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Abstract Based on string theory, loop quantum gravity,
black hole physics, and other theories of quantum gravity,
physicists have proposed generalized uncertainty principle
(GUP) modifications. In this work, within the framework of
GUP gravity theory, we successfully derive an exact solu-
tion to Einstein’s field equation, and discuss the possibility
of using EHT to test GUP and how GUP changes the weak
cosmic censorship conjecture for black holes. We analyze
two different ways of constructing GUP rotating black holes
(model I and model II). Model I takes into account the mod-
ification of mass by GUP, i.e., the change in mass by quan-
tization of space, and the resulting GUP rotating black hole
metric (18) is similar in form to the Kerr black hole metric.
Model II takes into account the modification of the rotat-
ing black hole when GUP is an external field, where GUP
acts like an electric charge, and the resulting GUP rotating
black hole metric (19) is similar in form to the Kerr–Newman
black hole metric. The difference between (18) and (19) in the
spacetime linear structure provides a basis for us to examine
the physical nature of GUP rotating black holes from obser-
vation. By analyzing the shadow shape of the GUP rotating
black hole, we discover intriguing characteristics regarding
the impact of first-order and second-order momentum cor-
rection coefficients on the black hole’s shadow shape. These
findings will be instrumental in future GUP testing using
EHT. Additionally, by incident test particle and scalar field
with a rotating GUP black hole, the weak cosmic censorship
conjecture is not violated in either extreme black holes or
near-extreme black holes.

1 Introduction

In 1905, Einstein proposed his theory of special relativ-
ity, which organically combined space and time. In 1915,
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Einstein proposed his theory of general relativity, which
extended special relativity by linking the effects of gravity
to the curvature of spacetime [1]. These insights revolution-
ized our understanding of the universe. General relativity
has been highly successful where spacetime is a continu-
ous quantity. For example, the length of an object can be
infinitely small, and the measure of time is also a continuous
quantity. However, the continuity of spacetime contradicts
the Heisenberg uncertainty principle in quantum mechanics.
In quantum mechanics, the mathematical form of the Heisen-
berg uncertainty principle is �x�p ≥ h̄

2 , which translates
into the uncertainty of energy; similarly, time is �E�t ≥ h̄

2 .
We will see that in quantum mechanics, quantities are basi-
cally quantized, but �x and �t are continuous. In order
to introduce the quantum nature of spacetime into quantum
mechanics, Snyder et al. generalized the uncertainty princi-
ple, whose initial form is �x�p ≥ h̄

2 (1 + β(�p)2 + β〈 p̂〉2)

[2]. This generalization introduces the notion of minimal
observable length, which their work shows is not inconsis-
tent with Lorentz invariance and is therefore a self-consistent
physical theory. Since then, physicists have conducted exten-
sive and profound studies of the generalized uncertainty prin-
ciple (GUP) [3].

After discussing the GUP and its contributions to theoreti-
cal physics, we realize that although GUP provides an impor-
tant theoretical framework for understanding quantum grav-
ity and the minimal measurable length, it encounters certain
challenges in preserving Lorentz invariance. As an advanced
improvement to this issue, the introduction of the relativis-
tic generalized uncertainty principle (RGUP) has success-
fully resolved the issues related to Lorentz covariance, frame
dependence, and the linearity of momentum superposition
that were present in GUP. A series of recent outstanding
papers [4–10] have cleverly shown how adopting RGUP
effectively maintains Lorentz invariance and has opened new
avenues for introducing the concept of a minimal measur-
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able length in theoretical physics, unaffected by the choice
of reference frame. The authors of these papers, with their
profound insights and innovative methods, have not only pro-
pelled the application of RGUP in quantum field theory but
also provided new theoretical perspectives for dealing with
physical phenomena at high energies. Their work represents a
significant breakthrough in the field. GUP can be considered
the non-relativistic approximation of RGUP, thereby making
the study of GUP modifications to black holes foundational
for understanding RGUP modifications to black holes. In
our future work, we will prepare to extensively investigate
the modifications of black holes by RGUP and its related
physics.

The physical discussion of GUP is important, but cannot
be tested by current high-energy physics experiments. Here,
we only introduce the content of studying GUP using black
hole physics. The main problem is to construct a black hole
metric that takes GUP into account, and then to calculate
the effect of GUP in black hole physics. The specific behav-
iors and properties of the GUP have been studied extensively
when it is considered in the spacetime of the Schwarzschild
black hole, where the radius of the event horizon of the
black hole increases [11–16]. It is worth mentioning that in
the field of exploring the impact of the GUP on black hole
physics, Hayam Yassin and Abdel Nasser Tawfik, among
others, have provided significant theoretical support and pro-
found insights [17–22]. Their research not only thoroughly
analyzes the dual role of the GUP and the modified dispersion
relations (MDR) in the phenomenology of quantum gravity,
but also delves into the importance of modifications to black
hole thermodynamics and Friedmann equations by GUP. In
particular, their work has reproduced the horizon areas of
different types of black holes and conducted detailed stud-
ies on the quantum corrections to the Bekenstein–Hawking
entropy, revealing how GUP affects the microscopic structure
of black hole entropy and predicting how these modifications
could influence the thermodynamic behavior of black holes.
These findings not only provide a theoretical foundation for
constructing black hole metrics considering GUP and ana-
lyzing the role of GUP in black hole physics in this research,
but also enrich our understanding of the complexity of black
hole thermodynamic systems. In loop quantum gravity the-
ory, physicist obtained the modified Schwarzschild black
hole in the GUP case [23,24]. In addition, physicists also
try to use GUP to solve the information problem of black
holes, and find that if GUP is taken into account, the Hawk-
ing radiation of the modified Schwarzschild black hole or
Kerr black hole will show a new property, that is, the black
hole will leave a residue in the final stage of evaporation,
which can resolve the information problem of black holes to
some extent [3]. Currently, there are two main approaches
to constructing black holes in GUP. First, the GUP does not
change the equivalent metric structure of the Schwarzschild

black hole, but only the total mass of the system, which is
an essential modification of profound physical significance
[25]. Second, we consider GUP as some outer field, similar
to electric charge, so the modification in the Schwarzschild
black hole metric will differ from the previous case by adding
an ∝ 1

r2 term to the spacetime metric [26]. These two differ-
ent constructions will deepen the understanding of the nature
of GUP.

In this paper, we study solutions of Einstein’s field equa-
tions for rotating black holes under the GUP effect. In Sect. 2,
the GUP and Schwarzschild black hole corrections are intro-
duced. In Sect. 3, we study the GUP corrections to rotating
black holes and obtain exact solutions of the Einstein field
equations taking the GUP into account. In Sect. 4, we investi-
gate the possibility of using black hole shadows to test GUP.
In Sect. 5, we calculate the effect of GUP on the weak cos-
mic censorship conjecture. Lastly, Sect. 6 is devoted to a
summary.

2 Nonrotating black hole and GUP

The introduction of GUP is closely related to the minimal
observable length, and the introduction of GUP does not vio-
late Lorentz invariance [25]. Throughout this paper, we will
use the following form of GUP:

�x�p ≥ h̄

2

[
1 − αl p

h̄
�p + βl2p

h̄2 (�p)2

]
, (1)

where α and β are dimensionless model parameters. When
both α and β are zero, Eq. (1) reduces to the Heisenberg
uncertainty principle. Here, l p is the Planck length. Accord-
ing to Eq. (1), there exists a minimal observable length
�x ≥ (�x)min ≈ (√

β − α
2

)
l p and a maximal observable

momentum �p ≤ (�p)max ≈ αh̄
βl p

. These results show that
it is impossible to measure lengths below (�x)min , setting
a minimum limit to the detection capabilities of physics. In
reference [25], they arrive at the modified black hole metric,
whose spacetime line elements are

ds2 =
[

1 − 2M1

r

]
dt2 +

[
1 − 2M1

r

]−1

dr2

+r2d�2, (Model I ) (2)

where d�2 = dθ2 + sin2 θdφ2, and the total mass of the
modified black hole, is

M1 = M

[
1 − 2α

M
+ 4β

M2

]
. (3)

In this approach to the construction of a black hole, the
GUP has a major effect on the mass, and the value of M
deviates from the usual definition due to the presence of α and
β. This leads us to a renewed understanding of the concept
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of mass. Due to the equivalence principle, gravitational mass
is equivalent to inertial mass, so result (3) will redefine our
understanding of inertial mass.

For the second construction of the GUP black hole, we
shall give a brief introduction. According to Eq. (1)

�x ≈ 1

2E

[
1 − αE + βE2

]
. (4)

In the process of obtaining equation (4), we use the
standard dispersion relation E = p. On the other hand,
the uncertainty in the photon wavelength depends on the
Schwarzschild black hole radius

�x = 2πRs = 4πM. (5)

Considering E ≈ T , and T is the Bekenstein–Hawking
classical temperature, the mathematical expression of T can
be obtained by combining (4) and (5)

T = 1

2β

[
α + 4πM −

√
(α + 4πM)2 − 4β

]
. (6)

In this construction method, the spacetime line elements
of the spherically symmetric GUP black hole are assumed to
be [26]

ds2 = − f (r)dt2 + g−1(r)dr2 + r2d�2. (Model I I ) (7)

Its metric coefficients are set to

f (r) = g(r) = 1 − 2M

r
+ ε

M2

r2 . (8)

Here, ε is a dimensionless parameter. The Bekenstein–
Hawking classical temperature corresponding to the metric
(7) is

T (ε) = 1

4π

d f (r)

dr
|r=rH = 1

2πM

√
1 − ε

(1 + √
1 − ε)2

. (9)

Therefore, T (ε) = T , and the relation between the GUP
parameter β and the dimensionless parameter ε is

1

πM

√
1 − ε

(1 + √
1 − ε)2

= 1

β

[
α + 4πM −

√
(α + 4πM)2 − 4β

]
,

ε = 1 −
[

β

2πM
[
α + 4πM −

√
(α + 4πM)2 − 4β

]

×
(

1±

√√√√
1−

4πM
[
α+4πM−

√
(α+4πM)2−4β

]
β

)
−1

]2

.

(10)

By the construction of a spherically symmetric metric for
the GUP black hole, it can be found that this construction
treats the GUP as an external field rather than as a change in
spacetime itself. This is different from the first construction

of the GUP black hole metric. Different structural pathways
reveal different physical implications of the GUP.

Herein, we briefly introduce the spherically symmetric
metric of GUP black holes, which will facilitate our sub-
sequent generalization to the rotating case. For spherically
symmetric metrics, the GUP approach has been employed
to study their thermodynamic properties, entropy, and the
equations of state derived under various types of spherically
symmetric black holes in several seminal papers (see Refs.
[19–22]). These studies play a key role in further understand-
ing the thermodynamic systems of black holes.

3 Kerr-like black hole spacetime

Here we will generalize the spherically symmetric space-
time metric to the axisymmetric case using a transformation
(i.e., the Newman–Janis method) [27–29]. In this method, the
black hole spin a and angular coordinate θ are introduced by
a complex coordinate transformation in the light cone coordi-
nate system. By generalizing the various metric coefficients
of the spherically symmetric case to the case involving a and
θ , the general form of the spacetime metric in the light cone
coordinate system can be obtained. Then, using the standard
coordinate transformation, we can obtain the spacetime met-
ric in the Boyer–Lindquist (BL) coordinate system, whose
general expression is

ds2 = − 


ρ2

(
1 − 2 f̄

ρ2

)
dt2 + 


�
dr2

−4a f̄ 
 sin2 θ

ρ4 dtdφ + 
dθ2 + 
� sin2 θ

ρ4 dφ2.

(11)

The meanings of the symbols in this metric are as follows:

ρ2 = k(r) + a2 cos2 θ, k(r) = h(r)

√
f (r)

g(r)
= r2,

f̄ = 1

2
k(r) − 1

2
h(r) f (r) = 1

2
r2 − 1

2
r2 f (r),

� =
(
k(r) + a2

)2 − a2�(r) sin2 θ

=
(
r2 + a2

)2 − a2�(r) sin2 θ,

�(r) = r2 f (r) + a2. (12)

In these expressions, once the metric of spherically sym-
metric spacetime is determined, all functions except the
unknown function 
 in Eq. (11) can be determined. So far,
two physical conditions have not been treated, namely the
axisymmetric conditionGrθ = 0 and Einstein’s gravitational
field equations Gμν = Rμν − 1

2gμνR = 8πTμν . The space-
time metric (11) must satisfy both conditions. In this case,
the unknown function in Eq. (11) will satisfy the following
equations:
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(
k(r) + a2y2

)2
(

3
∂


∂r

∂


∂y2 − 2

∂2


∂r∂y2

)

= 3a2 ∂k

∂r

2, (13)




((
∂k

∂r

)2

+ k

(
2 − ∂2k

∂r2

)
− a2y2

(
2 + ∂2k

∂r2

))

+
(
k + a2y2

)(
4y2 ∂


∂y2 − ∂k

∂r

∂


∂r

)
= 0. (14)

For the spacetime metrics (2) and (7), f (r) = g(r) and
k(r) = r2, and then Eqs. (13) and (14) are simplified as(
r2 + a2y2

)2
[

3
∂


∂r

∂


∂y2 − 2

∂2


∂r∂y2

]
= 6a2r
2, (15)



[
4r2−4a2y

]
+
(
r2+a2y2

)(
4y2 ∂


∂y2 −2r
∂


∂r

)
=0.

(16)

By solving Eqs. (15) and (16), it is found that 
(r, θ, a)

can be written in the following form:

(r, θ, a) = r2 + a2 cos2 θ. (17)

Now, we have obtained the axisymmetric form corre-
sponding to a given spherically symmetric metric, so that
once a spherically symmetric black hole metric is given, a
rotating black hole solution is obtained.

(a) Model I

ds2 = −
[

1 − 2Mr − 4αr + 8β
M r

ρ2

]
dt2 + ρ2

�
dr2

−
2a sin2 θ

[
2Mr − 4αr + 8β

M r
]

ρ2 dtdφ + ρ2dθ2

+� sin2 θ

ρ2 dφ2, (18)

ρ2 = r2 + a2 cos2 θ , � = (r2 + a2
)2 − a2� sin2 θ , � =

r2 − 2 M

(
1 − 2α

M
+ 4β

M2

)
r + a2.

This spacetime metric describes the modification of the
Kerr black hole when the GUP is considered as an internal
property of spacetime. When GUP is not taken into account,
that is, α = β = 0, the spacetime metric degenerates to a
Kerr black hole.

Next, we analyze the fundamental properties of the black
hole solution. When we generalize spherically symmetric
GUP black holes to the axisymmetric case, the metric (18)
exists in at least one event horizon. According to the alge-

braic equation � = r2 − 2 M
(

1 − 2α
M + 4β

M2

)
r + a2 = 0

satisfied by the event horizon of the black hole, the solution of

this equation can be obtained as r± = M
[
1 − 2α

M + 4β

M2

]
±√

M2
(

1 − 2α
M + 4β

M2

)2 − a2, where r+ is the event horizon

and r− is the causal horizon. If both r+ and r− have physical

meaning, then M2
(

1 − 2α
M + 4β

M2

)2 − a2 ≥ 0 is required,

which is a strong constraint on the GUP parameters α and β.

According to r± = M
[
1 − 2α

M + 4β

M2

]
±
√
M2
(

1 − 2α
M + 4β

M2

)2 − a2, when α = β = 0, r± =
M ± √

M2 − a2, then r± degenerates to the Kerr black hole
case. When 4β

M2 − 2α
M = 0, that is 2β = αM , r± = M ±√

M2 − a2, this is also the case for Kerr black holes, so this
is a very interesting phenomenon; when the first and second
terms of GUP satisfy certain conditions (i.e., 2β = αM),
model I will be reduced to the vacuum solution case. It is easy
to see from the expression of � that the GUP parameters α

and β have opposite changes on the properties of Kerr black
hole.

(b) Model II

ds2 = −
[

1 − 2Mr − εM2

ρ2

]
dt2 + ρ2

�
dr2

−2a sin2 θ
[
2Mr − εM2

]
ρ2 dtdφ + ρ2dθ2

+� sin2 θ

ρ2 dφ2, (19)

ρ2 = r2 + a2 cos2 θ , � = (r2 + a2
)2 − a2� sin2 θ , � =

r2 − 2Mr + εM2 + a2.
This black hole metric describes the modification of the

Kerr black hole when the GUP is taken to be an external
matter field. When GUP is not considered (i.e., there is no
matter field), ε = 0, then the black hole metric degenerates
to the Kerr black hole.

Next, we analyze the constraints on the model parame-
ters in the black hole solution. In order for the spacetime
metric (19) to really describe a black hole, the metric must
have an event horizon. Mathematically, this condition can be
expressed as if � = r2 − 2Mr + εM2 + a2 = 0 has at least
one real root, that is, r± = M ± √

(1 − ε)M2 − a2, then

ε ≤ 1 − a2

M2 . This is a strong constraint on the value of the
GUP parameter ε.

From the spherically symmetric GUP black hole metrics
(2) and (7) and the axisymmetric GUP black hole metrics
(18) and (19), it can be seen that there are obvious differ-
ences in the black hole metric constructed in different ways.
For (18) to have some common properties with the black
hole described by (19), we need to make them equivalent
in some properties, and then find the relation between the
two. The relationship between the parameters of model I and
model II can be derived through the equivalence of Hawking
temperatures in the case of spherical symmetry. However,
when it comes to rotating black holes, such thermodynamic
equivalence does not exist, which is a noteworthy aspect for
discussion.
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By comparing the black hole metrics (18) and (19), we find
the following: For the black hole metric (18), the spacetime
linear element ds2 is consistent with the Kerr black hole,
except that M is multiplied by a modification term (1− 2α

M +
4β

M2 ) determined by the GUP parameters. For the black hole

metric (19), the spacetime linear element ds2 is consistent
with the Kerr–Newman black hole, and the metric (19) can
be obtained by replacing Q with

√
εM in the Kerr–Newman

black hole metric. Thus, we can obtain the following results:
if GUP is considered as a modification to the Kerr black
hole when it is an internal property of spacetime, then the
properties of the black hole (described by the metric (18))
are consistent with those of the Kerr black hole; if GUP is
considered as a modification to the Kerr black hole when
it is an external field, then the properties of the black hole
(described by the metric (19)) are consistent with those of
the Kerr–Newman black hole.

4 Black hole shadow

4.1 Geodesics and photon spheres

Photons move along geodesics in the spacetime background
of a rotating black hole. In order to study the orbital motion
of a photon, it is necessary to study the geodesic equation of
the photon in the spacetime of a rotating black hole. Here we
will write down the main calculation process and the analysis
ideas [30,31]. In general, the Laplacian of the spacetime of
a rotating black hole can be expressed as

L = 1

2
gμν ẋ

μ ẋν, (20)

where gμν is the metric coefficient matrix determined by the
black hole metrics (18) and (19), xμ is the four-dimensional
spacetime coordinates, and the symbol “·” represents the
derivative of affine parameter τ on the geodesic. Through
the Laplacian (20), the four-dimensional momentum of the
photon can be calculated as follows:

pt = ∂L
∂ ṫ

=
[
a2 sin2 θ

ρ2 − �

ρ2

]
ṫ

+
[
a� sin2 θ

ρ2 − a
(
a2 + r2

)
sin2 θ

ρ2

]
φ̇, (21)

pr = ∂L
∂ ṙ

= ρ2

�
ṙ , (22)

pθ = ∂L
∂θ̇

= ρ2θ̇ , (23)

pφ = ∂L
∂φ̇

=
[
a� sin2 θ

ρ2 − a
(
a2 + r2

)
sin2 θ

ρ2

]
ṫ

+
[(

a2 + r2
)2

sin2 θ

ρ2 − a2� sin4 θ

ρ2

]
φ̇. (24)

Since the black hole in question is steady-state and
axisymmetric,L is not an explicit function of time t and angu-
lar coordinate φ, which makes pt and pφ constant functions,
denoted as −E and Lφ , respectively. To obtain the geodesic
equation for the photon, we start with the Hamilton–Jacobi
equation satisfied by the photon, which has the form

− ∂S

∂τ
= 1

2
gμν ∂S

∂xμ

∂S

∂xν
. (25)

Here, S is the principal function of the Hamiltonian. If S
can be solved by separating variables, then the basic form
of S reduces to S = 1

2m
2σ − Et + Lφφ + Sθ (θ) + Sr (r).

For photon geodesics, S can be reduced to S = −Et +
Lφφ + Sθ (θ)+ Sr (r). By introducing a Cartesian integration
constant K and the functions R and H corresponding to Sr
and Sθ , we can obtain the separated variable solutions of the
photon geodesics, which are

ρ2 dt

dτ
= E

⎡
⎣
(
r2 + a2

) (
r2 + a2 − aλ

)
�

+ a
(
λ − a sin2 θ

)⎤⎦ ,

(26)(
ρ2 dr

dτ

)2
= R, (27)

(
ρ2 dθ

dτ

)2
= H, (28)

ρ2 dφ

dτ
= E

⎡
⎣a
(
r2 + a2

)
− a2λ

�
+ λ − a sin2 θ

sin2 θ

⎤
⎦ . (29)

The functions R, H , λ, and η are as follows:

R = E2
[(

r2 + a2 − aλ
)2 − η�

]
, (30)

H = E2

[
η −

(
λ

sin θ
− a sin θ

)2
]

, (31)

λ = Lφ

E
, (32)

η = K
E2 . (33)

Due to the strong gravitational field and extreme properties
of the black hole, there is a minimal stable orbit rc in its
vicinity. By examining the basic properties of the function R,
the mathematical conditions satisfied by the minimal stable
orbit are
R(rc) = 0

dR(r)

dr
|r=rc = 0.

(34)

By substituting Eq. (30) into the above equations, the
expression of functions λ and η can be obtained.

For model I, the expression is

λ = 1

a

[
2 + r − 2M

r

(
1 − 2α

M
+ 4β

M2

)]−1
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×
((

r2 + a2
)(

2 + r − 2M

r

(
1 − 2α

M
+ 4β

M2

))

−4

(
r2 − 2Mr

(
1 − 2α

M
+ 4β

M2

)
+ a2

))
, (35)

η = r3

a2

[
2 + r − 2M

r

(
1 − 2α

M
+ 4β

M2

)]−2

×
(

8a2 + 16Ma2

r2

(
1 − 2α

M
+ 4β

M2

)

−r

(
r − 2 + 2M

r

(
1 − 2α

M
+ 4β

M2

))2
)

. (36)

For model II, the expression is

λ = 1

a

[
2 + r − 2M

r

]−1 ((
r2 + a2

)

×
(

2 + r − 2M

r

)
− 4

(
r2 − 2Mr + εM2 + a2

))
,

(37)

η = r3

a2

[
2 + r − 2M

r

]−2

×
(

8a2 + 16Ma2

r2 − 16εM2a2

r3

−r

(
r − 2 + 6M

r
− 4εM2

r2

)2
)

. (38)

By substituting Eq. (34) into Eq. (30), we can get the
second derivative of the function R

d2R

dr2 |rc = 8E2

⎡
⎣r2 +

2r�
(
�

′ − r�
′′)

�
′2

⎤
⎦ |r=rc . (39)

The stability of the photon orbit can be judged by the
positive or negative of d2R

dr2 |rc . When d2R
dr2 |rc > 0, the geodesic

motion of the photon is unstable, and vice versa. For d2R
dr2 |rc >

0, the set of photon orbits is the shape of the black hole
shadow. The photon orbit can form a photon sphere only
when function H ≥ 0. This condition can be simplified as
follows:

For model I(
4r3 − 8Mr2

(
1 − 2α

M
+ 4β

M2

)
+ 4ra2

−
(
r2 + a2 cos2 θ

)(
2r−2M

(
1− 2α

M
+ 4β

M2

)))2

|r=rc

≤ 16a2r2
(
r2 − 2Mr

(
1− 2α

M
+ 4β

M2

)
+a2

)
sin2 θ |r=rc .

(40)

For model II(
4r3 − 8Mr2 + 4εM2r + 4ra2 −

(
r2 + a2 cos2 θ

)
× (2r − 2M))2 |r=rc

≤ 16a2r2
(
r2 − 2Mr + εM2 + a2

)
sin2 θ |r=rc . (41)

Equations (40) and (41) both have two positive real roots
(denoted as rc+ and rc− , respectively), and the value range of
the photon sphere is rc− ≤ rc ≤ rc+ .

4.2 Black hole shadow shape

The calculation and discussion in Sect. 4.1 reveal that the
motion of photons near the GUP black hole gives rise to
the formation of a photon shape, which can be attributed to
the presence of a minimum stable orbit within the spacetime
of the GUP black hole. Because the generalized uncertainty
principle is taken into account, the calculation results for
minimum stable orbital radius and photon sphere are differ-
ent from those of Kerr black holes. Therefore, it is possi-
ble to test the correctness of the GUP by using black hole
shadows. The research progress in black hole shadow and
related calculation methods can be found in various works
in the literature (e.g. [32–39]). Next, we will calculate the
image formed by photons emitted from the photon sphere
measured by observers on Earth, and examine the influence
of different GUP model parameters on the shape of the black
hole shadow; then we will propose the possibility of using
the observation of the black hole shadow and its photon ring
to test it.

When we measure the black hole photon sphere on Earth,
we generally need to approximate the model by assuming that
the observer is a stationary observer at infinity, and that the
observer can be approximated to a point. In the calculation of
the black hole shadow, the celestial coordinate system is gen-
erally chosen, which uses two coordinates (ᾱ, β̄) to describe
the position of the black hole shadow in the celestial coor-
dinate system, similar to a projection. According to physical
understanding, the coordinates ᾱ, β̄ in the celestial coordi-
nate system should be related to the angular coordinates in
the BL coordinate system, and the specific relationship is as
follows:

ᾱ = lim
r0→∞

[
− r2

0 sin θ0
dφ

dr

]
,

β̄ = lim
r0→∞

[
r2

0
dθ

dr

]
. (42)

If the observer is on the equatorial plane, the condition
θ = π/2 is satisfied. The coordinates in the celestial coordi-
nate system will then take the following form:

ᾱ = −λ,

β̄ = ±√
η. (43)

For the GUP black holes discussed here,specific expressions
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Fig. 1 The shadow shape of the GUP rotating black hole under dif-
ferent model parameters (model I). The panels from left to right rep-
resent the process of increasing the spin of the black hole, which is
a = 0, 0.3, 0.6, and0.99, respectively. The panels from top to bottom

represent the process of increasing the first-order momentum correction
coefficient, which is β = 0.05, 0.15, and0.3, respectively. Curves of
various colors correspond to different α values

Fig. 2 The shadow shape of the GUP rotating black hole under dif-
ferent model parameters (model II). The panels from left to right rep-
resent the process of increasing the spin of the black hole, which is
a = 0, 0.3, 0.6, and0.99, respectively. The panels from top to bottom

represent the process of increasing the mixing correction coefficient,
which is ε = 1e−05, 0.007, and0.015, respectively. Curves of various
colors correspond to different ε values
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can be obtained. For model I, its celestial coordinate expres-
sion is

ᾱ = −1

a

[
2 + r − 2M

r

(
1 − 2α

M
+ 4β

M2

)]−1 ((
r2 + a2

)(
2 + r − 2M

r

(
1 − 2α

M
+ 4β

M2

))

−4

(
r2 − 2Mr

(
1 − 2α

M
+ 4β

M2

)
+ a2

))
,

β̄ = ±
√√√√ r3

a2

[
2+r− 2M

r

(
1− 2α

M
+ 4β

M2

)]−2
(

8a2+ 16Ma2

r2

(
1− 2α

M
+ 4β

M2

)
−r

(
r−2+ 2M

r

(
1− 2α

M
+ 4β

M2

))2
)

. (44)

For model II, its celestial coordinate expression is

ᾱ = −1

a

[
2 + r − 2M

r

]−1 ((
r2 + a2

)(
2 + r − 2M

r

)
− 4

(
r2 − 2Mr + εM2 + a2

))
,

β̄ = ±
√√√√ r3

a2

[
2 + r − 2M

r

]−2
(

8a2 + 16Ma2

r2 − 16εM2a2

r3 − r

(
r − 2 + 6M

r
− 4εM2

r2

)2
)

. (45)

According to Eq. (45), it can be found that the celestial coor-
dinates (ᾱ, β̄) are functions of the GUP parameter and the
spin of the black hole. By using ᾱas a function of β̄, we can
draw a two-dimensional image of the black hole shadow. The
details of the GUP black hole shadow are found by numerical
calculation of model I and model II (see Figs. 1, 2).

For model I, when the first-order momentum correction
coefficients α and second-order momentum correction coef-
ficients β of the GUP are zero, the black hole shadow shape
degenerates to the Kerr black hole case. When the first-
order momentum correction coefficients α and second-order
momentum correction coefficients β of the GUP are both
nonzero, the black hole shadow is determined by the model
parameters α and β. When the black hole spin and second-
order momentum correction coefficient β are fixed, the black
hole shadow scale decreases with the increase in the first-
order momentum correction coefficient α. When the black
hole spin and the first-order momentum correction coeffi-
cient α are fixed, the black hole shadow scale increases with
the increase in the second-order momentum correction coef-
ficient β. That is to say, the first-order momentum correc-
tion coefficient α and the second-order momentum correc-
tion coefficient β change the shadow size of the black hole
in the opposite direction.

When the black hole spin a = 0.99, with the increase in
the first-order momentum correction coefficient α, the black
hole shadow scale is increasingly distorted, so there is a cer-
tain degree of devolution between the first-order momen-
tum correction coefficient α and the influence of the black
hole spin on the black hole shadow shape. When considering
the larger value of the second-order momentum correction
coefficient β, the black hole shadow shape is very close to
the spherically symmetric black hole case even if the black

hole spin is close to 1. The significant influence of the first-
order momentum correction coefficients αand the second-

order momentum correction coefficients β on the shape of
the black hole shadow makes it possible to test it with Event
Horizon Telescope (EHT) observations.

For model II, with the increase in the value of the mixing
correction coefficient ε, the black hole shadow scale grad-
ually decreases, but its value changes very slowly, which
makes it possible to test it with EHT unless the mixing cor-
rection coefficient ε changes sharply.

In fact, since both model I and model II must satisfy the
generalized uncertainty principle (1), the Hawking tempera-
ture corresponding to the black hole metric (2) and the black
hole metric (7) should be consistent, which makes the param-
eters of model I and model II satisfy the relation (10). Even if
the two models can be coordinated by adjusting the values of
the parameters, the variation rules of the black hole shadow
shape are different because the black hole spacetime metric
corresponding to model I is different from that corresponding
to model II. In view of this, we believe that future EHT obser-
vations can be used to test it in order to better understand the
quantum gravitational effects of black holes.

5 Weak cosmic censorship conjecture in GUP-BH and
co-constraints

In Sect. 4 we discussed the possibility of using future EHT
observations to examine GUP black holes. Next we are inter-
ested in how GUP affects the nature of black holes, such
as whether the weak cosmic censorship conjecture of black
holes is violated when considering the GUP model. The work
and methods for testing the weak cosmic censorship conjec-
ture by incident particles can be found in the literature (e.g.
[40–43]). The work and methods for testing the weak cosmic

123



Eur. Phys. J. C (2024) 84 :396 Page 9 of 13 396

censorship conjecture by incident scalar field can be found in
various works in the literature (e.g. [44–50]). Here, we will
examine whether the event horizon of the GUP black hole
can be destroyed by test particles and scalar fields incident
to the GUP black hole, and discuss the influence of the GUP
on the weak cosmic censorship conjecture.

5.1 Weak cosmic censorship conjecture (WCCC) was
tested via particle incidence

According to the discussion of model I and model II in Sect. 3,
the analytical expression of the change in GUP model param-
eters (model I, model parameters are α and β; model II, the
model parameter is ε) on the event horizon of the black hole
can be obtained, and the basic results are summarized by
Eq. (46):

rH =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M

[
1− 2α

M
+ 4β

M2

]
+
√
M2

(
1− 2α

M
+ 4β

M2

)2

−a2

model I Kerr − like

M +
√

(1 − ε)M2 − a2,

model I I Kerr − Newman − like

.

(46)

For model I, if the spacetime line element (18) describes a

black hole, the condition M2
(

1 − 2α
M + 4β

M2

)2 ≥ a2 must

be satisfied. For model II, if the spacetime line element (19)
describes a black hole, the condition (1 − ε)M2 ≥ a2 must
be satisfied. The conditions for destroying the event horizon
of a black hole are as follows. For model I we need to satisfy
the inequality

M2
(

1 − 2α

M
+ 4β

M2

)2

< a2. (47)

For model II we need to satisfy the inequality

(1 − ε)M2 < a2. (48)

The inequality equations (51) and (52) can be rewritten as
the following expressions

J > M2
(

1 − 2α

M
+ 4β

M2

)
(49)

and

J > M2
√

1 − ε. (50)

Wen the rotating GUP black hole in the equatorial plane
encounters an incident test particle with mass, the GUP black
hole and the test particle will have a complex interaction.
When the test particle crosses the event horizon of the GUP
black hole, both the mass and angular momentum of the

GUP black hole increase (labeled δE and δ J ). By exam-
ining whether the mass and angular momentum of the com-
posite system satisfy the event horizon destruction condition
(inequality equations (49) or (50)), we can analyze how the
GUP parameters affect the testing of the weak cosmic cen-
sorship conjecture. The calculation procedure employed here
adheres to the standard methodology. We will only present
the outcomes along with their corresponding analysis.

The results show that the event horizon of the GUP black
hole can be destroyed when the mass increment (δE) and
angular momentum increment (δ J ) of the test particle meet
certain conditions. For model I, this condition is(

1 − 2α

M
+ 4β

M2

)
δE2 + 2

(
1 − 2α

M
+ 4β

M2

)
MδE

+M2
(

1 − 2α

M
+ 4β

M2

)
− J < δ J <

1

�H
δE . (51)

For model II, the condition becomes
√

1 − εδE2 + 2
√

1 − εMδE

+M2
√

1 − ε − J < δ J <
1

�H
δE . (52)

If the GUP black hole is an extremely rotating black hole,
when considering the first approximation of δE , there is no
new term in the black hole event horizon angular velocity
�H , which makes it possible for no test particle to satisfy the
event horizon destruction condition (51) and (52). This shows
that for both model I and model II, the introduction of GUP
does not violate the weak cosmic censorship conjecture of
rotating black holes. For the near-extreme black hole case, a
parameter is introduced to describe the degree of closeness to
the extreme black hole, and then the destroy conditions (51)
and (52) are simplified. The results show that the black hole
event horizon cannot be destroyed for model I and model II.
The weak cosmic censorship conjecture is not violated.

5.2 WCCC was tested via scalar field scatter

In addition to testing the weak cosmic censorship conjec-
ture by incident test particles on a rotating GUP black hole,
another method can be used to test the weak cosmic cen-
sorship conjecture of a black hole, that is, incident scalar
fields on an extreme or near-extreme black hole to destroy
the event horizon of the black hole. If the event horizon can be
destroyed within the range of optional GUP model parame-
ters, then the weak cosmic censorship conjecture is violated.
Otherwise, there is no violation.

If there is a scalar field near the GUP rotating black hole,
then the scalar field will interact with the black hole, and in the
semiclassical case, the equation of motion of the scalar field
can be calculated in the black hole spacetime background.
If the scalar field is labeled with ψ and the mass of the cor-
responding particle is labeled with μ, then the equation of
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motion of the scalar field in the spacetime background of the
GUP rotating black hole satisfies the Klein–Gordon equation,
whose basic form is

1√−g
∂μ(

√−ggμν∂νψ) − μ2ψ = 0, (53)

where g is the determinant of the GUP rotating black hole
metric, and gμν is the inverse form of the spacetime metric,
both of which can be calculated by the spacetime metric (18)
and (19). By substituting the GUP black hole metric (18) and
(19) into the equation of motion (53), it can be simplified to
the following form:

− (r2 + a2)2 − a2� sin2 θ

��2

∂2ψ

∂t2

−4aM

��2

∂2ψ

∂t∂φ
+ 1

�2

∂

∂r

(
�

∂ψ

∂r

)

+ 1

�2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

+� − a2 sin2 θ

��2 sin θ

∂2ψ

∂φ2 − μ2ψ = 0. (54)

This equation can be processed by variable separation, which
decomposes ψ into ψ(t, r, θ, φ) = e−iωt R(r)Slm(θ)eimφ ,
where Slm(θ) is a spherical function, and the integers l and
m are quantum numbers. By separating variables in this way,
Eq. (54) can be simplified into two equations, one of which is
an angular equation, whose solution is a spherical harmonic
function, and the other is a radial equation, whose specific
expression is

d

dr

(
�

dR

dr

)
+
[
(r2 + a2)2

�
ω2 − 4aM

�
mω

+m2a2

�
− μ2r2 − λlm

]
R(r) = 0. (55)

By examining Eq. (55), we can find that if we want to obtain
an analytical expression of the radial function R(r) near the
event horizon, since � = 0 near the event horizon, Eq. (55)
will lose its physical meaning (this is because Eq. (55) cor-
responds to the BL coordinate system). Therefore, Eq. (55)
needs to be converted to other coordinate systems in order
to solve it; in general, the Eddington–Finkelstein coordinate
system (also known as the turtle coordinate) is selected, and
for radial coordinates, the following relationship is satisfied:

dr

dr∗
= �

r2 + a2 . (56)

The turtle coordinate r∗ at the GUP rotating black hole event
horizon does not make Eq. (55) singular. Substituting the
coordinate transform (56) into (55) transforms the radial
equation (55) into

�

(r2 + a2)2

d

dr
(r2 + a2)

dR

dr∗
+ d2R

dr2∗

+
(

ω − ma

r2 + a2

)2

R(r) +
[

�

(r2 + a2)2 2amω

− �

(r2 + a2)2 (μ2r2 + λlm)

]
R(r) = 0. (57)

Near the event horizon of a GUP rotating black hole(for
model I and model II), � = 0 simplifies Eq. (57) to the
following equation:

d2R

dr2∗
+ (ω − m�H )2R = 0. (58)

This equation is a second-order ordinary differential equa-
tion, and its analytical solution is R(r) = exp[±i(ω −
m�H )r∗]. Plug it into the variable separation expression of
ψ , whose final solution is

ψ(t, r, θ, φ) = exp[−i(ω − m�H )r∗]e−iωt Slm(θ)eimφ.

(59)

With this solution, we have obtained all the information of the
scalar field near the event horizon, and can use it to calculate
various physical quantities.

Suppose that a scalar field is incident to the GUP rotat-
ing black hole spacetime background. Due to the maximum
effective potential of the black hole spacetime in the radial
direction, the spacetime will absorb and reflect the scalar
field. These physical processes change the energy and angu-
lar momentum of the black hole. The corresponding energy
increment and angular momentum increment can be calcu-
lated from the scalar field (59). For the scalar field considered
in this section, the expression of the energy–momentum ten-
sor can be obtained for the scalar field moving in the space-
time background of a GUP rotating black hole

Tμν = ∂μψ∂νψ
∗ − 1

2
gμν(∂μψ∂νψ∗ + μ2ψ∗ψ). (60)

By combining the expression of the energy momentum tensor
(60) with the scalar field (59), all the energy–momentum
nonzero components of the scalar field can be obtained. Using
these nonzero components, we can calculate the energy flow
and angular momentum flux of the scalar field incident on
the black hole. The energy flow of a scalar field through the
event horizon is

dE

dt
=
∫
H

T r
t
√−gdθdφ = ω(ω − m�H )(r2

H + a2), (61)

the angular momentum flux of a scalar field through the event
horizon is

dJ

dt
=
∫
H

T r
φ

√−gdθdφ = m(ω − m�H )(r2
H + a2). (62)

From these two expressions, it can be seen that whether the
incident scalar field transfers energy or angular momentum to
the black hole depends on the relative size of ω andm�H . In a
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very short time, the energy increment and angular momentum
increment of the scalar field transferred to the black hole are

dE = ω(ω − m�H )(r2
H + a2)dt (63)

and

dJ = m(ω − m�H )(r2
H + a2)dt. (64)

A scalar field incident on a black hole can be divided into
an infinite number of small segments (dt) for segmentation
discussion. Assume that the mass and angular momentum of
the GUP rotating black hole before the scalar field incident
on the black hole are M and J , respectively. The mass and
angular momentum of the GUP rotating black hole–scalar
field complex system are M

′
and J

′
, respectively. They sat-

isfy the relation M
′ = M + dE and J

′ = J + dJ . Then, by
examining the signs of M

′2ω0 − J
′
of the composite system,

we can determine whether the event horizon of the compos-
ite system exists, and whether the weak cosmic supervision
conjecture is violated when the scalar field is incident on the
GUP rotating black hole. Next, we will only give the calcu-
lation results, and the calculation process can be referred to
[47,49].

By calculation, for a scalar field of mode (l,m), the expres-
sion M

′2ω0 − J
′

for a composite system is

M
′2ω0 − J

′ = (M2ω0 − J ) + 2Mω0m
2
(

ω

m
− 1

2Mω0

)

×
(ω

m
− �H

)
(r2

H + a2)dt. (65)

As long as we can judge the sign of (65), we can discuss
whether the scalar field can destroy the event horizon. When
considering extreme black holes, since extreme black holes
satisfy the condition J = M2ω0, then M

′2ω0 − J
′
is reduced

to the following form:

M
′2ω0 − J

′ = 2Mω0m
2
(

ω

m
− 1

2Mω0

)

×
(ω

m
− �H

)
(r2

H + a2)dt. (66)

For model I and model II, for extreme black holes, since

�H does not have any shift, that is, �H = 1

2 Mω0
, then

M
′2ω0 − J

′
is always greater than zero, which indicates that

for a scalar field incident extreme GUP black hole, the event
horizon of the black hole cannot be destroyed, and the weak
cosmic censorship conjecture is not violated. For the case of
near-extreme GUP black holes, a parameter describing the
degree of near-extreme black holes can also be introduced for
discussion (similar to the analysis techniques in Sect. 5.1).
The calculation results show that M

′2ω0 − J
′

is also always
greater than zero for near-extreme black holes, so the black
hole event horizon cannot be destroyed, and the weak cosmic
censorship conjecture is still not violated.

6 Summary

In this study, we obtain the rotating black hole solutions of
the Einstein gravitational field equations when the GUP mod-
ifications are taken into account, and we discuss the physical
properties of these solutions. On the physical picture, we con-
struct the GUP modifications to the Kerr black hole in two
different ways. Model I mainly considers GUP only for mass
modification, which changes our understanding of gravita-
tional mass and inertial mass, and this construction is closer
to physical nature. Model II considers the GUP as an effect
of an external field, so the energy–momentum tensor corre-
sponding to the black hole system is not zero. In this case, the
physical meaning of GUP for black hole modification is com-
pletely different from that of model I. From the perspective
of black hole thermodynamics, for the spherically symmetric
GUP black hole case, model I and model II should be equiv-
alent, so we get the relationship between model parameters
α, β and ε (10). Although the GUP black hole modifications
constructed by these two methods are consistent in black hole
thermodynamics, their spacetime properties are different. For
the GUP spinning black hole case, the thermodynamics are
not equivalent (the Hawking temperatures corresponding to
model I and model II are not equal). The black hole metric
(18) obtained by model I is similar to that of the Kerr black
hole, and the black hole metric (19) obtained by model II is
similar to that of the Kerr–Newman black hole.

The potential of black hole shadows in testing GUP is
explored based on the spacetime of a rotating black hole (18)
and (19), leading to the following findings. On one hand,
when both the first-order momentum correction coefficient α
and the second-order momentum correction coefficient β of
GUP are nonzero, the determination of the black hole shadow
relies on the model parameters α and β. Furthermore, these
coefficients exhibit an opposite effect on altering the size of
the black hole shadow, which is a significant characteristic
that may potentially be confirmed in future EHT observa-
tions. On the other hand, when considering the higher mag-
nitude of the second-order momentum correction coefficient
β, even in cases where the black hole spin approaches 1,
the shape of the black hole shadow closely resembles that
of a spherically symmetric black hole. This observation sug-
gests a potential degenerate effect between the second-order
momentum correction coefficient β and the black hole spin.

The weak cosmic censorship conjecture for GUP rotat-
ing black holes is also investigated herein. By introducing
test particles and scalar fields into the GUP rotating black
hole, we find no violation of the weak cosmic censorship
conjecture in either extreme or near-extreme black hole sce-
narios. Hence, even modification of black hole spacetime due
to GUP does not alter the discourse on the nature of black
holes. The weak cosmic censorship conjecture remains unaf-
fected by GUP; however, it cannot be guaranteed that the
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strong cosmic censorship conjecture will not be influenced.
In future research, we will investigate the applicability of the
strong cosmic censorship conjecture to GUP rotating black
holes.
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49. I. Semiz, K. Düztaş, Weak cosmic censorship, superradiance, and
quantum particle creation. Phys. Rev. D 92, 104021 (2015). https://
doi.org/10.1103/PhysRevD.92.104021

50. S. Hod, Weak cosmic censorship: as strong as ever. Phys. Rev. Lett.
(2008). https://doi.org/10.1103/PhysRevLett.100.121101

123

https://doi.org/10.1016/j.physletb.2014.01.041
https://doi.org/10.1016/j.physletb.2014.01.041
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1103/PhysRevD.90.064041
https://doi.org/10.1007/BF03399503
https://doi.org/10.1007/BF03399503
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1140/epjc/s10052-020-7913-y
https://doi.org/10.1140/epjc/s10052-020-7913-y
https://doi.org/10.1016/j.aop.2021.168662
https://doi.org/10.1140/epjc/s10052-023-11848-6
https://doi.org/10.1140/epjc/s10052-023-11848-6
https://doi.org/10.1016/j.physletb.2022.136894
https://doi.org/10.1016/j.physletb.2022.136894
https://doi.org/10.1142/S0219887822500682
https://doi.org/10.1016/j.dark.2023.101249
https://doi.org/10.1016/j.dark.2023.101249
http://arxiv.org/abs/2309.07442
https://doi.org/10.1103/PhysRevD.100.044043
https://doi.org/10.1103/PhysRevD.100.044043
https://doi.org/10.1016/0003-4916(74)90125-0
https://doi.org/10.1016/0003-4916(74)90125-0
https://doi.org/10.1103/PhysRevD.96.104014
https://doi.org/10.1103/PhysRevD.96.104014
http://arxiv.org/abs/1812.03459
https://doi.org/10.1103/PhysRevD.92.084044
https://doi.org/10.1088/1475-7516/2021/10/012
https://doi.org/10.1088/1475-7516/2021/10/012
https://doi.org/10.1016/j.nuclphysb.2021.115335
https://doi.org/10.1103/PhysRevD.88.064043
https://doi.org/10.1103/PhysRevD.88.064043
https://doi.org/10.1007/JHEP09(2018)081
https://doi.org/10.1007/JHEP09(2018)081
https://doi.org/10.1103/PhysRevD.92.104021
https://doi.org/10.1103/PhysRevD.92.104021
https://doi.org/10.1103/PhysRevLett.100.121101

	Weak cosmic censorship conjecture and black hole shadow for black hole with generalized uncertainty principle
	Abstract 
	1 Introduction
	2 Nonrotating black hole and GUP
	3 Kerr-like black hole spacetime
	4 Black hole shadow
	4.1 Geodesics and photon spheres
	4.2 Black hole shadow shape

	5 Weak cosmic censorship conjecture in GUP-BH and co-constraints
	5.1 Weak cosmic censorship conjecture (WCCC) was tested via particle incidence
	5.2 WCCC was tested via scalar field scatter

	6 Summary
	Acknowledgements
	References




