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Abstract With the discovery of the doubly heavy �cc

baryon, comprehensive studies of the properties of the doubly
heavy baryons are started. In the present work, we examine
the �bb → �b�

+�− and �cc → �c�
+�− decays induced by

flavor-changing neutral currents (FCNC) in the framework of
the light-cone sum rules. After obtaining the sum rules for
the form factors induced by the tensor current, the branching
ratios of the relevant transitions are estimated. We found that
the branching ratio for the c → u transition is around five
orders smaller than the b → d transition. Our findings are
also compared with other approaches.

1 Introduction

The quark model has been quite successful in the classifi-
cation of the hadrons. However, up to now, only the hadron
state �++

cc has been discovered among all the baryons con-
taining double heavy quarks anticipated by the quark model
[1–3]. The detailed analysis to determine the properties of
these hadrons is crucial to precisely testing the Standard
Model(SM) as well as looking for new physics effects. Weak
decays induced by flavor-changing neutral current (FCNC)
of doubly heavy baryons are an ideal framework to check
SM predictions at the loop level. The new physics effects
can manifest themselves in these interactions either by mod-
ifying the so-called Wilson coefficients existing in the SM
without introducing new operators or by introducing new
effective operators.

The observation of the doubly heavy hadrons triggered
many theoretical studies on this subject (see [4] and the ref-
erences therein). In this context, a comprehensive analysis
of the weak decays of doubly heavy baryons occupies a spe-
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cial place. The main ingredient of weak decays is the tran-
sition matrix elements between the initial and final states
due to the weak currents of quarks. These matrix elements
are parametrized in terms of the form factors. Calculation
of the form factors is the main ingredient of studying the
weak decays which belong to the non-perturbative domain
of the QCD. For this reason, some non-pertubative meth-
ods are needed for their calculation. Among various non-
perturbative methods, sum rules method that is based on
the fundamental QCD Lagrangian occupies an exceptional
place. Form factors of some of the doubly heavy baryons
due to the charged current are already studied with the tra-
ditional and light cone version of the sum rules in [5], and
[6,7], respectively. It should be noted here that form fac-
tors of the doubly heavy baryons decaying to single heavy
baryons are studied in the works [8–11] in the framework of
the light-front quark model. Moreover, FCNC processes of
the doubly heavy baryons are studied within this approach in
[12] and [10]. It should also be noted that the FCNC-induced
decay of �QQ → �Q�+�− decay within the light-cone sum
rules are studied in [13].

Before we delve into our analysis, we would like to say a
few words about the SU(3) classification of the doubly heavy
baryons. A doubly heavy baryon contains two heavy and one
light quark. Doubly heavy baryons with J P = 1

2
+

in the cc
sector are �++

cc , �+
cc and �+

cc, and those in the bb sector are
�0

bb, �−
bb and �−

bb. Additionally, there are two sets of baryons
in the bc sector which are antisymmetric or symmetric under
the interchange of b and c quarks. While the single heavy
baryons �Q , �Q belong to the triplet(anti) representation,
�Q, �Q′ , and �Q baryons lie in the sextet representation of
SU(3).

In the present work, we study the �+
cc → �+

c �+�−, and
�0

bb → �0
b�

+�− decay in the framework of the light cone
QCD sum rules method (LCSR). This method is an exten-
sion of the traditional QCD sum rules method [14], and to
the light cone [15,16]. Within the framework of this method,
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many aspects of the hadron physics are studied (see the
review [17]). In the framework of the LCSR method, instead
of the local operator product expansion (OPE), the light
cone expansion of the non-local operators is used. Moreover,
in this method, light-cone distribution amplitudes appear
instead of the local condensates, and OPE is performed over
twists rather than the dimensions of the local operators.

The paper is organized as follows. In Sect. 2, we derive
the sum rules for the relevant form factors for the �QQ →
�Q�+�− decay in framework of the LCSR method. Numer-
ical analysis of these form factors is presented in Sect. 3.
In this section, we also estimate the branching ratios of the
corresponding decay using these form factors. Conclusions
and discussions of the obtained results are presented in the
last Sect. 4.

2 Sum rules of the transition form factors for the
�QQ → �Q�+�− decays

The flavor-changing neutral b → q(d or s)�+�− transitions
up to mass dimension six is described by the standard weak
effective field theory [18]. The effective Hamiltonian for this
transition can be written as

Hef f = −2GF√
2

α

4π
VtbV

∗
tq

∑
Cef f
i (μ)Oi (1)

where GF is the Fermi constant, Vi j are the elements of
Cabibbo–Kobayashi–Maskawa (CKM) matrix elements, α is
the electromagnetic coupling,Cef f

i (μ) are the short-distance
Wilson coefficients and Oi are the local effective field oper-
ators.

For the decays under consideration, only operators O7,
O9,O10

O7 = mbq̄σμν(1 + γ5)bF
μν

O9 = q̄γμ(1 − γ5)bl̄γ
μl

O10 = q̄γμ(1 − γ5)bl̄γ
μγ5l

(2)

are significant at the scale μ = mQ . It should be noted that the
four-quark operators induced by the W-boson exchange (or
penguin annihilation) can also contribute to the considered
transition. However, these contributions have not been esti-
mated systematically. So-called “charm-loop effects” studied
for B-meson decays [19]. These effects might also be impor-
tant for baryon counterparts. These contributions should
be accurately calculated for precise determination of the
form factors. However, the effects of these contributions are
beyond the scope of this work.

At the quark level, the �QQ → �Q�+�− decays take
place through the c → u or b → d transitions. The
hadronic matrix elements for the �cc → �c�

+�− and
�bb → �b�

+�− decays are determined by sandwiching the
transition currents between the initial and final hadron states.

For example, the matrix element for the b → q�+�− transi-
tion amplitude between the initial and final hadron states can
be written

M = GFα

2
√

2π
VtbV

∗
tq

[(
Cef f

9 〈�b|q̄γμ(1 − γ5)b|�bb〉

−2mb

q2 Cef f
7 〈�b|q̄iσμνq

ν(1 + γ5)b|�bb〉
)
l̄γ μl

+Cef f
10 〈�b|q̄γμ(1 − γ5)b|�bb〉l̄γ μγ5l

]
. (3)

The effective Wilson coefficient Cef f
9 for the b → q�+�−

transition is,

Cef f
9 =

{
C9 + h(mc, q

2)C0

+λu

[
h(mc, q

2) − h(mu, q
2)

]
(3C1 + C2)

−1

2
h(mb, q

2)(4C3 + 4C4 + 3C5 + C6)

−1

2
h(0, q2)(C3 + 3C4)

+2

9
(3C3 + C4 + 3C5 + C6)

}
, (4)

where,

λu = V ∗
udVub
V ∗
tbVtq

, and, C0 = 3C1 + C2

+3C3 + C4 + 3C5 + C6, (5)

h(mq , q
2) = −8

9
ln

mq

mc
+ 8

27
+ 4

9
x − 2

9
(2 + x)

√|1 − x |

×
[
(1 − xq)

(
ln

1 + √
1 − xq

1 − √
1 − xq

− iπ

)

+(xq − 1) 2 arctan
1√

xq − 1

]
, (6)

h(0, q2) = 8

27
− 4

9
ln

q2

m2
c

+ 4

9
iπ. (7)

In the last equation, xq = 4m2
q/q

2 and (x) is the Heaviside
step function. Both h(mc, q2), h(mb, q2) can be obtained
from h(mq , q2) by making the replacements mq → mc and
mq → mb, respectively. The numerical values of the Wilson

coefficients Cef f
7 and Cef f

10 as well as the other Ci for the
b → d transition can be found in [20].

The matrix element for the �cc → �c�
+�− can be

obtained from Eq. (3) with the help of the following replace-
ments:

VtbV
∗
tq → VcdV

∗
ud + VcsV

∗
bs; mb → mc; �bb → �cc, (8)

and replace Ceff
i for the b-quark case with the corresponding

c-quark counterparts given as below.
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The effective Wilson coefficientCef f
9 for c → u transition

is given as [21],

Cef f
9 = C9 + hc(mc, q

2)

(
7C3 + 4

3
C4 + 76C5 + 64

3
C6

)

−hc(mc, q
2)(3C3 + 30C5) + 4

3
h(0, q2)

(
3C3

+C4 + 69

2
C5 + 16C6

)
+ 8

3
(C3 + 10C5)

−
[
V ∗
cdVudh(0, q2) + V ∗

csVush(mq , q
2)

](2

3
C1 + 1

2
C2

)
,

(9)

The values of the Wilson coefficients are presented in [22],
and the effective Wilson coefficient Cef f

7 is given in [21],
which we shall use in further numerical analysis. Note also
that, due to the GIM cancellation, Cef f

10 is zero.

It should be noted here that, Cef f
9 , which appears in the

c → u and b → d transitions, receives contributions also
from vector mesons (long-distance effects). Long-distance
contributions are only significant when q2 is close to the
mass of the corresponding vector mesons. However, far from
these points, these effects are small; hence, we take only
short-distance effects into account. After these preliminary
remarks, we now proceed to calculate the form factors in the
framework of the QCD sum rules.

The matrix elements entering into Eq. (3) are parametrized
in terms of the form factors in the following way,

〈�Q(p)|q̄γμ(1 − γ5)Q|�QQ(p + q)〉
= ū�Q (p)

[
γμ f1(q

2) + iσμνqν

m�QQ

f2(q
2)

+ qμ

m�QQ

f3(q
2) − γμγ5g1(q

2) − iσμνγ5qν

m�QQ

g2(q
2)

− γ5qμ

m�QQ

g3(q
2)

]
u�QQ (p + q), (10)

〈�Q(p)|q̄iσμνq
ν(1 + γ5)Q|�QQ(p + q)〉

= ū�Q (p)

[
(γμq

2 − qμ/q)
f T1 (q2)

m�QQ

+iσμνq
ν f T2 (q2) + (γμq

2 − qμ/q)γ5
gT1 (q2)

m�QQ

+iσμνγ5q
νgT2 (q2)

]
u�QQ (p + q). (11)

where u�Q and u�QQ are the spinors of the single and doubly
heavy baryons. The form factors fi and gi are estimated in
the framework of the light cone sum rules method in [7], and
for this reason, we pay attention to the calculation of the form
factors f Ti and gTi using the LCSR method only.

In order to calculate the form factors f Ti and gTi in the
framework of the LCSR method, we start with the following

form correlation function.

�μ(p, q)

= i
∫

d4xeiq·x 〈�Q(p)|T {
q̄iσμνq

ν(1 + γ5)Q j̄�QQ

}|0〉,
(12)

where Q = c or b. The interpolating current of the �QQ

baryon is,

j�QQ (0) = εabc(QaTCγ μQb)γμγ5q
c, (13)

where a, b, c are the color indices. In the LCSR method,
the expression of the correlation function is obtained in two
different ways. One of the representations can be written in
terms of the hadrons, and the other is from the QCD side, i.e.
in terms of the quarks and gluons. On the hadronic side, the
correlation function is obtained by inserting hadronic states
with the quantum numbers of �QQ baryon. Then, isolating
the ground state contributions of the �QQ baryon, we get,

�μ(p, q)

= 〈�Q(p)|q̄iσμνqν(1 + γ5)Q|�QQ(p + q)〉〈�QQ(p + q)| j̄�QQ (0)〉
m2

�QQ
− (p + q)2

.

(14)

The second matrix element can be written as,

〈�QQ(p + q)| j̄�QQ (0)〉 = f�QQ ū�QQ (p + q),

and the first matrix element which is defined in terms of the
form factors, is given in Eq.(11).

Using the completeness condition of the Dirac bispinors,
we get the following result for the correlation function in
terms of hadrons

�μ(p, q) = f�QQ

m2
�QQ

− (p + q)2
ū(p)

{
f T1

m�QQ

(γμq
2 − qμ/q)

+i f T2 σμνq
ν + gT1

m�QQ

(γμq
2 − qμ/q)γ5

+igT2 σμνq
νγ5

}
(/p + /q + m�QQ )

= f

m2
1 − (p + q)2

ū(v)

{[(
m2

m1
− 1

)
f T1

+ f T2

]
/qqμ + 2m2 f

T
2 /qvμ

+
[(

m2

m1
+ 1

)
gT1 + gT2

]
/qγ5qμ

−2m2g
T
2 /qγ5vμ

}
+ other structures. (15)

In the last step of the derivation, we used the heavy quark
limit, i.e., pμ → m�Qvμ, and for brevity we replaced m�QQ

by m1, m�Q by m2, and f�QQ by f . Having obtained the
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expression of the correlation function from the hadronic side,
let us turn our attention to the calculation of the correlation
function from the QCD side.

After using the Wick theorem for the correlation function
from the QCD side, we get

�μ(p, q) =
∫

d4xei(q·x)

×
{
[iσμνq

ν(1 + γ5)]αβ(γ5γτ )ργ (Cγτ )σφεabc

×〈�Q(p)|
(
−q̄eα(x)q̄cρ(0)Q̄a

φ(0)Sebβσ (x)

+q̄eα(x)q̄cρ(0)Q̄b
φ(0)Seaβφ(x)

)
|0〉

}
. (16)

The matrix element εabc〈�c(p)|q̄aα(t1)qbβ(t2)Q̄c
ρ(0)|0〉

appearing in Eq. (16) is determined in terms of the heavy
baryon DAs. The light cone distribution amplitudes are stud-
ied in [23]. In determining the parameters appearing in DAs,
the standard sum rules method in heavy quark mass limit is
considered. The distribution amplitudes of the �Q baryon
in the sextet representation of SU(3) are determined in the
following way,

v̄μ

v+
εabc〈0|qaT1 C/nqb2 (t2)h

c
γ (0)|�Q(v)〉

= 1√
3
ψ2(t1, t2) f

(1)ε
μ
‖ uγ ,

i
v̄μ

v+
εabc〈0|qaT1 Cσαβq

b
2 (t2)h

c
γ (0)|�Q(v)〉

= 1√
3
ψa

3 (t1, t2) f
(2)ε

μ
‖ uγ ,

v̄μεabc〈0|qaT1 Cqb2 (t2)h
c
γ (0)|�Q(v)〉

= 1√
3
ψσ

3 (t1, t2) f
(2)ε

μ
‖ uγ ,

−v+v̄μεabc〈0|qaT1 C /̄nqb2 (t2)h
c
γ (0)|�Q(v)〉

= 1√
3
ψ4(t1, t2) f

(1)ε
μ
‖ uγ ,

where ψi are the distribution amplitudes with definite twist,
ti are the distance between the i th light quark and the origin
along the direction of n, nμ and n̄μ are the two light vectors,

v̄μ = 1

2

(
nμ

v+
− v+n̄μ

)
, vμ = 1

2

(
nμ

v+
+ v+n̄μ

)
, and the

space coordinates are taken as ti nμ. In further discussion we
will work in the rest frame of the �Q heavy baryons, i.e.,
v+ = 1. Here, uγ (v) is the heavy baryon spinor and hγ is
the static heavy quark field in HQET.

Here we would like to make the following remark. The
light cone DAs of heavy baryons are obtained in the HQET
in terms of four-velocity and heavy quark field, h. How-
ever, in QCD, heavy baryon state, |�〉, is described by the
momentum p and heavy quark field by Q (see Eq. 16).
Therefore, these quantities should be transformed to the

HQET counterparts. The heavy quark field, Q, should be
replaced by the corresponding heavy quark effective field
h(0), i.e. Q(0) → h(0). In addition, the heavy baryon state
can be written in terms of the HQET baryon state by using
|�Q(p)〉 = √

m2|�(v)〉 + O(1/m2). In HQET, since the
higher order of the inverse heavy quark mass terms can be
neglected, we obtain �Q(p)〉 = √

m2|�(v)〉. Applying this
transformation to both sides of the correlation function, we
see that the replacement |�(p)〉 → |�(v)〉 can be made
safely. However, this transformation is only valid for tree-
level calculations. When O(αs) corrections are taken into
account, the matching relations among the QCD currents and
HQET currents should be used (see [24]). In this work, we
neglected the NLO corrections.

As a result, the matrix element εabc〈�Q(v)|qa1α(t1)q̄b2β(t2)
hcγ (0)|0〉 in terms of �Q distribution amplitudes can be writ-
ten as

εabc〈�Q(v)|q̄a1α(t1)q̄
b
2β(t2)h̄

c
γ (0)|0〉

=
4∑

i=1

Ai (ū�/̄vγ5)γ (C−1�i )αβ, (17)

where

A1 = f (1)

8
ψ2(t1, t2), A3 = f (2)

4
ψ

(s)
3 (t1, t2),

A2 = − f (2)

8
ψ

(σ)
3 (t1, t2), A4 = f (1)

8
ψ4(t1, t2), (18)

and �1 = /̄n, �2 = iσαβnα n̄β , �3 = I , �4 = /n. The distri-
bution amplitudes ψ are defined as,

ψ(t1, t2) =
∫ ∞

0
dww

∫ 1

0
due−iw(t1u+t2ū)ψ(t1, t2),

where ū = 1 − u, ti = vxi , w2 = ūw and w is the total
light diquark momentum. Although the DAs are presented
only for the bottomed baryons in [23,25], one can use these
DAs for the baryons containing charm quarks as well in the
heavy quark mass limit. In the present work, both �c and �b

are described by the same DAs given in [23]. Their explicit
forms are,

ψ2(u, w) = w2ūu
2∑

n=0

an
ε4
n

C3/2
n (2u − 1)

|C3/2
n |2

e−w/εn ,

ψ4(u, w) = w2ūu
2∑

n=0

an
ε2
n

C1/2
n (2u − 1)

|C1/2
n |2

e−w/εn ,

ψ
(σ,s)
3 (u, w) = w

2
ūu

2∑

n=0

an
ε3
n

C1/2
n (2u − 1)

|C1/2
n |2

e−w/εn . (19)

The values of the parameters a0, a1, a2, and ε0, ε1, ε2 are
given in [23], and Cλ

n (2u−1) is the Gegenbauer polynomial.
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Substituting the light-cone distribution amplitudes Eq.
(17) into Eq. (16) and using the heavy quark propagator in
momentum representation and performing integration over
x , the correlation function at the QCD level can be written
as,

�QCD
μ [(p + q)2, q2] =

∫
du

∫
dw

3∑

n=1

{
ρ

(1)
n (u, w)

(� − m2
Q)n

qμ/q

+ ρ
(2)
n (u, w)

(� − m2
Q)n

/qvμ

+ ρ
(3)
n (u, w)

(� − m2
Q)n

qμ/qγ5

+ ρ
(4)
n (u, w)

(� − m2
Q)n

/qvμγ5

+other structures

}
, (20)

where the invariant functions ρ
(i)
n , (i = 1, 2, 3, 4) are pre-

sented in Appendix 1, and

� = ūw

m�Q

(p + q)2 + q2(1 − ūw

m�Q

) − ūw(m� − ūw).

(21)

Matching the coefficients of the structures /qqμ, /qvμ,
/qγ5qμ, and /qγ5vμ in both representations of the correlation
function and applying the Borel transformation with respect
to the variable −(p + q)2 in order to enhance the contribu-
tions of the ground states, and suppress the higher states and
continuum contributions, the desired sum rules for the f Ti
and gTi form factors are obtained from the following equa-
tions,

f

{(
m2

m1
− 1

)
f T1 + f T2

}
e−m2

1/M2 = �B
1 ,

2m2 f e
−m2

1/M2
f T2 = �B

2 ,

f

{(
m2

m1
+ 1

)
gT1 + gT2

}
e−m2

1/M2 = �B
3 ,

−2m2 f e
−m2

1/M
2
gT2 = �B

4 , (22)

where �B
i are the Borel transformed coefficients of the struc-

tures mentioned above, and M2 is the Borel mass parameter.
The Borel transformation and continuum subtraction is

performed with the help of the following master formula.
∫

dw
ρ(u, w)

(� − m2
Q)n

=
∞∑

n=1

{
(−1)n

∫ w0

0
dw

e−s/M2

(n − 1)!(M2)n−1 In

−
[

(−1)n−1

(n − 1)! e
−s/M2

n−1∑

j=1

1

(M2)n− j−1

1

s′

(
d

dw

1

s′

) j−1

In

]

w=w0

}
,

where

s =
m2

Q − ūw(ūw − m2) −
(

1 − ūw

m2

)
q2

ūw

m2

,

In = ρ(u, w)
(
ūw

m2

)n (23)

Note that w = w0 is the solutions of the equations s = sth

(and also s = 4m2
Q), s′ = ds

dw
, and the differential operator

is defined as,

(
d

dw

1

s′

) j−1

In → d

dw

[
d

dw

1

s′ · · · In
]
, (24)

where · · · means the operation should be repeated j − 1
times.

3 Numerical analysis

The primary aim of this section is to determine the q2 depen-
dence of the form factors f T1 , f T2 , gT1 , and gT2 , whose LCSR
are derived in the previous section. Then we estimate the
branching ratios of the �QQ → �Q�+�− decays.

The LCSR of the form factors contain numerous input
parameters. In further numerical analysis, we choose the
masses of the heavy quarks in the MS scheme, i.e.,mc(mc) =
(1.28 ± 0.03) GeV, and mb(mb) = (4.18 ± 0.03) GeV [26].
The masses, lifetime and decay constants f of the doubly
heavy baryons are given in Table 1 (see also [27–31]).

The mass and decay constants of the�Q baryon are chosen
as m�c = 2.454 GeV, m�b = 5.814 GeV, and f (1) =
f (2) = 0.38 [36]

In addition to these input values, two extra auxiliary
parameters, continuum threshold sth , and the Borel mass
parameter M2, appear in the LCSR method. These param-
eters are determined with the following criteria. The work-
ing region of M2 is determined by requiring that the power
corrections and continuum contributions both should be sup-
pressed compared to the leading twist-2 contribution. The
continuum threshold sth is determined so that the mass sum

Table 1 The mass, decay constants and lifetimes of the doubly heavy
�QQ baryons

Baryons Mass (GeV) Life time ( f s) f (GeV)3 [32]

�++
cc 3.621 [1] 256 [3] 0.109 ± 0.021

�+
cc 3.621 [1] 45 [33] 0.109 ± 0.021

�0
bb 10.143 [34] 370 [35] 0.281 ± 0.071

�−
bb 10.143 [34] 370 [35] 0.281 ± 0.071
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Table 2 The values of the fit parameters for the form factors of the
�QQ → �Q transition

f (0) m f it δ

Form factors (c-sector)

f T1 (q2) 3.05 ± 0.7 1.69 0.43

f T2 (q2) 0.49 ± 0.1 1.15 4.21

gT1 (q2) 1.44 ± 0.26 1.43 0.42

gT2 (q2) 0.53 ± 0.13 – –

Form factors (b-sector)

f T1 (q2) −1.72 ± 0.35 3.60 0.31

f T2 (q2) 0.32 ± 0.06 3.49 0.75

gT1 (q2) 0.21 ± 0.04 – –

gT2 (q2) 0.32 ± 0.06 2.93 0.42

rule reproduces the experimentally measured value of mass
to within ±5% accuracy.

Based on these conditions imposed by the LCSR method,
we obtain the following working regions of the parame-
ters sth and M2 for the transitions under consideration, i.e.,
sth = (16±1) GeV2, M2 = (10±2) GeV2 for the �cc → �c

transition, and sth = (112 ± 2) GeV2, M2 = (20 ± 2) GeV2

for the �bb → �b transition, respectively. It should be
emphasized here that these working regions are more or less
in the same range as those determined for the transitions
induced by the charged current [7].

It should be reminded that LCSR predictions are reliable
in the low-energy region. Our calculations show that the sum
rule for the form factors is meaningful in the domains q2 ≤
0.5 GeV2 for the �cc → �c transition and q2 ≤ 10 GeV2

for the �bb → �b transition, respectively.
Having determined the working regions for the QCD

results of the form factors, we can extend the LCSR predic-
tions to the entire physical region. For this goal, we extrap-
olate these form factors to the physical region in such a way
that in the region where LCSR is reliable, the result of the
fit formula and the result LCSR method coincide with each
other. Our analysis shows that the best-fit formula which sat-
isfies the required restrictions is given as,

FT
i (q2) = f Ti (0)

1 − q2

m2
f i t

+ δ

(
q2

m2
f i t

)2 , (25)

where the values of the fit parameters f Ti (0), m f it , and δ are
presented in Table 2.

The errors presented in the values of f Ti (q2 = 0) point
are due to the uncertainties in the mass of the heavy quark,
Borel mass parameter, continuum threshold sth , as well as
from the input parameters appearing in the DAs of the �b

baryon.
Having the results for the form factors, we now proceed to

calculate the corresponding branching ratios of the �++
cc →

�++
c �+�− and �0

bb → �0
b�

+�− decays. Using the definition
of the matrix element of the �bb → �b�

+�− the decay width
is obtained as

d�(s)

ds
= G2

Fα2m1

4096π5
|VtbV ∗

td |2v
√

λ(1, r, s)

[
T1(s) + 1

3
T2(s)

]

where v =
√

1 − 4m2
�

q2 is the lepton velocity, λ(1, r, s) =

1 + r2 + s2 − 2r − 2s − 2rs, s = q2

m2
1

, and r = m2
2

m2
1

. The

lengthy expressions T1(s) and T2(s) can be found in [13].
Performing integration over the parameter s in the domain

4m2
l

m2
1

≤ s ≤ (1 − √
r), and using the lifetimes of �++

cc , �+
c ,

and �0
bb, we calculate the branching ratios of the �QQ →

�Q decays, whose numerical results are all presented in
Table 3. For comparison, we also present the correspond-
ing branching ratios predicted by the Light Front approach
[10,11]. We observe from this comparison that our predic-
tion for the �QQ → �Q�+�− (� = e, μ) transition is larger
than the predictions of the Light Front approach. Consider-
ing the results summarized in Table 3, one can conclude that
the branching ratios of the �bb → �b�

+�− decays could be
measured in future experiments at LHCb, while the measure-
ment of the branching ratios of the �cc → �c�

+�− decays
presents quite a complex problem.

4 Conclusion

The decays induced by the flavor-changing neutral currents
b → d and c → u of the doubly heavy baryons are studied
in the framework of the Light Cone Sum Rules method. We
derive the LCSR of the form factors induced by the tensor

Table 3 The branching ratios of
the �QQ → �Q�+�− decays

Branching ratios Ours [10] [12]

�++
cc → �++

c �+�− 1.62(1 ± 0.45) × 10−13 – –

�0
bb → �0

be
+e− 2.51(1 ± 0.35) × 10−8 9.00 × 10−9 5.91 × 10−9

�0
bb → �0

bμ
+μ− 1.73(1 ± 0.30) × 10−8 7.94 × 10−9 4.89 × 10−9

�0
bb → �0

bτ
+τ− 1.50(1 ± 0.31) × 10−9 1.18 × 10−9 1.91 × 10−10

123
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current. Using the results of the form factors obtained, we
estimated the corresponding branching ratios. We found out
that the branching ratios for �bb → �b�

+�− (� = e, μ)
is at the order of ∼ 10−8. Moreover, for �cc → �c�

+�−
decay, the branching ratios are much smaller and at the order
of ∼ 10−13. The relatively large value of the branching ratio
�bb → �b�

+�− indicates the possibility of being observed
in future experiments at LHCb.

Future improvements for the DA’s of the �Q baryon and
the inclusion of the gluon radiative corrections to the correla-
tion function could pave the way to more accurate sum rules
and numerical predictions.
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Appendix: The expression of the invariant functions
ρ

(i)
n (u,w)

ρ
(1)
1 = f (2)w ψ

(s)
3 (u, w),

ρ
(1)
2 = ū

{[
f (1)mQ ψ̂4(u, w)

]

+2 f (2)
[
ūw − (q ·v)

]
ψ̂

(σ )
3 (u, w)

− f (1)
[
mQ − 4(q ·v)

]
ψ̂2(u, w)

−4 f (2)ū
[
w ψ̂

(s)
3 (u, w) + 2 ̂̂ψ(σ)

3 (u, w)
]}

,

ρ
(1)
3 = 8 f (2)ū2

[
q2 − ū2w2 − 2mQ (q ·v)

]
̂̂ψ(σ)

3 (u, w),

ρ
(2)
1 = 2 f (2)ū

[
w2 ψ

(s)
3 (u, w) + ψ̂

(σ )
3 (u, w)

]
,

ρ
(2)
2 = −4ū

{
f (1)q2 ψ̂2(u, w) + f (2)ū

[
w(q ·v) ψ̂

(σ )
3 (u, w)

+2mQ
̂̂ψ(σ)

3 (u, w) + ūw
(
wψ̂

(s)
3 (u, w)

+4 ̂̂ψ(σ)
3 (u, w)

)]}
,

ρ
(2)
3 = 16 f (2)ū2

[
q2(mQ + ūw) + ū2w2(q ·v)

]
̂̂ψ(σ)

3 (u, w),

ρ
(3)
1 = − f (2)w ψ

(s)
3 (u, w),

ρ
(3)
2 = ū

{
f (1)mQ ψ̂4(u, w) − 2 f (2)

[
ūw − (q ·v)

]
ψ̂

(σ )
3 (u, w)

− f (1)
[
mQ − 4(q ·v)

]
ψ̂2(u, w) + 4 f (2)ū

[
w ψ̂

(s)
3 (u, w)

+2 ̂̂ψ(σ)
3 (u, w)

]}
,

ρ
(3)
3 = −8 f (2)ū2

[
q2 − ū2w2 − 2mQ(q ·v)

]
̂̂ψ(σ)

3 (u, w),

ρ
(4)
1 = −2 f (2)ū

[
w2ψ

(s)
3 (u, w) + ψ̂

(σ )
3 (u, w)

]
,

ρ
(4)
2 = −4ū

{[
f (1)q2 ψ̂2(u, w)

]
− f (2)ū

[
w(q ·v) ψ̂

(σ )
3 (u, w)

+2mQ
̂̂ψ(σ)

3 (u, w) + ūw
(
w ψ̂

(s)
3 (u, w)

+4 ̂̂ψ(σ)
3 (u, w)

)]}
,

ρ
(4)
3 = −16 f (2)ū2

[
q2(mQ + ūw) + ū2w2(q ·v)

]
̂̂ψ(σ)

3 (u, w).

(A.1)

The functions ψ̂(u, w) and ̂̂ψ(u, w) are defined as,

ψ̂(u, w) =
∫ w

0
dτ ′ψ(u, τ ′)τ ′,

̂̂ψ(u, w) =
∫ w

0
dτ ′ψ̂(u, τ ′).
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