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Abstract We investigate the gravitational field of a charged,
non-vacuum, non-rotating, spherically symmetric body of
mass M assuming a static solution to the Einstein–Maxwell
field equations. We show the characteristics of perihelion
precession of orbits in the case of charged naked singularity
(CNS) spacetime. Here we discuss some novel features of
light-like geodesics in this spacetime. We also discuss the
comparative study of tidal force in the null singularity space-
time and charged naked singularity spacetime.

1 Introduction

The Event Horizon Telescope (EHT) collaboration, by
releasing the first image of the astrophysical black hole at the
center of M87 galactic center [1,2] and the subsequent image
of the black hole at the center of our own galaxy - Sagittarius
A* (Sgr A*) [3] has opened up new horizons in the field of
astrophysics and black hole physics. Theoretically, there are
many possible solutions of Einstein’s field equations other
than a black hole (BH). A naked singularity (NS) is one such
example [4,5]. Null geodesics can escape from such a singu-
larity (i.e., NS) and would be observable to a distant observer
under certain conditions of gravitational collapse [6,7]. The
singularity could then be locally or globally visible depend-
ing upon the time of formation of trapped surfaces and the
apparent horizon. Recent observational studies of modified
gravity, suggest alternative models of the compact object [8–
11]. In the case of NS, most of the studies are focused around
the accretion discs [12–14], dark matter [15], shadows cast by
them [16–18], and particle trajectories around them [19,20].
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If both BH and NS exist in nature, they should have
highly distinct features both physically and causally along
with diverse astrophysical signatures. Here, we take into con-
sideration two particular spacetimes as examples, namely the
future-null singularity (FNS) [21–23] and charged naked sin-
gularity (CNS, which we introduce in this work), in order
to explore the possibilities of identifiable observational sig-
natures. The different kinds of physical conditions in the
presence of compact objects (BH and NS) would affect the
motion of particles and matter around them (resulting in dis-
tinct observable signatures), serving as a tool for identifying
them.

From an observational standpoint, it might be interesting
to note that the UCLA Galactic Centre Group has recently
shown that one can effectively use short-period stars (like
S2) orbiting around our galaxy’s supermassive central com-
pact object to study gravitation theory in the strong field
regime [24]. In [25–27], it has been shown that for circular
motion of test particles in Reissner-Nordström (RN) space-
time with vanishing angular momentum shows effects of
repulsive gravity. Similar to the RN case we have shown
here that the effect of charge could play a significant role in
the formation of stable circular orbits even with zero angular
momentum.

Further, it is generally believed that a test body approach-
ing a static, spherically symmetric compact object experi-
ences compression in the angular and spaghettification in the
radial directions, as in the case of Schwazchild BH and FNS
[28]. In the case of electrically charged compact objects (e.g.,
RN BH) it has been shown by Crispino et al. [29] that radial
and angular components of the tidal effects experienced by
a freely falling test body changes sign at the null hypersur-
face. It is interesting to note that the charge-to-mass ratio
of the charged compact object and the position of the test
body determine whether it would experience stretching or
compression in a radial or angular direction in the vicinity
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of a charged compact object. The above facts motivated us
to make a comparative study on the effects of tidal forces
experienced by a test body in the vicinity of FNS and RN
spacetimes in our present work.

In this article, the Einstein–Maxwell field equations for
a static spherically symmetric spacetime with a non-zero
energy-momentum tensor (non-vacuum case) are discussed.
We analyze three geometrical properties of spacetime: (i)
the nature of the precession of charge-less test particles, (ii)
the shadow and gravitational lensing property of lightlike
geodesics, and (iii) tidal force(s) in CNS spacetime. It follows
that it is worthwhile to investigate the theoretical predictions
for plausible BH and NS spacetime signatures, as well as
their differences and similarities. Understanding a particle’s
nature of precession in such spacetimes could be a difficult
and fruitful problem in general relativity (GR), which is typi-
cally handled in terms of the timelike geodesics along which
a test particle moves in a particular spacetime.

Our present work is organized as follows. In Sec. 2, we
introduce a charge in the FNS spacetime. We study the nature
of the spacetime singularity and the energy conditions are
explored for the same. In Sec. 3, we investigate the timelike
geodesics and the nature of the precession of a test particle in
the CNS spacetime. Our Sec. 4 is dedicated to study the tidal
forces (radial and angular) acting on free-falling test bodies in
CNS spacetime. In Sec. 5, we briefly discuss and summarize
the results of our present investigation. Throughout the paper,
the signature (-,+,+,+) and the geometric units in which G =
1 = c, are used.

2 Charged naked singularity spacetime (CNS)

The metric of a static and spherically symmetric null singu-
larity spacetime can be written as,

ds2
FNS = −

(
1 + M

r

)−2

dt2 +
(

1 + M

r

)2

dr2 + r2d�2 ,

(1)

where d�2 = dθ2 + sin2θdφ2 and M is the ADM mass of
the spacetime. It is shown in [22] that there is a strong null
singularity at the center of the spacetime in Eq. (1). The Pen-
rose diagram of spacetime can be used to determine the type
of spacetime singularity. The Penrose diagram allows us to
explain the entire spacetime manifold in a limited-size causal
diagram by transforming the temporal and radial coordinates.
The compactification of coordinates is as follows:

T = tan−1(t + r∗) + tan−1(t − r∗)
R = tan−1(t + r∗) − tan−1(t − r∗) (2)

where for Eq. (1),

r∗ = r − M2

r
+ 2M log r. (3)

In order to determine the nature of the singularity at r → 0,
we need to check the value of T and R as r → 0. From the
above Eq. (3), it can be verified that as r → 0 for any finite
value of t , r∗ → −∞, clearly suggesting that the singular-
ity thus formed at r = 0 corresponding to the line element
defined in Eq. (1) is null in nature. (Similarly one would
get a timelike singularity if for any finite t , r∗ → 0 when
r → 0) (See e.g., [30]). There is no event horizon around
the singularity. Moreover, this future null singularity (FNS)
spacetime satisfies both weak and strong energy conditions
[22]. For our present investigation, we introduce an electric
charge in FNS spacetime, and the corresponding action for
the electromagnetic field can be expressed as:

S =
∫ √−g

(
R

16πG
− 1

4
(FμνF

μν)

)
d4x, (4)

where, Fμν is the usual electromagnetic field tensor. The
associated Einstein–Maxwell field equation is given as fol-
lows:

Rαβ − 1

2
Rgαβ = Gαβ = 8π(T M

αβ + T EM
αβ ), (5)

where, T M
αβ is the energy-momentum tensor of distributed

matter in FNS spacetime given in [21,22], while T EM
αβ is the

energy-momentum tensor of electromagnetic energy,

T EM
αβ = 1

μ0

(
1

4
gαβFμνF

μν − gβνFαμF
νμ

)
. (6)

The total energy-momentum tensor of the matter field and
charge distribution is given as follows:

− T 0
0 = M2(M + 3r)

r2(M + r)3 + Q2

r4 , (7)

T 1
1 = −M2(M + 3r)

r2(M + r)3 − Q2

r4 , (8)

T 2
2 = 3M2

(M + r)4 + Q2

r4 , (9)

T 3
3 = 3M2

(M + r)4 + Q2

r4 . (10)

The most general static and spherically symmetric spacetime
metric is given by:

ds2 = − f (r)dt2 + dr2

g(r)
+ r2(dθ2 + sin2 θdφ2) . (11)
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Fig. 1 Conformal diagram of charged naked singularity spacetime

By solving the Einstein field equation that is Eqs. (5) using
the geometry given in Eqs. (11) and total energy-momentum
tensor given in Eqs. (7), (8) and Eqs. (9). We get f (r) = g(r),
where,

f (r) =
((

1 + M

r

)−2

+ Q2

r2

)
. (12)

This corresponds to a static spherically symmetric body
where the charged matter is distributed over the spacetime.
The static charge that surrounds such an object contributes
to the energy distribution of the spacetime, modifying the
spacetime structure. For example, when an electric charge
is introduced in a Schwarzschild BH, resulting in the RN
BH, the nature of singularity changes, i.e., from spacelike to
timelike. However, there is a large possibility that the charge
near the singularity plays a significant role in the instability
of spacetime singularity. In the CNS case, as shown in Fig. 1,
spacetime singularity is timelike. Here we do not claim that
this singularity is stable instead we show that charge in FNS
spacetime changes a causal structure similar to the RN case.
The corresponding Penrose diagram for the given metric (11)
is in the Fig. 1.

Presented metric (11) is asymptotically flat and the inclu-
sion of electric charge in this spacetime is attributed to the
form of the chosen action, similar to that of RN black hole
spacetime. The corresponding Kretschmann scalar (K =
Rαβγ δ Rαβγ δ) and Ricci scalar for this new Charged Naked

Singularity (CNS) are:

K = 4

r8

[
−

2 MQ2r2
(
M3 + 4 M2 r + 6 M r2 + 12 r3

)
(M + r)4

+ M2 r4

(M + r)8

(
M6 + 8 M5r + 26 M4r2 + 44 M3r3

+46 M2 r4 + 24 M r5 + 12 r6
)

+ 14 Q4)
]
, (13)

and,

R = 2M3(M + 4r)

r2(M + r)4 . (14)

We observe that the values of the Kretschmann scalar and
Ricci scalar blow up as r → 0, suggesting the existence of
a strong curvature singularity at r = 0. We do not have any
null surface covering the singularity, i.e., in simpler terms,
there is no event horizon around the singularity and hence the
spacetime singularity is visible to an asymptotic observer.

From the above set of Eqs. (7–10), it can be easily verified
that null, weak and strong energy conditions are satisfied:

ρ > 0, ρ + pr = 0, ρ + pr + pθ + pφ > 0. (15)

The CNS spacetime also satisfies the dominant energy con-
dition, viz., pr + pθ > 0.

3 Timelike and lightlike geodesics in charged naked
singularity spacetimes

As discussed in Sec. 2, CNS spacetime is asymptotically
flat and harbors a central strong curvature singularity which
is not covered by an event horizon. It has temporal and
rotational (about the azimuthal angle) symmetries leading
to two associated Killing vectors: ξ

μ
t = (1, 0, 0, 0) and

ξ
μ
φ = (0, 0, 0, 1), such that ξ

μ
t ∂μ = ∂t and ξ

μ
φ ∂μ = ∂φ .

The corresponding conserved quantities:

E = ṫ f (r), l = φ̇ r2, (16)

where E and l are the energy per unit rest mass and con-
served angular momentum for a freely falling particle in
CNS spacetime, respectively. Here, the ‘overdot’ means a
derivative with respect to the ‘proper time’ (τ ) of the par-
ticle. Using the normalization condition (for timelike parti-
cles), uα uα = −1, the total energy (E) of the freely falling
massive particle can be written as,

E =
(
dr

dτ

)2

+ Vef f (r), (17)
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Fig. 2 In this figure, particle orbits in charged null singularity space-
time are shown. It can be seen that for M = 1, L = 4, E = 0.99,
and Q = 2.5, the angular distance traveled by the particle to reach one

perihelion point to another perihelion point is less than 2π , whereas,
for Q = 0.4, it reaches after 2π rotation. Unbound orbits are shown as
c

where E = E2. The corresponding effective potential in
which a test particle of mass m moves in the equatorial plane
for CNS is given by:

(Vef f )CNS = f (r)

(
1 + l2

r2

)
. (18)

For a bound orbit, at maximum radial distance (rmax ) and
minimum radial distance (rmin), these condition must be sat-
isfied:

Vef f (rmin) = Vef f (rmax ) = E ,

E − Vef f (r) > 0 , ∀ r ∈ (rmin, rmax ). (19)

For a stable circular orbit of a test particle around a super-
massive object, at rmin = rmax = rc, the energy of a par-
ticle is given by Vef f (rc) = E and V ′

e f f (rc) = 0 and
V ′′
e f f (rc) > 0, where rc is the radius of the stable circular

orbit, and ‘prime’ (′) represents a derivative with respect to
the radial coordinate r . Using these facts, the innermost sta-
ble circular orbit (ISCO) in CNS spacetime for l = 0 is at,

rc = rI SCO = Q2

4M
+ 1

2

√
Z − X + Y

+1

2

√√√√
2Z + X − Y + 24MQ2 + 12Q4

M + Q6

M2

4
√
Z − X + Y

, (20)

where,

X = 4(2/3)1/3M3Q2

(
9M5Q4 + √

3
√

256M12Q6 + 27M10Q8
)1/3 ,

Y =
(

9M5Q4 + √
3
√

256M12Q6 + 27M10Q8
)1/3

(3)2/3(2)1/3M
,

Z = 2Q2 + Q4

(4M2)
. (21)

From Eq. (20), if Q = 0, rI SCO = 0, i.e., in FNS space-
time ISCO forms at r = 0. From the expression of effective
potential in (18), we can derive the expression of l and E for
circular timelike geodesics,

E =
(
Q2

r2 + r2

(M+r)2

)
√

2Q2

r2 + r3

(M+r)3

, l =
r2

√
− Q2

r4 + M
(M+r)3√

2Q2

r2 + r3

(M+r)3

. (22)

Using the expressions of conserved quantities for circular
geodesic, one can show that no circular orbit is possible in
the range: 0 ≤ r < rI SCO . However, for an innermost stable
circular orbit, need to satisfy (V ′′

e f f )CNS > 0 along with the
above two conditions in Eq. (22). In terms of the ADM mass
M and charge Q, with condition l = 0, the expression of
(V ′′

e f f )CNS becomes:

(V ′′
e f f )CNS = 6Q2

r4 + 2M(M − 2r)

(M + r)4 . (23)

For ISCO at r = rI SCO and Q > 0, Eq. (23) gives a positive
finite value which suggest rI SCO is stable. The minimum
value of energy for a stable circular orbit is given by:

EI SCO =
√

(rI SCO)2(2M + rI SCO)

(M + rI SCO)3 . (24)

The shape of the orbit of a test particle in the CNS spacetime
can be derived from Eq. (17),

dφ

dr
= l

r2
√

2(E − Vef f (r))
, (25)
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where φ and r are the azimuthal and radial coordinates,
respectively. Now, using the above equation one can define
the following second-order differential equations for timelike
geodesic in CNS spacetime,

d2u

dφ2 = M

l2(1 + Mu)3 − u

(
Q2

l2
+ 1

(1 + Mu)2

)

+ Mu2

(1 + Mu)3 − 2Q2u3, (26)

where u = 1
r . From the orbit Eq. (26), one can get informa-

tion about the shape of orbits in charged naked singularity
spacetime and can compare them to RN-BH spacetime.

3.1 Approximate solution of orbit equations in charged
naked singularity spacetime

The orbit Eq in (26) is highly complicated and is difficult
to analyze analytically. Hence to check the nature of the pre-
cession of orbit(s) we Taylor expand Eq. (26). The corre-
sponding orbit equation for a test particle that is revolving in
the weak gravity region now becomes:

d2u

dφ2 = M

l2
−

(
1 + 3M2

l2
+ Q2

l2

)
u +

(
3M + 6M3

l2

)
u2 +

−
(

6M2 + 10M4

l2
+ 2Q2

)
u3 + O(u4). (27)

With this approximation, one can get important information
about the nature and shape of bound orbits which are difficult
to get from the original orbit equation (26). Further, we
consider two more approximations: (i) an approximation on
the radial distance which is a weak gravity approximation,
and (ii) by considering the small values of eccentricity (e).
This approximate solution of the orbit equation method is
extensively discussed in [19]. We can write the first-order
eccentricity approximate solution [31,32] for the given orbit
Eq. (27) as follows:

ũ = 1

p

[
1 + e cos(m0φ) + O(e2)

]
, (28)

where m0 and p are positive real values and ũ = Mu. If
m0 < 1, it implies that for one full periodic rotation φ > 2π .
When the precession angle δ = φ−2π gives a positive value,
the nature of the precession of the test particle trajectories is
called a positive precession. Schwarzschild spacetime always
shows positive precession for all parameters of space (See,
e.g., [19]). Similarly m0 > 1 gives the negative value of δ

and is known as negative precession, while for δ = 0 when
m0 = 1 is the Newtonian case.

Using the 3rd order approximated solution of u and con-
sidering the eccentricity approximation as given in Eq. (28),
we can get the following expression of p and m for CNS

spacetime:

p = β

3α
− 21/3ψ

3α
(
� + √

4ψ3 + �2
)1/3

+
22/3

(
� + √

4ψ3 + �2
)1/3

6α
,

m0 =
√

β − 2γ

p
+ 3ω

p2 , (29)

Where, ψ = (−β2 + 3αγ ), � = (2β3 − 9αβγ + 27α2ω),
and

γ =
(

3M + 6M3

l2

)
, β =

(
1 + 3M2

l2
+ Q2

l2

)
,

α = M

l2
, ω =

(
6M2 + 10M4

l2
+ 2Q2

)
. (30)

The above set of equations determine the nature of preces-
sion for two the spacetimes: FNS (Q = 0) and CNS (Q > 0):

1. For Q = 0: the value of m0 given in Eq. (29) is always
smaller the 1 suggesting that FNS spacetime always pos-
sesses positive precession like Schwarzschild spacetime.

2. For Q > 0: From Eq. (29), when the charge to mass ratio
is greater than 1.3, (i.e., Q

M > 1.3) we have m0 > 1 and

thus negative precession while for 0 <
Q
M < 1.3 we have

m0 < 1 and thus positive precession of the test particle
around the supermassive compact object.

The above-given value of charge-to-mass ratio 1.3 is an
approximate value that can be fine-tuned by taking higher
order correction.

3.2 Lightlike geodesics

As discussed earlier, CNS is spherically symmetric and static,
hence for the θ = π/2 (i.e., for the equatorial plane) we have
(with f (r) = g(r)) [22],

1

b2 = 1

l2

(
dr

dλ

)2

+ Wef f , (31)

where Wef f = f (r)/r2 and b is impact parameter defined by
b = E/ l. To obtain Eq. (31), we use the condition kμkμ = 0,
where kμ is the null four-velocity. The stable and unstable
orbits of photons can be investigated based on the nature
of the effective potential of the spacetime. For an unstable
circular orbit the effective potential should have an extrema
at a finite radius, r = rph . The sphere that corresponds to this
particular radius, rph is known as the photon sphere. One can
obtain the radius of the photon sphere by the following two
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Fig. 3 Gravitational lensing when: a Q << M, (Q = 0.01), b Q < M, (Q = 0.5), c Q = M, (Q = 1), d Q > M, (Q = 1.5)

conditions:

dW (rph)

dr
= 0,

d2W (rph)

dr2 < 0. (32)

We would have a photon sphere at rph if the above two condi-
tions are satisfied for any spacetime. One can find the turning
points of null geodesics by:

Wef f = E2

l2
= 1

b2
tp

. (33)

where,

btp = rtp√
f (rtp)

, (34)

and rtp is the radius of the turning points. If there is
only a single extremum value of the effective potential of
null geodesics for any spacetime and simultaneously, if the
extremum value corresponds to the maximum value of the
effective potential, then the minimum value of the impact
parameter of the turning point becomes equal to the impact
parameter of the photon sphere, i.e., btp = bph , (bph =
impact parameter of the corresponding photon sphere). As a
result, incoming light-like geodesics from a source at infinity,
will not reach an asymptotic observer for an impact param-
eter b < bph . These geodesics will be trapped inside the
photon sphere and hence, the null geodesics coming from
behind the compact object would create a shadow of radius
bph for the asymptotic observer (due to the presence of the
photon sphere). On the contrary, if there is no photon sphere
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Fig. 4 Radial tidal force (TR) v/s. radial distance r

for any spacetime and the effective potential is diverging at
the origin, no shadow would be formed (for that particular
spacetime). This is the case with CNS, (we do not get any
shadow because of such geometric structure). However, as
can be seen in Fig. 3, lensing of CNS spacetime suggests
that if such objects exist in nature, they would be highly
luminous objects.

4 Tidal force

In this section, we investigate the effect of tidal force on a test
body near CNS and compare them with Schwarzchild (SCH),
RN, and FNS spacetimes, respectively. To investigate tidal
force in the framework of the general theory of relativity we
analyze the equation of geodesic deviation:

D2ημ

Dτ 2 − Rμ
νρσ vνvρησ = 0, (35)

where Rμ
νρσ and vν are the Riemann curvature tensor and

unit tangent vector of the geodesic respectively and ημ is the
geodesic deviation vector. Any non-zero gradient in the grav-
itational field implies that each point on the geodesics has a
different curvature and thus, at each point of the test body
will follow a unique geodesic, leading to stretching and/or
squeezing known as tidal effect. To find these stretching and
squeezing effects, we use the Jacobi field (a vector field along
a geodesic), which is the separation between two infinitesi-
mally close geodesics. Note that an observer’s perspective on
the relative spatial acceleration of the two particles is useful
in understanding the physical implications of the geodesic
deviation effect.

In the Jacobi fields, we first define the tetrad components
of a free-falling frame:

êμ

0̂
=

{
E

f (r)
,−

√
E2 − f (r), 0, 0

}
,

êμ

1̂
=

{−√
E2 − f (r)

f (r)
, E, 0, 0

}
,

êμ

2̂
=

{
0, 0,

1

r
, 0

}
, êμ

3̂
=

{
0, 0, 0,

1

r sin θ

}
. (36)

In the instantaneous rest frame (IFR), Eq. (35), can be
expressed as

d2 ηα̂

dτ 2 = Rα̂

0̂0̂γ̂
ηγ̂ , (37)

where, Rα̂

β̂γ̂ δ̂
= Ra

bcde
α̂
a e

b
β̂
ec
γ̂
ed
δ̂

. Considering the vectors are

parallelly transported along the geodesic and exploring the
above equations (36) and (37), we obtain the relative accel-
eration between two nearby particles in radial and tangential
directions as follows:

D2ηr̂

Dτ 2 = − f ′′

2
ηr̂ ,

D2ηî

Dτ 2 = − f ′

2r
ηî , (38)

where i = θ, φ. Substituting the metric component f (r) etc.,
we obtain for radial tidal force,

D2ηr̂

Dτ 2 = −
(
M(M − 2r)

(M + r)4 + 3Q2

r4

)
ηr̂ , (39)

and for the angular part, we have:

D2ηî

Dτ 2 =
(
Q2

r4 − M

(M + r)3

)
ηî . (40)

The above two equations represent the tidal force for a radi-
ally free-falling frame in the CNS spacetime. Also one can
observe from the equation that tidal force in this spacetime
metric depends on the mass and charge of the compact object.
Interestingly, the radial and angular components of tidal force
vanish for some particular radius (depending upon M and Q),
in contrast to the Schwarzschild spacetime while similar to
RN spacetime.

4.1 Radial tidal force

We observe from Eq. (39), that the radial tidal force for
CNS spacetime goes to negative infinity when the radial
distance tends to zero from the spacetime singularity (i.e.,
r → 0), which is similar to RN spacetime [29], leading to
infinite compression in contrast to the Schwarzchild space-
times, (where we have infinite spaghettification). The radial
component of tidal force vanishes for r → ∞ and as we move
towards the singularity, at some particular radius, the radial
component achieves a local maxima (depending on specific
values of M and Q) after which it falls, goes zero again and
proceeds to negative infinity. When the radial component
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Fig. 5 a Radial tidal force for Q < M, (M = 1, Q = 0.5). b Radial tidal force for Q = M = 1. c Radial tidal force for Q > M, (M =
1, Q = 1.5). d Angular tidal force for Q < M, (M = 1, Q = 0.5). e Angular tidal force for Q = M, (M = 1 = Q). f Angular tidal force for
Q > M, (M = 1, Q = 1.5)

vanishes for a finite positive value of r, any local observer
can observe singularity without the influence of radfial tidal
force. As we increase the value of the charge Q, local maxima
shifts right as the particle falls radially from infinity.

4.2 Angular tidal force

As can be seen from Fig. 6, we observe that similar to the
radial component, the angular part of the tidal force van-
ishes as r → ∞. The angular component becomes zero for
a certain finite positive value of r and we have local min-
ima (depending upon the combination of Q and M) beyond
which the angular component goes to positive infinity (as we
move towards the spacetime singularity), signifying spaghet-
tification similar to RN spacetime.

4.3 Comparison of tidal force between CNS, RN, FNS, and
Schwarzchild spacetimes

When we compare the nature of the tidal forces in CNS with
Schwarzchild, RN, and FNS spacetimes, we find some dis-
tinct features. We observe that for the radial component of the
tidal forces, there is an infinite compression for CNS simi-
lar to RN spacetime, and in contrast to Schwarzchild and
FNS spacetimes. It is to be noted that in CNS, there would
be small spaghettification followed by infinite compression
for smaller values of Q (i.e., for Q slightly greater than M).
As we increase the value of Q, spaghettification decreases
and for large values of Q there would be no spaghettifi-

Fig. 6 Angular tidal force (TA) v/s. radial distance r

cation (in contrast to FNS and Schwarzchild spacetimes).
In CNS spacetime, there is a rapid change in spaghettifica-
tion as we increase the value of Q and for large values of
Q, there would be no spaghettification, similar to RN. In
FNS, there is a finite spaghettification followed by a finite
compression while there is infinite spaghettification and no
compression in Schwarzchild spacetime as the test body
approaches the spacetime singularity. For all the three cases,
Q > M Q = M and Q < M , the compression sets-in
much earlier w.r.t. RN and FNS spacetimes

As for the angular part, we observe that in CNS there is a
local minima for Q ≤ M followed by infinite compression.
As we increase Q, we observe that the value of local minima
decreases and for a large value of Q, there is only infinite
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spaghettification and no compression (similar to RN space-
time). In FNS spacetime, we have finite compression while
in Schwarzchild we have infinite compression.

5 Results and discussion

In this present work, we introduce and analyze the CNS
spacetime which is a solution of Einstein–Maxwell field
equations. We have mainly focused on the dynamics of parti-
cle trajectories and tidal force in CNS spacetime. The results
from this study can be summarised as follows:

• In the timelike geodesics, we observe that the nature of
the precession of particles changes when the charge-to-
mass ratio is larger than 1.3 (Q/M > 1.3), the angular
distance traveled by the particle to reach one perihelion
point to another perihelion point is less than 2π , while for
Q/M < 1.3, it is larger than 2π . It is interesting to note
that for CNS, in contrast to FNS spacetime, ISCO does
not occur at r = 0, rather it occurs at some finite positive
value of r which is a function of the mass M and charge
Q as shown in (20) for l = 0. It is interesting to note that
as we do not get ISCO for l = 0 in Schwarzchild and
FNS spacetimes.

• In the CNS spacetime photon sphere and shadow are not
present which implies that the central compact object
is highly luminous. We studied the gravitational lensing
effect in CNS spacetime where we observed that, for fixed
energy photons if a charge value is much smaller than
the mass of the object, the lensing of the photon is higher
while a large value of charge shows a diverging trajectory.

• In the CNS spacetime, we observe that the nature of the
tidal forces has some similarities with that of the RN and
differences from the Schwarzchild and FNS spacetime.

1. The Figs. 4, 5 and 6 show the behaviour of the radial
and angular tidal forces for different values of charge
Q when the mass M is kept fixed at 1. It is to be noted
that for radial tidal forces, there is infinite compres-
sion for CNS while for the angular part there is infinite
spaghettification, respectively.

2. Figure 5a–c show a comparison of radial tidal force
while Fig. 5d–f show the comparison for the angu-
lar tidal force for CNS, Schwarzchild, RN and FNS
spacetimes. It is observed that both spaghettification
and compression set-in earlier in CNS as compared
to the RN spacetime.
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