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A Poincaré-covariant quarkþ diquark Faddeev equation is used to develop insights into the structure of
the four lightest ðI; JP ¼ 3

2
; 3
2
�Þ baryon multiplets. While these systems can contain isovector-axialvector

and isovector-vector diquarks, one may neglect the latter and still arrive at a reliable description. The ð3
2
; 3
2
þÞ

states are the simpler systems, with features that bear some resemblance to quark model pictures, e.g., their
most prominent rest-frame orbital angular momentum component is S-wave and the Δð1600Þ3

2
þ may

reasonably be viewed as a radial excitation of the Δð1232Þ3
2
þ. The ð3

2
; 3
2
−Þ states are more complex:

the Δð1940Þ3
2
− expresses little of the character of a radial excitation of the Δð1700Þ3

2
−; and while the rest-

frame wave function of the latter is predominantly P-wave, the leading piece in the Δð1940Þ3
2
− wave

function is S-wave, in conflict with quark model expectations. Experiments that can test these predictions,
such as large momentum transfer resonance electroexcitation, may shed light on the nature of emergent
hadron mass.

DOI: 10.1103/PhysRevD.105.114047

I. INTRODUCTION

Questions relating to the composition of baryons have
been asked for roughly one hundred years. Answers
possessing an appealing simplicity within the framework
of quantum mechanics were provided by the (constituent)
quark model [1] via its progeny, viz. three-body potential
models [2–6]. In such models, baryons constituted from
combinations of up (u), down (d), and strange (s) valence
quark flavors can be grouped into multiplets of
SUð6Þ ⊗ Oð3Þ, labeled by their flavor content, spin, and
orbital angular momentum. From this perspective, the four
lightest ðI; JP ¼ 3

2
; 3
2
�Þ Δ-baryons, built from isospin I ¼ 3

2

combinations of three u and/or d quarks, are viewed as
follows: Δð1232Þ3

2
þ, S-wave ground-state; Δð1600Þ3

2
þ,

radial excitation of the Δð1232Þ, hence, S-wave;
Δð1700Þ3

2
−, L ¼ 1 orbital angular momentum excitation

of the Δð1232Þ, so, P-wave; and Δð1940Þ3
2
−, radial

excitation of the Δð1700Þ, thus, also P-wave.
Quark models are practically useful in many applica-

tions; yet, so far as spectra are concerned, they typically
produce masses for radial excitations of the ground-state
that are too large when compared with the lowest-mass
orbital angular momentum excitation [[7], Sec. 15]. The
best known example is the Roper resonance, Nð1440Þ1

2
þ,

discussed elsewhere [8], which is predicted to lie above the
nucleon’s parity partner, Nð1535Þ1

2
−, in contradiction of

experiment. The same issue is encountered in decuplet
baryons with, e.g., the calculated mass of the Δð1600Þ3

2
þ

being greater than that of the Δð1700Þ3
2
−.

Potential models are also challenged by quantum
chromodynamics (QCD), which requires a Poincaré covar-
iant description of baryon structure that leads to a Poincaré
invariant explanation of their properties [9]. For instance,
the evaluation of hadron distribution functions (DFs)
requires Poincaré covariance in order to ensure, inter alia,
the proper domain of DF support [10]; and modern
electroproduction experiments are probing ground- and
excited-state baryons using photons with virtuality
approaching 10m2

p [11–13], where mp is the proton mass.
Furthermore, while the total angular momentum of a
bound-state is Poincaré-invariant, this is not true of any
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separation into spin and orbital angular momentum com-
ponents carried by the system’s identified constituents [14].
Hence, potential model wave functions might only provide
a rudimentary guide to baryon structure; especially, as will
become apparent, insofar as assignments to SUð6Þ ⊗ Oð3Þ
multiplets are concerned.
An alternative lies in calculations of the bound-state pole

position and residue in the six-point Schwinger function
that describes three-quark–to–three-quark scattering. This
is the matrix element upon which simulations of lattice-
QCD focus in order to extract baryon masses [15,16]. It is
also the basis for studies of baryon composition using
continuum Schwinger function methods (CSMs) [8,17,18].
In this framework, the problem is expressed via a Poincaré-
covariant three-body Faddeev equation whose solution
yields the masses and bound state amplitudes of all baryons
in the channel under consideration. Baryon properties have
been computed [19–22] at leading-order in a systematic,
symmetry-preserving truncation scheme [23–25]; and
efforts are underway to implement more sophisticated
truncations [26].
Meanwhile, a simplification of the full three-body

problem continues to be employed with success. Namely,
the interacting quarkþ diquark picture, illustrated in Fig. 1,
that was derived from the three-body equation in Refs. [27–
30]. The approximation is efficacious because any inter-
action that is able to generate Nambu-Goldstone modes as
dressed-quark+antiquark bound-states and reproduce the
measured value of their leptonic decay constants, must also
produce strong color-antitriplet correlations between any
two dressed quarks contained within a hadron [31]. In
general, for light-quark systems, the following diquark
correlations are possible: isoscalar-scalar, ðI; JP ¼ 0; 0þÞ;
isovector-axialvector; isoscalar-pseudoscalar; isoscalar-
vector; and isovector-vector. Within a given system, chan-
nel dynamics determines the relative strengths of these
correlations. Herein, owing to the fact that I ¼ 3

2
baryons

cannot be built from I ¼ 0 diquarks, we just need to
consider ð1; 1�Þ correlations.

It is worth stressing that the diquark correlations dis-
cussed herein are fully dynamical, appearing in a Faddeev
kernel which requires their continual breakup and reforma-
tion. Hence, they are very different from the pointlike, static
diquarks introduced more than fifty years ago [32] with a
view to solving the so-called “missing resonance” problem
[33]. This essentially active character of the valence quarks
within diquarks entails that the spectrum produced by
Fig. 1 possesses a richness that cannot be explained by two-
body models, something also found in numerical simu-
lations of lattice-regularized QCD [15].
An analysis of the four lowest-lying ð1

2
; 1
2
�Þ baryons—

the nucleon and some kindred systems—made using the
quarkþ diquark framework is presented elsewhere [34].
It was found therein that ð0; 0þÞ and ð1; 1þÞ diquarks
dominate the wave functions of the lightest ð1

2
; 1
2
þÞ dou-

blets. This is illustrated for the nucleon ground-state in
Fig. 2: roughly 60% of the proton’s canonical normaliza-
tion constant is provided by the ð0; 0þÞ correlation, but the
remainder owes to the ð1; 1þÞ correlation and constructive
ð0; 0þÞ ⊗ ð1; 1þÞ interference. (The canonical normaliza-
tion constant is related to the Q2 ¼ 0 value of the charge
form factors associated with the electrically charged mem-
bers of a given hadron multiplet: in this case, that is the
proton Dirac form factor.) As explained elsewhere [35,36],
the size of the ð1; 1þÞ-linked contributions is sufficient to
explain the measured ratio of proton valence-quark dis-
tribution functions [37,38].
Furthermore, as shown for the nucleon in Fig. 3,

projected into the rest frame, these wave functions have
significant S-wave components; yet they also contain
material P-wave structures and the canonical normalization
receives measurable S ⊗ P-wave interference contribu-
tions. In addition [34], the first 1

2
þ excited state may fairly

be described as the radial excitation of the ground state.

FIG. 1. Quark þ diquark Faddeev equation, a linear integral
equation for the Poincaré-covariant matrix-valued function ψ , the
Faddeev amplitude for a baryon with total momentum
Q ¼ lq þ ld ¼ kq þ kd. ψ describes the relative momentum
correlation between the dressed-quarks and -diquarks. Legend.
Shaded rectangle—Faddeev kernel; single line—dressed-quark
propagator, SðlÞ; ΓJPðk;KÞ—diquark correlation amplitude; and
double line—diquark propagator, DJPðKÞ. FIG. 2. Contributions of the various diquark components to the

canonical normalization of the Poincaré-covariant nucleon Fad-
deev wave function. While the ½ud�0þ isoscalar-scalar diquark
(SC) is dominant, material contributions also owe to the fuug1þ ,
fudg1þ isovector-axialvector correlations (AV).
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In these outcomes, there are some parallels with quark
model expectations for these states.
On the other hand, the related ð1

2
; 1
2
−Þ doublets fit a

different picture [34]: ð0; 1−Þ diquarks play an important
role; the wave functions are predominantly P-wave in
nature, but contain significant S-wave components; and the
heavier states are not simply radial excitations of their
lighter partners.
Notably, in quantum field theory, all differences between

positive- and negative-parity states can be attributed to
chiral symmetry breaking, as highlighted by the ρ-a1
meson complex [26,42–44]. In the light-quark sector, such
symmetry breaking is almost entirely dynamical.
Dynamical chiral symmetry breaking (DCSB) is a corollary
of emergent hadron mass (EHM) [45–48]; hence, quite
probably linked tightly with confinement, which requires a
∼1 fm−1 mass-scale to be effective [49]. Consequently,
experiments that can test predictions made for differences
between parity partners in the hadron spectrum are valu-
able. These features imbue quantum field theory studies of
ð3
2
; 3
2
�Þ baryons with particular interest.

Our approach to the ð3
2
; 3
2
�Þ-baryon bound-state prob-

lems is sketched in Sec. II. Solutions for the masses and
Poincaré-covariant wave functions of the lowest-lying such
states are described and dissected in Sec. III. Section IV
provides a summary and perspective.

II. BOUND STATE EQUATIONS

In studying ð3
2
; 3
2
�Þ baryons, we follow the analysis of

ð1
2
; 1
2
�Þ states in Ref. [34]. For instance: we assume isospin

symmetry throughout; the diquark correlation amplitudes,

ΓJP , are similar; the light-quark and diquark propagators, S,
DJP , are unchanged—see Appendix A 1; and the effective
masses of the relevant diquark correlations are (in GeV)

mfuug1þ ¼ 0.9; mfuug1− ¼ 1.4: ð1Þ

The mass splitting here is commensurate with that in the
ρ-a1 complex [7]. On the other hand, since the negative-
parity diquarks are heavy, we emulate Ref. [50] Sec. 4.1.4
in electing not to include the gDB channel-coupling sup-
pression-factor discussed in Ref. [34] Sec. II.E.
Focusing on the electric charge eΔ ¼ þ2 state without

loss of generality, the Faddeev equation for a ð3
2
; 3
2
P¼�Þ

baryon can be written [51] Sec. 2.1], [52] Sec. 4.1]:

X
p¼�

ψpP
λ ðk;QÞ ¼ 8

X
p¼�

Z
d4l
ð2πÞ4 M

p
λμðk;l;QÞψpP

μ ðl;QÞ:

ð2Þ

Here, Q2 ¼ Q̂2M2 ¼ −M2, M is the baryon’s mass,

ψP
λ ðk;QÞ ¼

X
p¼�

ψpP
λ ðk;QÞ; ð3aÞ

ψpP
λ ðk;QÞ ¼ T pP

λρ ðk;QÞuρðQ; rÞ; ð3bÞ

T þP
λρ ðk;QÞ ¼

X8
i¼1

viþðk2; k ·QÞGPVi
λρðk;QÞ; ð3cÞ

T −P
λρ ðk;QÞ ¼

X8
i¼1

vi−ðk2; k ·QÞG∓Vi
λρðk;QÞ; ð3dÞ

FIG. 3. Panel (a). Contributions of the various quarkþ diquark orbital angular momentum components to the canonical normalization
of the Poincaré-covariant nucleon wave function after rest-frame projection: there are both positive (above plane) and negative (below
plane) contributions to the overall positive normalization. The values drawn are listed in Table IV. Panel (b). Legend for interpretation of
Panel A, identifying interference between the distinct orbital angular momentum basis components. Decomposition details are provided
in Table I. It follows the scheme described in Refs. [39,40] and uses a pictorial representation based on that in Ref. [41].
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where: for a given baryon, p ¼ þ indicates the axial-vector
component of its amplitude and p ¼ −, the vector compo-
nent; GP¼þð−Þ ¼ IDðiγ5Þ; and, with Tμν ¼ δμν þ Q̂μQ̂ν,
γ⊥μ ¼ Tμνγν, k⊥μ ¼ Tμνkν, k̂

⊥
μ k̂

⊥
μ ¼ 1,

V1
λρðk;QÞ ¼ δλρID; ð4aÞ

V2
λρðk;QÞ ¼ ip

5
½2γ⊥λ k̂⊥ρ − 3δλργ · k̂

⊥�; ð4bÞ

V3
λρðk;QÞ ¼ −iγ⊥λ k̂

⊥
ρ ; ð4cÞ

V4
λρðk;QÞ ¼ p

3Q̂λk̂
⊥
ρ ; ð4dÞ

V5
λρðk;QÞ ¼ 3k̂⊥λ k̂⊥ρ − δλρ − γ⊥λ k̂

⊥
ρ γ · k̂

⊥; ð4eÞ

V6
λρðk;QÞ ¼ γ⊥λ k̂

⊥
ρ γ · k̂

⊥; ð4fÞ

V7
λρðk;QÞ ¼ −i

p
3Q̂λk̂

⊥
ρ γ · k̂

⊥; ð4gÞ

V8
λρðk;QÞ ¼ ip

5
½δλργ · k̂⊥ þ γ⊥λ k̂

⊥
ρ − 5k̂⊥λ k̂⊥ρ γ · k̂⊥� ð4hÞ

are a complete set of Dirac-matrix-valued basis vectors,
sufficient to deliver J ¼ 3

2
amplitudes and wave functions

that are Poincaré-covariant.
In Eq. (11b), uρðQ; rÞ is a Rarita-Schwinger spinor:

1

2M

X3=2
r¼−3=2

uμðQ; rÞūνðQ; rÞ ¼ ΛþðQÞRμν; ð5Þ

ΛþðQÞ ¼ ð−iγ ·QþMÞ=ð2MÞ,

Rμν ¼ δμνID−
1

3
γμγνþ

2

3
Q̂μQ̂νID−

i
3
½Q̂μγν− Q̂νγμ�: ð6Þ

(Details of our Euclidean metric conventions are presented
elsewhere [[53] Appendix B]).
The kernel in Eq. (2) can now be constructed from Fig. 1,

e.g., following the pattern in Ref. [[52] Sec. 4.1]:

M�
λμ ¼ Γ1�

σ ðkq − lqq=2;lqqÞSTðlqq − kqÞ
× Γ̄1�

λ ðlq − kqq=2;−kqqÞSðlqÞD1�
σμðlqqÞ; ð7Þ

where lq ¼ lþQ=3, kq ¼ kþQ=3, lqq ¼ −lþ 2Q=3,
kqq ¼ −kþ 2Q=3, and “T” denotes matrix transpose.
The ð1; 1�Þ correlation amplitudes are explained in

Ref. [34], Eq. (1)], but it is useful to recapitulate:

Γ1þ
μ ðk;KÞ ¼ ig1þγμCF ðk2=ω2

1þÞ; ð8aÞ

Γ1−
μ ðk;KÞ ¼ ig1− ½γμ; γ · K̂�γ5CF ðk2=ω2

1−Þ; ð8bÞ

where C ¼ γ2γ4 is the charge conjugation matrix, F ðzÞ is
given in Eq. (A5), and the correlation widths are defined by
the related masses [[34] Eq. (5)]: ω2

1� ¼ m2
1�=2. (The color

and flavor structure has already been absorbed into Eq. (7).)
The amplitudes are canonically normalized [[34] Eq. (3)],
which entails:

g1þ ¼ 12.7; g1− ¼ 1.58: ð9Þ

Since it is the coupling-squared which appears in the
Faddeev kernel, ð1; 1þÞ diquarks should be the overwhelm-
ingly favored correlations in all states considered herein.
This fact lends support to baryon spectrum calculations
made using a symmetry-preserving regularization of a
vector × vector contact interaction, which cannot support
ð1; 1−Þ diquarks [50,54].
Using the information above, the masses and Faddeev

amplitudes of the ground- and first-excited state in both the
positive- and negative-parity channels can be obtained
straightforwardly by solving the Faddeev equation—
Fig. 1, Eq. (2)—using readily available software [55,56].
Importantly for what follows in connection with angular

momentum decompositions of baryon properties, the
unamputated Faddeev wave function is recovered from
the amplitude by reattaching the quark and diquark
propagator legs:

Ψ�
λ ðk;QÞ ¼

X
p¼�

Ψp�
λ ðk;QÞ ð10aÞ

¼
X
p¼�

SðkqÞD1p

λμðkdÞψp�
μ ðk;QÞ: ð10bÞ

It is only when working with the wave function that
meaningful angular momentum decompositions become
available. It is straightforward to reformulate the Faddeev
equation such that the wave function is returned as the
solution eigenvector instead of the amplitude.
Decomposing Ψ�

λ ðk;QÞ over the basis matrix-vectors in
Eq. (4), following the pattern in Eq. (3) but with distinct
coefficient functions, written herein as fwi

�ji ¼ 1;…; 8g,
viz.

Ψ�
λ ðk;QÞ ¼

X
p¼�

Ψp�
λ ðk;QÞ; ð11aÞ

Ψp�
λ ðk;QÞ ¼ Fp�

λρ ðk;QÞuρðQ; rÞ; ð11bÞ

T þ�
λρ ðk;QÞ ¼

X8
i¼1

wiþðk2; k ·QÞG�Vi
λρðk;QÞ; ð11cÞ

T −�
λρ ðk;QÞ ¼

X8
i¼1

wi
−ðk2; k ·QÞG∓Vi

λρðk;QÞ; ð11dÞ
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then one has the angular momentum associations listed
in Table I.

III. SOLUTIONS AND THEIR FEATURES

A. Quark core

Solving for the complete Faddeev amplitude, one obtains
the masses listed in Table II. Notably, the kernel in Fig. 1
omits all those contributions which may be linked with
meson-baryon final-state interactions, viz. the terms
resummed in dynamical coupled channels (DCC) models
in order to transform a bare-baryon into the observed state
[57–60]. Our Faddeev amplitudes should thus be viewed as
describing the dressed-quark core of the bound-state, not
the completely-dressed, observable object [52,61,62];
hence, the masses are uniformly too large. For comparison
with experiment, we subtract the mean value of the
difference between our calculated masses and the real part
of the related empirical pole-positions: δMB ¼ 0.17 GeV.
This value matches the offset between bare and dressed
Δð1232Þ3

2
þ masses determined in the DCC analysis of

Ref. [58]. The resulting comparison is displayed in Fig. 4:
the calculated level orderings and splittings match well with
experiment. The simplicity of the Δ-baryon Faddeev

equations, which are effectively single-diquark-channel
problems owing to Eq. (9), is instrumental in delivering
this outcome so straightforwardly. J ¼ 1

2
systems are more

complicated because they potentially involve interference
between contributions from five distinct diquark correla-
tions [34], the character of which must be properly
expressed in the Faddeev kernel.
The diquark mass fractions in Table II are obtained as

follows. (i) Solve for the baryon mass without ð1; 1−Þ
diquarks to obtain m1þ

Δ . (ii) Solve with both diquarks
included to obtain m1�

Δ . (iii) The listed fractions are

mass1
þ ¼ m1þ

Δ =m1�
Δ ; mass1

− ¼ 1 −mass1
þ
: ð12Þ

Considering the Poincaré-covariant Faddeev wave func-
tions obtained for each state, it is worth recording some
remarks about the zeroth Chebyshev projection of each
term in Eq. (11):

wjðk2Þ ¼ 2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
wjðk2; x

ffiffiffiffiffiffiffiffiffiffi
k2Q2

p
Þ: ð13Þ

The positive-parity states are straightforward:
Δð1232Þ3

2
þ—no such function with significant magnitude

possesses a zero, an outcome consistent with the picture of
this system as a radial ground state; and Δð1600Þ3

2
þ—every

function with significant magnitude displays a single zero;
hence, as explained in connection with meson radial
excitations [63,64], this state has the appearance of the
radial excitation of the Δð1232Þ3

2
�. These features are

illustrated in Figs. 5(a) and 5(b).
On the other hand, as found with ð1

2
; 1
2
−Þ states [34], the

wave functions of the negative-parity Δ-baryons are much
more complex. This is illustrated in Figs. 5(c) and 5(d),
which show that for both Δð1700Þ3

2
− and Δð1940Þ3

2
− most

�1232
3/2+ �1600

3/2+ �1700
3/2– �1940

3/2–

1.2

1.6

2.0

m
as

s/
G

eV

FIG. 4. Real part of empirical pole position for each identified
baryon [7] (gold asterisk) compared with calculated masses in
Table II after subtracting δMB ¼ 0.17 GeV from each of the latter
(red circles). The calculated values are drawn with an uncertainty
stemming from a �5% change in the ð1; 1�Þ diquark masses.

TABLE I. Working with the wave function defined in Eq. (10),
decomposed over the basis matrix-vectors in Eq. (4), with
coefficient functions fwi

�ji ¼ 1;…; 8g, and projected into the
rest frame, one has the tabulated J ¼ 3

2
¼ Lþ S angular mo-

mentum decomposition. The last row lists the associated spectro-
scopic label, with the J ¼ 3

2
subscript suppressed.

L 0 1 1 2 2 3

S 3
2

3
2

1
2

3
2

1
2

3
2

Ψp¼� w1
� w2

� w3;4
� w5

� w6;7
� w8

�
4S 4P 2P 4D 2D 4F

TABLE II. Calculated masses of lowest-lying ð3
2
; 3
2
�Þ Δ-bary-

ons: the indicated uncertainty stems from a �5% change in the
ð1; 1�Þ diquark masses in Eq. (1). The mean difference between
central predicted masses and the real-part of the empirical pole
positions is δMB ¼ 0.17 GeV. The remaining columns display
the mass fractions contributed by the ð1; 1�Þ diquarks, described
in connection with Eq. (12), and analogous amplitude fractions,
with the latter defined via Eqs. (15).

Mass/GeV Mass % Amplitude %

1þ 1þ & 1− 1þ 1− 1þ 1−

Δð1232Þ3
2
þ 1.346 1.346(89) 99.98 0.02 96.97 3.03

Δð1600Þ3
2
þ 1.786 1.786(79) 99.96 0.04 96.57 3.43

Δð1700Þ3
2
− 1.872 1.871(69) 99.98 0.02 94.20 5.80

Δð1940Þ3
2
− 2.030 2.043(50) 99.37 0.63 88.73 11.27
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of the wave function projections, Eq. (13), possess a zero;
and this is true for more of the Δð1940Þ3

2
− projections.

It is worth noting that when a zero exists, it lies within
the domain 1

3
fm≲ 1

k ≲ 1
2
fm, i.e., at length-scales smaller

than the bound-state radii. This is similarly so of ð1
2
; 1
2
�Þ

bound-states [[34] Figs. 4 and 5] and also vector mesons
[[65] Fig. 5]. The zero in the leading Chebyshev amplitude
of the pion’s first radial excitation is found even deeper:
1
k ≈

1
5
fm [[65] Fig. 4].

Such structural predictions for the properties of ð3
2
; 3
2
�Þ

baryons can be tested via comparisons with data obtained
on the Q2-dependence of nucleon-to-resonance transition
form factors [11–13].

B. Diquark fractions

It is apparent from Table II that, so far as the masses are
concerned, neglecting ð1; 1−Þ diquark correlations is an
excellent approximation. One can also consider their
relative contribution to the Faddeev amplitude, which
may be defined following Ref. [34]. Namely, with

nj ¼
Z

d4k
ð2πÞ4 ju

jðk2; k ·QÞj2; ð14Þ

where uj ∈ fvi;…;8
þ g ∪ fvi;…;8

− g, then, for each Δ-baryon,
one computes

Np¼� ¼
X

j∈fvi;…;8
p g

nj; D ¼ Nþ þ N− ð15Þ

and compares the results for F� ¼ N�=D, which are listed,
respectively, in the final two columns of Table II.
Unsurprisingly, the negative-parity diquarks feature most
prominently in the negative-parity baryons; but even in
these states, they are very much subdominant.

C. Angular momentum decompositions

We judge it to be of particular interest to expose the rest-
frame angular momentum structure of the ð3

2
; 3
2
�Þ systems

produced by our Poincaré covariant framework. As a first
step toward that goal, we solved the Faddeev equation for
the wave function of each baryon in its rest frame by
changing and steadily increasing the orbital angular
momentum complexity: (i) S-wave only; (ii) P-wave only;
(iii) D-wave only; (iv) Sþ P-wave only; etc. The results
are presented in Table III.
Table III rewards careful inspection. For instance, it

reveals that in every channel a solution is obtained using
only one partial wave—S, P, D, or F, or any subset of the

FIG. 5. Zeroth Chebyshev moments—Eq. (13). Upper panels. rest-frame S-wave components in wave functions of positive parity
baryons: (a) Δð1232Þ3

2
þ; (b) Δð1600Þ3

2
þ. These components are dominant in both states, as evident in Figs. 6, 8(a), and 8(b). Lower

panels. Rest-frame P-wave components in wave functions of negative parity baryons: (c) Δð1700Þ3
2
−; (d) Δð1940Þ3

2
−. As highlighted by

Figs. 6, 8(c), and 8(d), these components are dominant in the Δð1700Þ3
2
−, but subdominant in the Δð1940Þ3

2
−.
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complete array of partial waves. Plainly, notwithstanding
its apparent simplicity, the Faddeev kernel in Eq. (7) is very
effective at binding ð3

2
; 3
2
�Þ baryons. Furthermore, consid-

ering only a single partial wave, then the lightest mass
obtained should serve as a reliable indicator of the
dominant orbital angular momentum component in the
state. Using this definition, one arrives at the following
assignments: Δð1232Þ3

2
þ and Δð1600Þ3

2
þ are largely

S-wave in nature, but with contributing P-, D-wave
components; Δð1700Þ3

2
− is primarily a P-wave state, but

possesses measurable S-, D-wave components; and, sur-
prisingly, because it runs counter to quark model notions
[[7] Sec. 15], Δð1940Þ3

2
− is predominantly a S-wave state,

with small contributions from other partial waves. These
observations are illustrated in Fig. 6.
Hadron masses are simple observables in the sense that

they are infrared dominated quantities, whose values are
not especially sensitive to structural details expressed in
hadron wave functions. Consequently, the simplicity evi-
dent in Fig. 6 is somewhat misleading, as highlighted again

when one isolates the distinct contributions from each
partial wave to the associated canonical normalization.
Using the assignments specified in Fig. 7, those decom-
positions are depicted in Fig. 8, being drawn from the
numerical values collected in Appendix A 2. Since ð1; 1−Þ
diquarks make negligible contributions, only the ð1; 1þÞ
contributions are reported and drawn.
Considering Fig. 8(a), one sees that, evaluated in the rest

frame, the canonical normalization of the Δð1232Þ3
2
þ is

largely determined by S-wave components, but there are
significant, constructive P wave contributions and also
strong S ⊗ P-wave destructive interference terms. This
structural picture of the Δð1232Þ3

2
þ has been confirmed by

comparisons with data on the γ þ p → Δð1232Þ transition
form factors [53,66,67].
Moving to Fig. 8(b), although S-wave contributions are

dominant in the Δð1600Þ3
2
þ, there are prominent D-wave

components, material P ⊗ D-wave interference contribu-
tions, and numerous F-wave induced interference terms.
Enhanced higher partial waves are also seen in related
three-body Faddeev equation studies of the Δð1600Þ3

2
þ

[68,69]. This quarkþ diquark structural picture of the
Δð1600Þ3

2
þ has been used to calculate γ þ p → Δð1600Þ

transition form factors [67]. Those predictions are currently
being tested through analysis of πþπ−p electroproduction
data collected at Jefferson Lab [70], with preliminary
results confirming the quarkþ diquark picture [71].
The Δð1700Þ3

2
− normalization strengths are displayed in

Fig. 8(c). Confirming expectations raised by Table III, P-
wave components are dominant, but D-wave and P ⊗ D
interference is evident, and also some D ⊗ F contributions.
Δð1700Þ3

2
− electrocoupling data are available from Jefferson

Lab [72–74]. However, they only reachQ2 ≈ 1.5m2
p; hence,

FIG. 6. Pictorial representation of Table III. Mass fraction
contribution from each rest frame partial wave in the baryon
wave function, computed as follows: Δð1232Þ3

2
þ, Δð1600Þ3

2
þ,

Δð1940Þ3
2
−—begin with S-wave, then add P, D, F; and

Δð1700Þ3
2
−—begin with P-wave, then add S, D, F.

TABLE III. Calculated masses of the lowest-lying ð3
2
; 3
2
�Þ Δ-

baryons (in GeV) as obtained by stepwise including different
orbital angular momentum components in the rest-frame Faddeev
wave function. The italicized entries highlight the lowest mass
obtained in solving with a single partial wave.

Δ S P D F SP SD PD SPD SPDF

ð1232Þ3
2
þ 1.35 2.03 1.80 2.35 1.35 1.36 1.83 1.35 1.35

ð1600Þ3
2
þ 1.80 2.22 2.10 2.48 1.84 1.76 2.02 1.78 1.79

ð1700Þ3
2
− 1.90 1.80 2.18 2.17 1.89 1.90 1.80 1.87 1.87

ð1940Þ3
2
− 2.06 2.20 2.27 2.38 2.05 2.05 2.19 2.05 2.04

FIG. 7. Legend for interpretation of Figs. 8(a)–8(d), identifying
interference between the various identified orbital angular mo-
mentum basis components in the baryon rest frame.
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are insufficient to test ourΔð1700Þ3
2
− structure predictions. It

would nevertheless beworthwhile to use our wave functions
as the basis for calculating the γ þ p → Δð1700Þ transition
form factors, providing motivation and support for extrac-
tion of Δð1700Þ3

2
− electrocouplings on 2 < Q2=GeV2 < 5

from existing πþπ−p electroproduction data [75,76].
The Δð1940Þ3

2
− normalization strengths are displayed in

Fig. 8(d). Unlike the other systems studied herein, this is
only a “��” state [7]; and no electrocoupling data are
available, although they are expected to be collected in
future Jefferson Lab πþπ−p electroproduction experiments
[70]. Such data would be valuable because our analysis
shows that the Δð1940Þ3

2
− is potentially a peculiar system,

viz. a negative-parity baryon whose rest-frame wave func-
tion is largely S-wave in character. Even if this outcome
were to indicate a failure of our Faddeev equation in
describing some higher baryon resonances, resolving the
question is necessary in order to ensure arrival at a reliable

Poincaré covariant description of baryon spectra and
structure.

IV. SUMMARY AND PERSPECTIVE

A Poincaré-covariant Faddeev equation [Fig. 1], whose
kernel is built using dressed-quark and nonpointlike
diquark degrees-of-freedom, with binding generated by
the exchange of a dressed-quark, which emerges as one
diquark breaks-up and is absorbed into formation of
another, was used to calculate the mass and Faddeev wave
functions of the lowest-lying ðI; JP ¼ 3

2
; 3
2
�Þ baryons. This

approach has previously been used widely to deliver
explanations of many baryon properties [31], with recent
applications to parton distribution functions [35,36], the
large-Q2 behavior of elastic and transition form factors
[77,78], and axial form factors [79,80]. It should, therefore,
provide a sound approach to the study of Δ-baryons.

FIG. 8. Rest frame quarkþ ð1; 1þÞ-diquark orbital angular momentum content of ð3
2
; 3
2
�Þ states considered herein, as measured by the

contribution of the various components to the associated canonical normalization constant: (a) Δð1232Þ3
2
þ; (b) Δð1600Þ3

2
þ;

(c) Δð1700Þ3
2
−; and (d) Δð1940Þ3

2
−—drawn with reference to Table I and the basis in Eq. (4). There are both positive (above plane)

and negative (below plane) contributions to the overall normalizations, which are all positive.
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In principle, viewed from the quarkþ diquark perspec-
tive, ð3

2
; 3
2
�Þ baryons can contain both ð1; 1þÞ and ð1; 1−Þ

quarkþ quark correlations. However, our analysis revealed
that ð1; 1−Þ diquarks may safely be neglected [Sec. III B].
In this case, the Poincaré-covariant wave functions of
ð3
2
; 3
2
�Þ systems contain eight independent terms, each

characterized by a scalar function of two variables: k2,
k ·Q, where k is the quarkþ diquark relative momentum
and Q is the bound-state total momentum. Projecting each
of these functions to obtain their zeroth Chebyshev
moment, one arrives at a collection of simpler functions,
useful for developing insights. Reviewing their behavior
[Sec. III A], we found that the Δð1600Þ3

2
þ exhibits char-

acteristics which enable it to be interpreted as a radial
excitation of the Δð1232Þ3

2
þ. However, no such simple

relationship was found to be viable for the Δð1700Þ3
2
−,

Δð1940Þ3
2
− states.

Although the J ¼ Lþ S separation of a baryon’s total
angular momentum into a sum of orbital angular momen-
tum and spin is frame dependent, one may nevertheless
make some contact with quark model pictures of ð3

2
; 3
2
�Þ

baryons by projecting their Poincaré-covariant Faddeev
wave functions into the associated rest frames. Following
this procedure [Sec. III C], we found that the angular
momentum structure of all these Δ-baryons is far more
complicated than generated by typical quark models.
Nevertheless, drawing some link to quark models, the
Δð1232Þ3

2
þ and Δð1600Þ3

2
þ baryons were found to be

characterized by a dominant S-wave component,
and the Δð1700Þ3

2
− by a prominent P-wave. However,

the Δð1940Þ3
2
− did not fit this picture: contrary to quark

model expectations, this state is S-wave dominated.
Furthermore, combining the results from our analyses
of their Poincaré-covariant quarkþ diquark Faddeev
wave functions, we judged that negative parity Δ-baryons
are not simply orbital angular momentum excitations
of positive parity ground states. This conclusion matches
that drawn elsewhere for ð1

2
; 1
2
�Þ baryons [34]. Our

structural predictions for the Δð1940Þ3
2
− are likely to

encourage new experimental efforts to extract reliable
information about this poorly understood state from
exclusive πþπ−p electroproduction data [75,76] and
subsequent determination of this resonance’s electroexci-
tation amplitudes.
It is here worth recalling that the interpolating fields

for positive and negative parity hadrons can be related
by chiral rotation of the quark spinors used in their
construction. Hence, all differences between bound states
in these channels are generated by chiral symmetry
breaking, which is predominantly dynamical in the light-
quark sector. Regarding the baryons discussed herein, this
means that the following states are parity partners:
Δð1232Þ3

2
þ − Δð1700Þ3

2
−; and Δð1600Þ3

2
þ − Δð1940Þ3

2
−.

The mass splitting between parity partners is usually
ascribed to dynamical chiral symmetry breaking (DCSB);
and we have seen herein that, again like the ð1

2
; 1
2
�Þ sector,

there are also marked differences between their internal
structures. They, too, must owe to DCSB because the
channels are identical when chiral symmetry is restored.
DCSB is a corollary of emergent hadron mass, which may
also be argued to underly confinement [46]; so, validating
our predictions of marked structural differences between
parity partners has the potential to reveal a great deal
about key features of the Standard Model. A means to this
end exists in resonance electroexcitation experiments
on Q2 ≳ 2m2

p.
There are many natural extensions of this study.

For instance, solving Faddeev equations to reveal
the composition of ð1

2
; 3
2
�Þ and ð3

2
; 1
2
�Þ baryons;

calculation of the electromagnetic transition form factors
mentioned above and those involving the additional states
just indicated; analyses that focus on the structure of
baryons containing heavier valence quarks; and the
prediction of weak proton-to-Δ transition form factors,
which may be crucial in understanding neutrino oscil-
lation experiments [81]. Efforts are underway in each of
these areas.
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APPENDIX: SUPPLEMENTAL MATERIAL

1. Quark and diquark propagators

The dressed-quark propagator can be written:

SðkÞ ¼ −iγ · kσVðk2Þ þ σSðk2Þ ðA1Þ

¼ 1=½iγ · kAðk2Þ þ Bðk2Þ�: ðA2Þ

In QCD, the wave function renormalization and dressed-
quark mass:

Zðk2Þ ¼ 1=Aðk2Þ; Mðk2Þ ¼ Bðk2Þ=Aðk2Þ; ðA3Þ
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respectively, receive strong momentum-dependent correc-
tions at infrared momenta [46,82]: Zðk2Þ is suppressed and
Mðk2Þ enhanced. These features are an expression
of DCSB.
Today, numerical solutions of the quark gap

equation can readily be obtained, but the utility of an
algebraic form for SðkÞ when calculations require the
evaluation of numerous multidimensional integrals is
clear. An efficacious parametrization has been used
extensively:

σ̄SðxÞ ¼ 2m̄F ð2ðxþ m̄2ÞÞ
þ F ðb1xÞF ðb3xÞ½b0 þ b2F ðϵxÞ�; ðA4aÞ

σ̄VðxÞ ¼
1

xþ m̄2
½1 − F ð2ðxþ m̄2ÞÞ�; ðA4bÞ

with x ¼ p2=λ2, m̄ ¼ m=λ,

F ðxÞ ¼ 1 − e−x

x
; ðA5Þ

σ̄SðxÞ ¼ λσSðk2Þ and σ̄VðxÞ ¼ λ2σVðk2Þ. The mass-scale,
λ ¼ 0.566 GeV, and parameter values

m̄ b0 b1 b2 b3
0.00897 0.131 2.90 0.603 0.185

; ðA6Þ

associated with Eqs. (A4) were fixed in a least-squares
fit to light-meson observables [83,84]. (ϵ ¼ 10−4 in
Eq. (A4a) acts only to decouple the large- and inter-
mediate-k2 domains.)
The dimensionless light-quark current-mass in Eq. (A6)

corresponds to m ¼ 5.08 MeV and the parametrization
yields the following Euclidean constituent-quark mass,
defined as the solution of k2¼M2ðk2Þ: ME ¼ 0.33 GeV.
The ratio ME=m ¼ 65 is one expression of DCSB in
the parametrization of SðkÞ. It emphasises the marked
enhancement of the dressed-quark mass function at infrared
momenta.

The dressed-quark mass function generated by this
parametrization compares well with that computed using
sophisticated gap equation kernels [[34] Fig. A.1].
A propagator is associated with each quarkþ quark

correlation in Fig. 1; and we use

D1�
μν ðKÞ ¼

�
δμν þ

KμKν

m2
1�

�
1

m2
1�
F ðk2=ω2

1�Þ: ðA7Þ

Our propagator representations ensure that the quarks
and diquarks are confined within the baryons, as appro-
priate for colored objects: while the propagators are free-
particlelike at spacelike momenta, they are pole-free on
the timelike axis; and this is sufficient to ensure confine-
ment via the violation of reflection positivity (see, e.g.,
Ref. [[49] Sec. 3]).

2. Quark+diquark angular momentum

Using our solutions of the Faddeev equations for the
Poincaré-covariant baryon wave functions, evaluated in the
rest frame, we computed the contributions of various
quarkþ diquark orbital angular momentum components
to each baryon’s canonical normalization constant. The
results are recorded in Table IV for the nucleon and
Tables V–VIII for the Δ-baryons. It is from these tables
that the images in Figs. 3 and 8 are drawn.

TABLE IV. Proton—canonical normalization contributions
broken into rest-frame quarkþ diquark orbital angular momen-
tum components, defined with reference to the scheme described
in Refs. [39,40]. Where there are numerical differences with
Ref. [40], we consider the results here to be more reliable.

S1 A2 B1 S2 A1 B2 C2 C1

S1 0.39 −0.01 0.08 0.05 0.00 0.00 0.00 0.00
A2 −0.01 0.00 −0.07 0.00 0.03 −0.02 0.04 −0.02
B1 0.08 −0.07 −0.04 0.00 0.01 0.00 0.33 0.01
S2 0.05 0.00 0.00 0.12 0.00 0.00 0.00 0.00
A1 0.00 0.03 0.01 0.00 0.00 0.02 −0.08 0.00
B2 0.00 −0.02 0.00 0.00 0.02 −0.01 0.02 −0.01
C2 0.00 0.04 0.33 0.00 −0.08 0.02 −0.24 0.04
C1 0.00 −0.02 0.01 0.00 0.00 −0.01 0.04 −0.01

TABLE V. Δð1232Þ3
2
þ—canonical normalization contributions

broken into rest-frame quarkþ ð1; 1þÞ-diquark orbital angular
momentum components, defined with reference to Table I and the
basis in Eq. (4).

V1 V2 V3 V4 V5 V6 V7 V8

V1 3.90 −1.62 −1.28 −0.14 −0.01 0.00 0.10 0.00
V2 −1.69 1.77 0.02 0.04 −0.01 0.00 −0.03 0.00
V3 −1.27 0.03 1.21 0.06 0.02 0.01 −0.05 0.00
V4 −0.15 0.04 0.06 −0.06 0.01 0.00 0.04 0.00
V5 −0.01 −0.01 0.02 0.01 −0.01 0.00 0.01 0.00
V6 0.00 0.00 0.01 0.00 0.00 0.00 −0.01 0.00
V7 0.10 −0.03 −0.05 0.04 0.01 −0.01 −0.08 0.00
V8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE VI. Δð1600Þ3
2
þ—canonical normalization contribu-

tions broken into rest-frame quarkþ ð1; 1þÞ-diquark orbital
angular momentum components, defined with reference to Table I
and the basis in Eq. (4).

V1 V2 V3 V4 V5 V6 V7 V8

V1 1.03 0.00 −0.05 −0.02 0.03 −0.01 −0.21 0.07
V2 −0.01 0.03 −0.01 −0.04 0.08 0.03 0.04 −0.02
V3 −0.07 −0.01 0.20 −0.22 −0.08 0.04 0.11 −0.05
V4 −0.02 −0.04 −0.22 −0.15 −0.04 0.02 0.34 −0.14
V5 0.03 0.08 −0.09 −0.04 0.48 0.00 −0.02 −0.03
V6 −0.01 0.03 0.05 0.03 0.00 −0.02 −0.12 0.08
V7 −0.21 0.04 0.10 0.33 −0.02 −0.11 −0.30 0.13
V8 0.08 −0.02 −0.05 −0.14 −0.03 0.08 0.13 −0.02
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TABLE VII. Δð1700Þ3
2
−—canonical normalization contribu-

tions broken into rest-frame quarkþ ð1; 1þÞ-diquark orbital
angular momentum components, defined with reference to Table I
and the basis in Eq. (4).

V1 V2 V3 V4 V5 V6 V7 V8

V1 0.03 0.02 −0.05 −0.16 0.03 0.01 0.08 −0.04
V2 0.02 0.04 0.00 0.02 −0.02 −0.03 0.00 0.00
V3 −0.05 0.00 −0.59 0.03 −0.10 0.00 −0.11 0.03
V4 −0.16 0.02 0.03 2.36 −0.25 −0.48 −0.17 0.22
V5 0.03 −0.02 −0.09 −0.25 0.26 0.01 0.12 −0.13
V6 0.01 −0.03 0.00 −0.48 0.01 1.04 0.05 −0.13
V7 0.08 0.00 −0.12 −0.17 0.12 0.05 −0.01 −0.11
V8 −0.04 0.00 0.03 0.22 −0.13 −0.13 −0.11 0.20

TABLE VIII. Δð1940Þ3
2
−—canonical normalization contribu-

tions broken into rest-frame quarkþ ð1; 1þÞ-diquark orbital
angular momentum components, defined with reference to Table I
and the basis in Eq. (4).

V1 V2 V3 V4 V5 V6 V7 V8

V1 0.77 −0.03 −0.03 −0.12 0.00 0.01 0.01 −0.01
V2 −0.03 0.27 0.00 0.00 0.00 0.00 0.00 0.00
V3 −0.03 0.00 0.15 0.02 −0.12 −0.01 −0.04 0.02
V4 −0.12 0.00 0.01 0.26 0.02 −0.02 0.01 0.01
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