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Abstract We consider dark energy models obtained from
the general conformal transformation of the Kropina metric,
representing an (α, β)-type Finslerian geometry, constructed
as the ratio of the square of a Riemannian metric α and the
one-form β. Conformal symmetries appear in many fields
of physics, and they may play a fundamental role in our
understanding of the Universe. We investigate the possibility
of obtaining conformal theories of gravity in the osculating
Barthel–Kropina geometric framework, where gravitation is
described by an extended Finslerian-type model, with the
metric tensor depending on both the base space coordinates
and a vector field. We show that it is possible to formulate a
family of conformal Barthel–Kropina theories in an osculat-
ing geometry with second-order field equations, depending
on the properties of the conformal factor, whose presence
leads to the appearance of an effective scalar field of geo-
metric origin in the gravitational field equations. The cosmo-
logical implications of the theory are investigated in detail
by assuming a specific relation between the component of
the one-form of the Kropina metric and the conformal fac-
tor. The cosmological evolution is thus determined by the
initial conditions of the scalar field and a free parameter of
the model. We analyze in detail three cosmological models
corresponding to different values of the theory parameters.
Our results show that the conformal Barthel–Kropina model
can provide an acceptable description of the observational
data, and may represent a theoretically attractive alternative
to the standard �CDM cosmology.
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1 Introduction

Einstein’s theory of general relativity (GR) represents an
impressive scientific achievement of the last century. Its
exceptional success is mainly due to its remarkable geomet-
ric description of gravity [1,2]. GR is a far-reaching theory
of spacetime, matter, and gravity which gives a very precise
account of the dynamics of the solar system. However, when
extended to very large and very small scales, the theory faces
several important problems, mainly deriving from cosmol-
ogy and quantum field theory. Moreover, several recent cos-
mological observations have raised serious concerns about
the validity of GR as the theoretical foundation of cosmol-
ogy.

The discovery of the recent acceleration of the Universe
[3–5] can be explained very well by reinserting into the Ein-
stein gravitational field equations the old and much debated
cosmological constant � [6], together with a mysterious (and
not yet understood) matter-type component, called dark mat-
ter. Dark matter is supposed to be pressureless, and cold. In
recent years, the �CDM (� Cold Dark Matter) cosmological
model has become the standard paradigmatic approach for
the interpretation of cosmological data, and in this respect it
is extremely successful. However, there are a few important
open questions that may suggest that �CDM is just a first
approximation of a more realistic model yet to be found [7].
Firstly, it lacks a firm theoretical basis (no generally accepted
explanation of the geometrical or physical character of the
cosmological constant is known), and secondly, despite the
extremely intensive experimental and observational effort,
the particles assumed to form dark matter have not been dis-
covered yet in terrestrial experiments or astrophysical obser-
vations.

The tremendous increase in the precision of recent cos-
mological observations and the technological advances in
the field have led to another important challenge the �CDM
standard paradigm must face. There are significant devia-
tions between the Hubble expansion rates of the Universe
as measured by the Planck satellite experiment using cos-
mic microwave background radiation (CMBR), originat-
ing from the early Universe as a result of the decoupling
of matter and radiation, and the low redshift (local) mea-
surements. These differences in the values of the present-
day Hubble constant H0 are generally called Hubble ten-
sion, which could represent a fundamental crisis in cos-
mology [8–14]. The difference in the determination of the
numerical values of H0 as obtained by the Planck satel-
lite, H0 = 66.93 ± 0.62 km/s/Mpc [13,14], and the values
of H0 = 73.24 ± 1.74 km/s/Mpc [10] determined by the
SH0ES collaboration exceeds 3σ [14]. The Hubble tension,
if it indeed exists, points strongly towards the need to find
new gravitational theories, as well as to replace the �CDM
model with an alternative one.

The Big Bang singularity, so important for the under-
standing of the nature of the Universe, is still unexplained in
the framework of the �CDM cosmology, and it seems that
GR cannot describe the Universe at extremely high-density
phases and in the presence of very strong gravitational fields.
On the other hand, there is very little progress, if any, in
the quantization of spacetime, geometry, and gravity [15].
Since a quantum description of the gravitational interaction
is (still) missing, and there is no complete quantum formula-
tion of gravity, GR cannot yet be considered as a fundamen-
tal physical theory similar to the other theories of physics so
successfully describing elementary particle interactions.

The solution of these fundamental problems may require
the consideration of novel theories of gravity, which contain
GR as a particular weak field limit. There are a large number
of attempts to construct gravitational theories as alternatives
to GR, and they are constructed by using various, and some-
times very different, mathematical and physical perspectives
(for comprehensive and detailed reviews of modified gravity
theories and their astrophysical and cosmological applica-
tions, see [16–19].

One of the interesting approaches to gravitational phe-
nomena is related to the use of the conformal transforma-
tions (rescalings) [20–29]. The important role that confor-
mal transformations and structures may play in gravitational
physics and cosmology was suggested by Penrose [20], who
developed an interesting cosmological model called confor-
mal cyclic cosmology (CCC). This theoretical model origi-
nated from consideration of the fact that when the de Sitter
exponentially accelerating stage, triggered by the existence
of the positive �, ends, the spacetime is conformally flat and
space-like. This geometry coincides with the initial boundary
of the very early Universe immediately after the Big Bang. In
the CCC model, one assumes that the Universe is made up of
eons, which represent time-oriented manifolds, with the con-
formally invariant compactifications possessing space-like
null infinities. The CCC model has been studied in detail in
[21–27].

The important role of the local conformal symmetry trans-
formations was pointed out by ’t Hooft [28], where it was
shown that conformal symmetry is an exact symmetry of
nature that is broken spontaneously. The breaking of the con-
formal symmetry could reveal a physical process explaining
the small-scale properties of gravity. Conformal symmetry
could be of equal importance as the Lorentz symmetry of the
fundamental equations and laws of the elementary particle
physics, and it may contribute significantly to the understand-
ing of the physics of the Planck scale. By supposing that local
conformal symmetry is an exact but spontaneously broken
symmetry of the physical world, a theory of the gravitational
interaction was proposed in [29]. In this theory, the confor-
mal part of the metric is interpreted as a dilaton field. The
theory has interesting physical consequences, with the black
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holes transformed into topologically trivial, regular solitons,
without singularities, firewalls, or horizons.

By using conformal transformations of the metric and
of the physical and geometrical quantities, it is possible
to reduce gravitational theories containing higher-order and
non-minimally coupled terms to GR plus some minimally
coupled scalar fields [30–32]. Hence, in the GR framework,
it is possible to change frames via conformal transforma-
tions. Two frames obtained from each other by conformal
transformations are called conformal frames. It is impor-
tant to point out that conformal frames are mathematically
equivalent [30–32]. However, their physical equivalence is
a topic that has generated strong debate among physicists
[31,32]. Among the many possible conformal frames, two
are of special interest: the Einstein frame and the Jordan
frame. In the Einstein frame, there are only minimal cou-
pling terms in the action. On the other hand, in the Jor-
dan frame, non-minimal couplings between the gravitational
fields, described by equivalent geometric quantities, and the
other fields are present [32].

The conformal transformations can also be interpreted,
both mathematically and physically, as local unit transfor-
mations (rescaling of the lengths and distances). They were
first considered by Hermann Weyl in his proposal for a uni-
fied theory of gravitation and electromagnetism [33–35], in
which he also introduced the first generalization of the Rie-
mann geometry. Weyl called the conformal transformations
gauge transformations. Gauge transformations have become
the standard theoretical tool in elementary particle physics,
and gauge field theories are the basis of our present-day
understanding of the properties of the elementary particles.
On the other hand, in the field of gravitational theories, the
Weyl gauge transformations are called conformal transfor-
mations, and the invariance of physical laws or geometric
quantities under them is called conformal invariance [30–
32]. The electromagnetic field equations satisfy the local
scale invariance. At this moment, one should note that local
scale transformations do not keep the magnitudes of the vec-
tors constant, as they are parallelly displaced in the spacetime
manifold. In Riemannian geometry, a nonvanishing curvature
implies that the direction of a vector parallelly transported
around a closed path is modified with respect to the direction
of the initial vector, while its length remains unchanged. On
the other hand, in Weyl geometry, the length of a vector is
modified when parallelly transported around a closed loop,
with the change being a function of the spacetime position.
Gravitational models and theories based on the Weyl geom-
etry have been extensively investigated and studied in the
mathematical and physical literature [36–69].

In the same that year Weyl proposed his beautiful gener-
alization of Riemann geometry, another important geomet-
ric theory was published. This is called Finsler geometry
[70], and it also represents an important extension of Rie-

mann geometry. Even if Chern stated that Finsler geometry is
”…just Riemannian geometry without the quadratic restric-
tion,” in the following, we will still refer to Finsler geometry
as a generalization of Rimeann geometry. Actually, the geom-
etry of Finsler had already been predicted by Riemann [71],
who defined a geometric structure in a general space as given
by the expression ds = F

(
x1, . . . , xn; dx1, . . . , dxn

) =
F(x, dx). In this definition, for a nonzero y, y �= 0, the func-
tion F(x, y), called the Finsler metric function, must be a
positive function defined on the tangent bundle T M . More-
over, F(x, y) must satisfy the important requirement of being
homogeneous of degree one in y, thus satisfying the condi-
tion F(x, νdx) = νF(x, dx), where ν is a positive constant.
For F2 = gi j (x)dxi dx j , we obtain the important limiting
case of the Riemann geometry [72].

The Finsler metric function F can be expressed using the
canonical coordinates (x, y) = (

x I , y I
)

of the tangent bun-
dle T M , where y = y I

(
∂/∂x I

)
denotes the tangent vector

at the point x of the base manifold. Thus, the arc element in
a general Finsler space takes the form ds2 = gI J dx I dx J .
Finsler spaces possess a much more general mathematical
and geometrical structure than Riemann spaces. For exam-
ple, in a Finsler space, it is possible to define three kinds of

curvature tensors
(

Rκ
νλμ, Sκ

νλμ, Pκ
νλμ

)
, while there are five

torsion tensors [73].
Even though the first physical applications of Finsler

geometry were proposed a relatively long time after its birth,
physical and gravitational theories based on Finsler geome-
tries have been intensively investigated as alternatives or
extensions of standard GR [74–100]. One of the interest-
ing possibilities for modeling gravitational phenomena is
the dark gravity approach, which goes beyond the geomet-
rical and mathematical formalism of Riemann spaces. In
this direction, Finsler theories and cosmological models are
important and interesting alternatives to the standard �CDM
model, since they can provide a geometric explanation, or
replacement, of dark energy, and perhaps even of dark matter.
A large number of studies have been devoted to the investi-
gation of possible applications of Finsler geometry in gravi-
tational physics and cosmology, with the main goal of under-
standing from a new geometric perspective the evolution and
the dynamics of the cosmic components [101–130].

In this respect, the cosmological applications of a special
class of Finsler geometries, called Barthel–Kropina geome-
tries, were investigated in detail in [129] and subsequently in
[130]. The Kropina spaces are (α, β)-type Finsler spaces, in
which the Finsler metric function is defined by F = α2/β,
where α is a Riemannian metric, α(x, y) = gI J (x)y I y J ,
and β(x, y) = AI (x)y I is a one-form. To simplify the math-
ematical approach, one can use the theory of the osculat-
ing Riemann spaces of Finsler geometries [132,133]. In the
osculating space approach, one associates to a complicated
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Finsler geometric object a simpler mathematical one, such
as a Riemann metric. Hence, with the help of the oscu-
lating approach, a simpler mathematical formalism can be
obtained. In the case of the Kropina metric, one can choose
the field Y (x) as Y (x) = A(x), and one can define the A-
osculating Riemannian manifold

(
M, ĝI J (x, A(x)

)
. One can

associate to this structure the Barthel connection, which is
nothing but the Levi–Civita connection of the Riemann met-
ric ĝI J (x) = ĝI J (x, A(x).

For a cosmological metric of the Friedmann–Lemaître–
Robertson–Walker type, the generalized Friedmann equa-
tions in the Barthel–Kropina geometry were obtained in
[129]. These equations lead to a dark energy model which
can explain the accelerating expansion of the Universe and
other observational cosmological features. The predictions of
the Barthel–Kropina dark energy model were compared with
observational data in [130]. The model parameters were con-
strained using 57 Hubble data points and the Pantheon super-
novae type Ia data sample. The statistical analysis was per-
formed using Markov chain Monte Carlo (MCMC) numer-
ical simulations. An in-depth comparison with the standard
�CDM model was also considered, and the Akaike infor-
mation criterion (AIC) and Bayesian information criterion
(BIC) were considered as selection tools for the two models.
The statefinder diagnostics were also considered. The results
show that the Barthel–Kropina dark energy model can pro-
vide an excellent explanation of the cosmological observa-
tional data, and hence it may represent an interesting and
viable alternative to the �CDM model.

It is the goal of the present work to introduce and develop
another view on the Barthel–Kropina cosmology. Namely,
we will consider the effects of a conformal transformation
on the Finsler function F(x, y) of the form F(x, y) →
eσ(x)F(x, y). From a physical point of view, such a trans-
formation represents a change from the Finslerian Einstein
frame to a Finslerian Jordan-type frame. As a result of
the conformal transformation, the Levi–Civita connection
becomes a Weyl-type connection, and a new scalar degree
of freedom associated to the conformal factor σ(x) does
appear in the mathematical structure of the Einstein gravita-
tional field equations. In order to obtain a consistent descrip-
tion of the gravitational phenomena, we adopt as Finsle-
rian metric the Kropina-type (α, β) metric and the osculat-
ing geometrical approach, in which we assume y = Y (x).
Moreover, we introduce the Barthel connection, which is the
Levi–Civita connection associated to the Riemannian met-
ric g(x, Y (x). As a first step in our analysis, we obtain the
expression of the Einstein tensor in the conformal Barthel–
Kropina geometry. The vector Y is assumed to be the coef-
ficient of the one-form β = AI dx I , Y = A. We also inves-
tigate the conformal transformation properties of the matter
action. After formulating the gravitational field equations in
a general form, by assuming the usual proportionality of the

Einstein tensor with the matter energy–momentum tensor,
the cosmological applications of the conformal Finsler-type
geometry are considered. By adopting the Riemannian metric
for the Friedmann–Lemaître–Robertson–Walker form, we
obtain the generalized Friedmann equations, which also con-
tain a new scalar degree of freedom coming from the con-
formal factor, assumed to be a function of the cosmological
time only. By assuming a specific relation between the coef-
ficient of the one-form β and the conformal factor, we obtain
a consistent cosmological model, formulated in the redshift
space. The model is dependent on a single free parameter.
A de Sitter-type solution of the conformal Barthel–Kropina
field equations also exists. Several solutions of the gener-
alized Friedmann equations corresponding to different val-
ues of the model parameter are obtained using numerical
methods, and the redshift evolution of the Hubble function,
deceleration parameter, matter density, and conformal fac-
tor are obtained. A comparison with the Hubble observa-
tional data and with the �CDM model is also performed. As
a result of these investigations, we find that the conformal
Barthel–Kropina model can give an acceptable description
of the observational data, and it may represent an attractive
alternative to standard cosmology.

The present paper is organized as follows. The conformal
transformations in Riemann geometry, the Barthel–Kropiona
cosmological model, and the conformal properties of the mat-
ter energy–momentum tensor are briefly reviewed in Sect. 2.
The conformal transformation properties of the cosmological
Kropina metric are considered in Sect. 3, where the expres-
sion of the Einstein tensor is also obtained. The generalized
Friedmann equations of the conformal Barthel–Kropina cos-
mological model are written down in Sect. 4, where a dark
energy model is also presented, built upon a specific form
of the scalar conformal factor. Specific cosmological models
are investigated numerically in Sect. 5, where a comparison
of the models with a limited set of observational data and
with the �CDM model is also performed. We discuss our
results and present conclusions in Sect. 7.

2 From conformal transformation in Riemann
geometry to the Barthel–Kropina cosmology

In the following, we will summarize some of the basic mathe-
matical results on the conformal transformations in Riemann
geometry to be used in the sequel. We will also present the
basics of the Barthel–Kropina cosmological theory, and write
down the generalized Friedmann equations for this model.

2.1 Conformal transformations and Riemann geometry

Let ∇ be a connection on M . We introduce on M a symmetric
metric g with the components of the metric tensor denoted
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by gi j The global formula of the Levi–Civita connection is
given by

(∇X g)(Y, Z) = X (g(Y, Z)) − g(∇X Y, Z) − g(Y,∇X Z).

(1)

Locally, we have

∇ ∂

∂xk

∂

∂x j
= γ i

jk(x)
∂

∂xi
, (2)

where γ i
jk are called the Christoffel symbols, and they are

defined according to

γ i
jk = 1

2
gis
(

∂g js

∂xk
+ ∂gks

∂x j
− ∂g jk

∂xs

)
. (3)

The global expression of the curvature operator is given
by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z . (4)

Locally, we have

R i
j kl = ∂γ i

jl

∂xk
− ∂γ i

jk

∂xl
+ γ s

jlγ
i
sk − γ s

jkγ
i
sl . (5)

We now consider the conformal transformation of the met-
ric given by

g̃i j (x) = �2(x)gi j (x) = e2σ(x)gi j (x), (6)

where σ(x) is an arbitrary function of the coordinates x
defined on the spacetime manifold M , and we have denoted
the conformally transformed metric by g̃i j . Then we obtain
the first result in the conformal Riemann geometry in the
form of

Lemma 1 The relation of Riemannian–Christoffel of g̃i j and
gi j is

γ̃ i
jk = γ i

jk + δi
jσk + δi

kσ j − σ i g jk, (7)

where

σ j := ∂σ(x)

∂x j
, σ i = gi jσ j . (8)

Next, for the definition of the covariant derivative, we
obtain the expression

∇̃X Y = ∇X Y + dσ(X)Y + dσ(Y )X − g(X, Y )∇σ, (9)

where we have denoted

∇σ = σ i ∂

∂xi
, dσ(x) = ∂σ(x)

∂xi
Xi , (10)

for any X = Xi ∂
∂xi . In local coordinates, the proof of this

relation is as follows

γ̃ i
jk

∂

∂xi
= γ i

jk
∂

∂xi
+ ∂σ

∂xk

∂

∂x j
+ ∂σ

∂x j

∂

∂xk
− σ i g jk

∂

∂xi

∇̃ ∂

∂xk

∂

∂x j
= ∇ ∂

∂xk

∂

∂x j
+dσ

(
∂

∂xk

)
∂

∂x j
+dσ

(
∂

∂x j

)
∂

∂xk

− g

(
∂

∂x j
,

∂

∂xk

)
σ i ∂

∂xi
.

If we denote X = ∂
∂xk and Y = ∂

∂x j , then

∇̃X Y = ∇X Y + dσ (X) Y + dσ (Y ) X − g (Y, X) σ i ∂

∂xi

= ∇X Y + dσ (X) Y + dσ (Y ) X − g (X, Y ) ∇σ.

Next, we consider the curvature properties of the confor-
mally transformed metric.

Lemma 2 If we consider the conformal transformation
g̃i j = e2σ(x)gi j (x), then the relation of the Riemannian cur-
vature of g̃i j and gi j is

R̃i jkl = e2σ Ri jkl −e2σ
(
gik Tjl +g jl Tik −gil Tjk −g jk Til

)
,

R̃ i
j kl = g̃is R̃s jkl = R i

j kl −
(
δi

k Tjl +g jl T
i
k −δi

l Tjk −g jk T i
l

)
,

where

∇iσ = ∂σ

∂xi
= σi ,∇i∇ jσ = ∂σi

∂x j
− σpγ

p
i j = σi j − σpγ

p
i j ,

Ti j = ∇i∇ jσ − ∇iσ∇ jσ + 1

2
|dσ |2gi j

= σi j − σpγ
p

i j − σiσ j + 1

2
|dσ |2gi j ,

T i
j = gis Ts j = gis

(
σs j − σpγ

p
s j − σsσ j + 1

2
|dσ |2gs j

)
,

and

|dσ |2 = σ iσi , σi j = ∂2σ

∂xi∂x j
, σ i

j = gisσs j . (11)

Here, ∇i or |i is the covariant derivative with respect to
the Levi–Civita connection of g.

Remark Please pay attention to the notation above. We have
defined

σi j := ∂2σ

∂xi∂x j
and σ k

j := gikσi j ,

which is different from

∂σ k

∂x j
= ∂

∂x j

(
gikσi

)
= ∂gik

∂x j
σi + gik ∂σi

∂x j

= ∂gik

∂x j
σi + gik ∂σ

∂xi∂x j
= ∂gik

∂x j
σi + gikσi j .
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Lemma 3 If we consider the conformal transformation
g̃i j = e2σ(x)gi j (x), then the relation of the Ricci tensor of
g̃i j and gi j is

R̃i j = Ri j + (n − 2)(σi j − σiσ j − σmγ m
i j )

+ (σ + (n − 2)|dσ |2)gi j ,

where

σ = g jk ∂2σ

∂x j∂xk
− g jkγ l

jk
∂σ

∂xl
= g jk

(
σ jk − γ l

jkσl

)
.

Lemma 4 If we consider the conformal transformation
g̃i j = e2σ(x)gi j (x), then the relation between the scalar cur-
vatures of g̃i j and gi j is

R̃ = e−2σ
[

R + 2(n − 1)σ + (n − 2)(n − 1)|dσ |2
]
.

Lemma 5 If we consider the conformal transformation
g̃i j = e2σ(x)gi j (x), then the Einstein tensor of g̃i j is

G̃i j = Gi j + (n − 2)(σi j − σmγ m
i j − σiσ j )

−(n − 2)

{
σ + (n − 3)

2
|dσ |2

}
gi j , (12)

where

G̃i j := R̃i j − 1

2
R̃g̃i j , Gi j := Ri j − 1

2
Rgi j .

2.1.1 Conformal transformation of matter

In the previous Section, we considered only the conformal
transformation properties of the geometrical quantities. We
now turn to the matter part of gravitational action. The matter
action can be generally written as

Sm =
∫

Lm(g, ψ)
√−gd4x, (13)

where the matter Lagrangian Lm is assumed to be a function
of the metric tensor and of the (bosonic or fermionic) mat-
ter fields ψ . To investigate the conformal properties of the
matter Lagrangian density, we first assume that under con-
formal transformations, the matter Lagrangian is transformed
according to the rule

L̃m = e−4σ(x)Lm . (14)

Then the conformally transformed action becomes

S̃m =
∫

L̃m

√−g̃d4x =
∫

e−4σ(x)Lme4σ(x)√−gd4x

= Sm . (15)

Hence, it follows that the action of the ordinary baryonic
matter is invariant under the considered conformal transfor-
mations (14). This result implies that the baryonic matter

component of the gravitational interaction can be described
in all conformally related frames by the same expression,
since it is an invariant quantity.

The matter energy–momentum tensor is defined according
to the expression

TI J = 2√−g

δ

δgI J

(√−gLm
)
. (16)

After performing a conformal transformation of the met-
ric, we obtain

T̃I J = e−2σ(x)TI J . (17)

For the trace T̃ = T̃ I
I of the ordinary matter energy–

momentum tensor, we obtain the expression T̃ = e−4σ(x)T ,
where T = T I

I .

2.2 The Barthel–Kropina cosmological model

In [129,130] we considered the Kropina metric [131]

F = α2

β
= gI J (x)y I y J

AI (x)y I
, I, J = {0, 1, 2, 3}

with the fundamental tensor

ĝI J (x, y) = 2α2

β2 gI J (x) + 3α4

β4 AI AJ

−4α2

β3 (yI AJ + yJ AI ) + 4

β2 yI yJ , (18)

where yI := gI J y J .
Let us consider for the Riemannian metric the expression

(gI J (x)) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

⎞

⎟
⎟
⎠ ,

representing the homogeneous and isotropic, flat FLRW
model, and β = AI (x)y I = A0(x)y0, where

(AI (x)) = (A0, 0, 0, 0) = (a(x0)η(x0), 0, 0, 0)

is a covariant vector field on M .
Moreover, we consider the preferred direction

Y = Y I ∂

∂x I
= AI ∂

∂x I
,

where AI := gI J AJ . In the case of the FLRW metric, it
follows that

(Y I ) ≡ (AI ) = (YI ) = (AI ) = (a(x0)η(x0), 0, 0, 0).
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We evaluate

β|y=A = [a(x0)η(x0)]2

(hI J )|y=A =

⎛

⎜⎜
⎝

0 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

⎞

⎟⎟
⎠ ,

where hI J := gI J (x) − yI
α

yJ
α

, yI := gI J (x)y J .
By substitution in (18), we obtain the osculating Rieman-

nian metric

ĝI J (x) = ĝI J (x, y = A) =

⎛

⎜⎜⎜⎜
⎝

1
a2η2 0 0 0

0 − 2
η2 0 0

0 0 − 2
η2 0

0 0 0 − 2
η2

⎞

⎟⎟⎟⎟
⎠

, (19)

and the nonvanishing components of the Christoffel symbols
of the second kind of (19) are

γ̂ I
J K =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ̂ 0
00 = −ηH + η′

η
,

γ̂ 0
i j = −2a2η′

η
δi j ,

γ̂ i
0 j = −η′

η
δi

j ,

(20)

where H = a′
a .

Recall the formula of the Ricci tensor from [129]

R̂I J =

⎧
⎪⎪⎨

⎪⎪⎩

R̂00 = 3

η2

[
ηη′′ + ηη′H − (η′)2

]
,

R̂i j = 2a2

η2

[
3(η′)2 − ηη′′ − ηη′H] δi j ,

and the Ricci scalar

R̂ = 6a2
(
ηη′′ + ηη′H − 2(η′)2

)
.

The Einstein field equations, given by Ĝ00 = (
8πG/c4

)

ĝ00ρc2 and Ĝii = − (
8πG/c4

)
ĝi i p, where ρ and p denote

the matter energy density and pressure, respectively, give the
system of the generalized Friedmann equations

3(η′)2

η2 = 8πG

c4

1

a2η2 ρc2, (21)

and

a2
[
−3(η′)2 + 2ηη′′ + 2Hηη′] = 8πG

c4 p, (22)

respectively. By substituting the term−3
(
η′)2 using Eq. (21),

Eq. (22) takes the simple form

2aη
d

dx0

(
η′a
) = 8πG

c4

(
ρc2 + p

)
. (23)

The cosmological implications of this model were inves-
tigated in detail in [129,130].

3 Conformal transformation and the Kropina metric

In this section, we will consider the conformal transforma-
tion properties of the general (α, β) metrics, with a special
emphasis on the Kropina case. From a mathematical point
of view, the role of the conformal transformations in Finsler
geometry, including the case of the (α, β) metrics, was inves-
tigated in [134–140]. From a physical point of view, the role
of the gauge transformations in Finsler geometry was con-
sidered in [141].

3.1 Conformal transformation of an (α, β) metric

For any (α, β) metric F = F(α, β), we can consider its
conformal transformation

F̃(x, y) := eσ(x)F(x, y) = F̃(α̃, β̃), (24)

which is an (α̃, β̃)-metric, where

α̃ = eσ(x)α, β̃ = eσ(x)β. (25)

The fundamental tensor of F̃ is given by the Hessian

g̃I J := 1

2

∂2 F̃2

∂y I ∂y J
. (26)

In the case of the general (α, β) metric, we obtain

ĝI J (x, y) = ρgI J (x) + ρ0bI bJ + ρ1

(
bI

yJ

α
+ bJ

yI

α

)

−sρ1
yI

α

yJ

α
, (27)

where yI = gI J y J , i.e., yI
α

= ∂α
∂y I , and

ρ = φ2−sφφ′, ρ0 = φφ′′+φ′2, ρ1 = −s(φφ′′+φ′2)+φφ′,
(28)

as function of s = β
α

. Here, I, J = {0, 1, 2, 3}.
Now, by considering a conformal transformation of F̃ , we

get
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ˆ̃gI J (x, y) = ρ̃ g̃I J (x) + ρ̃0b̃I b̃J + ρ̃1

(
b̃I

ỹJ

α̃
+ b̃J

ỹI

α̃

)

−s̃ρ̃1
ỹI

α̃

ỹJ

α̃
= ρe2σ gI J (x) + ρ0e2σ bI bJ

+ρ1e2σ
(

bI
yJ

α
+ bJ

yI

α

)
− sρ1e2σ yI

α

yJ

α

= e2σ ĝI J (x, y), (29)

where we have used the relations

s̃ = β̃

α̃
= β

α
, ρ̃ = ρ, ρ̃0 = ρ0, ρ̃1 = ρ1,

since they are just derivatives with respect to s.
Moreover,

ỹI

α̃
= ãI J y J

α̃
= e2σ aI J y J

eσ α
= eσ yI

α
.

3.2 The Kropina case

Likewise, we can extend the case above by taking the con-
formal transform of the Kropina metric

F̃ := eσ(x) α
2

β
= α̃2

β̃
,

where α̃ = eσ(x)α, β̃ = eσ(x)β.
Similarly, with the standard Kropina case, the osculating

Riemannian metric is obtained as

ˆ̃gI J (x) = e2σ(x)ĝI J (x), (30)

where ĝI J (x) is given by Eq. (19). Explicitly, the metric
ĝI J (x) has the expression

ˆ̃gI J (x) = e2σ(x)

⎛

⎜⎜⎜⎜
⎝

1
a2η2 0 0 0

0 − 2
η2 0 0

0 0 − 2
η2 0

0 0 0 − 2
η2

⎞

⎟⎟⎟⎟
⎠

. (31)

Now we can compute the Christoffel symbols, curvatures,
and the Einstein tensor for this conformal Riemannian metric.

3.2.1 The generalized Einstein tensor in the conformal
Barthel–Kropina model

From Lemma 1, and by using Eq. (20), we obtain the com-
ponents of the Christoffel symbols of the second kind of the
conformal metric (30) as

ˆ̃γ I
J K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̃γ 0
00 = −ηH + η′

η
+ δ0

0σ0 + δ0
0σ0 − σ 0 ĝ00

= −ηH + η′

η
+ σ0,

ˆ̃γ 0
i j = −2a2η′

η
δi j + δ0

i σ j + δ0
j σi − σ 0 ĝi j

= −2a2
(

η′

η
− σ0

)
δi j ,

ˆ̃γ i
0 j = −η′

η
δi

j + δi
0σ j + δi

jσ0 − σ i ĝ0 j

=
(

−η′

η
+ σ0

)
δi

j ,

ˆ̃γ i
jk = δi

jσk + δi
kσ j − δimσmδ jk,

ˆ̃γ 0
0i = σi ,

ˆ̃γ i
00 = − 1

2a2 δimσm,

(32)

where H = a′
a and σ 0 = ĝ00σ0 = a2η2σ0.

We now successively obtain

|dσ |2 = σ I σI = ĝ I J σJ σI = a2η2σ 2
0 − η2

2

3∑

i=1

σ 2
i (33)

and

σ = a2η2σ00 − η2

2

3∑

i=1

σi i − a2η
(
2η′ − ηH) σ0, (34)

respectively. Let us now consider the four-dimensional case
with n = 4. From Lemma 3, we obtain

ˆ̃RI J = R̂I J + 2(σI J − σI σJ − σM γ̂ M
I J )

+(σ + 2|dσ |2)ĝI J ,

where I, J, M = 0, 1, 2, 3. We can now formulate the fol-
lowing.

Lemma 6 1. σM γ̂ M
00 = σ0γ̂

0
00 + σi γ̂

i
00 = − ηH+η′

η
σ0.

2. σM γ̂ M
i j = σ0γ̂

0
i j + σt γ̂

t
i j = − 2a2η′

η
σ0δi j ,

where i, j = 1, 2, 3.

We now proceed to the computation of the components of
the Ricci tensor. We first obtain

ˆ̃R00 = 3

[
η′′ + η′H

η
− (η′)2

η2 + σ00 + Hσ0

]

− 1

2a2

(
3∑

k=1

σkk + 2
3∑

k=1

σ 2
k

)

(35)

and

ˆ̃Ri j = 2
(
σi j − σiσ j

)+ ψ1δi j , (36)

respectively, where
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ψ1 := 2a2
{

1

η2 [3(η′)2 − ηη′′ − ηη′H] + 1

η
(4η′ − ηH)σ0

−σ00 − 2σ 2
0

}
+

3∑

k=1

σkk + 2
3∑

k=1

σ 2
k . (37)

On the other hand, if we consider n = 4, from Lemma 4
we get

ˆ̃R = e−2σ
[

R̂ + 6σ + 6|dσ |2
]
. (38)

Hence, we immediately obtain for ˆ̃R the expression

ˆ̃R = 6e−2σ

{

a2
(
ηη′′ + ηη′H − 2(η′)2

)

+a2η2(σ00 + (σ0)
2) − η2

2

(
2∑

k=1

σkk +
3∑

k=1

σ 2
k

)

− a2η
(
2η′ − ηH) σ0

}

. (39)

Next, we consider the expression of the Einstein tensor of
g̃I J (x) = e2σ(x)ĝI J (x) in the four-dimensional case, I, J =
0, 1, 2, 3.

From Lemma 5, we obtain the general expression of the
Einstein tensor

ˆ̃RI J − 1

2
ˆ̃R ˆ̃gI J = R̂I J − 1

2
R̂ĝI J +2(σI J −σI σJ −σM γ̂ M

I J )

−2(σ + 1

2
|dσ |2)ĝI J . (40)

Then, in the case of (I, J ) = (0, 0), we get

ˆ̃R00− 1

2
ˆ̃Rg̃00 = R̂00− 1

2
R̂ĝ00+2

[
σ00 − (σ0)

2−σM γ̂ M
00

]

−2

(
σ + 1

2
|dσ |2

)
ĝ00. (41)

Explicitly, for ˆ̃G00 we obtain

ˆ̃G00 = 3(η′)2

η2 − 3σ 2
0 + 6η′

η
σ0

+ 1

a2

(
3∑

i=1

σi i + 1

2

3∑

i=1

σ 2
i

)

. (42)

For the spatial components of the Einstein tensor, we find
the expression

ˆ̃Gi j = 2(σi j − σiσ j ) + ψ2δi j , (43)

where

ψ2 := 2a2

η2 [−3(η′)2+2ηη′H+2ηη′′]+4a2
(

σ00+ 1

2
σ 2

0

)

+a2

η

(−η′ + ηH) σ0 − 1

2

3∑

k=1

σkk −
3∑

k=1

σ 2
k . (44)

4 The generalized Friedmann equations, and their
cosmological implications

We now postulate that the Einstein gravitational field equa-
tions can be formulated in the conformal Barthel–Kropina
geometry in the form

ˆ̃G I J = 8πG

c4
ˆ̃TI J , (45)

where ˆ̃TI J is the matter energy–momentum tensor in the con-
formal frame. Similarly to the previous investigations, we
assume that the thermodynamic properties of the cosmolog-
ical matter in the conformal Barthel–Kropina geometry are
characterized by the energy density ˆ̃ρc2 and the thermody-
namic pressure ˆ̃p only. Moreover, we assume the existence
of a frame comoving with matter. Hence, we postulate that
the energy–momentum tensor of the matter in the conformal
frame takes the form

ˆ̃T J
I =

⎛

⎜⎜
⎜
⎝

ˆ̃ρc2 0 0 0
0 − ˆ̃p 0 0
0 0 − ˆ̃p 0
0 0 0 − ˆ̃p

⎞

⎟⎟
⎟
⎠

, (46)

and

ˆ̃TI J = e−2σ(x)

⎛

⎜⎜⎜⎜
⎜
⎝

e2σ(x)

a2η2
ˆ̃ρc2 0 0 0

0 2e2σ(x)

η2
ˆ̃p 0 0

0 0 2e2σ(x)

η2
ˆ̃p 0

0 0 0 2eσ(x)

η2
ˆ̃p

⎞

⎟⎟⎟⎟
⎟
⎠

,

(47)

respectively.
Due to the homogeneity and isotropy of the cosmological

spacetime, all physical and geometrical quantities can depend
only on the time coordinate x0. As for the conformal factor,
we assume first that it has the form

σ(x) = φ
(

x0
)

+ γ1x + γ2 y + γ3z, (48)

where γi , i = 1, 2, 3 are arbitrary constants. For this form of
the conformal factor, we have σ0 = φ′ (x0

)
, σ00 = φ′′ (x0

)
,

σi = γi , and σi j ≡ 0, i, j = 1, 2, 3. With this choice,

Eq. (43) gives ˆ̃Gi j = −γiγ j = 0, which implies γi = 0,
i = 1, 2, 3. Hence, we will choose the conformal factor as
σ(x) = φ

(
x0
)
, and thus we will restrict our analysis to
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only the time-dependent conformal transformations of the
Kropina metric.

4.1 The generalized Friedmann equations

Then, the generalized Friedmann equations describing the
cosmological evolution in the conformal Barthel–Kropina
geometry take the form

3(η′)2

η2 = 8πG

c2

1

a2η2
ˆ̃ρ + 3

(
φ′)2 − 6

η′

η
φ′, (49)

and

2

η2 [−3(η′)2 + 2ηη′H + 2ηη′′] = 16πG

c4

1

a2η2
ˆ̃p

−4

[
φ′′ + 1

2

(
φ′)2

]
+
(

η′

η
− H

)
φ′, (50)

respectively. By eliminating the term −3
(
η′)2 /η2 between

Eqs. (49) and (50), we obtain the relation

2
1

aη

d

dx0

(
aη′) = 4πG

c4

1

a2η2

( ˆ̃ρc2 + ˆ̃p
)

−
(
φ′′ − (

φ′)2)

−11

4

η′

η
φ′ − 1

4
φ′H. (51)

We now consider the limiting case of the system (49) and
(50), corresponding to η → 1/a, (AI (x)) = (1, 0, 0, 0), and
β = y0. Hence, the generalized Friedmann equations of the
conformal Barthel–Kropina model take the form

3H2 = 8πG

c4
ˆ̃ρc2 + 3

(
φ′)2 + 6Hφ′, (52)

and

2H′ + 3H2 = −8πG

c4
ˆ̃p + 2

[
φ′′ + 1

2

(
φ′)2

]
+ Hφ′, (53)

respectively. For φ = 0, we fully recover the standard Fried-
mann equations of general relativity.

4.1.1 The de Sitter solution

In the case of the standard Barthel–Kropina cosmological
model, with φ = 0, there is no vacuum de Sitter-type solution
of the field equations, since for ρ = p = 0 all field equa-
tions are satisfied by the simple case η′ = 0, η = constant,
a solution independent of the concrete form of H. The situ-
ation is different in the conformal Barthel–Kropina model.
By assuming ˆ̃ρ = ˆ̃p = 0, Eq. (49) can be reformulated as

(
φ′ − η′

η

)2

= 2

(
η′)2

η2 , (54)

giving

φ′ =
(

1 ± √
2
) η′

η
= ς

η′

η
, (55)

where we have denoted ς = 1 ± √
2. Then, for H = H0 =

constant, Eq. (50) takes the form

4ς(ς + 1)φ′′ (x0
)

+
(

2ς2 + ς − 2
)

φ′ (x0
)2

−(ς − 4)ςH0φ
′ (x0

)
= 0, (56)

having for ς = 1 + √
2 the general solution given by

φ
(

x0
)

= c2 −
8
(

3 − √
2
)

5
(

8 − 5
√

2
)

×
{

ln

[
1 + 5e

(
4
√

2−5
)

c1H0 e

(
5
√

2
8 −1

)
H0x0

]

−5c1H0

}
, (57)

where c1 and c2 are arbitrary constants of integration. In the
limit of large times, φ

(
x0
)

tends to a constant. During the
vacuum de Sitter phase of expansion, the function η is given
by η ∝ eφ/ς .

4.2 Dark energy in the conformal Barthel–Kropina model

We will now investigate the possibility of the dark energy
description as a geometric effect in the Barthel–Kropina cos-
mological model. We have already seen that in the limit
η → 1/a and φ = 0, the general relativistic model without
a cosmological constant is recovered. We will now assume
that the departures from general relativity can be described
by a small variation of η, which depends on the conformal
factor. Hence, we tentatively propose a cosmological model
in which η has the form

η = eγφ

a
, (58)

where γ is a constant. Thus, we immediately obtain

η′

η
= γφ′ − H,

η′′

η
= γφ′′ − H′ + (

γφ′ − H)2 . (59)

Hence, the generalized Friedmann Eqs. (49) and (50) of
the conformal Barthel–Kropina model become

3H2 = 8πG

c2 e−2γφ ˆ̃ρ + 3
(

1 − 2γ − γ 2
) (

φ′)2

+6(1 + γ )φ′H
= 8πG

c2 e−2γφ ˆ̃ρ + ˆ̃ρφ, (60)
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and

2H′ + 3H2 = −8πG

c4 e−2γφ ˆ̃p + 2(1 + γ )φ′′

−
(

1 − 1

2
γ − γ 2

) (
φ′)2 + (1 + 4γ )φ′H

= −8πG

c4 e−2γφ ˆ̃p − ˆ̃pφ, (61)

respectively, where we have denoted

ˆ̃ρφ = 3
(

1 − 2γ − γ 2
) (

φ′)2 + 6(1 + γ )φ′H, (62)

and

ˆ̃pφ = −2(1+γ )φ′′+
(

1 − 1

2
γ − γ 2

) (
φ′)2−(1+4γ )φ′H,

(63)

respectively.
From Eqs. (60) and (61) we immediately obtain

H′ = −4πG

c4 e−2γφ
( ˆ̃ρc2 + ˆ̃p

)
+ (1 + γ )φ′′

+1

2

(
4γ 2 + 13

2
γ − 4

) (
φ′)2 − 1

2
(2γ + 5)φ′H. (64)

Equations (60) and (61) give the total conservation equa-
tion for matter and the conformally induced scalar field as

8πG

c4

[
ˆ̃ρ′ + 3H

(
ˆ̃ρ +

ˆ̃p
c2

)

− 2γφ′ ˆ̃ρ
]

e−2γφ

+ ˆ̃ρ′
φ + 3H

( ˆ̃ρφ + ˆ̃pφ

)
= 0. (65)

We split Eq. (65) into two balance equations, for matter
and the conformal scalar field, respectively, given by

ˆ̃ρ′ + 3H
(

ˆ̃ρ +
ˆ̃p

c2

)

− 2γφ′ ˆ̃ρ = 0 (66)

and

ˆ̃ρ′
φ + 3H

( ˆ̃ρφ + ˆ̃pφ

)
= 0, (67)

respectively.
Equation (67) gives the dynamical evolution of the con-

formal scalar field as

6
(

1 − 2γ − γ 2
)

φ′′ + 3

(
4 − 13

2
γ − 4γ 2

)
Hφ′

+6(1 + γ )H′ + 3(2γ + 5)H2 = 0. (68)

Hence, we have obtained the basic equations describ-
ing the cosmological dynamics in the conformal Barthel–
Kropina model as given by Eqs. (64), (66), and (68).

5 Cosmological models in the conformal
Barthel–Kropina theory

In this section, we will investigate the cosmological viabil-
ity of the conformal Barthel–Kropina cosmological model.
Specifically, we will consider the late-time evolution of the
model, and we will compare its predictions with a selected
set of cosmological data for the Hubble function. We will
assume that the matter content of the present-day Universe
can be well described by a pressureless fluid, with zero pres-
sure, and hence in the following we will take ˆ̃p = 0.

5.1 Cosmological evolution equations

From Eqs. (64) and (68) we obtain H′ and φ′′ in the form

H′ = 1

4

(
γ 2 + 2γ − 1

) 8πG

c2
ˆ̃ρe−2γφ

−1

8

(
8γ 4 + 29γ 3 + 10γ 2 − 29γ + 8

) (
φ′)2

−1

4

(
2γ 2 + 7γ + 5

)
H2

+3

8

(
4γ 3 + 13γ 2 + 7γ − 6

)
Hφ′, (69)

and

φ′′ = 1

4
(γ + 1)

8πG

c2
ˆ̃ρe−2γφ

−1

8

(
8γ 3 + 21γ 2 + 5γ − 8

) (
φ′)2

−1

4
(2γ + 5)H2 + 1

8

(
12γ 2 + 27γ + 2

)
Hφ′, (70)

respectively.

5.1.1 The dimensionless form of the generalized Friedmann
equations

We will now replace the coordinate x0 = ct in the evolution
equations with the time t , and the Hubble function H with
the time-dependent Hubble function H = ȧ/a, where a dot
denotes the derivative with respect to the time t , so that H =
H/c. We will also introduce a set of dimensionless variables
(h, τ, rm), defined according to

H = H0h, τ = H0t, ˆ̃ρ = 3H2
0

8πG
rm, (71)

where H0 is the present-day value of the Hubble function.
Hence, we obtain the full set of the evolution equations of
the conformal Barthel–Kropina cosmological model as

drm

dτ
+ 3hrm = 2γ

dφ

dτ
rm , (72)

dh

dτ
= 3

4

(
γ 2 + 2γ − 1

)
rme−2γφ
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−1

8

(
8γ 4 + 29γ + 10γ 2 − 29γ + 8

) (dφ

dτ

)2

−1

4

(
2γ 2 + 7γ + 5

)
h2

+3

8

(
4γ 3 + 13γ 2 + 7γ − 6

)
h

dφ

dτ
, (73)

and

d2φ

dτ 2 = 3

4
(γ + 1)rme−2γφ

−1

8

(
8γ 3 + 21γ 2 + 5γ − 8

)(dφ

dτ

)2

−1

4
(2γ + 5)h2 + 1

8

(
12γ 2 + 27γ + 2

)
h

dφ

dτ
, (74)

respectively.
Equation (72) for the matter density can be immediately

integrated to give

rm(τ ) = rm0
e2γφ

a3 = rm0
η2

a
, (75)

where rm0 is an arbitrary constant of integration.

5.1.2 The redshift representation

In order to facilitate the comparison with the observational
data, we introduce the redshift variable z, defined as 1 +
z = 1/a, giving d/dτ = −(1 + z)h(z)d/dz. Hence, we
can reformulate the cosmological evolution equations in the
redshift space as

− (1 + z)h
dφ

dz
= u, (76)

(1 + z)
drm

dz
− 3rm = 2γ (1 + z)

dφ

dz
rm, (77)

−(1 + z)h
dh

dz
= 3

4

(
γ 2 + 2γ − 1

)
rme−2γφ

−1

8

(
8γ 4 + 29γ 3 + 10γ 2

−29γ + 8

)
u2

−1

4

(
2γ 2 + 7γ + 5

)
h2

+3

8

(
4γ 3 + 13γ 2 + 7γ − 6

)
hu,

(78)

and

− (1 + z)h
du

dz
= 3

4
(γ + 1)rme−2γφ

−1

8

(
8γ 3 + 21γ 2 + 5γ − 8

)
u2

−1

4
(2γ + 5)h2

+1

8

(
12γ 2 + 27γ + 2

)
hu, (79)

respectively. The system of Eqs. (76)–(79) must be inte-
grated with the initial conditions h(0) = 1, φ(0) = φ0,
u(0) = u0, and rm(0) = rm0, respectively. We also intro-
duce the deceleration parameter q, an indicator of the decel-
erating/accelerating nature of the cosmological expansion,
defined as

q = d

dτ

1

h
−1 = −(1+z)h

d

dz

1

h
−1 = (1+z)

1

h

dh

dz
−1. (80)

In order to test the viability of the conformal Barthel–
Kropina cosmological model, we will compare its predictions
with the results of the �CDM standard model. In the �CDM
model, the redshift evolution of the Hubble function H is
given by

H(z) = H0

√
�

(cr)
m (1 + z)3 + ��, (81)

where �
(cr)
m = �

(cr)
b + �

(cr)
DM , where �

(cr)
b and �

(cr)
DM denote

the critical densities of the baryonic and dark matter, respec-
tively, generally defined as �

(cr)
i = ρi/ρcr , i = b, DM ,

where ρcr = 3H2
0 /8πG. The density parameter of the dark

energy (a cosmological constant) is defined as �� = �/ρcr .
The deceleration parameter is given by

q(z) = 3(1 + z)3�
(cr)
m

2
[
�� + (1 + z)3�

(cr)
m

] − 1. (82)

For the matter and dark energy density parameters, we
adopt the numerical values �

(cr)
DM = 0.2589, �b(cr) =

0.0486, and �� = 0.6911, respectively [142,143]. This
gives the value �

(cr)
m = 0.3089 for the total matter density

parameter �
(cr)
m = �

(cr)
b + �

(cr)
DM . The present-day value of

the deceleration parameter is q(0) = −0.5381, a value that
indicates that the Universe is currently in an accelerating
epoch.

5.2 The case γ = 1

We will begin the analysis of the cosmological implications
of the conformal Barthel–Kropina model by considering the
simple case corresponding to γ = 1. For this particular
choice of model parameter, the field equations take the form

−(1 + z)h
dφ

dz
= u, (83)

(1 + z)
drm

dz
− 3rm = 2(1 + z)

dφ

dz
rm, (84)

−(1 + z)h
dh

dz
= rme−2φ − 7

2
h2 + 27

4
hu − 13

4
u2, (85)

−(1 + z)h
du

dz
= rme−2φ − 7

4
h2 + 41

8
hu − 13

4
u2. (86)
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Fig. 1 Variation in the dimensionless Hubble function h (left panel)
and the deceleration parameter (right) panel in the conformal Barthel–
Kropina cosmological model for γ = 1, and for u(0) = 0.69 (dotted
curve), u(0) = 0.72 (short dashed curve), u(0) = 0.75 (dashed curve),
u(0) = 0.78 (long-dashed curve), and u(0) = 0.80 (ultra-long dashed

curve). The initial conditions used to integrate the cosmological evolu-
tion equations are φ(0) = 0.16, rm(0) = 0.05, and h(0) = 1, respec-
tively. The observational data are presented with their error bars, while
the red curve depicts the predictions of the �CDM model

Fig. 2 Variation in the dimensionless matter density r (left panel)
and the conformal factor φ (right) panel in the conformal Barthel–
Kropina cosmological model for γ = 1, and for u(0) = 0.69 (dot-
ted curve), u(0) = 0.72 (short dashed curve), u(0) = 0.75 (dashed

curve), u(0) = 0.78 (long-dashed curve), and u(0) = 0.80 (ultra-long
dashed curve). The initial conditions used to integrate the cosmological
evolution equations are φ(0) = 0.16, rm(0) = 0.05, and h(0) = 1,
respectively. The red curve shows the predictions of the �CDM model

The system of Eqs. (83)–(86) must be integrated with the
initial conditions φ(0) = φ0, u(0) = u0, rm(0) = rm0,
and h(0) = 1, respectively. The variations with respect to
the redshift of the dimensionless Hubble function and the
deceleration parameter are presented in Fig. 1.

The variations in the matter energy density and the con-
formal factor φ are presented in Fig. 2.

As one can see from Fig. 1, the conformal Barthel–
Kropina model gives a good description of the observational
data for the Hubble function, and it overlaps almost perfectly
with the prediction of the �CDM model up to a redshift of
z = 2.5. For higher redshifts, some important differences
between models may appear. On the other hand, significant
differences do exist in the behavior of the deceleration param-
eter, with the conformal Barthel–Kropina model predicting
higher deceleration values at higher redshifts, and lower val-
ues at small redshifts. The baryonic matter content, presented

in Fig. 2, appears to be much higher in the �CDM model. In
fact, in the conformal Barthel–Kropina model, less baryonic
matter is predicted to exist at higher redshifts. The conformal
factor φ(z) evolves from positive values at small redshifts to
larger negative values, increasing rapidly with z.

5.3 The case γ = −1

For γ = −1, the variations in the Hubble function and the
deceleration parameter are presented in Fig. 3.

For negative values of γ , the conformal Barthel–Kropina
model generally does not give a particularly good descrip-
tion of the observational data or closely reproduce the�CDM
model. As one can see from the left panel of Fig. 3, important
differences may appear between observations at both small
and high redshifts. The differences are even more important
in the case of the deceleration parameter, with the conformal
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Fig. 3 Variation in the dimensionless Hubble function h (left panel)
and the deceleration parameter (right) panel in the conformal Barthel–
Kropina cosmological model for γ = −1, and for u(0) = −0.01
(dotted curve), u(0) = −0.08 (short dashed curve), u(0) = −0.15
(dashed curve), u(0) = −0.22 (long-dashed curve), and u(0) = −0.29

(ultra-long dashed curve). The initial conditions used to integrate the
cosmological evolution equations are φ(0) = 0.025, rm(0) = 0.05,
and h(0) = 1, respectively. The observational data are represented with
their error bars, while the red curve depicts the predictions of the �CDM
model

Fig. 4 Variation in the dimensionless matter density r (left panel) and
the conformal factor φ (right) panel in the conformal Barthel–Kropina
cosmological model for γ = −1, and for u(0) = −0.01 (dotted curve),
u(0) = −0.08 (short dashed curve), u(0) = −0.15 (dashed curve),

u(0) = −0.22 (long-dashed curve), and u(0) = −0.29 (ultra-long
dashed curve). The initial conditions used to integrate the cosmological
evolution equations are φ(0) = 0.025, rm(0) = 0.05, and h(0) = 1,
respectively. The red curve shows the predictions of the �CDM model

Barthel–Kropina cosmology always ending at the present
time in a de Sitter-type accelerating or super-accelerating
phase, with q equal to or smaller than −1. At high redshifts,
the deceleration parameter takes much higher values than
those predicted by the �CDM model.

The variations in the matter density and the conformal
factor φ are presented in Fig. 4. Whereas at low redshifts up
to the order of z ≈ 1.5, the predicted matter density of the
conformal Barthel–Kropina model has similar values as in
the �CDM model, at higher redshifts, a much higher mat-
ter density is predicted as compared to standard cosmology.
This different behavior can be traced back to the matter den-
sity evolution equation (77), which indicates the possibility
of the non-conservation of the baryonic content of the Uni-
verse. The conformal factor φ, shown in the right panel of
Fig. 4), increases initially with the redshift, reaching a max-

imum value at z ∈ (0.4, 1), after which it decreases and
acquires negative values at higher redshifts.

5.4 The case γ = 4/3

Finally, we consider the cosmological evolution of the homo-
geneous and isotropic conformal Barthel–Kropina cosmo-
logical model forγ = 4/3. The variations in the Hubble func-
tion and the deceleration parameter are presented in Fig. 5,
with the observational data and the predictions of the �CDM
cosmological model. The conformal Barthel–Kropina model
can give a satisfactory description of the observational data,
and for a certain range of the numerical values of the model
parameters (the initial conditions for the evolution equation
of the conformal factor), it can almost exactly reproduce the
predictions of the �CDM paradigm. However, important dif-
ferences in the predictions of the behavior of the deceleration
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Fig. 5 Variation in the dimensionless Hubble function h (left panel)
and the deceleration parameter (right) panel in the conformal Barthel–
Kropina cosmological model for γ = 4/3, and for u(0) = 0.80 (dot-
ted curve), u(0) = 0.82 (short dashed curve), u(0) = 0.84 (dashed
curve), u(0) = 0.86 (long-dashed curve), and u(0) = 0.88 (ultra-long

dashed curve). The initial conditions used to integrate the cosmological
evolution equations are φ(0) = 0.56, rm(0) = 0.05, and h(0) = 1,
respectively. The observational data are presented with their error bars,
while the red curve represents the predictions of the �CDM model

Fig. 6 Variation in the dimensionless matter density r (left panel) and
the conformal factor φ (right panel) in the conformal Barthel–Kropina
cosmological model for γ = 4/3, and and for u(0) = 0.80 (dotted
curve), u(0) = 0.82 (short dashed curve), u(0) = 0.84 (dashed curve),

u(0) = 0.86 (long-dashed curve), and u(0) = 0.88 (ultra-long dashed
curve). The initial conditions used to integrate the cosmological evolu-
tion equations are φ(0) = 0.56, rm(0) = 0.05, and h(0) = 1, respec-
tively. The red curve represents the predictions of the �CDM model

parameter persist, indicating lower values at small redshifts
and higher values at high redshifts. A de Sitter-type evolution
with q(0) = −1 is also obtained for this value of γ . Parame-
ter values that give the same evolution of q as in the �CDM
model at low redshifts still predict much higher values at
higher redshifts.

The redshift evolution of the baryonic matter energy den-
sity and the conformal factor φ is presented for the γ = 4/3
conformal Barthel–Kropina model in Fig. 6.

At redshifts z > 0.5, predictions of the baryonic matter
content of the�CDM model largely exceed the predictions of
the conformal Barthel–Kropina model, whose matter content
is relatively constant, and equal to the present-day value. This
aspect may be again explained by the conformal dependence
of the matter density on the conformal factor, as can be seen
in Eq. (77). The conformal factor φ decreases monotonically
from its initial positive value, to negative values reached at

higher redshifts. The variations in the basic model quantities
(rm, h, φ) are not significantly dependent on the initial values
of the conformal factor φ(0), but show a strong dependence
on the initial values of its derivative (dφ(z)/dz)|z=0, which
gives the rate of the variation in the conformal factor with
the cosmological redshift.

6 Testing the conformal Barthel–Kropina cosmology

7 Discussion and final remarks

In this paper, we have considered an extension of the Barthel–
Kropina dark energy model, as introduced in [129,130], by
introducing the mathematical and physical perspective of
the conformal transformations. Conformal transformations
are the basis of Weyl geometry [33,34], interestingly pro-
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posed in 1918, the same year as Finsler geometry [70]. How-
ever, the relations between these two fundamental geometries
have been explored very little, if at all, in a physical context.
Nevertheless, there are some mathematical studies trying to
fill the gap between these geometries, and investigating the
effects of the conformal transformations on various Finsler-
type geometries [134–141].

The starting point of our investigation is Eq. (24), in which
we have assumed that the fundamental function F(x, y) of
a Finsler geometry is conformally transformed into a new
function F̃(x, y). In the case of an (α, β) metric, a confor-
mal transformation acts on both the Riemannian metric α

and the one-form β, as indicated by Eq. (25). We can inter-
pret, by analogy with standard Riemannian general relativity,
such a conformal transformation as a transformation from a
Finsler-type Einstein frame to a Finsler-type Jordan frame.
Mathematically, such a transformation is always possible,
and leads to some classes of Finsler geometries with inter-
esting properties. From a mathematical point of view, one can
define a conformal change in the Finsler geometry as follows.

Let Fn = (Mn .L) and F̃n =
(

Mn .L̃
)

be two Finsler spaces

defined on the same underlying base manifold Mn , where
L denotes the Finsler metric function. If the angle between
any two tangent vectors in Fn is equal to the angle in F̃n ,
then Fn is called conformal to F̃n , and the transformation
L → L̃ is called a conformal transformation of the metric. In
other words, if there exists a scalar function σ(x) such that
L̃ = eσ(x)L , then the transformation is called a conformal
transformation [138,139].

For the case of an (α, β) metric, L̃ = eσ(x)L is equivalent
to L̃ = (

eσ(x)α, eσ(x)β
)
, or equivalently, g̃I J = e2σ(x)gI J ,

and ÃI = eσ(x) AI . The conformal transformation of the
connection in Riemann geometry is given by Eq. (7), and it
adds to the standard Levi–Civita connection three new terms
determined by the derivatives of the conformal factor σ .

The original Barthel–Kropina cosmological model was
built upon three fundamental mathematical assumptions.
Firstly, we assume that the Finsler metric function is
a Kropina-type (α, β) metric. Secondly, the osculating
approach to the Finsler-Kropina metric was adopted, in which
g(x, y) becomes a Riemannian metric g(x, Y (x)). Thirdly,
the first two assumptions lead to the result that the connec-
tion of this Riemann metric is nothing but the correspond-
ing Levi–Civita connection, called the Barthel connection in
Finsler geometry. With the help of these three assumptions,
one can systematically construct the corresponding Einstein
gravitational field equations and, in a cosmological setting,
the generalized Friedmann equations that lead to a consistent
cosmological model, which can be successfully tested against
the cosmological observations. In the present study we have
considered the conformal transformation of this model from
its Einstein frame to the conformally related Jordan frame,

which results in the introduction of a new scalar degree of
freedom.

The corresponding cosmological model, constructed by
assuming the homogeneous and isotropic Friedmann–Lemaître–
Robertson–Walker metric, leads to a set of generalized Fried-
mann equations, from which a dark energy effective geo-
metric model can be constructed. There are two essential
assumptions in the formulation of the model, the first being
the adoption of the specific form (58) for the coefficient of
the one-form β, which is considered to be related to the time-
dependent conformal factor φ by an exponential relation, also
involving the scale factor. As the second assumption in for-
mulating the dark energy model, we considered the splitting
of the global energy balance equations into two independent
equations, with the equation of conservation of the conformal
scalar field formulated in a form similar to that of ordinary
scalar fields in cosmology. However, it is important to point
out that in the present approach, the scalar field is of purely
geometric origin. Once these two assumptions are adopted,
one can obtain a cosmological model, representing a gener-
alization of the standard �CDM model, in which the cos-
mological evolution is described by the set of the Friedmann
equations, plus an evolution equation for the scalar field. The
model has one free parameter γ , and must be studied numer-
ically once the initial conditions for the scalar field and its
derivative at the time origin are given. Once these parame-
ters are fixed, a large number of cosmological models can be
obtained.

In our investigation, we restricted our analysis to three
classes of models, determined by three distinct numerical
values of the parameter γ . The initial conditions for the
scalar field were varied slightly. To simplify the comparison
with the observational data, the redshift representation of the
cosmological evolution equations was used. Moreover, we
compared the predictions of the conformal Barthel–Kropina
model with the similar predictions of the �CDM model,
and with a small set of observational cosmological data. The
parameter γ was given rather different values, both positive
and negative, and integer and fractional, respectively. The
comparison with the observational data was performed using
a trial-and-error method, and no formal mathematical fitting
procedures were used. As a first conclusion of our study, we
can infer that positive values of γ give a better description of
the observational data for the Hubble function and of �CDM
cosmology as compared with the negative γ values. How-
ever, even negative values of γ are not completely ruled out
by the observations. On the other hand, important differences
between the predictions of various cosmological parameters
in the conformal Barthel–Kropina model and of the �CDM
model do appear. These differences are especially signifi-
cant for the case of the deceleration parameter and the matter
density. Even though the conformal Barthel–Kropina model
describes well the transition to an accelerating expansion,
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and can even reproduce the observational present-day value
of the deceleration parameter, significant differences appear,
especially at higher redshifts, where the conformal Barthel–
Kropina predicts a much higher rate of deceleration than the
�CDM model. The existence of direct observational data on
the deceleration parameter at higher redshifts would allow
for precise discrimination between the cosmological models
predicted by the conformal Barthel–Kropina model and other
standard or modified models. Other important differences do
appear at the level of the ordinary matter density. For γ = 1
and γ = −1, the conformal Barthel–Kropina model predicts
higher matter densities, especially at redshifts z > 2. On the
other hand, for γ = 4/3, the matter content of the Universe
is much higher in the �CDM model than in the conformal
Barthel–Kropina model, which predicts an almost constant
matter density, showing a very small variation with the red-
shift.

To conclude, in this study we have investigated an interest-
ing feature of a specific Finsler-type cosmology related to the
impact of a conformal transformation on the Kropina metric.
The cosmological implications of the model were considered
in detail, and we have shown that this type of model may rep-
resent an attractive alternative to standard cosmologies based
on Riemann geometries. We have developed the basic mathe-
matical and physical tools that would allow an in-depth com-
parison of the predictions of the conformal Barthel–Kropina
model with the observational data and with standard cos-
mological approaches. Hopefully, the results obtained will
lead to a better understanding of the physical applications
of Finsler geometry and its relevance for the description of
large-scale cosmic phenomena and processes.
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