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Abstract In Symmetric Teleparallel General Relativity,
gravity is attributed to the non-metricity. The so-called “coin-
cident gauge” is usually taken in this theory so that the affine
connection vanishes and the metric is the only fundamen-
tal variable. This gauge choice was kept in many studies on
the extensions of Symmetric Teleparallel General Relativity,
such as the so-called f (Q) theory. In this paper, we point out
that sometimes this gauge choice conflicts with the coordi-
nate system we selected based on symmetry. To circumvent
this problem, we formulate the f (Q) theory in a covariant
way with which we can find suitable non-vanishing affine
connection for a given metric. We also apply this method to
two important cases: the static spherically symmetric space-
time and the homogeneous and isotropic expanding universe.

1 Introduction

Although Einstein’s General Relativity (GR) has achieved
great success, the cosmological observations posed new chal-
lenges such as the dark energy and dark matter problems.
There are usually two approaches to attack these problems,
the first one is to modify the matter sector by adding some
additional ‘dark’ components to the energy budget of the
universe, and the second one is to modify GR. In the second
approach, while most works adopt standard curvature-based
formulation, e.g., extending the Einstein–Hilbert action to a
general f (R) action, there exist other ways based on those
theories equivalent to GR, such as Teleparallel Equivalent of
General Relativity (TEGR) [1,2], and Symmetric Teleparal-
lel General Relativity (STGR) [3–5].

TEGR is a gravity theory equivalent to GR, which
attributes the gravity to the torsion instead of curvature of
the spacetime. It is formulated in flat spacetime with tor-
sion, and in general the basic variables are the tetrad and
spin connection if we use the tetrad language, where the spin
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connection is constrained by the vanishing of the curvature
tensor and the non-metricity tensor. Theses two constrains
allows us to choose the so-called Weitzenböck connection:
i.e., all the components of the spin connections vanish, so
that the tetrad components are the only fundamental vari-
ables. This is considered as a gauge choice in TEGR and
brings no change in physics, since any other choices com-
patible with the constraint of teleparallelism will lead to a
same action up to a surface term. However, in modified TEGR
such as f (T ) theory,1 the well-known ‘good and bad tetrads’
problem [7,8] appears, and the theory will violate the local
Lorentz invariance if we still choose the Weitzenböck con-
nections and only consider the tetrad as basic variable. This
means any two tetrads that differ by a local Lorentz trans-
formation are not physically equivalent and some of tetrads
will not satisfy the equations of motion. Then we can see that
if we use Weitzenböck connection in those theories, how to
choose suitable ‘good tetrads’ becomes a question. There are
some works have tried to solve this problem [7,8], but the
processes are complicated and not universal. Hence, in some
recent works the authors began to abandon the Weitzenböck
connection, and solved modified TEGR theory in a covari-
ant way [9–14] in which both tetrad and spin connection are
treated as fundamental variables under the teleparallelism
constraint. Therefore the problem of searching for a ‘good
tetrad’ is replaced by looking for a suitable connection for
any given tetrad to satisfy the equations of motion. This is
relatively easier than the ‘good and bad tetrads’ problem.

STGR is a formulation equivalent to GR which shares
many similar properties with TEGR but is less considered. In
STGR theory, the curvature and torsion are set to zero, and the
gravity is attributed to the non-metricity tensor Qαμν , which
depends the metric and affine connection. Similar to TEGR,
here under the teleparallelism and torsion-free constraints,
we can always choose the so-called ‘coincident gauge’ [4] in
which the affine connection vanishes. Again, in STGR this

1 See Ref. [6] for a review.
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is indeed a gauge condition because other choices only con-
tribute a surface term in the action. But in modified STGR
theories such as the so-called f (Q) theory, if we still choose
the coincident gauge [15–18] and take metric as the only fun-
damental variable, the evolution of metric will be different in
different coordinate systems. We will point out in this paper
that the coordinate system we selected based on the symme-
tries of spacetime may be not compatible with the coincident
gauge in the sense of equations of motion. So just like the
‘good and bad tetrads’ problem in modified TEGR, we can
call this problem as the ‘good and bad coordinate systems’
problem in modified STGR theories. Also like in modified
TEGR theories, in this paper, we do not look for which coor-
dinate systems are compatible with coincident gauge, but we
will use f (Q) theory as an example and present a method to
search for suitable affine connections for arbitrary coordinate
systems in modified STGR theories.

The outline of this paper is as follows. In Sect. 2, we will
give a brief review of STGR. In Sect. 3, we will briefly intro-
duce the simple modified STGR theory, f (Q) theory, and
show how the inconsistency appears when naively taking the
coincident gauge. We will propose our method to circumvent
this difficulty. In Sect. 4, we will apply our covariant method
to two important cases: the spherically symmetric spacetime
and the homogeneous and isotropic expanding universe. Sec-
tion 5 is the conclusion.

2 Symmetric teleparallel general relativity

In this section, we will give a brief review of Symmet-
ric Teleparallel General Relativity ( STGR ) theory. Let us
start from the general metric-affine theory with a manifold
(M, gμν, Γ

λ
μν), where gμν is metric tensor with signature

(−1,+1,+1,+1) and Γ λ
μν (or ∇) represents an arbitrary

affine connection. The torsion and non-metricity tensors are
defined as

T λ
μν := Γ λ

μν − Γ λ
νμ,

Qαμν := ∇αgμν = ∂αgμν − Γ λ
αμgλν − Γ λ

ανgμλ, (1)

then the affine connection can be represented as

Γ λ
μν = Γ̊ λ

μν + Sλ
μν, (2)

where Γ̊ λ
μν is the usual Levi-Civita connection

Γ̊ λ
μν = 1

2
gλρ(∂μgρν + ∂νgμρ − ∂ρgμν), (3)

and

Sλμν = −1

2
(Tμνλ + Tνμλ − Tλμν)

−1

2
(Qμνλ + Qνμλ − Qλμν) (4)

is called the distortion tensor. We use ∇̊ as the covariant
derivative operator corresponding to the Levi-Civita connec-
tion Γ̊ λ

μν and also from now on, all quantities which denoted
by a ring over the heads are associated with the Levi-Civita
connection, unless otherwise specified. The relation between
curvatures corresponding to Γ λ

μν and Γ̊ λ
μν is

Rμνρ
σ = R̊μνρ

σ − 2∇̊[μSσ
ν]ρ + 2Sλ[μ|ρ|Sσ

ν]λ, (5)

and the scalar curvature relation

R = gμρRμσρ
σ = R̊ − 2∇̊[μSσ

σ ]μ + 2Sλ[μ
μ
Sσ

σ ]λ. (6)

In STGR theory, the affine connection is constrained by the
curvature-free and torsion-free conditions. The curvature-
free condition requires Riemann tensor Rμνρ

σ (Γ ) is zero,
and Eq. (6) becomes

− 2Sλ[μ
μ
Sσ

σ ]λ = R̊ − 2∇̊[μSσ
σ ]μ. (7)

Since the Riemann tensor vanishes, the parallel transport
defined by the covariant derivative ∇ and its associated affine
connection Γ λ

μν is independent of the path, which is the rea-
son for the terminology – ’teleparallel’. Besides the condition
of zero curvature, this theory further poses a torsionless con-
straint on the connection, T λ

μν = 0, so that in symmetric
teleparallel gravity theory the gravitation is totally attributed
to the non-metricity. Since torsion tensor vanishes, affine
connection is symmetric in its lower indices and which is
the reason for the terminology – ’symmetric’. Finally, using
Eq. (7), we can write down a GR equivalent action which is
entirely constructed from the non-metricity tensor

Sg = 1

2

∫
d4x

√−gQ = 1

2

∫
d4x

√−gQαμν P
αμν , (8)

which is the gravitational part of STGR action, here we have
set 8πG = 1 and the tensor Pαμν is related to scalar Q as

Pαμν = −1

4
Qαμν + 1

2
Q(μν)α

+1

4
(Qα − Q̃α)gμν − 1

4
gα(μQν) , (9)

where the vectors Qα, Q̃α are two different traces of the non-
metricity tensor

Qα = gσλQασλ, Q̃α = gσλQσαλ . (10)

Using the relation of Eq. (7), one can rewrite this action (8)
as

Sg = 1

2

∫
d4x

√−g
[
R̊ + ∇̊μ(Qμ − Q̃μ)

]
. (11)

where the first term is the Einstein–Hilbert action of GR
and second term is a surface term which can be dropped.
Therefore STGR is equivalent to GR

As mentioned above, in the process of constructing the
action of STGR, we used the constraints Rμνρ

σ (Γ ) = 0
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and T λ
μν = 0. As pointed out in Ref. [23], these conditions

allow people to choose a coordinate system {yμ} such that the
affine connection Γ λ

μν(yμ) vanishes, which is the so-called
coincident gauge [4]. Then in any other coordinate system
{xμ}, the affine connection has the following form,

Γ λ
μν(x

μ) = ∂xλ

∂yβ
∂μ∂ν y

β . (12)

Since there is a coordinate system {yμ} in which the affine
connection vanishes, we can always think that we are work-
ing in this special coordinate system and the only fundamen-
tal variable is metric. Choosing a special coordinate system
usually means the breaking of the diffeomorphism symme-
try. But this does not happen for STGR theory. Because in the
beginning, we don’t know in which coordinate system, the
affine connection is zero, so we can take an arbitrary coor-
dinate system A and say that in A affine connection is zero.
Also in the beginning, we can think in another coordinate
system B, affine connection is zero. It is easy to found that
the differences of action between this two case are only a total
derivative. We know that the surface term has no effect on the
equations of motion (EOMs). So it means that in the begin-
ning, no matter which coordinate system we think affine con-
nection is zero, the evolution of metric is unchanged. This
is the meaning of diffeomorphism symmetry. Varying the
action (8) with respect to the metric, we get the EOMs of
STGR

2√−g
∂λ

(√−gPλμν
) − 1

2
Qgμν

+ (
Qμρσ Pν

ρσ + 2QρσμPρσ
ν
) = τμν, (13)

where τμν is energy-momentum tensor which is defined as

τμν = 2√−g

δSm
δgμν

, (14)

where Sm is matter’s action. In next section, we can see that
Eq. (13) and Einstein equation are equivalent.

3 Covariant f (Q) theory

From the discussions in the previous section, we have known
that original STGR theory owns the same dynamics as GR
and no matter which connections we choose, the evolution of
metric is unchanged. But in modified STGR theory, such as
f (Q) theory where the Q scalar in the action (8) is replaced
by its general function, the situation is different. For that case,
the term of action which depends on the affine connection is
no longer a total derivative. So different affine connections
leads to different evolution of metric, then leads to differ-
ent solutions. Therefore in modified STGR theories, how to
choose a better and meaningful affine connection becomes
an important question and it is also the central content of this

paper. In this section we lay out the suggestions to circum-
vent this question and first we briefly introduce some basic
aspects about f (Q) theory.

3.1 Action and equations of motion

The action of f (Q) theory is

S = 1

2

∫
d4x

√−g f (Q) + Sm . (15)

This theory can be considered as a metric-affine theory which
takes gμν and Γ λ

μν both as fundamental variables. So to get
the EOMs of this theory, we should do variations with respect
to them separately. Meanwhile, because this theory should
satisfies the curvature-free and torsion-free conditions, the
affine connection can be always written as Eq. (12), which
means that affine connection in this theory can be totally
determined by four arbitrary functions yμ. Thus to get the
equations of motion, we can consider gμν and yμ as funda-
mental variables and variate the action with respect to them.
If we consider the matter’s action only relies on metric and
matter fields, the metric’s EOMs of f (Q) are

Eμν ≡ 2√−g
∇λ(

√−g fQ Pλ
μν) − 1

2
f gμν

+ fQ(Pνρσ Qμ
ρσ − 2PρσμQ

ρσ
ν) = τμν, (16)

where fQ = ∂ f/∂Q and for later convenience, we denoted
the EOMs of metric as Eμν . Since f (Q) theory is a metric-
affine theory, the solutions of this theory should contain both
metric and STGR covariant derivative which satisfies the
curvature-free and torsion-free conditions. Since in GR we
only need metric, we think this fact reflects that in modified
STGR theories one has opportunities to find more solutions
than GR.

The process of getting the variation with respect to metric
is straightforward, but the variation with respect to yμ need
some tricks. To get the EOMs of yμ, let us first consider a dif-
feomorphism transformation which corresponds to a general
infinitesimal coordinate transformation, yμ → yμ + ζ(y).
After some calculations, it can be found that under this dif-
feomorphism transformation, the change of affine connection
is

δζ Γ
λ
μν = Lζ Γ

λ
μν = −∇μ∇νζ

λ. (17)

Now, we analyze the meanings of this result. If in coordinate
system {yμ}, the affine connection Γ λ

μν corresponding to ∇
vanishes, then a diffeomorphism transformation will lead to
a new coordinate system ỹμ = yμ + ζ(y) and a new STGR
covariant derivative ∇̃ which affine connection Γ̃ λ

μν van-
ishes in the new coordinate system {ỹμ}. This means that the
variation of connection with respect to yμ is the same as the
change of connection under a diffeomorphism transforma-
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tion, that is,

δyΓ
λ
μν = δζ Γ

λ
μν = −∇μ∇νζ

λ. (18)

then we can get the final EOMs of yμ,

∇ν∇μ(
√−g fQ Pμν

λ) = 0. (19)

Now, we want to point out an important result that the
EOMs of yμ can be derived from the EOMs of metric and
matter. The proof is as follows. If we consider the matter is
a scalar field φ, that is Sm = Sm(gμν, φ), then do a diffeo-
morphism transformation, xμ → xμ + ζ(x), the change of
action is zero,

δζ S = δS

δg
|Γ,φδζ g + δS

δφ
|g,Γ δζ φ + δS

δΓ
|g,φδζ Γ = 0. (20)

Therefore if the EOMs of matter and metric are satisfied, i.e.
δS
δφ

|g,Γ = 0 and δS
δg |Γ,φ = 0, then δS

δΓ
|g,φδζ Γ = 0 is satisfied

automatically. Meanwhile because the variation of connec-
tion with respect to yμ is the same as the change of con-
nection under a diffeomorphism transformation i.e. Eq. (18),
then δS

δΓ
|g,φδyΓ = 0 is satisfied automatically, which is the

EOMs of yμ. So in the following contents, we only consider
the metric’s EOMs.

As proved in Appendix A, the EOMs of metric i.e. Eq. (16)
can be rewritten as

fQG̊μν + 1

2
gμν( fQQ − f ) + 2 fQQ(∂λQ)Pλ

μν = τμν,

(21)

where G̊μν = R̊μν − 1/2R̊gμν is the Einstein tensor corre-
sponding to the Levi-Civita connection. From this formula,
we can better understand the problem of diffeomorphism
invariance. For STGR, f (Q) = Q, the left hand of Eq. (21)
is just the Einstein tensor which only relies on the metric,
so just as we have discussed in previous section, no matter
which affine connection we choose, it has no influence on
the evolution of metric. But in more general cases in which
f (Q) is not the linear function of Q, the affine connection
will certainly enter the dynamics of the metric.

3.2 Try to find solutions

Since we have obtained the equations of motion in covariant
f (Q) theory, the next question will be how to find solu-
tions. The covariant f (Q) theory is diffeomorphism invari-
ant where metric and connection both are basic variables. If
one find a solution {gμν, Γ

λ
μν} for this theory, then after a

coordinate transformation x → x̃ , the result

g̃μν = ∂xα

∂ x̃μ

∂xβ

∂ x̃ν
gαβ,

Γ̃ λ
μν = ∂2xβ

∂ x̃μ∂ x̃ν

∂ x̃λ

∂xβ
+ Γ β

ασ

∂xα

∂ x̃μ

∂xσ

∂ x̃ν

∂ x̃λ

∂xβ
(22)

is also a solution. GR is well-studied, the metric ansatz of
many special cases have already obtained. Therefore in the
covariant f (Q) theory, problem will be how to choose a
suitable affine connection for a given ansatz of metric.

A straightforward idea is that since the curvature-free and
torsion-free conditions always allow us to choose a coor-
dinate system {yμ} in which Γ λ

μν(yμ) = 0, we can just
choose a coordinate system (such as in spherically symmet-
ric spacetime, we choose the spherically symmetric coordi-
nate system ), and say that in this coordinate system affine
connection vanishes. But from the following examples, we
found this simple idea filed.

3.2.1 Static spherically symmetric spacetime

Static spherically symmetric spacetime is an important and
frequently studied case for theories of gravity, because it is
the basis for our understandings of many astronomical phe-
nomena. In static spherically symmetric spacetime, a natu-
ral choice of coordinate system is the spherically symmetric
coordinate system. The metric ansatz we choose in this coor-
dinate system is

ds2 = −eA(r)dt2 + eB(r)dr2 + r2(dθ2 + sin2 θdφ2). (23)

If we assume the affine connection is zero in this coordinate
system and further require f (Q) theory has vacuum solu-
tions, this is Eμν = 0, then one can read out the off-diagonal
component of Eq. (16) are

Erθ = Eθr = −1

2
fQQ

∂Q

∂r
cot θ = 0 . (24)

where Q = 2e−B(1 + r A′(r))/r2, and A′(r) = d A(r)/dr .
Those equations together with the diagonal components of
Eq. (16) consequently gives the result fQQ = 0. This result
means that if at the beginning, choosing f (Q) = Q2 will lead
to inconsistent EOMs. So for those theories where f (Q) are
not linear functions of Q, metric Eq. (23) with affine con-
nection Γ λ

μν = 0 is not a solution of EOMs. It does not
mean that f (Q) theory does not contain static spherically
symmetric vacuum solutions, but means that the spherically
symmetric coordinate system is not compatible with the coin-
cident gauge.

One may wonder that when we fix coincident gauge,
choosing different coordinate systems leads to different evo-
lution of metric. So if we want to get spherically symmetric
solutions, we should assume a more general form of the static
spherically symmetric metric

ds2 = −eA(r)dt2 + eB(r)dr2 + C(r)2(dθ2 + sin2 θdφ2).

(25)

In normal circumstances, indeed, we should do that. But for
the special f (Q) case, it seems that the theory still features
a reparameterization symmetry of radius r . This fact can
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be seen from EOMs of f (Q) theory. We choose coincident
gauge and consider metric as the only fundamental variable.
We denote the EOMs that obtained from metric Eq. (25) as
Eμν and denote the EOMs obtained from metric

ds2 = −eA(r)dt2 + eM(r)dC2 + C(r)2(dθ2 + sin2 θdφ2)

(26)

as Ẽμν , where eM(r) = eB(r)/C ′(r)2, then one can find
the difference between Eμν and Ẽμν is just a coordinate
transformation Ẽμν = (∂xα/∂ x̃μ)(∂xβ/∂ x̃ν)Eαβ and this
coordinate transformation is a reparameterization of radius
r → C(r). So the EOMs derived from Eq. (25) also gives
fQQ = 0 and this means that Eq. (25) is also not compatible
with the coincident gauge . It’s a very interesting thing. Since
if we fix the coincident gauge, different choices of coordinate
systems mean different choices of covariant derivatives that
we used in theory. So the existence of the reparameterization
symmetry of radius means that different covariant deriva-
tives represent same physics. And we need to emphasize
that it is different from the reparameterization symmetries
of diffeomorphism. Where it is the same covariant derivative
represented in different coordinate systems.

3.2.2 FRW universe

Modified gravity theories should have Friedmann–Robertson–
Walker (FRW) solutions for our universe, which is based on
the assumption that at large scales the universe is homoge-
neous and isotropic in space, this was confirmed by obser-
vations and becomes the cornerstone of cosmology. For spa-
tially flat FRW universe, from [15,16] we know coincident
gauge are compatible with the Cartesian coordinate system,
which means that in Cartesian coordinate system, choosing
Γ λ

μν = 0 is a solution of f (Q) theory. But for spatially flat
FRW universe in spherical coordinate system and for spa-
tially curved universe, the situation has changed.

If we take the coincident gauge (Γ λ
μν = 0) and further

assume that the coordinate system determined by this gauge
is homogeneous and isotropic coordinate system. Then the
FRW metric can be written as

ds2 = −N 2(t)dt2

+a2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

]
(27)

where N (t) is the lapse function. Taking this metric form into
EOMs of metric, i.e. Eq. (16) and considering the matter is
perfect fluid, we can obtain the non-diagonal term

Eθ t = Etθ = −1

2
fQQ

∂Q

∂t
cot θ = 0,

Eθr = Erθ = −1

2
fQQ

∂Q

∂r
cot θ = 0 (28)

where Q = 2
(
k − 1/r2 − 3a

′2/N 2
)

/a2. Thus it is easy to

find that if fQQ �= 0, Eq. (28) has no meaningful solutions.
So it faces the same problem as static spherically symmetric
spacetime.

3.3 Method to find solutions

From precious subsection, we have known that choosing
coincident gauge and further assuming spherically symmet-
ric coordinate system in spherically symmetric spacetime or
homogeneous and isotropic coordinate system in FRW uni-
verse will lead to inconsistent result fQQ = 0. This does
not mean there are no solutions for those case but means
the coordinate systems we choose are not compatible with
the coincident gauge. So to find the solutions for those two
common cases, there are two direct ways

– Since the coordinate systems we choose are not compat-
ible with the coincident gauge, we can choose another
arbitrary coordinate system {yμ} in which we think
Γ λ

μν = 0.
– We can also do not choose the coincident gauge and

assume the affine connection choose the general form
Eq. (12). Then look for the suitable four arbitrary func-
tions yμ.

In this paper, we choose the second approach since we prefer
the coordinate systems which are constructed by the symme-
tries of spacetime. In arbitrary coordinate system, the symme-
tries of spacetime is hidden and we think it may complicate
the problems.

If using the second approach to look for solutions straight-
forward, one will find the process is very complicated just like
in f (T ) case [7]. Therefore in this paper, to find solutions
for f (Q) theory , we make some simplifications and pro-
pose a method similar to the one used in Ref. [9] for TEGR.
The method is as follows. The curvature-free and torsion-
free conditions demand there is a coordinate system {yμ} in
which the connection satisfies Γ λ

μν(yμ) = 0, so in arbitrary
coordinate system, the affine connection will be Eq. (12). It
means that the connection with form Eq. (12) only relies on
the choices of coordinate system and does not relies on the
gravity of spacetime. Under specific circumstances, space-
time contains the gravitational effects, such that it is difficult
to get a suitable affine connection. Since this affine connec-
tion only relies on the choices of coordinate system, we can
first look for suitable affine connections for the spacetime
which does not contain gravitational effects. This spacetime
can be obtained by removing the parameters that contain
information of gravity, such as we can set A(r) = B(r) = 0
for the static spherically symmetric spacetime. Also because
affine connection only relies on the choices of coordinate
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system, we can just take the obtained affine connection as
a solution of the original spacetime. Here we just give the
procedure which we used in the following contents to look
for the suitable affine connections. Combining the examples
in the next section, one can find that this process is easy to
understand.

– Firstly, we write down the metric g of considered ques-
tion and remove the parameters that contain information
of gravity to get a new metric g(r). (From now on, the
quantities with a subscript (r) represent they are quanti-
ties related to the new metric g(r). )

– Secondly, we find out suitable non-metricity tensor
Q(r)αμν which satisfies the curvature-free condition for
this ’no gravity’ spacetime. (This is the improvement of
the procedure used in Ref. [9], where the authors have set
the torsion tensor to be zero, so that in FRW universe the
spin connection will not satisfy the basic requirement of
TEGR, i.e., zero curvature. But one can check that in our
method, curvature-free condition is always satisfied.)

– Finally, using the Eq. (2) which relates the affine connec-
tion with the Levi-Civita connection and non-metricity
tensor, we will get the affine connections.

The details of our method will be presented in the follow-
ing examples.

4 Some solutions

Now we show how to solve the gravitation system in terms of
our improved method by two important examples: the spher-
ically symmetric spacetime and the FRW universe.

4.1 Static spherically symmetric spacetime

We take the metric form as

ds2 = −eA(r)dt2 + eB(r)dr2 + C(r)2(dθ2 + sin2 θdφ2).

(29)

for static spherically symmetric spacetime, because from this
we can explicitly find the symmetries of this spacetime. From
previous section, we have known that this ansatz for metric
are not compatible with the coincident gauge in the sense of
equations of motion. So we should take other gauge condi-
tions for the affine connection. Now we apply our method as
follows. Firstly removing the parameters that contain infor-
mation of gravity in the metric Eq. (23), this can be achieved
by merely setting A(r) = 0, B(r) = 0,C(r) = r . So that
metric Eq. (29) reduces to the Minkowski metric formulated
in the spherical coordinate system,

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (30)

and we denoted it as g(r). From now on, we consider which
affine connection is suitable for the spacetime determined
by the metric g(r). Secondly, it is well known that in GR,
the curvature tensor R̊(r)μνρ

σ which represents the gravity
in (Minkowski) spacetime (30) is zero and in STGR theory,
it is the non-metricity tensor Q(r)αμν that represents grav-
ity, so it is a meaningful assumption by setting Q(r)αμν = 0
for this new spacetime determined by g(r). Considering this
assumption and the relation between arbitrary affine connec-
tion and the Levi-Civita connection Eq. (2), we can get the
all non-vanishing components of connection:

Γ r
θθ = −r, Γ r

φφ = −r sin2 θ,

Γ θ
φφ = − cos θ sin θ, Γ θ

rθ = Γ θ
θr = 1

r
,

Γ φ
rφ = Γ φ

φr = 1

r
, Γ φ

θφ = Γ φ
φθ = cot θ. (31)

We take this affine connection Eq. (31) as the suitable affine
connection for static spherically symmetric spacetime in
f (Q) theory.

As an example, we set C(r) = r (just a special case) to
see what will happen if we choose the affine connection as
Eq. (31). Using the metric Eq. (29) in which C(r) = r and
connection Eq. (31), we can get the equations of motion of
f (Q) theory, i.e., Eμν = τμν

τt t = eA−B

2r2

{
eBr2 f + fQ

[
(eB − 1)(2 + r A′)

+(1 + eB)r B ′] + 2 f ′
Qr(e

B − 1)
}

,

τrr = −1

2r2

{
eBr2 f + fQ

[
(eB − 1)

× (2 + r B ′ + r A′) − 2r A′] + 2 f ′
Qr(e

B − 1)
}

,

τθθ = − r

4eB

{
fQ

[
−4A′ − r A

′2 − 2r A′′

+r A′B ′ + 2eB(A′ + B ′)
]

+ 2eBr f − 2 f ′
Qr A

′}

τφφ = τθθ sin2 θ, (32)

where Q = e−B(1−eB)(A′+B ′)/r and f ′
Q = fQQdQ/dr .

So one can see that using the affine connection obtained here,
the field equations are diagonal compared with the case in
which Γ λ

μν = 0 is used, i.e., Eq. (24). Given a concrete
form of f (Q) and boundary conditions we can solve above
equations to get the configurations A(r) and B(r). Such as if
we consider vacuum solutions, this is τμν = 0, then Eq. (32)
gives us A′(r) + B ′(r) = 0. One can see that in this special
case, non-metricity scalar Q = 0. From the metric’s equa-
tions of motion Eq. (21), it means

fQG̊μν − f gμν/2 = 0. (33)

Therefore if fQ �= 0, such as f (Q) = Q + αQ2, field
equations become G̊μν + Λgμν = 0, which is just the
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Einstein equations with a cosmological constant term i.e.,
Λ = − f/(2 fQ). So for vacuum solutions, the affine con-
nection we obtained in this paper leads to same evolution as
its in GR. Generally speaking, for non-vacuum case, it may
leads to different solutions.

Just like Sect. 3.1 said, if EOMs of metric and matter are
satisfied, the EOMs of affine connection are satisfied auto-
matically, thus Eq. (32) contains all information of evolution.
So if one does a fully analysis of the Eq. (32), he does not
need consider the equations of affine connection. Since a
fully analysis is not the subject of this paper, we also write
down the field equations of affine connection, then Eq. (19)
gives us

[
(eB − 1)(4 + r A′ + r B ′) + 2r B ′] f ′

Q

+ 2(eB − 1)r f ′′
Q = 0. (34)

It is easy to see that vacuum solution satisfies this equa-
tion automatically. For other case, this equation may be a
constraint. The existence of this equations is easy to under-
stand. If the EOMs of matter fields are satisfied, the energy-
momentum conservation is satisfied, ∇̊μτμν = 0. But the
gravitational part of field equations of metric Eμν maybe not
satisfy the equation ∇̊μEμν = 0 and this will lead constraints
like Eq. (34). (In GR, because the gravitational part of action
only depends on metric and also is diffeomorphism invari-
ant, ∇̊μG̊μν = 0 is an identity. But here the gravitational part
of action also depends on affine connection.) It seems that
Eq. (19) gives us strong constraint of models. But until now,
we set C(r) = r for simplicity. If we keep C(r), the field
equations of metric are also diagonal and the equations of
affine connection becomes

[
(eBr2 − C2)(4 + r A′ + r B′) + 4C2 − 4rCC ′ + 2C2r B′] f ′

Q

+ 2(eBr2 − C2)r f ′′
Q = 0 (35)

Thus this equation will become an equation that deter-
mine the evolution of function C(r). Therefore for general
cases, we may need keep C(r) to satisfy the EOMs of affine
connection.

Here we count the number of independent equations and
free functions to see if this will lead to an overdetermined
system of equations. For spherically symmetric case, there
are three (metric) plus one (affine connection) equations. But
there is also an identity which can be derived from diffeo-
morphism invariance (just like Bianchi identity in GR), so
the number of independent equations is three. Because there
are three free functions A(r), B(r), C(r), we think this will not
lead to an overdetermined system.

Just as Sect. 3.1 said, there is a coordinate system in which
Γ = 0 and it is easy to see that Eq. (31) is just the Levi-Civita
connection of Minkowski spacetime in a spherical coordinate

system, so that in Cartesian coordinate system it becomes
zero. The coordinate transformation is

y0 = t, y1 = r sin θ cos φ, y2 = r sin θ sin φ,

y3 = r cos θ, (36)

and the coordinate system {yμ} is the one in which Γ = 0.
In this coordinate system, metric can be rewritten as

ds2 = −eAdt2 + C2

r2

[
d(y1)2 + d(y2)2 + d(y3)2

]

+eBr2 − C2

r4 (yi y j dyi dy j ), (37)

where i = 1, 2, 3 and one can see it is more complicated
than Eq. (23) and difficult to find out the symmetries of the
spacetime, though it is the same tensor as Eq. (23).

4.2 FRW Universe

4.2.1 Spatially flat FRW universe k = 0

The spatially flat FRW solution have the following metric
form in the spherical coordinate system,

ds2 = −N 2(t)dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
,

(38)

and in Cartesian coordinate system the metric form becomes

ds2 = −N 2(t)dt2 + a2(t)(dx2 + dy2 + dz2). (39)

Follow the above procedure, we can find suitable affine con-
nection in this case. Firstly removing the parameters that con-
tain information of gravity by setting a(t) = 1, N (t) = 1,
so that Eq. (39) becomes the Minkowski metric in Carte-
sian coordinate. Then just as Minkowski metric in spherical
coordinate case, we also choose Q(r)αμν = 0 for this new
spacetime. Finally using Eq. (2), we obtain that all compo-
nents of connection are zero. This is to say that Cartesian
coordinate system is just the one in which connection van-
ishes and the coincident gauge causes no inconsistency. In
fact this has been done in many cosmological applications
[15,16].

For k = 0 spherical coordinate system case, the condition
a(t) = 1 makes Eq. (38) the same as Eq. (30), so that the
suitable affine connection also is Eq. (31). This result have
been obtained in [19].

Up to now, one can find that all above examples share the
same property that if we remove the parameters that contain
information of gravity, the considered metrics will reduce to
the Minkowski metric formulated in various coordinate sys-
tems. Therefore we can always choose Q(r)αμν = 0 to repre-
sent that the Minkowski spacetime does not contain gravity.
Then the obtained connections are just the Levi-Civita con-
nections of Minkowski metric in different coordinate sys-
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tems, so that the curvature-free condition is satisfied auto-
matically. But in spatially curved FRW universe, the situation
is different.

4.2.2 k = ±1 curved space case

Removing the parameters that contain information of gravity
by setting a(t) = 1, N (t) = 1 in k = ±1 curved space case,
we get the metric g(r)

ds2 = −dt2 +
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

]
. (40)

Of course Riemann tensor from the Levi-Civita connection
of this metric Eq. (40) does not vanish. This is to say even
we choose a(t) = 1 in GR, the spacetime is still curved and
the gravity still exists. Therefore considering the curvature
relation Eq. (5) in STGR theory, if we still take Q(r)αμν = 0
for this spacetime, the obtained affine connections will not
satisfy the curvature-free condition. So that we should con-
sider the question that how to choose a suitable non-metricity
tensor for this case.

To get a non-metricity tensor which is compatible with
vanishing curvature and torsion, a direct idea is to solve the
Eq. (5). But Q(r)αμν owns too many components so that it is
difficult to solve it, therefore we need add some constraints
on it. Here we give the constraint with following consider-
ations. If we denote ημ as the Killing vectors of metric g(r)

i.e. Eq. (40), the constraint we require is that for all Killing
vectors ημ, the Lie derivatives of Q(r)αμν are zero, that is

LηQ(r)αμν = 0. (41)

The argument why we choose this condition is as follows.
The cosmological principle says that the universe is spatially
homogeneous and isotropic. From the monograph [20], we
can see that this assumption means

– the three dimension subspace of constant cosmic time is
maximally symmetric subspace, and it owns six Killing
vectors, that we denote them as ζμ,

– all cosmic tensor such as the metric gμν , the energy
momentum tensor Tμν , and so on are form invariant with
respect to all the isometries of these subspaces, which
means for all cosmic tensor W , LζW = 0.

So now in f (Q) theory, it is a natural idea to consider a
form invariant non-metricity tensor. For the spacetime i.e.
Eq. (27), a meaningful form of non-metricity tensor should
satisfyLζ Qαμν = 0. We extend this idea and require that for
any spacetime, suitable non-metricity tensors should satisfy
the condition that the Lie derivatives of them vanish for all
Killing vectors of this spacetime.

The form of non-metricity tensor which satisfies the cos-
mological symmetries has already been derived in [21]. But

we have not found a proof, so we give a proof in Appendix B.
A better form was given in [22] in which the non-metricity
tensor which satisfies Lζ Q(r)αμν = 0 for all six spatial
Killing vectors ζμ was written as

Q(r)αμν = A(t)Uαh(r)μν + B(t)h(r)α(μUν)

+C(t)UαUμUν, (42)

where A(t), B(t),C(t) are three arbitrary functions, Uα =
(dt)α , h(r)μν = g(r)μν + UμUν is the induced metric. Then
using Eq. (2) we can get all non-vanishing components of
connection,

Γ t
t t = K1, Γ t

rr = K2

χ2 , Γ t
θθ = K2r

2,

Γ t
φφ = K2r

2 sin2 θ, Γ r
rr = kr

χ2 ,

Γ θ
θr = Γ θ

rθ = Γ φ
φr = Γ φ

rφ = 1

r
,

Γ φ
φθ = Γ φ

θφ = cot θ, Γ θ
φφ = − sin θ cos θ,

Γ r
θθ = −rχ2, Γ r

φφ = −rχ2 sin2 θ,

Γ r
tr = Γ r

r t = Γ θ
tθ = Γ θ

θ t = Γ φ
tφ = Γ φ

φt = K3,

(43)

where χ2 = 1−kr2, K1 = −C/2,K2 = (A− B)/2,K3 =
A/2. Similar forms can be found in [11,21]. Meanwhile
this connection should satisfy the curvature-free condition
and this gives the constraints about three free parameters
K1(t),K2(t),K3(t)

K3(K1 − K3) − ˙K3 = 0,

K2(K1 − K3) + ˙K2 = 0,

k + K2K3 = 0. (44)

Until now, we have only used the spatial symmetries and
for a(t) = 1 case, there are more symmetries. For k = 0
case, we know it is just the Minkowski spacetime which is a
maximally symmetric spacetime, then the condition Eq. (41)
requires Q(r)αμν = 0 (the proof has been given in Appendix
C). Therefore for this case, it returns to what we have done
above. For k = ±1 case, there is only one additional Killing
vector (∂/∂t)μ and the condition Eq. (41) for this Killing
vector requires that K1,K2,K3 are all constants. So that
for this case we finally obtain

K1 = K3 = − k

K2
. (45)

For k = ±1 case, the proof that the metric g(r) (Eq. (40))
only has seven Killing vectors can be found in Appendix D.

As an example, we can use this affine connection to get
the EOMs of f (Q) for FRW universe. For simplicity, we first
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set N (t) = 1, then the field equations of metric are

1

2

(
f + 3H(4H − 3K1) fQ + 3K1 f

′
Q

−3K2(H fQ + f ′
Q)

a2

)
= ρ,

1

2

(
f + H(8H − 9K1) fQ + (4H − 3K1) f

′
Q

−K2
(3H − 4K1) fQ + f ′

Q

a2 + 4 fQ
a′′

a

)
= −P, (46)

where a′(t) = ∂a/∂t, f ′
Q = ∂ fQ/∂t and Q = −6H2 +

9HK1 +3K2(H −2K1)/a2. Compared with the case using
the coincident gauge, here metric field equation Eμν is diag-
onal. We also can write down the field equation for affine
connection, which is

(k + 3K 2
3 a2)a′ f ′

Q + (k + K 2
3 a2)a f ′′

Q = 0. (47)

Just like in spherically symmetric spacetime, it seems that
this equation gives us a constraint. Therefore if the models
we considered do not satisfy this equations, we can keep
the function N (t) to make this equation an equation that
determines function N (t). If we keep function N (t), It is
easy to find that the metric field equations is also diagonal
and the equations of affine connection becomes

(3K 2
3 a2N + kN 3 − K 2

3 a3N ′/a′ + kaN 2N ′/a′)a′ f ′
Q

+(K 2
3 a2N + kN 3)a f ′′

Q = 0 (48)

which will be the equation that determines the evolution of
function N (t). Also like in spherically symmetric spacetime
case, there are two (metric) plus one (affine connection) plus
one (matter field) minus one (identity comes from diffeomor-
phism invariance) equals three independent equations and
a(t), N (t), ρ(t), P(t) four functions. Then given the equa-
tion of state P = P(ρ), we can solve this system.

5 Conclusion

In f (Q) theory, the curvature-free and torsion-free condi-
tions always allow us to choose the so-called ’coincident
gauge’ in which affine connection vanishes. In this paper, we
pointed out that taking the coincident gauge in f (Q) theory
sometimes makes us unable to choose the coordinate sys-
tems based on symmetries. We used two examples to illus-
trate this, one is the static spherically symmetric spacetime
and the other is FRW universe. For both cases, we found
that if at the beginning f (Q) is not a linear function of Q,
such as f (Q) = Q2, the coincident gauge and the coordinate
system based on the symmetries of spacetime are not com-
patible. Such as in FRW universe case, Γ λ

μν = 0 and the

metric expanded in homogeneous and isotropic coordinate
system is not a solution of f (Q) theory.

There are two approaches to solve this problem. One is
that since the coordinate systems based on symmetry are
not compatible with the coincident gauge, we choose other
coordinate systems. The other is that we do not choose the
coincident gauge and assume the affine connection takes the
general form. In this paper, we choose the second approach
and proposed a improved method to search for suitable affine
connections in f (Q) theory given a metric ansatz. We applied
this method to the static spherically symmetric spacetime
and FRW universe. We found that in static spherically sym-
metric spacetime, the obtained affine connection is just the
Levi-Civita connection of Minkowski spacetime formulated
in spherical coordinate system and we also got the coordinate
system which is compatible with coincident gauge. In FRW
universe case, after requiring the non-metricity tensor satis-
fies all the symmetries of the spacetime which scale factor is
set to one, we also obtained the suitable affine connections.
Using the method in this paper, we can not only find the solu-
tions for f (Q) theory, but also for all other modified STGR
theories. We also should point out that there may be other
solutions for f (Q) theory beyond the ones found using the
method in this paper, since in the process of getting solutions
we have made some simplifications. But because it is too
difficult to find all solutions for f (Q) theory, so we think the
solutions found in this paper are important. This method and
its various applications deserve further studies.
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Appendix A: Nice form of EOMs of f (Q)

In this appendix, we rewrite metric’s EOMs of f (Q) the-
ory i.e. Eq. (16) as a new form i.e. Eq. (21). Since ∇̊ is the
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covariant derivative associated with Levi-Civita connection,
we have

∇̊λ

√−g = ∂λ

√−g − Γ̊ σ
σλ

√−g = 0. (A.1)

The curvature-free and torsion-free ∇ satisfies

∇λ

√−g = ∂λ

√−g − Γ σ
σλ

√−g, (A.2)

∇λ

√−g − ∇̊λ

√−g = ∇λ

√−g

= −(Γ σ
σλ − Γ̊ σ

σλ)
√−g = 1

2

√−gQλσ
σ , (A.3)

so that the first term of Eq. (16) can be rewritten as

2√−g
∇λ(

√−g fQ Pλ
μν)

= fQQλσ
σ Pλ

μν + 2( fQ∇λP
λ
μν + fQQ∂λQPλ

μν).

(A.4)

From the curvature relation i.e. Eq. (5), we can get the rela-
tions between curvature R̊μν and non-metricity Qαμν

R̊μν = ∇μN
σ

σν − ∇σ N
σ

μν + Nλ
μνN

σ
σλ − Nλ

σνN
σ

μλ,

R̊ = gμν R̊μν, (A.5)

where Nλ
μν = − 1

2 (Qμν
λ+Qνμ

λ−Qλ
μν). Then after some

calculations, we can get

G̊μν = R̊μν − 1

2
R̊gμν

= 2∇λP
λ
μν − 1

2
Qgμν

+(PρμνQ
ρσ

σ + Pνρσ Qμ
ρσ − 2PρσμQ

ρσ
ν),

Finally, we obtain Eq. (21).

Appendix B: The form of non-metricity tensor in FRW
universe

In this appendix, we give a proof that the form of Qαμν which
satisfies the cosmological symmetries Lζ Qαμν = 0 is

Qαμν = A(t)Uαhμν +B(t)hα(μUν)+C(t)UαUμUν, (B.6)

where hμν is induced metric of FRW metric (27) , hμν =
gμν +UμUν . Since the three dimensional space is maximally
symmetric in FRW universe, so that we can use the trick in
the monograph [20] to handle it and one can also find that
this trick has been used to get the form of torsion tensor in
reference [24].

For non-metricity tensor Qαμν , we can decompose it into
spatial scalar Q000, spatial vectors Qi00, Q0i0, Q00i , spatial
rank-2 tensors Qi j0 = Qi0 j , Q0i j , and spatial rank-3 ten-
sor Qi jk . Where we use α,μ, ν, ... = 0, 1, 2, 3 as spacetime
indices and i, j, k,m, n... = 1, 2, 3 as space indices. There-
fore the condition that for all six spatial Killing vectors ζμ,

Lζ Qαμν = 0, now is equivalent to that the Lie derivatives
of all components of Qαμν are zero.

First we calculate Lζ Qi jk = 0.

Lζ Qi jk = ζm D̊mQi jk + D̊nζm(δni Q
m

jk + δnj Qi
m
k

+ δnk Qi j
m) = 0, (B.7)

where D̊ represents the spatial covariant derivative associated
with the induced metric hμν and the corresponding connec-
tion is the Levi-Civita connection We use hμν to raise and
lower index. Because the space is maximally symmetric, so
that at any point for those Killing vectors which represent
rotations, we can always make them satisfy the requirements
that ζ i = 0 and D̊nζm is anti-symmetric. Therefore the con-
dition Eq. (B.7) is equivalent to

δni Q
m

jk + δnj Qi
m
k + δnk Qi j

m = δmi Qn
jk + δmj Qi

n
k

+ δmk Qi j
n . (B.8)

One might think that we have only used three of the six
Killing vectors, but it is not the case. Certainly there are
six Killing vectors in FRW universe, three for rotations and
three for translations. The presence of three Killing vectors
representing rotations at one point means that the space is
isotropic about this point and three for translations means the
space is homogeneous about the point. Meanwhile, any space
that is isotropic about every point is also homogeneous. So in
the progress of getting Eq. (B.8), we have used all conditions.
The contraction of n, i gives

2Qmjk + Q jmk + Qkjm = hmj Qi
i
k + hmkQi j

i , (B.9)

the contraction of m, j gives

Qki
i = Qik

i , (B.10)

and the contraction of j, k gives

2Qki
i = 0. (B.11)

Then bringing Eqs. (B.10) and (B.11) into Eq. (B.9) , we can
get

2Qmjk + Q jmk + Qkjm = 0, (B.12)

and exchanging m and k

2Qkjm + Q jkm + Qmjk = 0, (B.13)

finally we have

Qmjk = Qkjm . (B.14)

So it means that Qi jk is totally symmetric tensor. But con-
sidering Eq. (B.9), it must be zero.

For scalars, vectors, rank-2 tensors, using the same tricks
as above, monograph[20] has already given the answers.
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Finally we can write down all non-vanishing components
of Qαμν ,

Q000 = C(t), Qi00 = Q0i0 = Q00i = 0,

Qi j0 = Qi0 j = B(t)

2
hi j , Q0i j = A(t)hi j . (B.15)

This is just the result we want.

Appendix C: The proof that in k=0 case, Q(r)αμν = 0

In k = 0 case, the spacetime determined by metric Eq. (40) is
not only the space is maximally symmetric but also the whole
spacetime. So we can also use the method used in Appendix
B for the total non-metricity tensor Q(r)αμν . We obtain the
same relation just as Eq. (B.8)

δλ
αQ(r)

σ
μν + δλ

μQ(r)α
σ

ν + δλ
ν Q(r)αμ

σ

= δσ
α Q(r)

λ
μν + δσ

μQ(r)α
λ
ν + δσ

ν Q(r)αμ
λ. (C.16)

Then using the same procedure given in Appendix. Appendix
B, we have Q(r)αμν = 0.

Appendix D: There are only seven Killing vectors in
k = ±1 case

In this appendix, we give the proof that metric Eq. (40) only
has 7 Killing vectors in k = ±1 case. And only in this
appendix, we omit the ring on the head of ∇̊, this is to say,
all quantities are associated with the Levi-Civita connection
in the following content.

The spacetime which metric is Eq. (40) is not maximally
symmetric spacetime, since it does not meet the condition
Rμνρσ = K (gμρgνσ − gμσ gνρ) which a maximally sym-
metric spacetime should satisfy, where K is a constant. So
that the number of Killing vectors for this case is less than
10. From monograph [20] we can see that Killing vectors
are totally determined by ζμ(X) and ∇μζν(X) at any point
X of a spacetime. Therefore the number of Killing vectors
of a spacetime is determined by the number of indepen-
dent dimensions spanned by ζμ(X) and ∇μζν(X). So that
for N dimension maximally symmetric spacetime, the num-
ber of Killing vectors is N + (N − 1)N/2, where N comes
from ζμ(X) and (N − 1)N/2 comes from anti-symmetric
tensor ∇μζν(X). For non-maximally symmetric spacetime,
we should look for if there are relations between ζμ(X) and
∇μζν(X).

Using the definition of Killing vector and cyclic relation
of curvature,

∇μ∇ρζσ − ∇ρ∇μζσ = Rμρσ
λζλ,

R[μνρ]λ = 0,

∇μζν + ∇νζμ = 0, (D.17)

we have

∇σ ∇ρζμ = Rμρσ
λζλ, (D.18)

then

∇ν∇σ (∇ρζμ) − ∇σ ∇ν(∇ρζμ)

= Rνσμ
λ∇ρζλ + Rνσρ

λ∇λζμ

= ∇ν(Rμρσ
λζλ) − ∇σ (Rμρν

λζλ). (D.19)

So we find the final equation that related ζμ(X) and ∇μζν(X)

(Rνσμ
λδκ

ρ + Rνσρ
λδκ

μ − Rμρσ
λδκ

ν + Rμρν
λδκ

σ )∇κζλ

= (∇νRμρσ
λ − ∇σ Rμρν

λ)ζλ. (D.20)

Then in k = 0 the maximally symmetric spacetime,
Eq. (D.20) gives 0 = 0. But in k = ±1 case, it gives three
relations, ∇0ζ1 = ∇0ζ2 = ∇0ζ3 = 0. Therefore in k = ±1
case the final number of Killing vectors is 10 − 3 = 7, six of
them are spatial Killing vectors ζμ and the remaining one is
∂/∂t .
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