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Abstract Nonlinear transport phenomena induced by chi-
ral anomaly are explored within a 4D field theory defined
holographically asU (1)V ×U (1)A Maxwell–Chern–Simons
theory in Schwarzschild-AdS5. In presence of weak con-
stant background electromagnetic fields, the constitutive
relations for vector and axial currents, resummed to all
orders in the gradients of charge densities, are encoded
in nine momenta-dependent transport coefficient functions
(TCFs). These TCFs are first calculated analytically up to
third order in gradient expansion, and then evaluated numer-
ically beyond the hydrodynamic limit. Fourier transformed,
the TCFs become memory functions. The memory function
of the chiral magnetic effect (CME) is found to differ dra-
matically from the instantaneous response form of the orig-
inal CME. Beyond hydrodynamic limit and when external
magnetic field is larger than some critical value, the chiral
magnetic wave (CMW) is discovered to possess a discrete
spectrum of non-dissipative modes.
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1 Introduction

In this paper we continue exploring hydrodynamic regime
of relativistic plasma with chiral asymmetries. We closely
follow previous works [1,2] focusing on massless fermion
plasma with two Maxwell gauge fields, U (1)V × U (1)A.
Dynamics of hydrodynamic theories is governed by conser-
vation equations (continuity equations) of the currents. As a
result of chiral anomaly, which appears in relativistic QFTs
with massless fermions, global U (1)A current coupled to
external electromagnetic (e/m) fields is no longer conserved.
The continuity equations turn into

∂μ J
μ = 0, ∂μ J

μ
5 = 12κ �E · �B, (1)

where Jμ, Jμ
5 are vector and axial currents and κ is an

anomaly coefficient (κ = eNc/(24π2) for SU (Nc) gauge
theory with a massless Dirac fermion in fundamental repre-
sentation and e is electric charge, which will be set to unit
from now on). �E and �B are external vector electromagnetic
fields.

The continuity equations could be regarded as time evo-
lution equations for the charge densities ρ (ρ5) sourced by
three-current �J ( �J5). However, these equations cannot be
solved as an initial value problem without additional input,
the currents �J and �J5. In hydrodynamics, the currents are
expressed in terms of thermodynamical variables, such as
the charge densities ρ and ρ5 themselves, temperature T ,
and the external e/m fields �E and �B if present. These are
known as constitutive relations, which generically take the
form
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�J = �J [ρ, ρ5, T, �E, �B]; �J5 = �J5[ρ, ρ5, T, �E, �B]. (2)

The constitutive relations should be considered as “off-shell”
relations, because they treat the charge density ρ (ρ5) as inde-
pendent of �J ( �J5). Once (1) is imposed, the currents’ consti-
tutive relations (2) are put “on-shell”.

In addition to the charge current sector discussed above,
one has to simultaneously consider energy-momentum con-
servation. In general, these two dynamical sectors are cou-
pled. However, in the discussion below, we will ignore
back-reaction of the charge current sector on the energy-
momentum conservation. This will be referred to as probe
limit.

In the long wavelength limit, the constitutive relations
are usually presented as a (truncated) gradient expansion.
At any given order, the gradient expansion is fixed by ther-
modynamic considerations and symmetries, up to a finite
number of transport coefficients (TCs). The latter should be
either computed from the underlying microscopic theory or
deduced experimentally. Diffusion constant, DC conductiv-
ity or shear viscosity are examples of the lowest order TCs.

It is well known, however, that in relativistic theory trun-
cation of the gradient expansion at any fixed order leads
to serious conceptual problems such as violation of causal-
ity. Beyond conceptual issues, causality violation results in
numerical instabilities rendering the entire framework unre-
liable. Causality is restored when all order gradient terms are
included, in a way providing a UV completion to the “old”
hydrodynamic effective theory. Below we will refer to such
case as all order resummed hydrodynamics [3–8]. The first
completion of the type was originally proposed by Müller,
Israel, and Stewart [9–12] who introduced retardation effects
in the constitutive relations for the currents. Formulation of
[9–12] is the most popular scheme employed in practical
simulations. Essentially, all order resummed hydrodynamics
is equivalent to a non-local constitutive relation of the type
(here we take the charge diffusion current as an example):

�Jdiff(t) =
∫ +∞

−∞
dt ′D̃(t − t ′) �∇ρ(t ′), (3)

where D̃ is the memory function of the diffusion function
D(ω, q2) [13], which is generally non-local both in time and
space. Causality implies that D̃(t) has no support for t < 0. In
practice, the memory function is typically modelled: Müller-
Israel-Stewart formulation [9–12] models the memory func-
tions with a simple exponential in time parametrised by a
relaxation time.

Chiral plasma plays a major role in a number of funda-
mental research areas, historically starting from primordial
plasma in the early universe [14–18]. During the last decade,
macroscopic effects induced by the chiral anomaly were
found to be of relevance in relativistic heavy ion collisions

[19–21], and have been searched intensively at RHIC and
LHC [22–26]. Finally, (pseudo-)relativistic systems in con-
densed matter physics, such as Dirac and Weyl semimetals,
display anomaly-induced phenomena, which were recently
observed experimentally [27–33] and can be studied via sim-
ilar theoretical methods [34–37].

The constitutive relations (2) are well known to receive
contributions induced by the chiral anomaly. The most famil-
iar example is the chiral magnetic effect (CME) [38–40]:
a vector current is generated along an external magnetic
field when a chiral imbalance between left- and right-handed
fermions is present ( �J ∼ ρ5 �B). Another important transport
phenomenon induced by the chiral anomaly is the chiral sep-
aration effect (CSE) [41,42]: left and right charges get sep-
arated along an applied external magnetic field ( �J5 ∼ ρ �B).
Combined, CME and CSE lead to a new gapless excitation
called chiral magnetic wave (CMW) [43]. This is a propagat-
ing wave along the magnetic field. There is a vast literature
on CME/CSE and other chiral anomaly-induced transport
phenomena, which we cannot review here in full. We refer
the reader to recent reviews [20,21,34,44,45] and references
therein on the subject of chiral anomaly-induced transport
phenomena.

Beyond naive CME/CSE, there are (infinitely) many addi-
tional effects induced or affected by chiral anomaly. Particu-
larly, transport phenomena nonlinear in external fields were
realised recently [46] to be of critical importance in having a
self-consistent evolution of chiral plasma. This argument,
together with the causality discussions mentioned earlier,
would lead to the conclusion that the constitutive relations (2)
should contain infinitely many “nonlinear” transport coeffi-
cients in order to guarantee applicability of the constitutive
relations in a broader regime. Recently, this triggered strong
interest in nonlinear chiral transport phenomena within chiral
kinetic theory (CKT) [47–50]. Previous works on the subject
of nonlinear chiral transport phenomena include [51] based
on the notion of entropy current, and [52] based on the fluid-
gravity correspondence [53].

The objective of present work is to explore all order gra-
dient resummation for nonlinear transport effects induced by
the chiral anomaly,1 further extending the results of Refs.
[1,2,58].

Just like in Refs. [1,2,58], our playground will be a holo-
graphic model, that is U (1)V × U (1)A Maxwell-Chern–
Simons theory in Schwarzschild-AdS5 [59,60] to be intro-
duced in Sect. 3, for which we know to compute a zoo of
transport coefficients exactly. Hoping for some sort of uni-

1 The asymptotic nature of the gradient expansion and problems related
to resummation of the series have been a hot topic over the last few years,
see recent works [54–57]. In our approach, however, we never attempt
to actually sum the series and thus these discussions are of no relevance
to our formalism.
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versality, we could learn from this model about both general
phenomena and relative strengths of various effects.

In our recent publication [58], we reviewed all different
studies which were performed in [1,2,58]. Those studies and
the present one are largely independent even though per-
formed within the same holographic model. For brevity, we
will not repeat this review here, but will make connection to
these previous works whenever relevant. We refer reader to
[58] for the summary of the different approximations which
employed in these series of works and the present work.
The comparison of the resultant constitutive relations and
our comments about the total current is also presented there.

Anomalous transport phenomenon is frequently discussed
from the viewpoint of its dissipative nature and, equivalently,
its contribution to entropy production [51,61–64]. CME is
well known to be non-dissipative [20,34,65]. What about the
dissipative nature of other anomalous transport phenomena,
say beyond CME? In [51] the transport coefficients that are
odd in κ were identified as anomaly-induced and, based on
space parity P arguments, are claimed to be non-dissipative.
This is to distinguish from anomaly-induced corrections to
normal transports, which appear to be even in κ . While the
P-based arguments seem to work perfectly for the second
order hydrodynamics [51], a more natural criterion of dis-
sipation seems to be based on time-reversal symmetry T .
T -odd transport coefficients describe dissipative currents,
whereas T -even ones are non-dissipative [51]. The anomaly-
induced phenomena explored below will involve terms both
dissipative and not.

In the next section, we will review our results including
connections to the previous works [1,2,58]. The following
sections present details of the calculations.

2 Summary of the results

The objective of [1,2,58] and of the present work is to sys-
tematically explore (2) under different approximations. Fol-
lowing [1,2,58], the charge densities are split into constant
backgrounds and space-time dependent fluctuations

ρ(xα) = ρ̄ + εδρ(xα), ρ5(xα) = ρ̄5 + εδρ5(xα),

�E(xα) = �E + εδ �E(xα), �B(xα) = �B + εδ �B(xα),
(4)

where ρ̄, ρ̄5, �E and �B are the constant backgrounds, while
δρ, δρ5, δ �E , δ �B stand for the fluctuations. Here ε is a formal
expansion parameter to be used below. Furthermore, being
most of the time unable to perform calculations for arbitrary
background fields, we introduce an expansion in the field
strengths

�E → α �E, �B → α �B, (5)

where α is the corresponding expansion parameter. Below
we will introduce yet another expansion parameter λ, which
will correspond to a gradient expansion. For the purpose of
the gradient counting, e/m fields will be considered asO(λ1).

Throughout this work, the e/m backgrounds �E and �B are
treated as weak. The constitutive relations (2) can be formally
expanded both in ε and α

J t = ρ, �J = �J (0)(1) + �J (1)(0) + �J (1)(1) + · · · ,

J t5 = ρ5, �J5 = �J (0)(1)
5 + �J (1)(0)

5 + �J (1)(1)
5 + · · · ,

(6)

where the first superscript denotes order in ε and the second
in α. �J (0)(1), �J (1)(0), �J (0)(1)

5 and �J (1)(0)
5 were derived in [1].

The goal of present paper is to extend the work initiated
in [1] by computing �J (1)(1) and �J (1)(1)

5 . Particularly, we will
evaluate transport coefficients functions (TCFs) associated
with relevant nonlinear transport phenomena discovered in
[58] via a fixed order gradient expansion. For simplification,
we turn off the fluctuations of the external e/m fields, δ �E =
δ �B = 0. At O

(
ε1α1

)
, the currents take the following forms

�J (1)(1) = σχ̄κ �Bδρ5 − 1

4
DH (ρ̄ �B × �∇δρ)

− 1

4
D̄H (ρ̄5 �B × �∇δρ5) − 1

2
σaχH (�E × �∇δρ5)

− 1

2
σ̄aχH (�E × �∇δρ) + σ1κ

[
(�B × �∇) × �∇

]
δρ

+ σ2κ
[
(�B × �∇) × �∇

]
δρ5

+ σ3κ
[
(�E × �∇) × �∇

]
δρ

+ σ̄3κ
[
(�E × �∇) × �∇

]
δρ5, (7)

�J (1)(1)
5 = σχ̄κ �Bδρ − 1

4
DH (ρ̄ �B × �∇δρ5)

− 1

4
D̄H (ρ̄5 �B × �∇δρ) − 1

2
σaχH (�E × �∇δρ)

− 1

2
σ̄aχH (�E × �∇δρ5) + σ1κ

[
(�B × �∇) × �∇

]
δρ5

+ σ2κ
[
(�B × �∇) × �∇

]
δρ

+ σ3κ
[
(�E × �∇) × �∇

]
δρ5

+ σ̄3κ
[
(�E × �∇) × �∇

]
δρ, (8)

where all the coefficients are scalar functionals of the deriva-
tive operator ∂μ

σχ̄ [∂t , �∇], DH [∂t , �∇], D̄H [∂t , �∇], σaχH [∂t , �∇],
σ̄aχH [∂t , �∇], σ1,2,3[∂t , �∇], σ̄3[∂t , �∇]. (9)

Thanks to the linearisation, the constitutive relations (7), (8)
could be conveniently presented in Fourier space. Then, the
functionals (9) are turned into functions of frequency and
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spatial momentum, (∂t , �∇) → (−iω, i �q), which we refer
to as TCFs [6]. TCFs contain information about infinitely
many derivatives and associated transport coefficients. In
practice, they are not computed as a series resummation
of order-by-order hydrodynamic expansion, and are in fact
exact to all orders. TCFs go beyond the hydrodynamic low
frequency/momentum limit and contain collective effects of
non-hydrodynamic modes. Fourier transformed back into
real space, TCFs turn into memory functions, cf. (3).

Except for the σ̄aχH -term, all the rest of the terms in (7),
(8) have already appeared in our previous publication [58]
at a fixed order in the gradient expansion. The novelty of
present study is to consistently generalise many of the TCs of
[58] into TCFs, guaranteeing applicability of the constitutive
relations (7), (8) in a broader regime.

To the best of our knowledge, the TCF σχ̄ is introduced
here for the first time and will play a crucial role below, see
(11). It is important to stress the difference betweenσχ̄ andσχ

of [1,59,66]. Both TCFs generalise CME/CSE. Yet, while the
latter is induced by spacetime variation of the magnetic field,
the former is due to inhomogeneity of the charge densities
ρ, ρ5. One might naively expect that both TCFs are equal. In
fact they are not, as we demonstrate below. For comparison,
here we quote the hydrodynamic expansion of the CME TCF
σχ which was calculated in [1]

σχ = 6

{
1 + iω log 2 − 1

4
ω2 log2 2

−q2

24

[
π2 − 432κ2

(
ρ̄2

5
+ 3ρ̄2

)
(log 2 − 1)2

]}
+ · · · .

(10)

As seen from (10), (17) the first order gradient corrections to
CME/CSE (i.e., the relaxation time corrections) are different
depending on if it is the magnetic field or the charge density
that varies with time. In addition, while σχ depends on ρ, ρ5

nonlinearly, σχ̄ does not depend on ρ, ρ5 at all.
The TCF σχ̄ enters the dispersion relation of CMW:

ω = ±σχ̄ (ω, q2) κ �q · �B − iD(ω, q2)q2, (11)

which is exact to all orders in q2. In the hydro limit, using
(44), (17), the dispersion relation can be solved analytically
with the most comprehensive result reported in [58]. Yet,
we have discovered a set of solutions with purely real ω

in the present work. That is, for some (continuum set of)
values of magnetic field B, there is a discrete density wave
mode (ωB, qB), which propagates without any dissipation
(Fig. 21). This is a quite intriguing result, which originates
solely from the all order resummation procedure. The details
about the non-dissipative discrete density wave mode are
deferred to Sect. 4.4.

Fig. 1 The memory function σ̃χ̄ (t) when q = 0

As mentioned in the Introduction, TCFs could be Fourier
transformed into memory functions, for an extensive discus-
sion see e.g. [7,13]. The CME current with retardation effects
is

�JCME(t) = κ �B
∫ ∞

−∞
dt ′ σ̃χ̄ (t − t ′)δρ5(t

′) (12)

Via inverse Fourier transform, the CME/CSE memory func-
tion is (we focus on the case q = 0),

σ̃χ̄ (t) ≡ 1√
2π

∫ +∞

−∞
dωe−iωtσχ̄ (ω, q = 0). (13)

The memory function σ̃χ̄ is displayed in Fig. 1. An impor-
tant feature of this function is that it has no support at neg-
ative times, which is nothing but manifestation of causality.
Another very interesting observation is that rather than hav-
ing an instantaneous response picked at the origin, like in
original CME, the actual response is significantly delayed
and picked at a finite time of order temperature. This
behaviour of σ̃χ̄ is quite distinct from diffusion memory func-
tion D̃(t) and shear viscosity memory functions computed
previously in [7,13], which are picked at the origin.

Let us briefly comment on the remaining terms.DH gener-
alises the Hall diffusion D0

H [47,48,58] into a TCF of ω, q2;
D̄H is just its axial analogue. So, we will refer to DH and
D̄H as Hall diffusion functions. σaχH is a TCF extending the
anomalous chiral Hall conductivity σ 0

aχH [47,48,58]. σ̄aχH

could be considered as an axial analogue of σaχH . However,
as will be clear later, σ̄aχH has an overall factor q2 so that it
will be non-vanishing starting from fourth order in the gra-
dient expansion only.

σ1,2,3 and σ̄3 are TCFs of the third order derivative oper-
ators (we remind the reader that the e/m fields are counted
as of first order). σ1, σ2 correspond to rotor of Hall diffusion
[58], and σ3, σ̄3 are rotors of anomalous chiral Hall effect
[58].

Each TCF in (7), (8) can be split into real part (even pow-
ers of frequency) and imaginary part (odd powers of fre-
quency). Based on the time reversal criterion, we conclude
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that the real parts of σχ̄,1,2, DH , D̄H and imaginary parts of
σaχH , σ̄aχH ,σ3, σ̄3 are non-dissipative; all the rest do lead to
dissipation of the currents. It is interesting to notice that there
are points in the (ω, q) phase space, where some of the dissi-
pative terms vanish. Particularly, this happens to Re[D] and
Im[σχ̄ ]. This feature leads to presence of a non-dissipative
discrete density wave mode which is mentioned earlier.

The constitutive relations (7), (8) could be re-written in a
more compact way,

J (1)(1)
i = σχ̄κBiδρ5 − κBi

(
σ1 �∇2ρ + σ2 �∇2ρ5

)

− κEi

(
σ3 �∇2ρ + σ̄3 �∇2ρ5

)
− D1

i j∇ jρ

− (Dχ )1
i j∇ jρ5,

(14)

J (1)(1)
5i = σχ̄κBiδρ − κBi

(
σ1 �∇2ρ + σ2 �∇2ρ5

)

− κEi

(
σ3 �∇2ρ + σ̄3 �∇2ρ5

)
− D1

i j∇ jρ5

− (Dχ )1
i j∇ jρ,

(15)

where

D1
i j = −δi jκ

[(�B · �∇
)

σ1 +
(�E · �∇

)
σ3

]

+ 1

4
εik j

(
ρ̄ �BkDH + 2�Ek σ̄aχH

)
,

(Dχ )1
i j = −δi jκ

[(�B · �∇
)

σ2 +
(�E · �∇

)
σ̄3

]

+ 1

4
εik j

(
ρ̄5 �BkD̄H + 2�EkσaχH

)
. (16)

σ1,2,3 and σ̄3 constitute corrections to CME/CSE and,
through spatial inhomogeneities of ρ, ρ5, influence the
Ohmic conductivity. The scalar diffusion function D [13]
now becomes tensor TCFs D1

i j and (Dχ )1
i j , linearly depend-

ing on �E and �B because of the weak field approximation
adopted here.

In the hydrodynamic limit ω, q 
 1, the TCFs in (7), (8)
are expandable (below we set πT = 1 for convenience and
the dimensionful frequency and momentum are πTω and
πTq):

σχ̄ = 6 + 3

2
iω (π + 2 log 2)

− 1

8

{
ω2

[
π2 + 6

(
4C + log2 2

)]

+ q2 (12π − 24 log 2)
}

+ · · · , (17)

DH = κ2 {72(3 log 2 − 2)

+ iω6
[
π(2π + 3 log 2 − 6)

+ (9 log 2 − 12) log 2
] + · · · } , (18)

D̄H = DH [μ̄ ↔ μ̄5] , (19)

σaχH = κ

{
6 log 2 + iω

1

16

(
48C + 5π2

)
+ · · ·

}
, (20)

σ̄aχH = 0 + · · · , (21)

σ1 = 162κ2μ̄μ̄5
[
6 + log 2(5 log 2 − 12)

] + · · · , (22)

σ2 = 1

8
(6π − π2 − 12 log 2)

+108κ2(μ̄2 + μ̄2
5)

[
6 + log 2(5 log 2 − 12)

]
+ · · · , (23)

σ3 = 9κμ̄ log2 2 + · · · , (24)

σ̄3 = σ3 [μ̄ ↔ μ̄5] , (25)

where · · · denotes higher powers in ω, q2 and C ≈ 0.915966
is the Catalan’s constant. Here, μ̄ = ρ̄/2, μ̄5 = ρ̄5/2 are
backgrounds for vector/axial chemical potentials. While each
term in (17)–(25) have been computed as individual TC in
[58], the resummation procedure here collects all relevant
TCs into a single TCF and determines the most general struc-
ture of currents, valid to all orders.

Beyond the hydrodynamic limit, the TCFs are com-
puted numerically. The results are presented and discussed
in Sect. 4.3. We observe a relatively weak dependence on
q2 while ω-dependence is more profound: damped oscilla-
tions towards asymptotic regime around ω  5. We remark
that none of the TCFs survives beyond asymptotically large
ω � 5. For the details about each TCF we refer to Sect. 4.3.

It is interesting to explore dependence of the TCFs on the
chemical potentials. Of special interest is the case of zero
background axial charge density, ρ̄5 = 0, which is the most
realistic scenario for any conceivable experiment. However,
even in this case, μ5 could be nonzero and would be pro-
portional to �E · �B due to the chiral anomaly (1). Because of
the linearisation approximation, the TCFs σ1, σ̄3 vanish in
the limit ρ̄5 = 0. We expect them to be nonzero beyond the
current approximation. At q = 0, for the remaining TCFs we
discover some universal dependence: σ̄aχH vanishes; σaχH ,
DH , D̄H do not depend on the chemical potentials at all; σ1

is linear in κ2μ̄μ̄5; σ3 is linear in κμ̄; similarly, σ̄3 is linear in
κμ̄5; σ2 has a normal component independent of the chemi-
cal potentials and anomaly induced correction which is linear
in κ2(μ̄2 + μ̄2

5). All these features can be derived from the
underlying equations (see Appendix A1 for relevant ODEs).

The rest of this paper is structured as follows. In Sect. 3,
we present the holographic model briefly. For more details
about holographic model we refer to [58]. Section 4 contains
the main part of the study: gradient resummation for nonlin-
ear chiral transport. It is further split into four subsections. In
Sect. 4.1, the constitutive relations (7), (8) are derived from
the dynamical components of the bulk anomalous Maxwell
equations near the conformal boundary. In Sect. 4.2, the TCFs
are analytically computed in the hydrodynamic limit. Sec-
tion 4.3 numerically extends the results beyond this limit.
Section 4.4 focuses on the CMW dispersion relation beyond
hydrodynamic limit. Section 5 concludes our study. Appen-
dices supplement calculational details for Sect. 4.
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3 Holographic setup: U(1)V × U(1)A

The bulk action is [59,60]

S =
∫

d5x
√−gL + Sc.t., (26)

where

L = − 1

4
(FV )MN (FV )MN − 1

4
(Fa)MN (Fa)MN

+ κ εMN PQR

2
√−g

×
[
3AM (FV )N P (FV )QR + AM (Fa)N P (Fa)QR

]
,

(27)

and the counter-term action Sc.t. is

Sc.t. = 1

4
log r

∫
d4x

√−γ

×
[
(FV )μν(F

V )μν + (Fa)μν(F
a)μν

]
. (28)

The gauge Chern–Simons terms (∼ κ) in the bulk action
mimic the chiral anomaly of the boundary field theory. Note
εMN PQR is the Levi-Civita symbol with the convention
εr t xyz = +1, while the Levi-Civita tensor is εMN PQR/

√−g.
In the ingoing Eddington–Finkelstein coordinate, the met-

ric of Schwarzschild-AdS5 is

ds2 = 2dtdr − r2 f (r)dt2 + r2δi j dx
i dx j , (29)

where f (r) = 1−1/r4. Here we have normalised the Hawk-
ing temperature (identified as the temperature of the bound-
ary theory) to πT = 1.

The bulk equations of motion read

EVM ≡ ∇N (FV )NM + 3κεMN PQR

√−g
(Fa)N P (FV )QR = 0,

(30)

EAM ≡ ∇N (Fa)NM + 3κεMN PQR

2
√−g

[
(FV )N P (FV )QR

+ (Fa)N P (Fa)QR

]
= 0, (31)

where EVμ = EAμ = 0 and EVr = EAr = 0 correspond to
dynamical and constraint equations, respectively. The bound-
ary currents are defined as

Jμ ≡ lim
r→∞

δS

δVμ

, Jμ
5 ≡ lim

r→∞
δS

δAμ

. (32)

Employing the radial gauge Vr = Ar = 0, it is sufficient to
solve the dynamical equations only to determine the bound-
ary currents (32), leaving constraints aside. Indeed, the con-
straint equations give rise to continuity equations of currents

(1). Thus, without imposing the constraint equations, the cur-
rents to be constructed are off-shell.

For practical purpose, it is useful to express the currents
in terms of the coefficients of near boundary (r = ∞) pre-
asymptotic expansion of the bulk gauge fields:

Jμ = ημν(2V (2)
ν + 2V L

ν + ησ t∂σFV
tν ), Jμ

5 = ημν2A(2)
ν ,

(33)

where FV
μν is field strength of the external e/m potential

Vμ(x), and 4V L
μ = ∂νFV

μν . V (2)
μ and A(2)

μ are the coefficients
of 1/r2 in the near boundary expansions of bulk fields Vμ and

Aμ, respectively. Note V (2)
μ and A(2)

μ have to be determined
by fully solving the dynamical equations from the horizon to
the boundary.

As the remainder of this section, we outline the strategy
for deriving the constitutive relations for Jμ and Jμ

5 . To this
end, we turn on finite vector/axial charge densities for the dual
field theory, which are also exposed to external e/m fieldsVμ.
Holographically, the charge densities and external fields are
encoded in the asymptotic behaviors of the bulk gauge fields.
In the bulk, we will solve the dynamical equations assuming
the charge densities and external fields as given, but without
specifying them explicitly. For more details, we refer the
reader to our previous publications [1,2,58].

We start with the ansatz

Vμ(r, xα) = Vμ(xα) − ρ(xα)

2r2 δμt + Vμ(r, xα),

Aμ(r, xα) = −ρ5(xα)

2r2 δμt + Aμ(r, xα),

(34)

where Vμ(x) is the external gauge potential, and ρ, ρ5 are
vector and axial charge densities of the boundary theory.
Vμ and Aμ will be determined by solving dynamical equa-
tions. Appropriate boundary conditions are classified into
three types. First, Vμ and Aμ are regular over the domain
r ∈ [1,∞). Second, at the conformal boundary r = ∞, we
require

Vμ → 0, Aμ → 0 as r → ∞, (35)

which amounts to fixing external gauge potentials to be Vμ

and zero (for the axial field). Additional integration constants
will be fixed by the Landau frame convention,

J t = ρ(xα), J t5 = ρ5(xα). (36)

The Landau frame convention corresponds to a residual
gauge fixing for the bulk fields.

To facilitate the exchange between charge density and
chemical potential, we define

123
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μ = Vt (r = ∞) − Vt (r = 1) = 1

2
ρ − Vt (r = 1),

μ5 = At (r = ∞) − At (r = 1) = 1

2
ρ5 − At (r = 1).

(37)

Generically, μ,μ5 are nonlinear functionals of densities and
external fields.

For generic profiles ofVμ(x), ρ(x), ρ5(x), it is impossible
to solve dynamical components of (30), (31). As announced
in Sect. 3, we employ the approximation schemes (4), (5).
Consequently, the corrections Vμ and Aμ are first expanded
in powers of ε,

Vμ = V
(0)
μ (r) + εV(1)

μ (r, xα) + O(ε2),

Aμ = A
(0)
μ (r) + εA(1)

μ (r, xα) + O(ε2), (38)

and then each order in ε is further expanded in powers of α:

V
(0)
μ =

∞∑
n=1

αn
V

(0)(n)
μ , A

(0)
μ =

∞∑
n=1

αn
A

(0)(n)
μ ,

V
(1)
μ =

∞∑
n=0

αn
V

(1)(n)
μ , A

(1)
μ =

∞∑
n=0

αn
A

(1)(n)
μ ,

(39)

where V
(0)(1)
μ , V(1)(0)

μ , A(0)(1)
μ , A(1)(0)

μ were derived in [1].

Since V
(0)(1)
μ , V(1)(0)

μ , A(0)(1)
μ , A(1)(0)

μ will act as sources in
the dynamical equations at O(ε1α1), we summarise them
below (the notations here will be slightly different from [1]).

At O(ε0α1), we have

V
(0)(1)
t = A

(0)(1)
t = 0, V

(0)(1)
i = f1Ei + f2κρ̄5Bi ,

A
(0)(1)
i = f2κρ̄Bi , (40)

where f1 and f2 are [1]

f1 = −1

4

[
log

(1 + r)2

1 + r2 − 2 arctan(r) + π

]
and

f2 = 3 log
1 + r2

r2 . (41)

At O(ε1α0), the corrections are (note δ �E = δ �B = 0
throughout this work)

V
(1)(0)
t = g3(r, ω, �q )δρ, A

(1)(0)
t = g3(r, ω, �q )δρ5,

V
(1)(0)
i = g4(r, ω, �q )∂iδρ, A

(1)(0)
i = g4(r, ω, �q )∂iδρ5.

(42)

g3 and g4 satisfy coupled ordinary differential equations
(ODEs),

0 = r2∂2
r g3 + 3r∂r g3 − q2∂r g4,

0 = (r5 − r)∂2
r g4 + (3r4 + 1)∂r g4 − 2iωr3∂r g4

− iωr2g4 − r3∂r g3 − r2g3 − 1

2
,

(43)

which were solved both analytically in the hydro limit
(ω, q 
 1) and numerically for generic values of ω, q in
Ref. [1]. Below we quote the hydro expansion of diffusion
functionD [13] (which can be extracted from solution to g4):

D = 1

2
+ iωπ

8
− 1

48

[
π2ω2 − q2(6 log 2 − 3π)

]
+ · · · ,

(44)

At O(ε1α1), the dynamical equations reduce to the fol-
lowing linear partial differential equations for the corrections
V

(1)(1)
μ and A

(1)(1)
μ :

0 = r3∂2
r V

(1)(1)
t + 3r2∂rV

(1)(1)
t + r∂r∂kV

(1)(1)
k

+ 12κεi jk
(
∂rA

(1)(0)
i ∂ j V̄k

+ ∂rA
(0)(1)
i ∂ jV

(1)(0)
k + ∂rV

(0)(1)
i ∂ jA

(1)(0)
k

)
, (45)

0 = (r5 − r)∂2
r V

(1)(1)
i + (3r4 + 1)∂rV

(1)(1)
i

+ 2r3∂r∂tV
(1)(1)
i − r3∂r∂iV

(1)(1)
t

+ r2
(
∂tV

(1)(1)
i − ∂iV

(1)(1)
t

)

+ r
(
∂2
V

(1)(1)
i − ∂i∂kV

(1)(1)
k

)

+ 12κr2εi jk

×
(

1

r3 δρ5∂ j V̄k + 1

r3 ρ̄5∂ jV
(1)(1)
k + ∂rA

(1)(0)
t ∂ j V̄k

)

− 12κr2εi jk

×
{
∂rA

(0)(1)
j

[
(∂tV

(1)(0)
k − ∂kV

(1)(0)
t ) + 1

2r2 ∂kδρ

]

+ ∂rA
(1)(0)
j

(
∂t V̄k − ∂k V̄t

) }

− 12κr2εi jk
{
∂rV

(0)(1)
j

[
(∂tA

(1)(0)
k − ∂kA

(1)(0)
t )

+ 1

2r2 ∂kδρ5

]
− ρ̄

r3 ∂ jA
(1)(1)
k

}
, (46)

0 = r3∂2
r A

(1)(1)
t + 3r2∂rA

(1)(1)
t + r∂r∂kA

(1)(1)
k

+ 12κεi jk
(
∂rV

(1)(0)
i ∂ j V̄k

+ ∂rV
(0)(1)
i ∂ jV

(1)(0)
k + ∂rA

(0)(1)
i ∂ jA

(1)(0)
k

)
, (47)

0 = (r5 − r)∂2
r A

(1)(1)
i + (3r4 + 1)∂rA

(1)(1)
i

+ 2r3∂r∂tA
(1)(1)
i − r3∂r∂iA

(1)(1)
t

+ r2
(
∂tA

(1)(1)
i − ∂iA

(1)(1)
t

)

+ r
(
∂2
A

(1)(1)
i − ∂i∂kA

(1)(1)
k

)

+ 12κr2εi jk

×
(

∂ j V̄k(∂rV
(1)(0)
t + 1

r3 δρ) + ρ̄

r3 ∂ jV
(1)(1)
k

)

− 12κr2εi jk

123
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×
{
∂rV

(0)(1)
j

[
(∂tV

(1)(0)
k − ∂kV

(1)(0)
t ) + 1

2r2 ∂kδρ

]

+ ∂rV
(1)(0)
j (∂t V̄k − ∂k V̄t )

}

− 12κr2εi jk
{
∂rA

(0)(1)
j

[
(∂tA

(1)(0)
k − ∂kA

(1)(0)
t )

+ 1

2r2 ∂kδρ5

]
− ρ̄5

r3 ∂ jA
(1)(1)
k

}
. (48)

In the next Sect. 4, we will solve (45)–(48) by the technique
invented in [5,6].

4 Nonlinear chiral transport and gradient resummation

In this section, we focus on all order gradient resummation.
It is split into four subsections. The first one Sect. 4.1 is
devoted to derivation of the constitutive relations (7), (8). In
the following Sects. 4.2 and 4.3, the TCFs in (7), (8) are eval-
uated, first analytically in the hydrodynamic limit, and then
numerically for arbitrary momenta. The last Sect. 4.4 is about
non-dissipative modes in the CMW dispersion relations.

4.1 Constitutive relations at O(ε1α1)

Following the formalism introduced in [5,6], the corrections
V

(1)(1)
μ and A

(1)(1)
μ are decomposed in terms of basic struc-

tures built from the external fields and inhomogeneous parts
of the charge densities,

V
(1)(1)
t = S1κBk∂kδρ + S2κEk∂kδρ

+ S3κBk∂kδρ5 + S4κEk∂kδρ5, (49)

V
(1)(1)
i = V1κBiδρ + V2κBk∂i∂kδρ + V3κεi jkB j∂kδρ

+ V4κEiδρ + V5κEk∂i∂kδρ,

+ V6κεi jkE j∂kδρ + V7κBiδρ5 + V8κBk∂i∂kδρ5

+ V9κεi jkB j∂kδρ5 + V10κEiδρ5

+ V11κEk∂i∂kδρ5 + V12κεi jkE j∂kδρ5, (50)

A
(1)(1)
t = S̄1κBk∂kδρ + S̄2κEk∂kδρ

+ S̄3κBk∂kδρ5 + S̄4κEk∂kδρ5, (51)

A
(1)(1)
i = V̄1κBiδρ + V̄2κBk∂i∂kδρ + V̄3κεi jkB j∂kδρ

+ V̄4κEiδρ + V̄5κEk∂i∂kδρ

+ V̄6κεi jkE j∂kδρ + V̄7κBiδρ5 + V̄8κBk∂i∂kδρ5

+ V̄9κεi jkB j∂kδρ5 + V̄10κEiδρ5

+ V̄11κEk∂i∂kδρ5 + V̄12κεi jkE j∂kδρ5, (52)

where Si , S̄i ,Vi and V̄i are functionals of the boundary deriva-
tive operator ∂μ and functions of the radial coordinate r . They
also depend on the constant values μ̄ and μ̄5 of the chemi-
cal potentials. Fourier transforming δρ and δρ5 turns all the
derivatives into momenta. Thus, in momentum space, these

decomposition coefficients become functions of the radial
coordinate, frequency ω and spatial momentum squared q2:

Si (r, ∂t , ∂
2
i ) → Si (r, ω, q2) S̄i (r, ∂t , ∂

2
i ) → S̄i (r, ω, q2),

(53)

Vi (r, ∂t , ∂
2
i ) → Vi (r, ω, q2) V̄i (r, ∂t , ∂

2
i ) → V̄i (r, ω, q2),

(54)

which satisfy partially decoupled inhomogeneous ODEs
listed in Appendix A1. The decomposition functions Si , S̄i ,
Vi and V̄i are nothing else but elements of the inverse Green
function matrix for the system of ODEs.

As discussed in Sect. 3, the boundary conditions for the
decomposition coefficients in (49)–(52) are

Si → 0, S̄i → 0 Vi → 0, V̄i → 0 as r → ∞. (55)

Si , S̄i , Vi , V̄i are regular over the whole integral of r ∈ [1,∞).

(56)

Additional integration constants will be fixed by the Landau
frame convention (36).

Solving the ODEs (A1)–(A16) near the boundary r =
∞ reveals the pre-asymptotic behaviour for the corrections,
which can be summarised as

Si → s1
i

r
+ si

r2 + sL
i log r

r2 + · · · ,

Vi → v1
i

r
+ vi

r2 + vL
i log r

r2 + · · · ,

S̄i → s̄1
i

r
+ s̄i

r2 + s̄L
i log r

r2 + · · · ,

V̄i → v̄1
i

r
+ v̄i

r2 + v̄L
i log r

r2 + · · · ,

(57)

where s1,L
i , v1,L

i , s̄1,L
i , v̄1,L

i are fixed uniquely from the near-
boundary analysis alone, while the coefficients si , vi , s̄i , v̄i
can be determined only when the ODEs are fully solved in
the entire bulk, from the horizon to the AdS boundary.

Then, at O(ε1α1) the boundary currents (33) are

J t (1)(1) = −2κ (s1Bk∂kδρ + s2Ek∂kδρ + s3Bk∂kδρ5

+ s4Ek∂kδρ5) , (58)

J i(1)(1) = 2κ
(
v1Biδρ + v2Bk∂i∂kδρ + v3ε

i jkB j∂kδρ

+ v4Eiδρ + v5Ek∂i∂kδρ

+ v6ε
i jkE j∂kδρ + v7Biδρ5 + v8Bk∂i∂kδρ5

+ v9ε
i jkB j∂kδρ5 + v10Eiδρ5

+ v11Ek∂i∂kδρ5 + v12ε
i jkE j∂kδρ5

)
, (59)

J t (1)(1)
5 = −2κ (s̄1Bk∂kδρ + s̄2Ek∂kδρ + s̄3Bk∂kδρ5

+ s̄4Ek∂kδρ5) , (60)

J i(1)(1)
5 = 2κ

(
v̄1Biδρ + v̄2Bk∂i∂kδρ + v̄3ε

i jkB j∂kδρ

123
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+ v̄4Eiδρ + v̄5Ek∂i∂kδρ

+ v̄6ε
i jkE j∂kδρ + v̄7Biδρ5 + v̄8Bk∂i∂kδρ5

+ v̄9ε
i jkB j∂kδρ5 + v̄10Eiδρ5

+ v̄11Ek∂i∂kδρ5 + v̄12ε
i jkE j∂kδρ5

)
. (61)

The Landau frame convention (36) implies

si = s̄i = 0, i = 1, 2, 3, 4. (62)

Combined with the ODEs (A1), (A16), (62) leads to con-
straints among the decomposition coefficients in (49)–(52),
see (A17), (A18), (A19). Helped by these constraints, (59),
(61) can be eventually put into compact form (7), (8). All the
TCFs can be identified with the near boundary data vi , v̄i :

σχ̄ = 2
(
v̄1 − q2v̄2

)
, − ρ̄

4κ
DH = 2v3 = 2v̄9,

− ρ̄5

4κ
D̄H = 2v9 = 2v̄3,

− 1

2κ
σaχH = 2v12 = 2v̄6, − 1

2κ
σ̄aχH = 2v6 = 2v̄12,

σ1 = 2v2 = 2v̄8,

σ2 = 2v8 = 2v̄2, σ3 = 2v5 = 2v̄11, σ̄3 = 2v11 = 2v̄5.

(63)

The TCF σχ̄ does not depend on μ̄, μ̄5 at all. The rest of
the TCFs bear reminiscence of the axial symmetry. It get
reflected in some mirror symmetries with respect to exchange
of ρ̄ and ρ̄5 (or equivalently of μ̄ ↔ μ̄5). We found some
“symmetric relations” among the decomposition coefficients
in (49)–(52), see (A20), (A21). Consequently, the TCFs sat-
isfy

σ1,2 [μ̄, μ̄5] = σ1,2 [μ̄5, μ̄] ,

σaχH [μ̄, μ̄5] = σaχH [μ̄5, μ̄] ,

σ̄aχH [μ̄, μ̄5] = σ̄aχH [μ̄5, μ̄] ,

D̄H [μ̄, μ̄5] = DH [μ̄, μ̄5]|μ̄↔μ̄5 ,

σ̄3[μ̄, μ̄5] = σ3[μ̄, μ̄5]|μ̄↔μ̄5 . (64)

Instead of the charge densities ρ, ρ5, chemical potentials
are frequently used as hydrodynamic variables to parame-
terise the currents’ constitutive relations. Up to O(ε1α1), the
chemical potentials defined in (37) are

μ = 1

2
ρ(xα) − [

g3(r = 1)δρ + κ S̄1(r = 1)Bk∂kδρ5
]
,

μ5 = 1

2
ρ5(xα) − [

g3(r = 1)δρ5 + κ S̄1(r = 1)Bk∂kδρ
]
,

(65)

where g3(r = 1) and S̄1(r = 1) denote horizon values of g3

[appearing in (42)] and S̄1, respectively. Then, (65) can be

inverted

ρ = 1
1
2 − g3(r = 1)

μ + κ S̄1(r = 1)Bk∂k[ 1
2 − g3(r = 1)

]2 μ5,

ρ5 = 1
1
2 − g3(r = 1)

μ5 + κ S̄1(r = 1)Bk∂k[ 1
2 − g3(r = 1)

]2 μ, (66)

where we have utilised the fact that g3 has non-vanishing
value starting from second order in the gradient counting.
After some manipulations, the currents (7), (8) turn into

�J (1)(1) = σ ′̄
χκ �Bδμ5

− 1

4
D′

H (ρ̄ �B × �∇δμ) − 1

4
D̄′

H (ρ̄5 �B × �∇δμ5)

− 1

2
σ ′
aχH (�E × �∇δμ5)

− 1

2
σ̄ ′
aχH (�E × �∇δμ) + σ ′

1κ
[
(�B × �∇) × �∇

]
δμ +

+ σ ′
2κ

[
(�B × �∇) × �∇

]
δμ5

+ σ ′
3κ

[
(�E × �∇) × �∇

]
δμ

+ σ̄ ′
3κ

[
(�E × �∇) × �∇

]
δμ5, (67)

�J (1)(1)
5 = σ ′̄

χκ �Bδμ − 1

4
D′

H (ρ̄ �B × �∇δμ5)

− 1

4
D̄′

H (ρ̄5 �B × �∇δμ) − 1

2
σ ′
aχH (�E × �∇δμ)

− 1

2
σ̄ ′
aχH (�E × �∇δμ5) + σ ′

1κ
[
(�B × �∇) × �∇

]
δμ5

+ σ ′
2κ

[
(�B × �∇) × �∇

]
δμ5

+ σ ′
3κ

[
(�E × �∇) × �∇

]
δμ

+ σ̄ ′
3κ

[
(�E × �∇) × �∇

]
δμ, (68)

where the TCFs with prime are related to those in (7), (8) by

σ ′̄
χ = σχ̄

1
2 − g3(r = 1)

, (69)

and similar equations for the rest.

4.2 Hydrodynamic expansion: analytical results

In the hydrodynamic limit ω, q 
 1, the ODEs (A1)–
(A16) can be solved perturbatively. We employ the expansion
parameter λ via (ω, �q) → (λω, λ�q). Then, the decomposi-
tion coefficients are expanded in powers of λ,

Si =
∞∑
n=0

λn S(n)
i , Vi =

∞∑
n=0

λnV (n)
i ,

S̄i =
∞∑
n=0

λn S̄(n)
i , V̄i =

∞∑
n=0

λn V̄ (n)
i .

(70)
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Fig. 2 The generalised CME/CSE conductivity σχ̄ as a function of ω and q2

0 1 2 3 4 5
-5

0

5

10

0 1 2 3 4 5
0

2

4

6

8

Fig. 3 ω-dependence of σχ̄ when q = 0 (left); q2-dependence of σχ̄ when ω = 0 (right)

Then, at each order in λ, the solutions are expressed as dou-
ble integrals over r , see Appendix A2. The hydrodynamic
expansions of vi and v̄i (57) can be directly read off from
(A22)–(A43). Plugging these results into (63) leads to the
hydrodynamic expansion of all the TCFs in (7), (8), as pre-
sented in (17)–(25).

4.3 Beyond the hydrodynamic limit: numerical results

In this section, we present our results for the TCFs in (7),
(8) for finite frequency/momentum via solving the ODEs
(A1)–(A16) numerically. Pseudo-spectral collation method
is employed, which essentially converts the continuous
boundary value problem of linear ODEs into that of discrete
linear algebra. For more details on the numerical method,
we recommend the references [67–69]. Thanks to the sym-
metry relations (64), we plot the TCFs σaχH , σ̄aχH , σ1,2

for κμ̄ � κμ̄5 only without loss of generality. For DH and
σ3, this constraint is abandoned so that D̄H and σ̄3 could be
extracted from DH and σ3 via the exchange μ̄ ↔ μ̄5.

First, consider TCF σχ̄ , which generalises the original
CME (CSE) and measures the response to inhomogeneity
of charge density ρ (ρ5). Note σχ̄ does not depend on the
vector/axial chemical potentials at all, as can be seen from
the relevant ODEs (A2), (A6), (A7). In Fig. 2 we show the
3D plot of σχ̄ . The plots in Fig. 3 are 2D slices of Fig. 2 when
either ω = 0 or q = 0. While σχ̄ is different from the chi-
ral magnetic conductivity σχ of [1], it has roughly the same
dependence on frequency/momentum as σχ as is clear from
these plots. Namely, σχ̄ shows a relatively weak dependence
on q2 while its dependence on ω is more profound: damped
oscillations towards asymptotic regime around ω  5 where
σχ̄ vanishes essentially. As will be clear later, this damped
oscillating behavior is also observed in all other TCFs. This
phenomenon can be related to quasi-normal modes in the
presence of background fields, but here we are not pursuing
this connection any further. When q = 0 we computed the
inverse Fourier transform of σχ̄ , that is the memory function
σ̃χ̄ (t) of (13), as displayed in Fig. 1.

Next we consider TCFs DH , D̄H , σaχH and σ̄aχH mul-
tiplying second order derivative structures. These second
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Fig. 4 Hall diffusion TCF DH /κ2 as a function of ω and q2 when κμ̄ = κμ̄5 = 1/16
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Fig. 5 Hall diffusion TCF DH /κ2 as a function of ω and q2 when κμ̄ = 1/4, κμ̄5 = 0

order derivative structures are cross products between elec-
tric/magnetic fields and gradient of the densities. Via the
crossing rule (64), the Hall diffusion functions DH and D̄H

satisfy D̄H = DH (μ̄ ↔ μ̄5). Thus, we will mainly focus
on DH . σaχH is the anomalous chiral Hall TCF and σ̄aχH

is its axial analogue. Since V4 = q2V5 and V̄4 = q2V̄5 (see
(A19)), from the ODE (A13) it is obvious that σ̄aχH has an
overall q2 factor, so we will plot σ̄aχH/q2 in order to see
non-trivial behavior.

For representative values of μ̄, μ̄5, the frequency/
momentum-dependence of TCFsDH , σaχH and σ̄aχH is dis-
played in Figs. 4, 5, 7, 8, 10 and 11. These plots show similar
behaviors as Figs. 2 and 3. In contrast to σχ̄ , the TCFs DH ,
σaχH and σ̄aχH have non-trivial dependence on the chemical
potentials for nonvanishing momentum values.

Figures 6, 9 and 12 display 2D slices of Figs. 4, 5, 7, 8, 10
and 11 when either ω = 0 or q = 0. Recall that when q = 0,
DH does not depend on chemical potentials, as can been
checked from relevant ODEs (A3), (A5), (A6). Similarly,
from ODEs (A11), (A13), (A14), (A16) it is obvious that
when q = 0, σ̄aχH vanishes and σaχH does not depend on
chemical potentials. Once q �= 0, TCFs DH , σaχH and σ̄aχH

depend on chemical potentials non-linearly (Figs. 9, 10, 11,
12).

Finally, we turn to the remaining TCFs σ1,2,3 and σ̄3 which
multiply third order derivative structures. The σ2 and σ̄3 could
be thought of as the axial analogues of σ1 and σ3, respectively.
While σ2 still has nonzero value when both κμ̄ and κμ̄5 van-
ish, σ1 relies on that κμ̄μ̄5 �= 0. Without loss of generality,
we take κμ̄ ≥ κμ̄5 when making plots for σ1,2. Note that
given the crossing rule (64), σ̄3 can be extracted from σ3 by
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μ̄ ↔ μ̄5. For representative choices of μ̄, μ̄5, the 3D plots
of these TCFs are summarised in Figs. 13, 15, 16, 18 and
19. In Figs. 14, 17 and 20 we depict 2D slices of Figs. 13,
15, 16, 18 and 19 when either q = 0 or ω = 0. As for
DH , σaχH and σ̄aχH , for nonzero q, σ1,2,3 and σ̄3 depend on
chemical potentials non-linearly (Figs. 17, 18, 19, 20).

The universal dependence on vector/axial potentials at
q = 0 is revealed by considering the normalized quanti-
ties σ1/σ

0
1 , σ3/σ

0
3 , δσ2/δσ

0
2 . Here σ 0

1 , σ 0
3 , δσ 0

2 stands for DC
limit of the corresponding TCFs and δσ2 = σ2 − σ2(κμ̄ =
κμ̄5 = 0). As seen from (A4) and (A7), σ1/σ

0
1 and δσ2/δσ

0
2

are identical at q = 0. Thus, we will mainly focus on σ1/σ
0
1 .

ω-dependence of σ1/σ
0
1 and σ3/σ

0
3 is displayed in Figs. 14

and 20. We observe the universal dependence of vector/axial
potentials at q = 0, that is to say these normalised quanti-
ties do not depend on chemical potentials. Explicitly, σ1 is
linear in κ2μ̄μ̄5. σ3 is linear in κμ̄. σ2 has anomalous cor-
rection which is linear in κ2(μ̄2 + μ̄2

5). All these features can
also be realised from the corresponding ODEs. Note that by
employing crossing rule (64), σ̄3 is linear in κμ̄5.

4.4 CMW dispersion relation to all orders: non-dissipative
modes

The TCF σχ̄ enters the dispersion relation of CMW:

ω = ±σχ̄ (ω, q2) κ �q · �B − iD(ω, q2)q2. (71)

The dispersion relation (71) is exact to all orders in q2, pro-
vided κB 
 1. General solutions of this equation are com-
plex and cannot be studied with our present results. This is
because σχ̄ (ω, q2) and D(ω, q2) have been computed for
real values of ω only. We believe that beyond the hydro-
dynamic limit, Eq. (11) has infinitely many gapped modes.
Exploring this point in general would require going into com-
plex ω plane for the TCFs, which is beyond the scope of the
present work. Yet, quite intriguingly, there is a set of purely
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real non-dissipative solutions to (71). In order to find these
solutions we have devised the following procedure.

First, the equation is split into real and imaginary parts
(assuming �q parallel to �B):

φI (ω, q2, κB) ≡ Im[σχ̄ (ω, q2)] κqB − Re[D(ω, q2)] q2,

φR(ω, q2, κB) ≡ −ω + Re[σχ̄ (ω, q2)] κqB

+ Im[D(ω, q2)] q2. (72)

For a fixed value of κB, say κB = 0.33, the functions φI

and φR are shown in Fig. 21 (left) as contour plots in (ω, q2)

space (the functionD(ω, q2) is taken from [13] ). The dashed
(blue) and solid (red) curves stand for φI and φR respectively.
The numbers indicated on the curves correspond to the values
of these functions along the curves. Our interest is when both
functions vanish simultaneously, that is a crossing point of
φI = 0 and φR = 0 curves. Such crossing is clearly seen in
the region ω < 0.5 and q2 < 0.5. We denote this point by
(ωB, qB). This is a discrete density wave mode propagating
in the medium without any dissipation.

The procedure could be repeated for other values of κB.
The result is a one dimensional curve in a 3d parameter space
depicted in Fig. 21 (right). A few comments are in order. First,
there is a minimal value of κB  0.33 for which there exists
such a solution. Second, in fact there are multiple solutions
corresponding to several disconnected branches in Fig. 21,
which we do not display.

5 Conclusion

In this work, we have continued exploration of nonlinear chi-
ral anomaly-induced transport phenomena based on a holo-

graphic model with two U (1) fields interacting via gauge
Chern–Simons terms. For a finite temperature system, we
constructed off-shell constitutive relations for the vector and
axial currents.

The constitutive relations contain nine terms which are
linear simultaneously in the charge density fluctuations and
constant background external fields. The nine terms sum-
marised in (7), (8) correspond to all order resummation
of gradients of the charge density fluctuations parame-
terised by TCFs, first computed analytically in the hydro-
dynamic limit (Sect. 4.2) and then numerically for large
frequency/momentum (Sect. 4.3). A common feature of all
TCFs in (7), (8) is that they depend weakly on spatial momen-
tum but display pronounced dependence on frequency in
the form of damped oscillations vanishing asymptotically
at ω  5.

Most of our results are presented in summary Sect. 3.
Among new results worth highlighting is the CME memory
function computation σ̃χ̄ (t − t ′). The memory function is
found to differ dramatically from a delta-function form of
instantaneous response. In fact, σ̃χ̄ (t − t ′) vanishes at t = t ′
and the CME response gets built only after a finite amount
of time of order temperature.

Another result we find of interest is related to CMW dis-
persion relation, which for the first time was considered to
all orders in momentum q. Beyond the perturbative hydro-
dynamic limit, we found a continuum set of discrete density
wave modes, which can propagate in the medium without
any dissipation. While the original CMW dissipates and that
could be one of the problems for its detection, the new modes
that we discover should be long lived and have some poten-
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tial experimental signature.2 It is important to remember that
our calculation of the CMW dispersion relation is done for
a weak magnetic field only. One can obviously question the
validity of the results beyond this approximation. Both TCFs
σχ̄ and D that enter the CMW dispersion relation are func-
tions of �E and �B. In our previous work [58], we initiated
this study, still in perturbative in �E and �B regions, but a full
non-perturbative analysis will be reported elsewhere [70].

We have found a wealth of non-linear phenomena all
induced entirely by the chiral anomaly. An important next
step in deriving a full chiral MHD would be to abandon the
probe limit adopted in this paper and include the dynamics
of a neutral flow as well. This will bring into the picture addi-
tional effects such as thermoelectric conductivities, normal
Hall current, the chiral vortical effect [71,72], and some non-
linear effects discussed in [47]. We plan to address these in
the future.

Acknowledgements YB would like to thank the hospitality of Depart-
ment of Physics of Ben-Gurion University of the Negev where this
work was initialised and finalised. YB was supported by the Funda-
mental Research Funds for the Central Universities under Grant no.
122050205032 and the Natural Science Foundation of China (NSFC)
under the grant no. 11705037. TD and ML were supported by the
Israeli Science Foundation (ISF) Grant #1635/16 and the BSF Grants
#2012124 and #2014707.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The present work
is a theoretical investigation, so there is no associated data.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Supplement for Sect. 4

A.1 ODEs and the constraints for the decomposition
coefficients in (49)–(52)

We first collect the ODEs satisfied by the decomposition
coefficients in (49)–(52) and then derive some constraint
relations obeyed by these coefficients. Plugging (49)–(52)
into (45)–(48) and performing Fourier transform ∂μ →
(−iω, i �q), we obtained ODEs for the decomposition coef-
ficients Si , S̄i , Vi , V̄i . These ODEs can be grouped into par-
tially decoupled sub-sectors:

2 Obviously, if an experimentally accessible chiral plasma shares sim-
ilar features as discovered within our holographic model.

sub-sector (i): {S1, S̄1, V1, V̄1, V2, V̄2, V3, V̄3}
0 = r2∂2

r S1 + 3r∂r S1 + ∂r (V1 − q2V2), (A1)

0 = r2∂2
r S̄1 + 3r∂r S̄1 + ∂r (V̄1 − q2V̄2) + 12

r
∂r g4, (A2)

0 = (r5 − r)∂2
r V1 + (3r4 + 1 − 2iωr3)∂r V1

− (iωr2 + q2r)V1 − 12q2

r
κ(ρ̄5V3 + ρ̄V̄3), (A3)

0 = (r5 − r)∂2
r V2 + (3r4 + 1 − 2iωr3)∂r V2

− iωr2V2 − rV1 − r2(S1 + r∂r S1)

− 12κ

r
(ρ̄5V3 + ρ̄V̄3), (A4)

0 = (r5 − r)∂2
r V3 + (3r4 + 1 − 2iωr3)∂r V3

− (iωr2 + q2r)V3 − 12κ

r
(ρ̄5V1 + ρ̄V̄1)

+ 12κρ̄r2∂r f2(iωg4 + g3), (A5)

0 = (r5 − r)∂2
r V̄1 + (3r4 + 1 − 2iωr3)∂r V̄1

− (iωr2 + q2r)V̄1 − 12q2

r
κ(ρ̄V3 + ρ̄5V̄3)

+ 12

r
(1 + r3∂r g3), (A6)

0 = (r5 − r)∂2
r V̄2 + (3r4 + 1 − 2iωr3)∂r V̄2

− iωr2V̄2 − r V̄1 − r2(S̄1 + r∂r S̄1)

− 12κ

r
(ρ̄V3 + ρ̄5V̄3), (A7)

0 = (r5 − r)∂2
r V̄3 + (3r4 + 1 − 2iωr3)∂r V̄3

− (iωr2 + q2r)V̄3 − 12κ

r
(ρ̄V1 + ρ̄5V̄1)

+ 12κρ̄5r
2∂r f2(iωg4 + g3) − 6κρ̄5∂r f2. (A8)

sub-sector (ii): {S2, S̄2, V4, V̄4, V5, V̄5, V6, V̄6}
0 = r2∂2

r S2 + 3r∂r S2 + ∂r (V4 − q2V5), (A9)

0 = r2∂2
r S̄2 + 3r∂r S̄2 + ∂r (V̄4 − q2V̄5), (A10)

0 = (r5 − r)∂2
r V4 + (3r4 + 1 − 2iωr3)∂r V4

− (iωr2 + q2r)V4 − 12q2

r
κ(ρ̄5V6 + ρ̄V̄6), (A11)

0 = (r5 − r)∂2
r V5 + (3r4 + 1 − 2iωr3)∂r V5

− iωr2V5 − rV4 − r2(S2 + r∂r S2)

− 12κ

r
(ρ̄5V6 + ρ̄V̄6), (A12)

0 = (r5 − r)∂2
r V6 + (3r4 + 1 − 2iωr3)∂r V6

− (iωr2 + q2r)V6 − 12κ

r
(ρ̄5V4 + ρ̄V̄4), (A13)

0 = (r5 − r)∂2
r V̄4 + (3r4 + 1 − 2iωr3)∂r V̄4

− (iωr2 + q2r)V̄4 − 12q2

r
κ(ρ̄V6 + ρ̄5V̄6), (A14)

0 = (r5 − r)∂2
r V̄5 + (3r4 + 1 − 2iωr3)∂r V̄5

− iωr2V̄5 − r V̄4 − r2(S̄2 + r∂r S̄2)
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− 12κ

r
(ρ̄V6 + ρ̄5V̄6), (A15)

0 = (r5 − r)∂2
r V̄6 + (3r4 + 1 − 2iωr3)∂r V̄6

− (iωr2 + q2r)V̄6 − 12κ

r
(ρ̄V4 + ρ̄5V̄4)

− 12r2 [∂r g4 − ∂r f1(iωg4 + g3)] − 6∂r f1. (A16)

The remaining decomposition coefficients satisfy the
same ODEs as above. More specifically, the sub-sector
{S̄3, S3, V̄7, V7, V̄8, V8, V̄9, V9} satisfies the same equations
as the sub-sector (i): {S1, S̄1, V1, V̄1, V2, V̄2, V3, V̄3}; the sub-
sector {S̄4, S4, V̄10, V10, V̄11, V11, V̄12, V12} obeys the same
equations as sub-sector (ii): {S2, S̄2, V4, V̄4, V5, V̄5, V6, V̄6}.

In what follows, we explore some “mirror symmetry rela-
tions” among these decomposition coefficients, which are
useful in simplifying the expressions for currents’ constitu-
tive relations at the order O(ε1α1). First, notice that

{S3, S̄3, V7, V̄7, V8, V̄8, V9, V̄9}
= {S̄1, S1, V̄1, V1, V̄2, V2, V̄3, V3}, (A17)

since these two sub-sectors satisfy identical system of ODEs
and have the same boundary conditions. Following this rea-
soning,

{S4, S̄4, V10, V̄10, V11, V̄11, V12, ¯V12}
= {S̄2, S2, V̄4, V4, V̄5, V5, V̄6, V6}. (A18)

The “equal sign” in (A17), (A18) should be understood in
the specific order as shown therein.

Certain relations can be established among the decompo-
sition coefficients in (49)–(52). It follows from the Landau
frame convention (62) and boundary conditions (55), (56)
that

S1 = 0, V1 − q2V2 = 0, S2 = 0, V4 − q2V5 = 0

S̄2 = 0, V̄4 − q2V̄5 = 0.
(A19)

Now lets explore the mirror symmetry for the decomposi-
tion coefficients under exchange ρ̄ ↔ ρ̄5. The decomposition
coefficients in the sub-sector {S1, S̄1, V1, V̄1, V2, V̄2, V3, V̄3}
are found symmetric with respect to ρ̄, ρ̄5:

Vi (ρ̄, ρ̄5) = Vi (ρ̄5, ρ̄), V̄i (ρ̄, ρ̄5) = V̄i (ρ̄5, ρ̄),

i = 1, 2, 3,

S1(ρ̄, ρ̄5) = S1(ρ̄5, ρ̄), S̄1(ρ̄, ρ̄5) = S̄1(ρ̄5, ρ̄).

(A20)

Similarly, in the second sub-sector {S2, S̄2, V4, V̄4, V5, V̄5,

V6, V̄6},

S̄2(ρ̄, ρ̄5) = S2(ρ̄5, ρ̄), V̄i (ρ̄, ρ̄5) = Vi (ρ̄5, ρ̄), i = 4, 5

V6(ρ̄, ρ̄5) = V6(ρ̄5, ρ̄), V̄6(ρ̄, ρ̄5) = V̄6(ρ̄5, ρ̄).

(A21)

The symmetry relations (A20), (A21) guide the choice
of values for κρ̄ and κρ̄5 in numerical procedure for the
ODEs. Given these relations, the choice κρ̄ � κρ̄5 can be
applied when solving

{
V1, V̄1, V3, V̄3

}
,
{
S1, V2, S̄1, V̄2

}
and{

V4, V̄4, V6, V̄6
}

without loosing generality. These relations
also help to reduce the number of the ODEs to be solved.

A.2 Perturbative solutions

Here, we summarise the perturbative solutions of (A1)–
(A16) in the hydrodynamic limit ω, q 
 1. Recall that the
decomposition coefficients are formally expanded as (70).
Then, at each order in the hydrodynamic expansion, solutions
are expressed as double integrals over r . The final results, up
to third order in derivative expansion, are listed below.
sub-sector (i):

{
S1, S̄1, V1, V̄1, V2, V̄2, V3, V̄3

}
:

S(0)
1 = V (0)

1 = 0, (A22)

V̄ (0)
1 =

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12

y3

= 3 log
1 + r2

r2
r→∞−−−→ 3

r2 + O
(

1

r3

)
, (A23)

S̄(0)
1 = −

∫ ∞

r

dx

x3

∫ ∞

x
dy

[
y∂y V̄

(0)
1 + 12∂yg

(0)
4

]

r→∞−−−→ O
(

1

r3

)
, (A24)

V (0)
3 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

6κ

y3 ρ̄
[
2V̄ (0)

1 + y∂y f2
]

r→∞−−−→ 9κρ̄

r2 (2 − 3 log 2) + O
(

1

r3

)
, (A25)

V̄ (0)
3 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

6κ

y3 ρ̄5

[
2V̄ (0)

1 + y∂y f2
]

r→∞−−−→ 9κρ̄5

r2 (2 − 3 log 2) + O
(

1

r3

)
, (A26)

V (0)
2 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 (ρ̄5V
(0)
3 + ρ̄V̄ (0)

3 )

r→∞−−−→ 27κ2ρ̄ρ̄5

r2 [6 + log 2(5 log 2 − 12)]

+O
(

1

r3

)
, (A27)

V̄ (0)
2 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

[
S̄(0)

1 + y∂y S̄
(0)
1 + 1

y
V̄ (0)

1

+ 12κ

y3 (ρ̄V (0)
3 + ρ̄5V̄

(0)
3 )

]

r→∞−−−→ 1

2r2

{
1

8
(6π − π2 − 12 log 2)

+ 27κ2(ρ̄2 + ρ̄2
5 )[6 + log 2(5 log 2 − 12)]

}
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+O
(

1

r3

)
, (A28)

S(1)
1 = V (1)

1 = 0, (A29)

V̄ (1)
1 =

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

[
iωV̄ (0)

1 + 2iωy∂y V̄
(0)
1

]

r→∞−−−→ 3iω

4r2 (π + 2 log 2) + O
(

1

r3

)
, (A30)

S̄(1)
1 = −

∫ ∞

r

dx

x3

∫ ∞

x
dy

[
y∂y V̄

(1)
1 + 12∂yg

(1)
4

]

r→∞−−−→ O
(

1

r3

)
, (A31)

V (1)
3 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

[
iωV (0)

3 + 2iωy∂yV
(0)
3

+ 12κ

y3 ρ̄V̄ (1)
1 − 12iωκρ̄g(0)

4 ∂y f2

]

r→∞−−−→ 3iωκρ̄

4r2

[
π(6 − 2π − 3 log 2)

+ log 2(12 − 9 log 2)
] + O

(
1

r3

)
, (A32)

V̄ (1)
3 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

[
iωV̄ (0)

3 + 2iωy∂y V̄
(0)
3

+ 12κ

y3 ρ̄5V̄
(1)
1 − 12iωκρ̄5g

(0)
4 ∂y f2

]

r→∞−−−→ 3iωκρ̄5

4r2

[
π(6 − 2π − 3 log 2)

+ log 2(12 − 9 log 2)
] + O

(
1

r3

)
, (A33)

V (2)
1 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 q2(ρ̄5V
(0)
3 + ρ̄V̄ (0)

3 )

r→∞−−−→ 27q2κ2ρ̄ρ̄5

r2 [6 + log 2(5 log 2 − 12)]

+O
(

1

r3

)
, (A34)

V̄ (2)
1 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

[
2iωy∂y V̄

(1)
1 + iωV̄ (1)

1

+ q2

y
V̄ (0)

1 + 12κ

y3 q2(ρ̄V (0)
3 + ρ̄5V̄

(0)
3 ) − 12∂yg

(2)
3

]

r→∞−−−→ − 1

16r2

{
ω2

[
π2 + 6(4C + (log 2)2)

]

+ q2
[

6π + π2 − 12 log 2 − 216κ2(ρ̄2 + ρ̄2
5 )(6

+ log 2[5 log 2 − 12])
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+ O
(

1

r3

)
, (A35)

sub-sector (ii):
{
S2, S̄2, V4, V̄4, V5, V̄5, V6, V̄6

}
:

S(0)
2 = S̄(0)

2 = V (0)
4 = V̄ (0)

4 = V (0)
6 = 0, (A36)

V̄ (0)
6 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
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[
2∂yg

(0)
4 + 1

y2 ∂y f1

]

r→∞−−−→ −3 log 2

2r2 + O
(

1

r3

)
, (A37)

V (0)
5 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 ρ̄V̄ (0)
6

r→∞−−−→ 9κρ̄(log 2)2

4r2 + O
(

1

r3

)
, (A38)

V̄ (0)
5 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 ρ̄5V̄
(0)
6

r→∞−−−→ 9κρ̄5(log 2)2

4r2 + O
(

1

r3

)
, (A39)

S(1)
2 = S̄(1)

2 = V (1)
4 = V̄ (1)

4 = V (1)
6 = 0, (A40)

V̄ (1)
6 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy6

[
iωV̄ (0)

6 + 2iωy∂y V̄
(0)
6

+ 12∂yg
(1)
4 − 12iωg(0)

4 ∂y f1
]

r→∞−−−→ − iω

64r2 (48C + 5π2) + O
(

1

r3

)
, (A41)

V (2)
4 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 q2ρ̄V̄ (0)
6

r→∞−−−→ 9q2κρ̄(log 2)2

4r2 + O
(

1

r3

)
, (A42)

V̄ (2)
4 = −

∫ ∞

r

xdx

x4 − 1

∫ x

1
dy

12κ

y3 q2ρ̄5V̄
(0)
6

r→∞−−−→ 9q2κρ̄5(log 2)2

4r2 + O
(

1

r3

)
, (A43)

where C is the Catalan constant. It is straightforward to read
off the boundary data vi and v̄i from the solutions presented
above.
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