Table 6. The extracted values of |Vcb| have about 30% uncer-
tainties, and they are consistent with the values from both inclusive and exclusive semi-leptonic
decays within errors. These consistent results show that our method is reasonable, at least with
the present precisions. The experimental errors of the hadronic branching fractions, in particular
B(B̄0 → D0K̄0), B(B̄0 → D0K̄∗0), and B(B̄0 → D∗0K̄0), dominate the uncertainty of |Vcb|. We can
expect that the uncertainty will become smaller with the results of future experiments and lattice cal-
culations. It may be possible that this method will be the third one competing with conventional and
established methods from inclusive or exclusive semi-leptonic B decays, if the problem of inelastic
final state interactions is appropriately treated.

We have also examined the effects of hadronic final state interactions in two-body hadronic decays.
The extracted strong phase shifts are consistent with the previous works of Refs. [18,32,33]. The
strong phase in B → DK is larger than that in B → DK∗ and B → D∗K , which involve the vector
meson in their final states (see Table 6). It is known in general that the final state interaction is more
important for B → PP decays than B → PV decays, where P and V indicate pseudo-scalar and
vector mesons. Here, we must note that the definitions of our phases are not exactly the same as
in Refs. [18,32,33], and they coincide in the limit of negligible contribution of inelastic final state
interactions. This fact will give a way to investigate the magnitude of the effect of inelastic final
state interactions in the future. If the magnitude of |Vcb| is precisely extracted by other methods in
the future, our method will give a good place to investigate the final state interactions in two-body
hadronic B-decays.
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