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Exclusive heavy-vector meson photoproduction is a prominent signal in collider experiments with
hadron beams. At the highest photon-hadron collision energies, this process is considered as a candidate
to constrain the gluon parton distribution function (PDF) at small longitudinal momentum fractions.
However, in the framework of collinear factorization, exclusive particle production is described in terms of
generalized parton distributions (GPDs). In this contribution, we investigate the connection between GPDs
and PDFs at the leading order in αs. Our main result is a proposal to quantify the systematic uncertainty
inherent to this connection. We put our approach into context with respect to the Shuvaev transform. Our
uncertainty estimate can be straightforwardly adapted to higher fixed orders and small-x resummation. The
question of extrapolating GPDs to vanishing skewness is paramount for the program of the Electron Ion
Collider, notably for the extraction of the radial distributions of partons.
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I. INTRODUCTION

Partons at very small longitudinal momentum fractions
and high energies constitute a particularly interesting
regime of quantum chromodynamics (QCD). Gluon satu-
ration has been predicted to occur [1]: hadrons are no
longer dilute collections of partons, but interacting systems
dominated by gluons. Calculations of event rates in ultra-
high-energy neutrino astrophysics also depend on hadron
and nuclear structure at very small longitudinal momentum
fraction [2,3]. Additionally, this kinematic domain defines
the initial state of the thermodynamic system created in
heavy-ion and other hadron collisions at colliders [1]. It is
known from experiment that gluons dominate the partonic
content at small x [4,5].
However, the uncertainty on the gluon parton distribu-

tion function (PDF) for longitudinal momentum fractions
x ∼ 10−4 or less is still significant. It is mostly due to a lack
of experimental data in this region from deep-inelastic
scattering experiments. Experimental sensitivity can none-
theless be achieved through different measurements at
hadron colliders with larger collision energies

ffiffiffi
s

p
. At the

Large Hadron Collider (LHC), inclusive particle production,

in particular of charm and beauty quarks, has been proposed
to constrain the gluon PDF of the proton [6–10]. Although
a noticeable reduction of uncertainty is produced by the
inclusion of these measurements, their impact is limited by
missing higher-order corrections as indicated by the large
scale and hadronization uncertainties and other effects not
accounted for in perturbative QCD (pQCD).
In addition to these observables, exclusive hard photo-

production processes which can also be measured at hadron
colliders are relevant since they are expected to be less, or at
least differently, affected by phenomena not accounted for
in state-of-the-art pQCD calculations. Therefore, they have
the potential to constrain PDFs at very small x, but they are
not yet included in global PDF fits.
In particular, a large amount of exclusive heavy-vector

meson production (HVMP) measurements of J=ψ or ϒ
mesons are available from the Hadron-Electron Ring
Accelerator (HERA) [11–17] and from the LHC [18–23].
This already available data or future measurements pro-
duced at a possible LHeC [24] probe small values of
Bjorken’s xB of the order of 10−4 down to 10−6 [25]. The
future Electron Ion Collider (EIC) [26] will provide precise
HVMP data with Bjorken’s xB of the order of 10−3 − 10−4.
The leading-order (LO) two-gluon exchange in the t
channel depicted in Fig. 1 is the dominant contribution
to the HVMP cross section. However, because there is a
transfer of four-momentum between initial- and final-state
hadrons, p and p0, the description of this process in the
framework of collinear factorization [27] does not involve
usual PDFs but the so-called generalized parton distribu-
tions (GPDs) [28–32]. Therefore, it is desirable to establish
a reconstruction procedure of GPDs in the small-x region in
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terms of PDFs. Although we stressed the practical impor-
tance of this procedure for the exploitation of HVMP data,
the arguments we will develop in this paper are generically
based on evolution properties of GPDs and can therefore be
applied to any hard exclusive process in the regime of small
Bjorken xB. The study of the relation between GPDs and
PDFs in this kinematic regime has attracted interest since
the early days of GPD studies, more than two decades ago.
One of the major contributions, based on the Shuvaev
transform, was proposed in Refs. [33,34] and was applied
to HERA and LHC experimental data for instance in
Refs. [35–37]. In this article, we suggest an alternative
procedure that allows us to evaluate the theoretical uncer-
tainty associated to linking GPDs to PDFs and to pave the
way for more detailed studies at higher orders and with
small-x resummation.
The outline of this article is as follows. We start by

exposing the problem of relating GPDs to PDFs and
discuss the role of evolution. We also briefly highlight
the relevance of this issue for the physics program of the
EIC, independently of the question of HVMP. Next, we
present our proposal to quantify the uncertainty on relating
GPDs to PDFs and derive an estimate of the uncertainty for
J=ψ and ϒ HVMP. In the last section, we finally connect
our method to the Shuvaev transform.

II. KINEMATIC VARIABLES, EVOLUTION
OPERATORS, AND THE LINK BETWEEN

GPDs AND PDFs

We only sketch out the properties of GPDs necessary to
provide a sufficient context. More details can be found for
instance in the review articles in Refs. [38–40]. We use the
notation of Ref. [38] for the gluon GPD Fg. AGPD Fa for a
given parton of type a ¼ q; g;… in a hadron is a function
of the average longitudinal momentum fraction of the
parton itself, denoted by x, of the Mandelstam variable
t ¼ ðp0 − pÞ2, where p and p0 are the incoming and
outgoing hadron four-momenta, respectively, and of the
skewness ξ, which measures the longitudinal momentum
transfer and can be related to Bjorken’s xB in the Bjorken
limit through

xB ≈
2ξ

1þ ξ
: ð1Þ

In the following, we will use the skewness variable ξ as is
customary in GPD studies, keeping in mind that in the
regime of small Bjorken’s xB, ξ ≈ xB=2. The regime of
small xB is therefore the regime of small ξ in GPD
terminology. We stress the difference between the parton
longitudinal momentum fraction x, on which parton dis-
tributions depend, and Bjorken’s xB which is a kinematic
variable at which an observable is measured. Many
observables measured at xB exhibit a strong sensitivity to
PDFs and GPDs at values x of the order of xB; hence, small
x and small xB are often used interchangeably. However,
in general, factorized observables depend on an integral of
parton distributions over a range of values of x, typically up
to x ¼ 1.
In addition to ðx; ξ; tÞ, GPDs also depend on a factori-

zation scale denoted by μ. The relation between the GPD
Fa and the corresponding PDF fa for the same parton and
hadron helicities in initial and final states is given by

Faðx; ξ ¼ 0; t ¼ 0; μÞ ¼ xpafaðx; μÞ; ð2Þ

where pa ¼ 0 for quarks (a ¼ q) and 1 for gluons (a ¼ g).
As discussed in the previous section, our main objective is
to reconstruct the GPDs at small x and xB (that is small x
and ξ) from PDFs. Equation (2) gives a straightforward
answer even if ξ is not strictly zero, but x ≫ ξ and t is
negligible compared to the hard scale of the process. Then
the four-momentum transfer may be neglected altogether
and the GPD approximated by the PDF. If x ≫ ξ but t is not
negligible, relating GPDs to PDFs requires control over the
t behavior, usually expressed by an exponential ansatz for
the t dependence as for instance in Ref. [35]. A study of the
variation of the t dependence under evolution for some
models can be found in Ref. [41].
Since the uncertainty on the relation between GPDs and

PDFs at nonvanishing t can be adequately addressed by
flexible parametrizations of the t dependence, we will set
this aspect aside and focus on linking GPDs and PDFs
when ξ is non-negligible as compared to x. This case
deserves a particular attention for several reasons.
(1) Evolution equations produce a direct entanglement

of the x, ξ, and μ, whereas the evolution kernels are
independent of t.

(2) The convolution of GPDs that enters the computa-
tion of exclusive HVMP exhibits a strong sensitivity
to the region x ≈ ξ. Therefore, the region where
GPDs cannot be bluntly approximated by PDFs is
precisely the one that we are mostly concerned with.

(3) GPDs with vanishing skewness Faðx;ξ¼0;tÞ are of
great importance, as they are used for the definition
of impact-parameter distributions (IPDs) [42] that
give the number density of a parton carrying a

FIG. 1. Dominant contribution to the hard exclusive photo-
production of a heavy-vector meson J=ψ .
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fraction of longitudinal momentum x at the radial
distance b⊥ from the center of momentum of the
hadron in the infinite momentum frame:

IPDaðx; b⊥; μÞ ¼
Z

d2Δ⊥
ð2πÞ2 e

−ib⊥·Δ⊥Fa

× ðx; ξ ¼ 0; t ¼ −Δ2⊥; μÞ: ð3Þ

The imaging of the hadronic structure in position
space has been identified as one of the goals of the
EIC program [26]. As most data for exclusive
processes are taken at nonvanishing skewness, an
understanding of the uncertainty associated to the
extrapolation to ξ ¼ 0 at fixed values of t is crucial
to this purpose and is provided by the procedure we
present in this article.

Since HVMP is only sensitive to C-even GPDs, in the
following we will consider only such GPDs, also known as
singlet GPDs. They have a definite parity in x—gluon
GPDs are x even and quark singlet GPDs are x odd—which
allows us to only focus on the case where x ≥ 0. In general,
GPDs are also even functions of ξ due to time-reversal
invariance, so we consider only ξ ≥ 0 as well.
The dependence of PDFs on their scale μ is given by

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [43–45] which ensure that observables computed
from PDFs do not depend on the arbitrary scale μ.
Analogously, GPDs obey their own evolution equations
[28,30,32], which generalize the DGLAP equations and
whose solution reads [46]

Faðx; ξ; t; μÞ
xpa

¼
X

b¼q;g;…

Z
1

0

dz
x
Γab

�
z
x
;
ξ

x
; μ0; μ

�

×
Fbðz; ξ; t; μ0Þ

zpb
: ð4Þ

In view of the definition in Eq. (4), the solution to the
DGLAP evolution equations can be written as

faðx; μÞ ¼
X

b¼q;g;…

Z
1

0

dz
x
Γab
0

�
z
x
; μ0; μ

�
fbðz; μ0Þ; ð5Þ

where the DGLAP evolution operator Γab
0 is linked to the

GPD one Γab through

Γab
0

�
z
x
; μ0; μ

�
¼ lim

ξ=x→0
Γab

�
z
x
;
ξ

x
; μ0; μ

�
: ð6Þ

The DGLAP operator Γab
0 ðz=x; μ0; μÞ takes nonzero values

for μ ≥ μ0 if and only if z ≥ x. Intuitively, this can be
understood as follows: since the DGLAP evolution
describes the substructure of partons as the resolution at
which the system is probed increases, a parton carrying a
longitudinal momentum fraction x at the initial scale
radiates several partons ending up with a momentum
fraction less than x at the final scale. In practice, as we
will show below, DGLAP evolution, and the general GPD
evolution for x ≥ ξ as well, pushes distributions from large
to small x. As a result, the higher the evolution range,
the more variations of the distribution at initial scale are
washed away toward a smaller-x domain. This general
idea forms the basis of the strategy to reconstruct the ξ
dependence of GPDs from PDFs: we may ignore the ξ
dependence of GPDs at an initial low-lying scale, but the
known ξ dependence generated by evolution to sufficiently
higher scales washes away this uncertainty.
Before undertaking a discussion of the ξ dependence of

the LO evolution operator, it is enlightening to observe
directly its consequences. In Fig. 2, we use the LO PDF set
MMHT2014 [47] as an input at the scale μ0 ¼ 1 GeV
and evolve it to μ ¼ 4.7 GeV using both the ordinary LO
DGLAP equation (ξ ¼ 0) and the LO GPD evolution
equation at ξ¼10−4. In accordance with the MMHT2014
LO extraction, the running of the strong coupling is
computed at one loop with αsðMZÞ ¼ 0.135 in the varia-
ble-flavor-number scheme, with the charm threshold at
1.4 GeV. As we use the same distribution at initial scale,

FIG. 2. Evolution of the MMHT2014 LO PDF [47] from μ0 ¼ 1 to 4.7 GeV using the DGLAP evolution (blue curve) and the GPD
evolution at ξ ¼ 10−4 (orange curve). On the left, we show the nonsinglet u PDF defined by u−ðxÞ ¼ uðxÞ − ūðxÞ. On the right, the
gluon PDF. The difference between the two curves becomes sizable for x≲ 3ξ.
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the entire difference between the curves in Fig. 2 is due to
the ξ dependence introduced by the evolution operator. One
can observe immediately that the difference is only per-
ceptible for x≲ 3ξ. As we have already mentioned, this is
the region of largest phenomenological interest for the
description of HVMP data.
Referring to Eq. (4), the Γab operators give a weighting

[48] of GPDs at the initial scale μ0 to produce GPDs at
the final scale μ. As such, they allow one to gauge the
importance of the contribution to the evolution of various
regions of the GPDs at the initial scale. The properties of
the evolution at small values of ξ have notably been studied
in Refs. [34,41,49,50] but, to the best of our knowledge,
studies of this kind have been performed by means of
models of GPDs, often with the assumption of power-law
behavior at small x, and have therefore a lesser generality
than our discussion which takes place directly at the level
of the Γab operators. We use the GPD evolution software
APFEL++ [51–53] to numerically study their properties. For
numerical applications, we will use the typical hard scales
encountered in HVMP, given by half the mass of the vector
meson as argued in Refs. [54,55], that is μc ¼ mJ=ψ=2 ¼
1.5 GeV and μb ¼ mϒ=2 ¼ 4.7 GeV. Since we only per-
form LO evolution, we need an initial evolution scale high
enough to produce coherent results. We choose as an initial
scale μ0 ¼ 1 GeV and plot in Fig. 3 the evolution operators

Γabðz=x; ξ=x; μ0; μÞ as functions of z=x evaluated at μ ¼ μc
and μb in the variable-flavor-number scheme, using
αsðMZÞ ¼ 0.118 as a boundary condition for the evolution
of the strong coupling. Let us comment on some important
aspects.
(1) We only focus on the case ξ ≤ x [56]. A specific

procedure, called covariant extension [57,58], allows
one to retrieve the ξ > x region from the ξ ≤ x one,
up to a specific function known as the D term. Since
the D term only lives in the region ξ > x and enjoys
its own independent evolution equation, it does not
provide any handle on PDFs. Therefore, the D-term
contribution to the amplitude of a process, which can
be isolated in the formalism of dispersion relations
(see for instance Refs. [59,60]), is ignored in the
present study. The region ξ ≤ x possesses another
important property: Faðx; ξ; t; μÞ only depends on
values of Fbðz; ξ; t; μ0Þ such that z ≥ x, as can be
observed in Fig. 3. We have already mentioned this
property in the case of the DGLAP operator (ξ ¼ 0).

(2) The qq and gg sectors exhibit a strong peak at z ¼ x,
all the more that μ is close to μ0. This is easily
understandable because in the limit of no evolution,
where μ¼μ0, Γabðz=x;ξ=x;μ0;μ0Þ¼δa;bδð1−z=xÞ
where δa;b is the Kronecker delta. On the contrary, as
μ increases the contribution from the region z ≫ x

FIG. 3. Behavior of Γabðz=x; ξ=x; μ0 ¼ 1 GeV, μ) in the four sectors ab ¼ qq (upper left), ab ¼ qg (upper right), ab ¼ gq (lower left)
and ab ¼ gg (lower left). The continuous lines stand for the final scale μ ¼ mJ=ψ=2 ¼ 1.5 GeV while the dotted lines for
μ ¼ mϒ=2 ¼ 4.7 GeV. The colors refer to the value of the ratio ξ=x: ξ ¼ 0 is the DGLAP operator (blue) and x ¼ ξ is in orange.

DUTRIEUX, WINN, and BERTONE PHYS. REV. D 107, 114019 (2023)

114019-4



becomes increasingly important. This corresponds
to a kinematic region where at the initial scale μ0 the
asymmetry between the four-momenta of incoming
and outgoing active parton, zþ ξ and z − ξ, is
negligible and the GPDs can safely be replaced
by the PDFs. The fact that this region becomes
increasingly dominant as evolution to higher and
higher scale is performed provides a quantitative
argument that the evolution washes away the un-
certainty on the ξ behavior of the GPDs at the initial
scale. As the behavior of the evolved GPDs is
increasingly controlled by its large-z region at the
initial scale, the initial uncertainty on their ξ
dependence becomes negligible.

(3) Finally, one can observe that the DGLAP operator
(ξ ¼ 0) and the GPD evolution operator at x ¼ ξ
share a globally similar shape. Nonetheless, the
curves in the gg and gq sectors, which seem almost
identical for z=x≳ 5, actually differ by an almost
constant factor of 5% between ξ ¼ x and ξ ¼ 0 in
the large z=x domain at μ ¼ 4.7 GeV. The differ-
ence is much starker in the qq and qg sectors, with
an almost constant factor of 50% for the same
parameters. Significant differences are furthermore
observed in the region where z is of the order of x.
This explains why in Fig. 2 the GPD evolution at
ξ ¼ 10−4 produces larger values than the DGLAP
evolution around x ¼ ξ. The fact that the region
around x ¼ ξ would evolve faster than the PDF was
already identified in a number of early referen-
ces [34,49,61] and often taken into account in
models with the help of an appropriately tuned
“skewness ratio” Faðx; ξ ¼ xÞ=Faðx; ξ ¼ 0Þ.

Let us now draw a few conclusions. From Figs. 2 and 3,
it is clear that simply using PDFs instead of GPDs when
x ≈ ξ brings potential GPD modeling uncertainties of the
order of several tens of percent even when ξ is arbitrarily
small. The skewness ratios quoted in Refs. [34,49] reach in
some cases even higher values where GPDs at x ¼ ξ are
about 1.6 times as large as the corresponding PDFs. A
precise study of HVMP must deal with this source of
uncertainty. A path to do so is already clear. At a very low
scales, the ξ dependence of a GPD may be unknown, but as
the GPD is evolved, the increasing dominance of the region
z ≫ ξ allows for a reduction of the uncertainty. This handle
on the uncertainty of the extrapolation to zero skewness
will depend on the range in μ, the value of ξ and the x
profile of the GPD at the initial scale. With this in mind, we
can lay down our proposal to relate GPDs to PDFs with a
quantification of systematic uncertainties.

III. PROPOSAL TO QUANTIFY THE SYSTEMATIC
UNCERTAINTY IN RELATING GPDs TO PDFs

The model of reconstruction of the ξ dependence of
GPDs at small ξ that we suggest is straightforward:

we simply propose to approximate the GPDs by the
PDFs at the low scale μ0. Then we evolve them to the
hard scale μ with the full ξ-dependent GPD evolution
operator. Observables can then be computed with this
object whose entire ξ dependence has been generated by
evolution. We will show in the next section that this model
is conceptually close to the one based on the Shuvaev
transform, although with notable differences.
Beyond its simplicity, the main advantage of our

proposal is the possibility to compute an estimate of the
associated systematic uncertainty. Since we don’t know the
ξ dependence of the GPDs at the initial scale, there is by
definition a certain level of arbitrariness in any attempt to
quantify the uncertainty of our procedure, which can be
used as a conservative estimate of the magnitude of the
uncertainty. At the initial scale μ0, pessimistic estimates
derived from the skewness ratio evoked at the end of the
previous section lead us to assume a plausible uncertainty
of up to 60% at z ¼ ξ between the GPD Faðz ¼ ξ; ξ; μ0Þ
and the PDF faðz; μ0Þ. We expect this uncertainty to
decrease quickly as z increases and become essentially
negligible for z≳ 10ξ. We show in Fig. 4 two plausible
profiles of uncertainty on the ξ dependence of the GPD at
the initial scale as a function of z=ξ, given by

η

�
z
ξ

�
¼ 0.6 exp

�
ξ − z
αξ

�
; ð7Þ

with α ¼ 1 to simulate a fast decrease in uncertainty and
α ¼ 2 for a slower decrease. As we will see, this does not
make much difference, indicating that it is the uncertainty
at z ¼ ξ which represents the most critical source of
uncertainty.
Then we assume ηðz=ξÞfaðz; μ0Þ to be an upper bound

on the uncertainty of the GPD at initial scale, and we can

FIG. 4. Uncertainty profiles produced by Eq. (7) with α ¼ 1
(blue curve) and α ¼ 2 (orange curve) to quantify the unknown ξ
dependence of the GPDs at the initial scale. In both cases,
we assume that the GPD at ξ ¼ z deviates by 60% from the
corresponding PDF. For z ≳ 10ξ, the difference between PDF and
GPD is very small as one would expect.
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define our conservative magnitude of uncertainty at scale μ
by simply integrating this uncertainty against the evolution
operators:

Δaðx; ξ; μÞ ¼
P

b

R
1
0

dz
x Γ

ab
�
z
x ;

ξ
x ; μ0; μ

�
ηðzξÞfbðz; μ0ÞP

b

R
1
0

dz
x Γ

ab
�
z
x ;

ξ
x ; μ0; μ

�
fbðz; μ0Þ

: ð8Þ

For instance, if μ ¼ μ0, which corresponds to no evolution,
then the relevant evolution operators are just Dirac peaks
centered at x ¼ z, and

Δaðx; ξ; μ ¼ μ0Þ ¼
P

bδa;bηðx=ξÞfbðx; μ0ÞP
bδa;bf

bðx; μ0Þ
¼ η

�
x
ξ

�
: ð9Þ

As expected, without evolution we recover exactly the
uncertainty assumed at the initial scale given by the
function η.
We display in Fig. 5 the behavior of Δgðx ¼ ξ; μÞ for the

LO PDF set MMHT2014 [47] as an input at μ0 ¼ 1 GeV.
On the left, Δg is represented with an uncertainty at initial
scale produced by the function η with parameter α ¼ 1.
As compared to the case on the right where α ¼ 2, this
corresponds to significantly smaller uncertainties for z > ξ.
Yet, the results are similar, proving that the determining
source of uncertainty comes from the region around z ¼ ξ.
As expected from Eq. (9), when μ is very small, the

uncertainty is close to ηð1Þ¼60%. At the scale μ¼1.5GeV,
corresponding to J=ψ production, the uncertainty of the ξ
reconstruction of the gluon GPD can be estimated to be
10%–20% for a large range of values of ξ. At the scale
μ ¼ 4.7 GeV corresponding to ϒ production, the uncer-
tainty on the gluon GPD drops approximately to 2%–4%.
Although at LO HVMP is only sensitive to the gluon GPD,

we show the result for the light quark sea GPD in Fig. 6.
There the situation is much more dire, with an uncertainty
of order 40% for J=ψ production and 10% for ϒ. This is
easily understood by looking at the evolution operators
shown in Fig. 3. The contribution of the large-z region for
the qq operator is significantly less than that of the gg
operator, meaning that the effect of washing away of
uncertainty by evolution is much less effective for quarks
than for gluons.
The behavior of Δg as a function of ξ results from two

opposite trends. When ξ is still rather large, the decrease of
ξ triggers a very quick increase of the contribution of the
region z ≫ ξ, resulting in a quick reduction of the uncer-
tainty. However, when ξ decreases below roughly 10−3, Δg

stabilizes. The cause of this behavior is an interplay
between the increase of the operator weights Γab in the
large-z region and the steep increase of the PDFs them-
selves at small z. As a consequence, the power-law
behavior of the PDFs at small z stabilizes the dominance
of the large-z region in the evolution. Rather than ξ, it is μ
which plays the most important role in the quality of the
approximation.
We believe that one can use the value of Δaðx; ξ; μÞ as a

conservative estimate of the uncertainty generated by the
extrapolation to vanishing skewness of GPDs. As men-
tioned in the previous section, the extrapolation to ξ → 0 is
not only relevant to relate GPDs to PDFs in the context of
small-x HVMP, but also to the extraction of IPDs (3), a
major aspect of the hadron tomography program.
The uncertainty in the extrapolation to vanishing skew-

ness depends on three aspects: the choice of the low-lying
scale μ0, the choice of the uncertainty profile η (7), and the
knowledge of the PDFs at the initial scale μ0. Let us review
them one by one. Since we are using a perturbative

FIG. 5. Behavior of Δgðx ¼ ξ; ξ; μÞ in percent as a function of ξ and μ for the LO PDF set MMHT2014 used as input at the scale
μ0 ¼ 1 GeV. On the left, we use the uncertainty profile with α ¼ 1 while on the right with α ¼ 2 [see Fig. 4 and Eq. (7)].
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generation of the ξ dependence, it is in our best interest to
define μ0 as low as possible to increase the leverage of
evolution, which we have highlighted in Fig. 5 to be a
dominant factor in the reduction of Δa. However, μ0 is
bound from below by the shortcomings of perturbation
theory at small scale. Determining the smallest scale which
allows the use of perturbation arguments presents a level of
arbitrariness. However it makes a crucial difference in the
evaluation of the uncertainty as the strongest evolution
effects precisely happen at small scale. To give a sense of
the dependence on the choice of μ0, we reproduce the left
plot of Fig. 5 starting now from μ0 ¼ 1.4 GeV in Fig. 7
instead of 1 GeV. We still assume 60% of uncertainty at the
new value of μ0 with the same appropriately evolved model
of PDF. With such choice of starting scale, the formalism is
now not applicable to the J=ψ production if the hard scale
mJ=ψ=2 is used as argued in Refs. [54,55]. Indeed, since the
hard scale almost corresponds to our starting scale, we
recover about 60% of uncertainty. On the other hand, for ϒ
production at a hard scale mϒ=2, the value of Δg has now
increased to 3%–8% on a wide range of ξ, compared to the
values 2%–4% we had quoted before. The general features
of the ðμ; ξÞ dependence of Δa remain the same.
That Δa depends on the choice of uncertainty profile (7)

is the consequence of the fact that we are trying to quantify
something that is fundamentally unknown, namely the ξ
dependence of GPDs at the low-lying scale μ0. Figure 5
highlights that a dominant factor in the uncertainty profile
is ηð1Þ, which characterizes the difference between Faðx ¼
ξ; μ0Þ and faðx; μ0Þ. In this study, we have used ηð1Þ ¼
60% based on a general argument of large skewness ratios
encountered in the literature, but it unfortunately boils
down to the physicist to make an assumption on the bound
of “reasonable” uncertainties on the GPDs at the initial

scale. It is obvious that an arbitrarily large uncertainty at
initial scale μ0 would result in an arbitrarily large uncer-
tainty at a hard scale as well.
Finally, Δa depends on the PDF profile at μ0. It means

that our uncertainty estimate is Bayesian in nature, in the
sense that the uncertainty in relating the GPDs to the PDFs
at the hard scale μ depends on our prior knowledge of the
PDFs at the scale μ0. This can be understood physically: if
the PDFs at the low scale μ0 increase only moderately at
small x, then the dominance of the large-z region is easier to

FIG. 6. Behavior of Δqðx ¼ ξ; ξ; μÞ in percent as a function of ξ and μ for the LO PDF set MMHT2014 used as input at the scale
μ0 ¼ 1 GeV. On the left, we use the uncertainty profile with α ¼ 1 while on the right with α ¼ 2 [see Fig. 4 and Eq. (7)].

FIG. 7. Behavior of Δgðx ¼ ξ; ξ; μÞ in percent as a function of ξ
and μ for the LO PDF set MMHT2014 used as input at the scale
μ0 ¼ 1.4 GeV with uncertainty profile characterized by α ¼ 1.
Compare to the left-hand side plot of Fig. 5 where μ0 ¼ 1 GeV.
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establish, and the uncertaintyΔa is smaller. The uncertainty
Δa should therefore be evaluated with respect to our current
best knowledge of PDFs at small x and low scales. To fully
leverage the Bayesian viewpoint on the uncertainty of the
vanishing ξ extrapolation, one could consider the following
strategy:
(1) Start from the current best knowledge of PDFs at the

low scale μ0.
(2) Evolve this PDF set using ξ-dependent GPD evo-

lution to the hard scale of the process. This produces
GPD-like objects with a ξ dependence entirely
resulting from evolution. The set of GPD-like
objects inherits the uncertainty of the initial PDF
set. It must further be smeared by Δa defined in
Eq. (8) to take into account the uncertainty due to the
unknown ξ dependence of the GPD at initial scale.

(3) The set of GPD-like objects now constitutes a
Bayesian prior on the GPD at the relevant hard
scale, with an account of systematic uncertainty.
Traditional Bayesian inference techniques can then
be used to update this prior knowledge with new
information coming from actual HVMP data or any
other exclusive process. For instance, if the knowl-
edge of PDFs is represented by samples (e.g. from a
neural network model), Bayesian reweighting as-
signs a likelihood coefficient to each sample of the
PDF set by comparing the prediction using the prior
GPD-like objects to the actual measurements. This
allows HVMP to update the knowledge of the PDF
while taking into account the previous uncertainty of
PDFs, the uncertainty on the ξ dependence and the
experimental uncertainty of the HVMP data.

Reweighting strategies as described in the last step are a
well-established technique for PDFs and are increasingly
used for higher-dimensional parton distributions (see for
instance Refs. [62–64]). The Bayesian technique offers
additionally the advantage of possibly highlighting signs of
an interesting physics (for instance, the need to take into
account effects of small-x resummation) by a significant
tension between the observables computed from the
GPD-like prior and the actual measurements. However,
to conclude that such tensions result from an inability of the
ordinary collinear framework to accommodate the data, one
would need a careful control of the biases in the initial PDF
parametrization. Indeed, the procedure we suggest is only
as good as the modeling of the initial knowledge of the PDF
itself, as well as the t dependence, that we do not try to
address in this paper. In the absence of a good flexible
parametrization of the PDF, a more rudimentary approach
would simply consist in adding Δa as a general systematic
uncertainty to the relation of GPD to PDF. One could
further compare Δa computed using alternatively the
collinear evolution kernel as we have done here or includ-
ing small-x resummation in the spirit of various attempts
to modify the DGLAP equation in the small-x region

(see for instance Ref. [65] and references therein). Using
higher-order perturbative evolution would also be desirable
to reduce missing higher-order corrections, which become
all the more sizable that the initial scale is low.
The proposal we have developed in this section is similar

in its general strategy to the one based on the Shuvaev
transformed which was already applied for instance in
Refs. [35–37]. We clarify in the next section how the two
modeling strategies differ.

IV. REVISITING THE MODELING OF GPDs
THROUGH THE SHUVAEV TRANSFORM

The Shuvaev transform [33,34] relates the representation
of GPDs in momentum space as we presented them so far
to the representation of GPDs in the space of conformal
moments. Conformal moments are defined as [38]

Oa
nðξ; t; μÞ ¼

Γðnþ 1 − paÞΓðpa þ 3=2Þ
2n−paΓðnþ 3=2Þ

× ξn−pa

Z
1

−1
dxCðpaþ3=2Þ

n−pa

�
x
ξ

�
Faðx; ξ; t; μÞ;

ð10Þ

where Cðpaþ3=2Þ
n are Gegenbauer polynomials and Γ is the

Euler gamma function generalizing factorials. The prefac-
tor with Γ functions is introduced such that in the limit
t ¼ 0 and ξ ¼ 0, the conformal moments are exactly equal
to the Mellin moments of the PDF, defined by

Ma
nðμÞ ¼

Z
1

−1
dxxnfaðx; μÞ: ð11Þ

Conformal moments are particularly suitable to solve the
LO GPD evolution equations [66,67]. For instance, for n
even—that corresponds to the quark nonsinglet GPD—the
ξ and μ dependence is factorized as follows:

Oq
nðξ; t; μÞ ¼ Oq

nðξ; t; μ0Þ
�
αsðμÞ
αsðμ0Þ

�
γn=2β0

; ð12Þ

where the anomalous dimensions γn are the same as those
that govern the DGLAP evolution of PDFs. In the singlet
case, only conformal moments associated to the same odd
value of n mix between the gluon and quark singlet GPDs.
The Shuvaev operator, which we denote as Saðx; ξ; nÞ,
allows one to relate the two representations of GPDs
through

Faðx; ξ; t; μÞ ¼ Saðx; ξ; nÞ �Oa
nðξ; t; μÞ; ð13Þ

where we use the � notation to indicate the action of the
Shuvaev operator on an analytical continuation of the
conformal moments.
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Defining the ξ dependence of GPDs can equivalently
take the form of defining the ξ dependence of conformal
moments. The modeling proposal of GPDs at small ξ based
on the Shuvaev transform consists in approximating the
conformal moments in the limit ξ ≪ 1 with their value at
ξ ¼ 0, i.e. in defining a GPD model whose conformal
moments are constant in ξ and equal to

Oa
nðξ; t; μÞ≡

Z
1

−1
dxxn−paFaðx; ξ ¼ 0; t; μÞ; ξ ≪ 1;

ð14Þ

which are exactly the Mellin moments of the PDF if t ¼ 0.
We will again set aside the question of the modeling of
the t dependence, which should ideally be the subject of a
flexible parametrization at the level of conformal moments.
At t ¼ 0, this model greatly simplifies the expression of
Eq. (13), since it can be turned into the following form:

Faðx; ξ; μÞ≡ S0aðx; ξ;x0Þ � faðx0; μÞ; ð15Þ

where S0a is now the composition of the Shuvaev operator
Sa and the Mellin transform (see the Appendix for details).
We use the boldface character x0 so that no ambiguity

arises on the actual integration variable subtended by
the symbol �. An equivalent formalism related to the
assumption of ξ independence of conformal moments
has been discussed in Ref. [61]. The proposal has been
extended in Ref. [68], which provides a technical fix so that
the reconstructed GPDs do not extend outside the physical
support x ∈ ½−1; 1�.
Let us show how this modeling (ξ-independent con-

formal moments) is deeply related to the one we presented
in the previous section (GPD ¼ PDF at a low scale μ0 and
ξ-dependent evolution applied to reach μ). First we note the
following remarkable property linking the DGLAP LO
evolution operators Γab

0 introduced in Eq. (5) to the general
LO evolution operators defined in Eq. (4): provided z ≫ ξ,
and given any μ > μ0,

1

x
Γab

�
z
ξ
;
ξ

x
; μ0; μ

�
≈

1

xpa
S0aðx; ξ;x0Þ � 1

x0 Γ
ab
0

�
z
x0 ; μ0; μ

�
:

ð16Þ

In other words, in the limit where z ≫ ξ, the ξ dependence
of the general LO evolution operator can be entirely
reproduced by the ξ dependence of S0. Figure 8 shows
the excellent quality of this approximation in the qq and gg

FIG. 8. Quality of the approximation of LO evolution operators Γabðz=ξ; ξ=x; μ0; μÞ by Eq. (16), as a function of z=ξ in the case where
ξ ¼ x, μ0 ¼ 1 GeV and μ ¼ 4.7 GeV. The qq sector is displayed in upper-left panel while the gg sector in the lower-left panel. On the
right, the relative precision of the approximation is given for two different discretizations of the evolution operators, either with 50 or
100 points. The dips in the curves correspond to a change of sign in the difference between the true value of the LO evolution operator
and its approximation by Eq. (16).
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sectors for ξ ¼ x, where we expect the largest deviations
between the DGLAP evolution operators and the GPD
ones. In the region z ≫ ξ, we observe a numerical agree-
ment of the order of 10−3 for quarks and 10−4 for gluons.
Using various discretizations of the evolution operators
with the evolution code shows that numerical uncertainties
dominate the discrepancy at large z. On the contrary, for
z≲ 10ξ, both discretizations give generally similar results:
in this region, the approximation of Eq. (16) gives
significant discrepancies compared to the true value of
the GPD evolution operator. It is obvious from the
expression of S0 in the Appendix that Eq. (16) cannot hold
for small values of z: as can also be observed in Fig. 8,
whereas the GPD evolution operator should be 0 for z < ξ
in the case where x ¼ ξ, the rhs of Eq. (16) gives non-
vanishing contributions down to z ¼ ξ=2.
Under the assumption that the contribution of the region

z≲ 10ξ, where the approximation of Eq. (16) is not very
accurate, is negligible in the evolution of the GPD from μ0
to μ, it is possible to write the right-hand side of (15) as

S0aðx; ξ;x0Þ � faðx0; μÞ

¼ S0aðx; ξ;x0Þ �
X

b¼q;g;…

Z
1

0

dz
x0 Γ

ab
0

�
z
x0 ; μ0; μ

�
fbðz; μ0Þ

ð17Þ

≈xpa

X
b¼q;g;…

Z
1

0

dz
x
Γab

�
z
ξ
;
ξ

x
; μ0; μ

�
fbðz; μ0Þ; ð18Þ

where we used Eq. (5) in the first line and applied
the approximation of Eq. (16) in the second. Since we
assumed dominance of the z≳ 10ξ region in the integral
over z, we can also assume that the skewness between
incoming and outgoing four-momenta zþ ξ and z − ξ is
negligible, leading to the approximation that fbðz; μ0Þ≈
z−pbFbðz; ξ; μ0Þ. Hence,

S0aðx; ξ;x0Þ � faðx0; μÞ

≈ xpa

X
b¼q;g;…

Z
1

0

dz
x
Γab

�
z
ξ
;
ξ

x
; μ0; μ

�
Fbðz; ξ; μ0Þ

zpb
ð19Þ

¼ Faðx; ξ; μÞ: ð20Þ

Therefore, the modeling strategy expressed in Eq. (15)
relies on the same argument as the one presented before,
that is, that there exists a lower scale μ0 such that the large-z
region dominates the evolution. However, any reference
to μ0 disappears in the final formulation of the proposal
because the relation between general LO and DGLAP
evolution operators of Eq. (16) holds independently of μ.
However, the disappearance of μ0 in the modeling strategy

with the Shuvaev transform deprives us of a crucial tool to
evaluate the uncertainty of the procedure.
Quantification of the systematic uncertainty of the

Shuvaev procedure has been so far mostly treated with
generic estimates, summarized as Oðξ2Þ at LO and OðξÞ at
NLO, based on considerations on the polynomial expan-
sion of Gegenbauer moments of GPDs as functions of ξ
[34]. The strict mathematical validity of these estimates
has been criticized for instance in Refs. [41,69], where
it is argued that, in general, truncating the ξ expansion of
conformal moments—in this case to its first term—and
performing their analytical continuation to apply the
Shuvaev transform are noncommutative operations.
Therefore, when the PDFs exhibit specific singularities,
the reconstructed GPD would not produce the correct
forward limit. Even assuming that the generic uncertainty
estimates of Oðξ2Þ at LO and OðξÞ at NLO are math-
ematically founded for most of the phenomenologically
relevant parameterisations of PDFs, as argued in Ref. [70],
it remains to clarify what is the actually size of these terms,
which should at least depend on the hard scale μ. On the
contrary, the uncertainty we have presented in the previous
section does not scale as Oðξ2Þ or OðξÞ, and it is rather
steady of the order of several percent to tens of percent at
very small values of ξ.
Finally, the modeling with the Shuvaev transform is

based on the property of LO evolution of conformal
moments. It means that only the specific ξ dependence
introduced by the LO evolution operator can be precisely
reproduced, whereas our proposal can be straightforwardly
extended to higher orders.

V. CONCLUSION

We propose a method to quantify the uncertainty in
relating GPDs to PDFs at small xB. This uncertainty
estimate is generic and can be applied to any process
involving GPDs in this kinematic regime. We observe that
the uncertainty decreases quickly when the hard scale of the
process increases but presents a mild dependence on the
value of ξ ≈ xB=2, contrary to the typical estimates Oðξ2Þ
or OðξÞ provided in the literature. We suggest to apply our
method to exclusive heavy-vector meson production, a hard
process measured abundantly at small xB. Assuming
perturbative calculations starting from a scale as low as
1 GeV, a conservative estimate of the systematic uncer-
tainty in relating the gluon GPD to the PDF is of the order
of 10%–20% for J=ψ production if the hard scale 1.5 GeV
is used [54,55] and of 2%–4% for ϒ at a hard scale of
4.7 GeV. Starting perturbative evolution from a scale
1.4 GeV, we observe that the uncertainty for ϒ is increased
to 3%–8%, as the lever arm in evolution is reduced. The
developed methodology is an important step to incorporate
heavy-vector meson data into global PDF fits. We show
that our method relies on the same general arguments as the
one based on the Shuvaev transform.
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We finally remark that deriving the ξ dependence of
GPDs perturbatively from PDFs at small ξ effectively
subtracts a degree of freedom to the modeling of GPDs
in this kinematic domain. This entails a natural solution to
the deconvolution problem of factorized observables. It has
been explicitly demonstrated in Ref. [71] that for deeply
virtual Compton scattering, a process closely related to
HVMP, it is not possible to perform an extraction of GPDs
from experimental data in a model-independent way at
next-to-leading order due to the poor conditioning of the
problem. The crux of the issue is essentially that the
dimension of the space of kinematic variables available
to experiments, ðxB; t; Q2Þ, is smaller than the space of
variables of GPDs, ðx; ξ; t; μ2Þ. This problem is consid-
erably tamed by the procedure we propose in this article.
The uncertainty on the extrapolation to vanishing skewness
which we have derived represents then a measure of the
systematic uncertainty associated to the choice of regulari-
zation that our procedure represents for the deconvolution
problem at small ξ.
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APPENDIX: FORMULAS FOR THE SHUVAEV
TRANSFORM

The operator S0a resulting from the composition of the
Shuvaev operator Sa and the Mellin transform acts on a
PDF faðwÞ in the following way [34]:

S0aðx; ξ;x0Þ � faðx0Þ

¼
Z

1

−1
dx0
�
2

π
Im
Z

1

0

ds
�

4sð1 − sÞ
ðxþ ξð1 − 2sÞÞ1þpa

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4sx0ð1 − sÞ
xþ ξð1 − 2sÞ

s �
−1
�

d
dx0

�
faðx0Þ
jx0j

�
; ðA1Þ

where pa ¼ 1 for gluons (a ¼ g) and 0 for quarks (a ¼ q).
A study of the support of the integral yields that, for
x > ξ > 0, Eq. (A1) can be expressed as

S0aðx; ξ;x0Þ � faðx0Þ ¼
Z

1

x=2þ
ffiffiffiffiffiffiffiffiffi
x2−ξ2

p
=2
dx0Caðx; ξ; x0Þ

×
d
dx0

�
faðx0Þ
x0

�
; ðA2Þ

Caðx; ξ; x0Þ ¼ 2

π
Im
Z

s2

s1

ds

 
4sð1 − sÞ

ðxþ ξð1 − 2sÞÞ1þpα

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4sx0ð1 − sÞ
xþ ξð1 − 2sÞ

s !−1

; ðA3Þ

s1;2 ¼
1

2
þ ξ

4x0
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x02 þ ξ2 − 4xx0

p
4x0

: ðA4Þ

It is clear that the integral is finite if x > ξ as we never get
to integrate up to the problematic boundaries s ¼ 0 and 1.
For x ¼ ξ,

Caðx; x; x0Þ ¼ 2x1þpa

π
Im
Z

1

x=2x0
ds
�

s
2pa−1ð1 − sÞpa

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2sx0

x

r �
−1
: ðA5Þ

Considering that pa ¼ 0 for quarks and 1 for gluons, we
find

Cqðx; x; x0Þ ¼ x
π
Im
Z

1

x=2x0

ds

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2sx0

x

q ðA6Þ

¼ −
2x
π
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x0

x
− 1

r �
; ðA7Þ

Cgðx; x; x0Þ ¼ 2x2

π
Im
Z

1

x=2x0
ds

1 − s

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2sx0

x

q ðA8Þ

¼ 2xCqðx; x; x0Þ þ 2
x3

x0π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x0

x
− 1

r
: ðA9Þ
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Hořejši, Wave functions, evolution equations and evolution
kernels from light ray operators of QCD, Fortschr. Phys. 42,
101 (1994).

[29] X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin,
Phys. Rev. Lett. 78, 610 (1997).

[30] X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D
55, 7114 (1997).

[31] A. Radyushkin, Asymmetric gluon distributions and hard
diffractive electroproduction, Phys. Lett. B 385, 333 (1996).

[32] A. V. Radyushkin, Nonforward parton distributions, Phys.
Rev. D 56, 5524 (1997).

[33] A. Shuvaev, Solution of the off forward leading logarithmic
evolution equation based on the Gegenbauer moments
inversion, Phys. Rev. D 60, 116005 (1999).

[34] A. G. Shuvaev, K. J. Golec-Biernat, A. D. Martin, and M. G.
Ryskin, Off diagonal distributions fixed by diagonal partons
at small x and xi, Phys. Rev. D 60, 014015 (1999).

[35] S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner,
Probes of the small x gluon via exclusive J=ψ and ϒ
production at HERA and the LHC, J. High Energy Phys. 11
(2013) 085.

[36] C. A. Flett, S. P. Jones, A. D. Martin, M. G. Ryskin, and T.
Teubner, How to include exclusive J=ψ production data in
global PDF analyses, Phys. Rev. D 101, 094011 (2020).

[37] C. A. Flett, S. P. Jones, A. D. Martin, M. G. Ryskin, and T.
Teubner, Predictions of exclusive ϒ photoproduction at
the LHC and future colliders, Phys. Rev. D 105, 034008
(2022).

[38] M. Diehl, Generalized parton distributions, Phys. Rep. 388,
41 (2003).

[39] A. V. Belitsky and A. V. Radyushkin, Unraveling hadron
structure with generalized parton distributions, Phys. Rep.
418, 1 (2005).

DUTRIEUX, WINN, and BERTONE PHYS. REV. D 107, 114019 (2023)

114019-12

https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1007/JHEP08(2011)042
https://doi.org/10.1007/JHEP01(2019)217
https://doi.org/10.1146/annurev-nucl-011720-042725
https://doi.org/10.1016/j.physrep.2018.03.002
https://doi.org/10.1007/JHEP11(2015)009
https://doi.org/10.1007/JHEP02(2016)130
https://doi.org/10.1007/JHEP05(2017)004
https://doi.org/10.1007/JHEP05(2017)004
https://doi.org/10.1007/JHEP04(2020)118
https://doi.org/10.1007/JHEP04(2020)118
https://doi.org/10.1140/epjc/s10052-022-10417-7
https://doi.org/10.1140/epjc/s10052-022-10417-7
https://doi.org/10.1007/s100529901051
https://doi.org/10.1007/s100529901051
https://doi.org/10.1007/s10052-002-0953-7
https://doi.org/10.1007/s10052-002-0953-7
https://doi.org/10.1016/S0370-2693(02)02275-X
https://doi.org/10.1016/S0370-2693(02)02275-X
https://doi.org/10.1016/j.nuclphysb.2004.06.034
https://doi.org/10.1140/epjc/s2006-02519-5
https://doi.org/10.1007/JHEP05(2010)085
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1088/0954-3899/40/4/045001
https://doi.org/10.1088/0954-3899/40/4/045001
https://doi.org/10.1088/0954-3899/41/5/055002
https://doi.org/10.1103/PhysRevLett.113.232504
https://doi.org/10.1103/PhysRevLett.113.232504
https://doi.org/10.1007/JHEP09(2015)084
https://doi.org/10.1007/JHEP09(2015)084
https://doi.org/10.1007/JHEP10(2018)167
https://doi.org/10.1140/epjc/s10052-019-6774-8
https://doi.org/10.1088/1361-6471/abf3ba
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1140/epjc/s2004-01712-x
https://doi.org/10.1140/epjc/s10052-015-3298-8
https://doi.org/10.1140/epjc/s10052-015-3298-8
https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevD.55.7114
https://doi.org/10.1103/PhysRevD.55.7114
https://doi.org/10.1016/0370-2693(96)00844-1
https://doi.org/10.1103/PhysRevD.56.5524
https://doi.org/10.1103/PhysRevD.56.5524
https://doi.org/10.1103/PhysRevD.60.116005
https://doi.org/10.1103/PhysRevD.60.014015
https://doi.org/10.1007/JHEP11(2013)085
https://doi.org/10.1007/JHEP11(2013)085
https://doi.org/10.1103/PhysRevD.101.094011
https://doi.org/10.1103/PhysRevD.105.034008
https://doi.org/10.1103/PhysRevD.105.034008
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.1016/j.physrep.2005.06.002
https://doi.org/10.1016/j.physrep.2005.06.002


[40] S. Boffi and B. Pasquini, Generalized parton distributions
and the structure of the nucleon, Riv. Nuovo Cimento 30,
387 (2007).

[41] M. Diehl and W. Kugler, Some numerical studies of the
evolution of generalized parton distributions, Phys. Lett. B
660, 202 (2008).

[42] M. Burkardt, Impact parameter dependent parton distribu-
tions and off forward parton distributions for zeta—> 0,
Phys. Rev. D 62, 071503 (2000); Phys. Rev. D 66,
119903(E) (2002).

[43] Y. L. Dokshitzer, Calculation of the structure functions for
deep inelastic scattering and e+ e- annihilation by pertur-
bation theory in quantum chromodynamics., Sov. Phys.
JETP 46, 641 (1977).

[44] V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering
in perturbation theory, Sov. J. Nucl. Phys. 15, 438 (1972).

[45] G. Altarelli and G. Parisi, Asymptotic freedom in parton
language, Nucl. Phys. B126, 298 (1977).

[46] Following Eq. (2), x−paFaðx; ξ; t; μÞ, where pa ¼ 1 if a ¼ g
and 0 otherwise, gives exactly the correct forward limit
faðx; μÞ whether a ¼ q or g.

[47] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S.
Thorne, Parton distributions in the LHC era: MMHT 2014
PDFs, Eur. Phys. J. C 75, 204 (2015).

[48] We use evolution equations with noninfinitesimal distance
between μ0 and μ. It is more frequent to see them obtained
by applying d=d log μ to Eq. (4). The differential form
involves the derivative of Γab with respect to μ, known as
splitting function, which is a distribution involving Dirac δ
functions and plus prescriptions. Using integrated evolution
equations allows one to treat Γab as an ordinary weighting
function and not as a mathematical distribution (if μ ≠ μ0).

[49] L. Frankfurt, A. Freund, V. Guzey, and M. Strikman,
Nondiagonal parton distribution in the leading logarithmic
approximation, Phys. Lett. B 418, 345 (1998); Phys. Lett. B
429, 414(E) (1998).

[50] A. D. Martin and M. G. Ryskin, The effect of off diagonal
parton distributions in diffractive vector meson electro-
production, Phys. Rev. D 57, 6692 (1998).

[51] V. Bertone, S. Carrazza, and J. Rojo, APFEL: A PDF
evolution library with QED corrections, Comput. Phys.
Commun. 185, 1647 (2014).

[52] V. Bertone, APFEL++: A new PDF evolution library in C++,
Proc. Sci. DIS2017 (2018) 201.

[53] V. Bertone, H. Dutrieux, C. Mezrag, J. M. Morgado, and H.
Moutarde, Revisiting evolution equations for generalised
parton distributions, Eur. Phys. J. C 82, 888 (2022).

[54] S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner,
Exclusive J=ψ and ϒ photoproduction and the low x gluon,
J. Phys. G 43, 035002 (2016).

[55] S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner, The
exclusive J=ψ process at the LHC tamed to probe the low x
gluon, Eur. Phys. J. C 76, 633 (2016).

[56] This region is sometimes referred to as the DGLAP region,
due to the fact that the GPD evolution equations for ξ ≤ x
shares many similarities with the DGLAP evolution equa-
tions. On the contrary, the region where ξ ≥ x is called
Efremov-Radyushkin-Brodsky-Lepage (ERBL) thanks to a
parallel with the ERBL evolution equations for distribution

amplitudes [66,72]. We do not use these appellations to
reserve the term DGLAP to the sole evolution equations for
PDFs.

[57] N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-
Quintero, Covariant Extension of the GPD overlap repre-
sentation at low Fock states, Eur. Phys. J. C 77, 906 (2017).

[58] N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-
Quintero, A Nakanishi-based model illustrating the covar-
iant extension of the pion GPD overlap representation and
its ambiguities, Phys. Lett. B 780, 287 (2018).

[59] I. V. Anikin and O. V. Teryaev, Dispersion relations and
subtractions in hard exclusive processes, Phys. Rev. D 76,
056007 (2007).

[60] M. Diehl and D. Y. Ivanov, Dispersion representations for
hard exclusive processes: Beyond the Born approximation,
Eur. Phys. J. C 52, 919 (2007).

[61] I. V. Musatov and A. V. Radyushkin, Evolution and models
for skewed parton distributions, Phys. Rev. D 61, 074027
(2000).

[62] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A.
Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF
Collaboration), Reweighting NNPDFs: The W lepton asym-
metry, Nucl. Phys. B849, 112 (2011); Nucl. Phys. B854,
926(E) (2012); Nucl. Phys. B855, 927(E) (2012).

[63] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A.
Guffanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali,
Reweighting and unweighting of parton distributions and
the LHC W lepton asymmetry data, Nucl. Phys. B855, 608
(2012).

[64] H. Dutrieux, V. Bertone, H. Moutarde, and P. Sznajder,
Impact of a positron beam at JLab on an unbiased
determination of DVCS Compton form factors, Eur. Phys.
J. A 57, 250 (2021).

[65] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, and
L. Rottoli, Parton distributions with small-x resummation:
evidence for BFKL dynamics in HERA data, Eur. Phys. J. C
78, 321 (2018).

[66] A. V. Efremov and A. V. Radyushkin, Factorization and
asymptotical behavior of pion form-factor in QCD, Phys.
Lett. B 94, 245 (1980).

[67] Y. M. Makeenko, Conformal operators in quantum chromo-
dynamics, Sov. J. Nucl. Phys. 33, 440 (1981).

[68] J. D. Noritzsch, Off forward parton distributions and
Shuvaev’s transformations, Phys. Rev. D 62, 054015
(2000).

[69] K. Kumericki and D. Mueller, DVCS and the skewness
effect at small x, in Proceedings of the17th International
Workshop on Deep-Inelastic Scattering and Related Sub-
jects (2009), p. 170, arXiv:0907.1207.

[70] A. D. Martin, C. Nockles, M. G. Ryskin, A. G. Shuvaev, and
T. Teubner, Generalised parton distributions at small x, Eur.
Phys. J. C 63, 57 (2009).

[71] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, and P.
Sznajder, Deconvolution problem of deeply virtual Comp-
ton scattering, Phys. Rev. D 103, 114019 (2021).

[72] G. P. Lepage and S. J. Brodsky, Exclusive processes in
quantum chromodynamics: Evolution equations for had-
ronic wave functions and the form-factors of mesons, Phys.
Lett. 87B, 359 (1979).

EXCLUSIVE MEETS INCLUSIVE PARTICLE PRODUCTION AT … PHYS. REV. D 107, 114019 (2023)

114019-13

https://doi.org/10.1393/ncr/i2007-10025-7
https://doi.org/10.1393/ncr/i2007-10025-7
https://doi.org/10.1016/j.physletb.2007.12.047
https://doi.org/10.1016/j.physletb.2007.12.047
https://doi.org/10.1103/PhysRevD.62.071503
https://doi.org/10.1103/PhysRevD.66.119903
https://doi.org/10.1103/PhysRevD.66.119903
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://doi.org/10.1016/S0370-2693(97)01152-0
https://doi.org/10.1016/S0370-2693(98)00467-5
https://doi.org/10.1016/S0370-2693(98)00467-5
https://doi.org/10.1103/PhysRevD.57.6692
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.22323/1.297.0201
https://doi.org/10.1140/epjc/s10052-022-10793-0
https://doi.org/10.1088/0954-3899/43/3/035002
https://doi.org/10.1140/epjc/s10052-016-4493-y
https://doi.org/10.1140/epjc/s10052-017-5465-6
https://doi.org/10.1016/j.physletb.2018.02.070
https://doi.org/10.1103/PhysRevD.76.056007
https://doi.org/10.1103/PhysRevD.76.056007
https://doi.org/10.1140/epjc/s10052-007-0401-9
https://doi.org/10.1103/PhysRevD.61.074027
https://doi.org/10.1103/PhysRevD.61.074027
https://doi.org/10.1016/j.nuclphysb.2011.03.017
https://doi.org/10.1016/j.nuclphysb.2011.10.024
https://doi.org/10.1016/j.nuclphysb.2011.10.024
https://doi.org/10.1016/j.nuclphysb.2011.09.011
https://doi.org/10.1016/j.nuclphysb.2011.10.018
https://doi.org/10.1016/j.nuclphysb.2011.10.018
https://doi.org/10.1140/epja/s10050-021-00560-2
https://doi.org/10.1140/epja/s10050-021-00560-2
https://doi.org/10.1140/epjc/s10052-018-5774-4
https://doi.org/10.1140/epjc/s10052-018-5774-4
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1103/PhysRevD.62.054015
https://doi.org/10.1103/PhysRevD.62.054015
https://arXiv.org/abs/0907.1207
https://doi.org/10.1140/epjc/s10052-009-1087-y
https://doi.org/10.1140/epjc/s10052-009-1087-y
https://doi.org/10.1103/PhysRevD.103.114019
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1016/0370-2693(79)90554-9

