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We have carried out an extensive analysis of all possible minimal texture quark mass matrices
implying 169 texture-6 zero combinations. One finds that all these combinations are ruled out:
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Over the last couple of decades, noticeable progress has been made in measuring the quark mixing
parameters. Most of the Cabibbo–Kobayashi–Maskawa (CKM) [1,2] parameters are now known
within an accuracy of around 5%; this can be considered as being at the level of “precision mea-
surements” in the context of CKM phenomenology. Similarly, a good deal of progress has been
made in the measurement of the quark masses; in particular, the light quark masses, mu, md and ms,
have registered remarkable progress in their measurements in the last decade. This has been possible
due to the lattice simulations providing the most reliable determination of the strange quark mass
and of the average of the up and down quark masses, as emphasized by Flavour Lattice Averaging
Group (FLAG) [3]. In view of the relationship of the CKM matrix with the mass matrices, precision
measurements of CKM parameters would undoubtedly have implications for the quark mass matri-
ces. Similarly, considerable narrowing of the ranges of the light quark masses would allow us to
determine the nature and structure of the quark mass matrices which are compatible with the CKM
phenomenology.

It is well known that the mass matrices, having their origin in the Higgs fermion couplings, are
arbitrary in the Standard Model (SM), therefore the number of free parameters available with a
general mass matrix is 36 which is much larger than the number of physical observables; e.g., in the
quark sector, the ten observables include six quark masses, three mixing angles, and one CP-violating
phase. Therefore, to develop viable phenomenological fermion mass matrices one has to limit the
number of free parameters in these matrices. It may be noted that in the SM, as well as its extensions,
wherein the right-handed quarks are singlets, without loss of generality one can always consider the
mass matrices to be Hermitian. In this context, the idea of texture zero mass matrices [4–6] consisting
of finding the phenomenological quark mass matrices which are in tune with the low-energy data,
i.e. observables like quark masses, quark mixing angles, angles of the unitarity triangle in the quark
sector, etc., has proved to be quite successful in explaining the fermion mixing data. A particular
square matrix is considered to be texture-n zero if the sum of the number of diagonal zeros and half
the number of the symmetrically placed off-diagonal zeros is n.
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In the quark sector, the concept of texture zeros was introduced implicitly by Weinberg [7] and
explicitly by Fritzsch [8,9], the original Fritzsch ansatz being given by

MU =
⎛
⎜⎝

0 AU 0
A∗

U 0 BU

0 B∗
U CU

⎞
⎟⎠, MD =

⎛
⎜⎝

0 AD 0
A∗

D 0 BD

0 B∗
D CD

⎞
⎟⎠, (1)

where MU and MD correspond to the mass matrices in the up and down sectors, respectively, with
complex off-diagonal elements, i.e. Ai = |Ai|eια and Bi = |Bi|eιβ , i = U, D, ι = √−1, whereas Ci is
the real element of the matrix. Using the above definition of texture zero mass matrices, each of the
above matrices is said to be texture-3 zero type, abd together these are referred to as texture-6 zero
quark mass matrices. The abovementioned original Fritzsch ansatz, as well as several other texture-5
and -4 zero versions, have been examined in Refs. [10–16]. In particular, Refs. [10] and [15] have
discussed texture-6 zero quark mass matrices and have arrived at the conclusion that these look to be
incompatible with the quark mixing data. However, in these references, a detailed and comprehensive
analysis indicating how and to what extent these matrices are ruled out has not been discussed. In par-
ticular, neither reference considers all possible texture-6 zero quark mass matrices, nor do they relate
the various possibilities through permutation symmetry, which has gained significance in the context
of quark–lepton symmetry due to which the emphasis has now shifted to formulating the texture
structure of fermion mass matrices incorporating permutation symmetry and Abelian symmetries.

In the absence of any firm theoretical foundation for choosing a particular texture for the mass
matrices, it becomes interesting to analyze all possible mass matrix texture structures to check their
viability with the present refined data. It may be noted that the maximum number of texture zeros
which can be introduced in the quark mass matrices is three in each sector, resulting in a minimal
number of parameters or elements of the mass matrices. In view of this, we refer to texture-6 zero
quark mass matrices as the minimal texture of quark mass matrices. It is interesting to note that it
is not only the matrices mentioned in Eq. (1) that correspond to texture-3 zero mass matrices; along
with these, there are several other possible structures which can be considered to be texture-3 zero
matrices. The purpose of the present work is to first enumerate all possible minimal texture quark
mass matrices, i.e. texture-6 zero mass matrices, and to relate these possibilities using permutation
symmetry. As a next step, we have examined in a detailed and comprehensive manner the viability
of all these possible mass matrices, keeping in mind the improvements in the measurements of the
light quark masses, mu, md , and ms, as well as “precision measurements” of the CKM parameters.

One can check that the total number of structures for a texture-n zero mass matrix comes out to be

6Cn = 6!
n!(6 − n)! , (2)

where there are six ways to enter zeros in the mass matrices. Using this, for n = 3 one can arrive at
the following 20 possible structures (S0 to S19) for texture-3 zero mass matrices:

(1) Placing all three zeros along diagonal positions:

S0 =
⎛
⎜⎝

0 × ×
× 0 ×
× × 0

⎞
⎟⎠,

where an × represents non-vanishing entries.
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(2) Placing two zeros along diagonal positions:

S1 =
⎛
⎜⎝

0 × 0
× 0 ×
0 × ×

⎞
⎟⎠, S2 =

⎛
⎜⎝

0 0 ×
0 × ×
× × 0

⎞
⎟⎠, S3 =

⎛
⎜⎝

0 × ×
× 0 0
× 0 ×

⎞
⎟⎠,

S4 =
⎛
⎜⎝

× × 0
× 0 ×
0 × 0

⎞
⎟⎠, S5 =

⎛
⎜⎝

0 × ×
× × 0
× 0 0

⎞
⎟⎠, S6 =

⎛
⎜⎝

× 0 ×
0 0 ×
× × 0

⎞
⎟⎠,

S7 =
⎛
⎜⎝

0 0 ×
0 0 ×
× × ×

⎞
⎟⎠, S8 =

⎛
⎜⎝

0 × 0
× × ×
0 × 0

⎞
⎟⎠, S9 =

⎛
⎜⎝

× × ×
× 0 0
× 0 0

⎞
⎟⎠.

(3) Placing one zero along diagonal positions:

S10 =
⎛
⎜⎝

0 × 0
× × 0
0 0 ×

⎞
⎟⎠, S11 =

⎛
⎜⎝

0 0 ×
0 × 0
× 0 ×

⎞
⎟⎠, S12 =

⎛
⎜⎝

× × 0
× 0 0
0 0 ×

⎞
⎟⎠,

S13 =
⎛
⎜⎝

× 0 0
0 × ×
0 × 0

⎞
⎟⎠, S14 =

⎛
⎜⎝

× 0 ×
0 × 0
× 0 0

⎞
⎟⎠, S15 =

⎛
⎜⎝

× 0 0
0 0 ×
0 × ×

⎞
⎟⎠,

S16 =
⎛
⎜⎝

× × 0
× × 0
0 0 0

⎞
⎟⎠, S17 =

⎛
⎜⎝

× 0 ×
0 0 0
× 0 ×

⎞
⎟⎠, S18 =

⎛
⎜⎝

0 0 0
0 × ×
0 × ×

⎞
⎟⎠.

(4) Placing all zeros in off-diagonal positions:

S19 =
⎛
⎜⎝

× 0 0
0 × 0
0 0 ×

⎞
⎟⎠.

In general, one has the freedom to consider the mass matrices in the up and down sectors, i.e. MU

and MD, to be any of the above 20 patterns, resulting in 400 combinations corresponding to texture-6
zero mass matrices. However, since these matrices have to yield physical quark masses as their
eigenvalues, the trace as well as the determinant should be non-zero, i.e.

Trace MU,D �= 0 and Det MU,D �= 0. (3)

Imposing these constraints, one can immediately see that either the trace or the determinant of the
structures S0, S7, S8, S9, S16, S17, and S18 vanishes, and hence out of 20 possible patterns, we are
left with 13 structures to be considered either as MU or MD, leading to 169 possible texture-6 zero
combinations.

It may be noted that structure S1 is in fact the Fritzsch ansatz mentioned in Eq. (1). Interestingly,
one finds that the structures S1, S2, S3, S4, S5, and S6 are related as

Sj = pT
j S1pj, j = 1, . . . , 6, (4)
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Table 1. Possible texture-3 zero mass matrices belonging to classes I and II.

Class I Class II

a

⎛
⎝ 0 Aeια 0

Ae−ια 0 Beιβ

0 Be−ιβ C

⎞
⎠

⎛
⎝ 0 Aeια 0

Ae−ια D 0
0 0 C

⎞
⎠

b

⎛
⎝ 0 0 Aeια

0 C Be−ιβ

Ae−ια Beιβ 0

⎞
⎠

⎛
⎝ 0 0 Aeια

0 C 0
Ae−ια 0 D

⎞
⎠

c

⎛
⎝ 0 Ae−ια Beιβ

Aeια 0 0
Be−ιβ 0 C

⎞
⎠

⎛
⎝ D Ae−ια 0

Aeια 0 0
0 0 C

⎞
⎠

d

⎛
⎝ C Be−ιβ 0

Beιβ 0 Ae−ια

0 Aeια 0

⎞
⎠

⎛
⎝ C 0 0

0 D Ae−ια

0 Aeια 0

⎞
⎠

e

⎛
⎝ 0 Beιβ Ae−ια

Be−ιβ C 0
Aeια 0 0

⎞
⎠

⎛
⎝ D 0 Ae−ια

0 C 0
Aeια 0 0

⎞
⎠

f

⎛
⎝ C 0 Be−ιβ

0 0 Aeια

Beιβ Ae−ια 0

⎞
⎠

⎛
⎝ C 0 0

0 0 Aeια

0 Ae−ια D

⎞
⎠

where pj are the following six permutation matrices:

p1 =
⎛
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎠, p2 =

⎛
⎜⎝

1 0 0
0 0 1
0 1 0

⎞
⎟⎠, p3 =

⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠, (5)

p4 =
⎛
⎜⎝

0 0 1
0 1 0
1 0 0

⎞
⎟⎠, p5 =

⎛
⎜⎝

0 0 1
1 0 0
0 1 0

⎞
⎟⎠, p6 =

⎛
⎜⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎠. (6)

These six matrices, S1 to S6, have been placed in class I of Table 1, and for further discussions will
be referred to as Ia, Ib, etc. Further, interestingly, the six structures S10, S11, S12, S13, S14, and S15 are
also related through permutations and have been placed in class II of Table 1; they will henceforth
be referred to as IIa, IIb, etc. The remaining structure, S19, will be discussed separately. Therefore,
instead of discussing 169 possible texture-6 zero combinations, we will first discuss 144 possibilities
of Hermitian mass matrices which can be arrived at by considering MU and MD to be from class I
and/or class II of Table 1.

Coming to the methodology, it essentially involves considering a possible texture-6 zero combina-
tion, i.e. MU and MD being one of the above patterns. The viability of the considered combination is
ensured by examining the compatibility of the CKM matrix constructed from the given combination
of mass matrices with the recent one given by Particle Data Group (PDG) [18]. To this end, as a first
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step, the Hermitian matrix Mi (i = U, D) can be expressed as

Mi = P†
i M r

i Pi, (7)

where M r
i corresponds to the real matrix and Pi denotes the phase matrix. The real matrix M r

i can
then be diagonalized by the orthogonal transformations Oi, i.e.

M diag
i = OT

i M r
i Oi = OT

i PiMiP
†
i Oi, (8)

where M diag
i = diag(m1, −m2, m3), the subscripts 1, 2, and 3 referring respectively to u, c, and t for

the up sector and d, s, and b for the down sector. In order to examine the viability of the considered
combination, one needs to obtain the CKM matrix using the relation

VCKM = OT
UPUP†

DOD = V †
UVD, (9)

where the unitary matrices VU (= P†
UOU) and VD (= P†

DOD) are the diagonalizing transformations
for the matrices MU and MD, respectively.

To begin with, let us consider the matrix Ia of class I. The corresponding real matrix M r
i can be

expressed as

M r
i =

⎛
⎜⎝

0 |Ai| 0
|Ai| 0 |Bi|
0 |Bi| Ci

⎞
⎟⎠ (10)

and Pi, the phase matrix, is given by

Pi =
⎛
⎜⎝

e−ιαi 0 0
0 1 0
0 0 eιβ i

⎞
⎟⎠. (11)

It may be mentioned that the remaining five matrices belonging to class I can be similarly expressed in
terms of a real matrix M r

i and the corresponding phase matrix Pi.An essential step for the construction
of the diagonalization transformation is to consider the invariants trace M r

i , trace (M r
i )

2, and det M r
i

to yield relations involving elements of mass matrices. For all six matrices belonging to class I, using
these invariants, the relations of the matrix elements in terms of quark masses can be expressed as

Ci = (m1 − m2 + m3), |Ai|2 + |Bi|2 = (m1m2 + m2m3 − m1m3), |Ai|2Ci = (m1m2m3). (12)

Corresponding to the matrix Ia, the diagonalizing transformation Oi is given as

Oi =

⎛
⎜⎜⎜⎜⎜⎝

(
m2m3(m3−m2)

Ci(m1+m2)(m3−m1)

) 1
2

(
m1m3(m1+m3)

Ci(m1+m2)(m3+m2)

) 1
2

(
m1m2(m2−m1)

Ci(m3+m2)(m3−m1)

) 1
2

(
m1(m3−m2)

(m1+m2)(m3−m1)

) 1
2 −

(
m2(m1+m3)

(m1+m2)(m3+m2)

) 1
2

(
m3(m2−m1)

(m3−m1)(m2+m3)

) 1
2

−
(

m1(m1+m3)(m2−m1)
Ci(m1+m2)(m3−m1)

) 1
2

(
m2(m3−m2)(m2−m1)
Ci(m1+m2)(m3+m2)

) 1
2

(
m3(m3−m2)(m3+m1)
Ci(m3+m2)(m3−m1)

) 1
2

⎞
⎟⎟⎟⎟⎟⎠

. (13)

For the other matrices belonging to class I, one can obtain the corresponding diagonalizing
transformations Oi in a similar manner.
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Similarly, for all the matrices belonging to class II, the relations of the mass matrix elements in
terms of the quark masses are given by

Ci + Di = (m1 − m2 + m3),

|Ai|2 − CiDi = (m1m2 + m2m3 − m1m3),

|Ai|2Ci = (m1m2m3). (14)

For the matrix IIa, the corresponding real matrix M r
i can be expressed as

M r
i =

⎛
⎜⎝

0 |Ai| 0
|Ai| Di 0
0 0 Ci

⎞
⎟⎠, (15)

with the phase matrix Pi being

Pi =
⎛
⎜⎝

e−ιαi 0 0
0 1 0
0 0 1

⎞
⎟⎠. (16)

Further, the corresponding diagonalizing transformation can be expressed as

Oi =

⎛
⎜⎜⎜⎝

(
m2

m1+m2

) 1
2

(
m1

m1+m2

) 1
2

0(
m1

m1+m2

) 1
2 −

(
m2

m1+m2

) 1
2

0

0 0 1

⎞
⎟⎟⎟⎠. (17)

One can obtain similar matrices for the other five class II matrices.
As the next step of our analysis, we present all possible texture-6 combinations, wherein MU and

MD can be considered from class I and/or class II, leading to the following:

Category 1: MU and MD both from class I.
Category 2: MU from class I and MD from class II.
Category 3: MD from class I and MU from class II.
Category 4: MU and MD both from class II.

We first discuss Category 1, wherein the matrices MU and MD can each be any of the
six possible structures, namely Ia–f . This results in a total of 36 combinations of texture-
6 zero mass matrices. From these, we first consider the six combinations wherein both
MU and MD have the same structure, i.e. IaIa, IbIb, etc. Constructing the corresponding
CKM matrices, one finds that all six are the same, i.e. they have the same expressions
for each if the nine CKM matrix elements. These matrix elements are given as follows:

Vud =
(

md (mb − ms)

(mb − md) (md + ms)

) 1
2
(

(−mc + mt) mu

(mt − mu) (mc + mu)

) 1
2

+ e−ιφ1

(
mb (mb − ms) ms

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

mcmt (−mc + mt)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

+ eιφ2

(
md (mb + md) (−md + ms)

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

(mc − mu) mu (mt + mu)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

,
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Vus = −
(

(mb + md) ms

(mb + ms) (md + ms)

) 1
2
(

(−mc + mt) mu

(mt − mu) (mc + mu)

) 1
2

+ e−ιφ1

(
mbmd (mb + md)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

mcmt (−mc + mt)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

− eιφ2

(
(mb − ms) ms (−md + ms)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

(mc − mu) mu (mt + mu)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

,

Vub =
(

mb (−md + ms)

(mb − md) (mb + ms)

) 1
2
(

(−mc + mt) mu

(mt − mu) (mc + mu)

) 1
2

+ e−ιφ1

(
mdms (−md + ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

mcmt (−mc + mt)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

− eιφ2

(
mb (mb + md) (mb − ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

(mc − mu) mu (mt + mu)

(mt − mu) (mc + mu) (−mc + mt + mu)

) 1
2

,

Vcd = −
(

md (mb − ms)

(mb − md) (md + ms)

) 1
2
(

mc (mt + mu)

(mc + mt) (mc + mu)

) 1
2

+ e−ιφ1

(
mb (mb − ms) ms

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

mtmu (mt + mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

− eιφ2

(
md (mb + md) (−md + ms)

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

mc (−mc + mt) (mc − mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

,

Vcs =
(

(mb + md) ms

(mb + ms) (md + ms)

) 1
2
(

mc (mt + mu)

(mc + mt) (mc + mu)

) 1
2

+ e−ιφ1

(
mbmd (mb + md)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

mtmu (mt + mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

+ eιφ2

(
(mb − ms) ms (−md + ms)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

mc (−mc + mt) (mc − mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

,

Vcb = −
(

mb (−md + ms)

(mb − md) (mb + ms)

) 1
2
(

mc (mt + mu)

(mc + mt) (mc + mu)

) 1
2

+ e−ιφ1

(
mdms (−md + ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

mtmu (mt + mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

+ eιφ2

(
mb (mb + md) (mb − ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

mc (−mc + mt) (mc − mu)

(mc + mt) (mc + mu) (−mc + mt + mu)

) 1
2

,

Vtd =
(

md (mb − ms)

(mb − md) (md + ms)

) 1
2
(

mt (mc − mu)

(mc + mt) (mt − mu)

) 1
2

+ e−ιφ1

(
mb (mb − ms) ms

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

mc (mc − mu) mu

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

− eιφ2

(
md (mb + md) (−md + ms)

(mb − md) (mb + md − ms) (md + ms)

) 1
2
(

mt (−mc + mt) (mt + mu)

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

,
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Vts = −
(

(mb + md) ms

(mb + ms) (md + ms)

) 1
2
(

mt (mc − mu)

(mc + mt) (mt − mu)

) 1
2

+ e−ιφ1

(
mbmd (mb + md)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

mc (mc − mu) mu

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

+ eιφ2

(
(mb − ms) ms (−md + ms)

(mb + md − ms) (mb + ms) (md + ms)

) 1
2
(

mt (−mc + mt) (mt + mu)

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

,

Vtb =
(

mb (−md + ms)

(mb − md) (mb + ms)

) 1
2
(

mt (mc − mu)

(mc + mt) (mt − mu)

) 1
2

+ e−ιφ1

(
mdms (−md + ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

mc (mc − mu) mu

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

+ eιφ2

(
mb (mb + md) (mb − ms)

(mb − md) (mb + md − ms) (mb + ms)

) 1
2
(

mt (−mc + mt) (mt + mu)

(mc + mt) (mt − mu) (−mc + mt + mu)

) 1
2

,

where the phases φ1 = αU − αD and φ2 = βU − βD are related to the phases associated with the
elements of the mass matrices.

For the purpose of numerical analysis, we first consider the texture combination IaIa, implying MU

and MD both being of the form Ia. As mentioned earlier, this particular combination corresponds to
the Fritzsch ansatz mentioned in Eq. (1). It has been shown [10,15], without getting into details, that
this texture combination is ruled out due to the CKM matrix element Vcb. As a first step, it would
be interesting to present the details regarding the ruling out of this combination, keeping in mind
refinements in the measurements of the light quark masses. To this end, we have first investigated the
dependence of the matrix element Vcb with respect to the light quark masses. As can be seen from the
analytic expressions corresponding to the CKM matrix elements above, in order to construct the CKM
matrix elements one needs to provide values of quark masses as well as phases φ1 and φ2 as inputs.

The “current” quark masses at MZ energy scale [17] are given by

mu = 1.45+0.56
−0.45 MeV, md = 2.9+0.5

−0.4 MeV, ms = 57.7+16.8
−15.7 MeV,

mc = 0.635 ± 0.086 GeV, mb = 2.82+0.09
−0.04 GeV, mt = 172.1 ± 0.6 ± 0.9 GeV. (18)

The most recent lattice values [3] of the quark mass ratios mu
md

and ms
mud

, wherein mud is defined as
1

2(mu+md )
, are

mu

md
= 0.45 (3) and

ms

mud
= 27.30 (34). (19)

For the purpose of our calculations, in order to investigate to what extent the texture combination IaIa

remains ruled out, we have assumed a relatively wider range of mass mu, i.e. 0–3.0 MeV, and then,
using the mass ratios in Eq. (19), we have obtained the corresponding wider ranges of masses md and
ms. Further, in the absence of any information regarding the values of the phases φ1 and φ2, these have
been given full variation from 0◦ to 360◦. Along with these inputs, we have imposed the following
recent value as per PDG 2018 [18] of the precisely known CKM matrix element Vus as a constraint:

Vus = 0.2243 ± 0.0005. (20)
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Fig. 1. Allowed range of Vcb with respect to the light quark masses obtained by imposing Vus as a constraint.

Fig. 2. Allowed range of Vcb with respect to the light quark masses obtained by imposing both Vus and Vub as
constraints.

Using the abovementioned inputs and constraint, in Fig. 1 we have shown the dependence of the
CKM matrix element Vcb with respect to the light quark masses mu, md , and ms. The vertical lines
in these plots depict the ranges of these masses given in Eq. (18), whereas the narrow experimental
range [18] of the element Vcb, i.e. (42.2 ± 0.8) × 10−3, is shown by very closely spaced horizontal
lines. From these plots, one can note that for the ranges of mu, md , and ms given in Eq. (18), the
allowed range of Vcb obtained here has no overlap with its experimentally determined range, thereby
ruling out this combination of mass matrices. However, interestingly, it appears that if the lower
limits of the light quark masses get pushed slightly lower, the CKM matrix element Vcb obtained
here would show an overlap with its experimentally determined range.

To investigate this further, in addition to considering the matrix element Vus as a constraint we
have also imposed the following value [18],

Vub = (3.94 ± 0.36) × 10−3, (21)

as another constraint and have again plotted the dependence of Vcb on the light quark masses, shown
in Fig. 2. These plots clearly indicate that when both Vus and Vub are imposed as constraints then the
allowed range of Vcb obtained here lies much outside its experimental range, completely ruling out
the texture combination IaIa. This conclusion remains valid even if there are considerable changes
in the input parameters.

In order to have a better understanding of the abovementioned results, as well as for the sake of
completeness, we present the magnitudes of the CKM matrix elements, obtained by considering the
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Fig. 3. Allowed range of J with respect to the light quark masses obtained by imposing both Vus and Vub as
constraints.

masses mentioned in Eq. (18) as inputs and both Vus and Vub values as constraints:

VCKM =
⎛
⎜⎝

0.9743–0.9746 0.2238–0.2247 0.0036–0.0042
0.2228–0.2241 0.9694–0.9718 0.0749–0.1018
0.0168–0.0229 0.0731–0.0993 0.9947–0.9971

⎞
⎟⎠. (22)

A look at this matrix immediately reveals that the ranges of the CKM elements Vcb, Vtd , Vts, and Vtb

show no overlap with those obtained by recent global analysis as per PDG 2018 [18]:

VCKM =
⎛
⎜⎝

0.9744–0.9746 0.2241–0.2250 0.0035–0.0038
0.2239–0.2248 0.9735–0.9737 0.0414–0.0429
0.0087–0.0092 0.0406–0.0421 0.9990–0.9991

⎞
⎟⎠. (23)

Further, besides determining the quark mixing matrix elements, we have also evaluated the CP-
violating phase δ, Jarlskog’s rephasing invariant parameter J , and the CP asymmetry parameter
sin 2β:

δ = 79.2◦–90◦, J = (5.84–9.49) × 10−5, sin 2β = 0.354–0.430. (24)

Again, we find that the above ranges show absolutely no overlap with the experimentally determined
ranges [18] of these quantities:

δ = 68.4◦–77.7◦, J = (3.03–3.33) × 10−5, sin 2β = 0.674–0.708. (25)

For the sake of completeness, Figs. 3 and 4 show plots of Jarlskog’s rephasing invariant parameter J
as well as the CP asymmetry parameter sin 2β, respectively, with respect to the light quark masses mu,
md , and ms. The inputs for these plots are the same as for the earlier Vcb versus the light quark masses
plots, along with both Vus and Vub as constraints. Again, these plots reveal that the allowed ranges of
these parameters have no overlap with their experimental ranges, presented as solid horizontal lines.

The above discussion, therefore, leads to the conclusion that not only does the texture combination
IaIa get ruled out, but also this conclusion remains valid even if there are considerable changes in the
input parameters. Similarly, as emphasized earlier, the other such combinations wherein both MU

and MD have the same structure are also not compatible with the recent quark mixing data. This can
also be checked using permutation symmetry.

10/14



PTEP 2020, 013B06 S. Kaundal et al.

Fig. 4. Allowed range of sin 2β with respect to the light quark masses obtained by imposing both Vus and Vub

as constraints.

For the remaining 30 combinations of Category 1, wherein MU and MD can have different structures,
i.e. of type IaIb, IcId , etc., the above methodology can be repeated in order to check the viability of
the various combinations. Interestingly, for these 30 combinations one finds that the CKM matrix so
obtained does not have the usual structure wherein the diagonal elements are almost unity whereas
the off-diagonal elements are much smaller than these. For example, considering the combination
IcId , i.e. MU having structure Ic and MD having structure Id , the CKM matrix obtained, wherein we
have used the hierarchy of quark masses and presented only the leading-order terms, is given by

VCKM =

⎛
⎜⎜⎜⎜⎜⎝

e−ιαU

(
md
ms

) 1
2 −e−ιαU e−ιαU

(
ms
mb

) 1
2 + e−ιβD

(
mu
mc

) 1
2

e−ιβD

(
md
mb

) 1
2 + eι(αD+βU)

(
mc
mt

) 1
2 −e−ιαU

(
mu
mc

) 1
2 − e−ιβD

(
ms
mb

) 1
2 −e−ιβD

eι(αD+βU) eι(αD+βU)
(

md
ms

) 1
2

e−ιβD

(
mc
mt

) 1
2

⎞
⎟⎟⎟⎟⎟⎠

!.

From this matrix structure one can easily find out that the off-diagonal elements, e.g. Vus, Vcb, and
Vtd , are of the order of unity, whereas diagonal elements, Vud , Vcs, and Vtb, are smaller than unity,
which is in complete contrast to the usual structure of the CKM matix. This can also be seen by
carrying out a numerical analysis for this case using the inputs mentioned in Eq. (18). The CKM
matrix obtained comes out to be

VCKM =
⎛
⎜⎝

0.2105–0.2234 0.9565–0.9723 0.0844–0.1973
0.0167–0.1021 0.0743–0.1968 0.9784–0.9948
0.9709–0.9763 0.2072–0.2308 0.0552–0.0644

⎞
⎟⎠!. (26)

This matrix clearly does not have the usual structure of the CKM matrix since the diagonal elements,
Vud , Vcs, and Vtb, are much smaller than unity whereas the off-diagonal elements, Vus, Vcb, and Vtd ,
are approximately 1. Also, this matrix is again not at all compatible with the one given by PDG
2018. Therefore, one can conclude that the 30 combinations of Category 1 wherein MU and MD have
different structures are also ruled out. It may be interesting to note that even if there are changes in
the ranges of the light quark masses in the future, these 30 combinations would still be ruled out
since the structure of the CKM matrices obtained for these are not the usual ones. This, therefore,
has implications for models being built using the “top down” approach.

Considering the combinations pertaining to Categories 2 and 3, wherein MU is a matrix from class I
and MD is a matrix from class II, and vice versa, respectively, interestingly, a detailed analysis of all
these 36 combinations for each category show results similar to those for Category 1. In particular,
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if we consider the six cases IaIIa, IbIIb, etc. belonging to Category 2 or the six cases IIaIa, IIbIb,
etc. pertaining to Category 3, constructing the corresponding CKM matrices, one finds that all six
are same for each category, i.e. they have the same expressions for all nine CKM matrix elements.
This can also be checked using permutation symmetry. Corresponding to the combination IaIIa, the
matrix arrived at by using the earlier mentioned inputs is

VCKM =
⎛
⎜⎝

0.9744–0.9746 0.2238–0.2247 0.0025–0.0031
0.2234–0.2245 0.9724–0.9731 0.0561–0.0647
0.0122–0.0143 0.0547–0.0632 0.9979–0.9984

⎞
⎟⎠, (27)

whereas for the case IIaIa, we get

VCKM =
⎛
⎜⎝

0.9744–0.9746 0.2238–0.2248 0.0049–0.0080
0.2214–0.2230 0.9633–0.9670 0.1248–0.1508
0.0282–0.0364 0.1218–0.1472 0.9885–0.9922

⎞
⎟⎠. (28)

A look at these matrices reveals that although they have the usual CKM matrix structure, i.e. the
diagonal elements are nearly unity whereas the off-diagonal elements are much smaller, one may
note that none of them are compatible with the recent one given by PDG 2018, thereby ruling these
out. Similar to the Category 1 results, if one considers the remaining 30 combinations belonging to
each category, one finds that the CKM matrices now obtained do not have the usual structure. For
example, for Category 2, considering the case IcIId , the leading-order CKM matrix obtained is

VCKM =

⎛
⎜⎜⎜⎜⎜⎝

(
mu
mc

) 1
2 −e−ιαU

(
ms
mb

) 1
2 − eιαD+ιβU

(
mu
mt

) 1
2

e−ιαU

−1 ∼0 e−ιαU

(
mu
mc

) 1
2

(
mc
mt

) 1
2

eιαD+ιβU eιαD+ιβU

(
ms
mb

) 1
2

⎞
⎟⎟⎟⎟⎟⎠

.

Similarly, for Category 3, for the combination IIcId , we obtain the following leading-order CKM
matrix:

VCKM =

⎛
⎜⎜⎜⎜⎜⎝

e−ιαU

(
md
ms

) 1
2 −e−ιαU e−ιαU

(
ms
mb

) 1
2 + e−ιβD

(
mu
mc

) 1
2

e−ιβD

(
md
mb

) 1
2 −e−ιβD

(
ms
mb

) 1
2 − e−ιαU

(
mu
mc

) 1
2 −e−ιβD

eιαD eιαD

(
md
ms

) 1
2 ∼0

⎞
⎟⎟⎟⎟⎟⎠

.

A look at these two matrices clearly shows that in each, one diagonal matrix element becomes nearly
zero indicating that they do not have the usual CKM matrix structure, hence ruling out all such
possibilities.

Coming to the combinations pertaining to Category 4, wherein both MU and MD are matrices
mentioned in class II, detailed analysis of all these cases shows that unlike the matrices considered
in Category 1, the CKM matrices obtained for the six possibilities with both the mass matrices having
the same structure, i.e. of type IIaIIa, IIbIIb, etc., do not have the usual CKM matrix structure. For
example, for the case IIaIIa, the CKM matrix is given by
⎛
⎜⎜⎜⎝

eι(αD−αU)
(

ms
md+ms

) 1
2
(

mc
mc+mu

) 1
2 +

(
md

md+ms

) 1
2
(

mu
mc+mu

) 1
2

eι(αD−αU)
(

md
md+ms

) 1
2
(

mc
mc+mu

) 1
2 −

(
ms

md+ms

) 1
2
(

mu
mc+mu

) 1
2

0

−
(

md
md+ms

) 1
2
(

mc
mc+mu

) 1
2 + eι(αD−αU)

(
ms

md+ms

) 1
2
(

mu
mc+mu

) 1
2

(
ms

md+ms

) 1
2
(

mc
mc+mu

) 1
2 + eι(αD−αU)

(
md

md+ms

) 1
2
(

mu
mc+mu

) 1
2

0

0 0 1

⎞
⎟⎟⎟⎠
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As is evident, this matrix is clearly ruled out since the elements Vub, Vcb, Vtd , and Vts come out
to be 0, whereas the value of the element Vtb is 1. The other five such combinations yield similar
matrices. Further, all the remaining 30 combinations with MU and MD not having the same structure
result in CKM matrices with the element Vtb being 0, thereby ruling out all of these:

⎛
⎜⎜⎜⎜⎜⎝

(
md

md+ms

) 1
2
(

mc
mc+mu

) 1
2 −

(
ms

md+ms

) 1
2
(

mc
mc+mu

) 1
2

eι(αD−αU)
(

mu
mc+mu

) 1
2

(
md

md+ms

) 1
2
(

mu
mc+mu

) 1
2 −

(
ms

md+ms

) 1
2
(

mu
mc+mu

) 1
2 −eι(αD−αU)

(
mc

mc+mu

) 1
2

(
ms

md+ms

) 1
2

(
md

md+ms

) 1
2

0

⎞
⎟⎟⎟⎟⎟⎠

.

Finally, we come to the last possibility, wherein one can consider MU and/or MD both having
structure S19, mentioned earlier while discussing all possible texture-3 zero mass matrices. It is trivial
to note that the case wherein both MU and MD have structure S19 is ruled out as the corresponding
CKM matrix obtained would be a unit matrix. Next, we consider MU being S19, whereas MD belongs
to Class I. Pertaining to this combination, out of the six possible cases, if MD is considered to have
structure Ia, one arrives at a CKM matrix having the usual structure,

VCKM =
⎛
⎜⎝

0.9748–0.9763 0.2160–0.2227 0.0004–0.0008
0.2134–0.2209 0.9644–0.9682 0.1243–0.1518
0.0281–0.0336 0.1211–0.1480 0.9884–0.9922

⎞
⎟⎠, (29)

though this matrix is ruled out by comparing it with the one given by PDG 2018. For the remaining
five cases, the structure of the CKM matrix is not the usual one, hence ruling these out. Further, one
can also consider MD having the form S19, whereas MU can have any of the six structures belonging
to Class I. Out of all the six CKM matrices obtained pertaining to these combinations, only one case,
wherein MU has the structure Ia, yields a CKM matrix having the usual structure:

VCKM =
⎛
⎜⎝

0.9985–0.9992 0.0387–0.0537 0.0024–0.0031
0.0388–0.0539 0.9967–0.9974 0.0560–0.0647
0.0000–0.0001 0.0561–0.0647 0.9979–0.9984

⎞
⎟⎠, (30)

but these matrix elements do not lie within the range given by PDG 2018, and hence this is also ruled
out. For the other five cases, the CKM matrices arrived at do not have the usual structure.

One can also consider the possibilities wherein either MU or MD has structure S19, whereas corre-
spondingly MD or MU respectively belongs to Class II. It can be easily checked that for all 12 such
cases, the CKM matrices thus constructed are found to have four vanishing elements, hence ruling
out all these possibilities.

To summarize, in view of the refinements in the measurements of small quark masses mu, md , and
ms, as well as in the CKM matrix elements, we have carried out an extensive analysis of all possible
quark mass matrices having minimal texture, implying texture-6 zero quark mass matrices. In all, we
have examined 169 possible texture-6 zero combinations; interestingly, many of these combinations
can be ruled out analytically. For the remainder, corresponding CKM matrices have been constructed
and compared with the latest mixing data. Again, one finds that all these possibilities are excluded by
the present quark mixing data. These conclusions remain valid even if, in future, there are changes
in the ranges of the light quark masses or if there are small perturbations in the structures of these
texture-6 zero mass matrices. In conclusion, all the 169 possible quark mass matrices with minimal
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texture are ruled out in the present era of precision measurements, with important implications for
model building.
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