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1 Introduction

In string theory, black holes are solutions of the low energy effective action, usually valid
only for horizon size larger than the string scale rh � ls (and small string coupling gs).
What is the correct description of a black hole microstate when it is adiabatically shrunk to
the string scale? The black hole/string transition or the correspondence principle [2–4] is
the idea that such stringy black holes are indistinguishable from high energy stringy bound
states. In [5] a canonical ensemble version of this idea was explored (see also [6–15]). As
a thermodynamic phase of quantum gravity, the Euclidean black hole is a saddle of the
string theory thermal partition on asymptotically Rd × S1.1 In terms of the temperature,
this saddle is reliable for β � ls. Slightly below the Hagedorn temperature of string theory
βH , Horowitz and Polchinski found [5] a new saddle, a condensate of strings winding
around the thermal S1 bound by gravitational interactions. We term such a saddle a
“string star”, imagining it describes a gravitational bound state of hot strings. The black
hole and the string star saddle are reliable at different regimes of temperatures, but a
crude extrapolation to intermediate temperatures shows a qualitative agreement of their

1Assuming the asymptotic circumference of the circle can be consistently frozen at the value β [16].
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thermodynamic properties. The black hole/string transition can now be phrased as a
precise conjecture: there exists a line of string theory backgrounds (well-defined only for
small gs) connecting the Euclidean black hole to the string star, and eventually (at the
Hagedorn temperature β = βH) to thermal Rd × S1. Technically, this line of saddles can
be interpreted as a line of worldsheet CFTs connecting the Euclidean black hole to Rd×S1

through winding condensates. In [12] an argument was presented against the existence of
such a line for d > 2 type II string theory, via a worldsheet index argument. A refined
version of the conjecture thus allows for the possibility of phase transitions along the line.

In [1] this discussion was extended to anti-de Sitter (AdS) spaces, by studying the prop-
erties of AdSd+1 string stars for d > 2. An AdS string star is a thermal winding condensate
in the middle of thermal AdSd+1. The saddle is reliable near the AdS Hagedorn temperature
βc, β−βc � βc. As the temperature increases the solution’s size grows, with a maximal size
of L ∼

√
ladsls. Its amplitude and free energy decrease to zero at the Hagedorn temperature,

where it merges with thermal AdSd+1. At lower temperatures, the solution size becomes
small L ∼ ls, at which point a correspondence principle to Euclidean AdS black holes can
be drawn similar to flat space: a conjectured line of string theory backgrounds connecting
the Euclidean AdS black hole solution and thermal AdS at the Hagedorn temperature via
thermal winding-string condensate.2 Unlike flat space, string theory on AdSd+1 also has a
holographic dual in terms of d-dimensional CFT. The black hole/string transition in terms
of the holographic CFT would be a conjectured line of large N saddles in the thermal
partition function on Sd−1, connecting the deconfined phase to the confined phase at the
Hagedorn temperature (defined by the N =∞ spectrum [17, 18]) [17, 19, 20].

In this work, we continue our study of AdS string stars. The first extension is the
study of AdS3 string stars (d = 2), presented in section 2. This is an interesting test
for the correspondence principle that is inherently different from the flat space case. The
reason is that both black holes and string stars do not exist in asymptotically flat R2×S1

β .
However, in AdS3 black hole solutions do exist and are known by the name BTZ [21].
Similarly, string star solutions don’t exist on flat R2×S1

β . But in thermal AdS3 we find that
the AdS3 curvature stabilizes the potential for the winding condensate. As a result, thermal
AdS3 allows for reliable string star solutions close to the Hagedorn temperature. This is an
interesting check that such a correspondence is possible for a more general setting and may
exist whenever black holes exist in a weakly coupled string theory. However, contrary to
higher dimensional small AdS black holes, a BTZ with small horizon radius rh � lads has
very low temperature β � lads � βc. As the BTZ gets smaller, its temperature continues
to decrease further away from the Hagedorn temperature, and a simple black hole/string
transition between them is impossible.

It is still possible to conjecture a different kind of correspondence. Below temperature
β′c = 4π2l2ads/βc the BTZ solution has a tachyonic instability from strings winding the
angular circle [22–24]. This is exactly the Hagedorn instability of thermal AdS3, after
switching the two asymptotic circles. The natural candidate for a “BTZ/string transition”

2The definition of this line should be understood only in the gs → 0 limit. At finite but small gs the
1-loop corrections become leading close enough to the Hagedorn temperature. As the tree level result gives
an on-shell action I ∼ g−2

s

(
β−βc
βc

)2, we find the solution is trustworthy only for (β − βc)/βc � gs.
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in AdS3 would be conjectured line of saddles connecting the BTZ at β′c to thermal AdS3
at βc, with winding condensates at each end of the line [25, 26]. See figure 1. Notice that
unlike at higher dimensions, in AdS3 there exists a large temperature difference between
the regimes of validity of the two saddles βc � β′c. As a result, no qualitative match can
be extrapolated between the AdS3 string star and small BTZs as a sanity check. We admit
that the evidence for such a line is much weaker compared to higher dimensions.

Another interesting feature of AdS3 string stars is the possibility in AdS3 to turn on
NS-NS flux [27–31]. As the string is charged under the Kalb-Ramond field, the winding
string field χ(x) is electrically charged in the effective two-dimensional description. Non-
zero flux changes the solution at leading order. We study the properties of AdS3 string stars
for mixed RR and NS-NS fluxes and for the pure NS-NS system. Denoting the fraction
of the NS-NS flux by 0 ≤ λ ≤ 1, the size of the RR flux is proportional to

√
1− λ2. In

section 3.2 we study string star solutions for finite RR flux. We find that the solutions
are similar to those found in higher dimensions [1]. The NS-NS flux only contributes
to the effective mass of the winding mode (at leading order in α′), and the size of the
solution is L ∼

√
lslads · (1 − λ2)−1/4. In section 4 we study solutions for small RR flux√

1− λ2 ∼ ls/lads and for the pure NS-NS system. In this regime, the background NS-NS
flux is high enough to (almost) flatten the potential for the winding mode, similar to long
strings in AdS3 with NS-NS flux [32, 33]. As a result, the size of the solution increases to
the AdS scale L ∼ lads. Moreover, the back-reacted NS-NS flux from the winding mode
now appears at leading order, along with the metric and the dilaton.

In section 3 we also discuss winding string condensates in a family of confining back-
grounds which includes the D3 and D4 Witten models [34], the Maldacena-Nuñez [35] and
the Klebanov-Strassler [36] backgrounds. These gravitational backgrounds are holographi-
cally dual to theories believed to be continuously related (at low energies) to confining field
theories on flat space Rp+1 (p = 2, 3). The thermodynamics of these models was studied
using a semiclassical bulk analysis [37–47]. The confined phase has a “thermal” background
dual given by analytically continuing the boundary to Rp×S1

β . The deconfined phase has a
black-brane dual. In this work, we find a new saddle with a thermal winding string conden-
sate on top of the thermal background. The solution is homogeneous parallel to the spatial
boundary directions Rp, and it is localized to the bulk IR region. We term this saddle a
‘winding-string gas’. As before, it is reliable only close to the Hagedorn temperature of
the holographic confining string β − βc � βc, and it is highly subdominant. We describe
the properties of the solution and find the first correction to the Hagedorn temperature in
these models due to the bulk curvature. It is possible to conjecture a black brane/string
transition for these models, connecting the black brane saddle to the winding-string gas
saddle. The phase diagram for the Witten models is similar to AdS3, discussed above. In
this case, it is also natural to conjecture that the string winding gas is continuously related
to the deconfined phase of pure 3 + 1 Yang-Mills.

Several future directions are possible. The AdS3 calculation we performed was only at
leading order in the winding condensate and at leading order in α′. The worldsheet theory
in the pure NS-NS case (λ = 1) is known exactly [28, 29, 48], and it is exciting to find the
string star profile exactly in α′ [25, 26, 49]. Of course, ultimately one would like to find
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(for the pure NS-NS background) the entire line of worldsheet CFTs interpolating between
the thermal AdS3 and BTZ. At the moment it sounds improbable, as such a deformation
away from β − βc � βc will require the entire string spectrum that couples to the winding
mode, and all the orders of their interactions. Finally, the confining backgrounds solution
gives interesting predictions on its holographic dual. It would be interesting to compare
these predictions to the weakly coupled regime.

2 General properties of the AdS3 string star

2.1 Winding-string condensates in type II string theory

In this section, we will describe the low energy effective field theory (EFT) for type II string
theory Euclidean saddles with a perturbative (normalizable) winding-string condensate.
This is an extension of the EFT for the winding mode together with the metric around flat
space [5, 12, 16] to more general cases that include curved metric and (possibly) background
fluxes such as the Kalb-Ramond flux H3 6= 0.

By “perturbative saddle” we mean that we start with a type II “background saddle”
without a winding-string condensate, and will consider a small deformation of it that
will include such a condensate. We will assume the undeformed metric is of the form
MD × X10−D, with X10−D being a 10 − D dimensional compact space. We denote by
t ∼ t+ β the compact ‘temporal’ direction in MD on which we will reduce the theory, and
the rest of the directions by xi, i = 1, . . . , d = D − 1. We will assume the undeformed
metric on MD has the form

G = gtt(x)dt2 + gij(x)dxidxj . (2.1)

Besides the metric, the background saddle can also include non-zero NS-NS and RR gauge
fields. All the background fields are assumed to be in a gauge where they are independent
of t, making t translations a symmetry. We set the units such that the curvature scale of
the background fields is set to one lcurv = 1, while keeping the α′ explicit, and assume the
background is weakly-curved α′ � 1.

Following [16] we would like to consistently add an action for χ, the string mode that
winds once around the temporal circle t. We take χ(x) to be homogeneous on the compact
X10−D directions and to depend only on x. Denoting the size of the normalizable χ(x)
profile L, we will assume that it is much larger than the string scale L� ls. Assuming the
entire deformation from the saddle has L � ls, higher order terms in the α′ expansion of
the action will be suppressed by derivatives. At leading order in α′ the total action is

I = ISUGRA + Iχ. (2.2)

The type II supergravity (SUGRA) action (at leading order in α′) is [50]

ISUGRA = 1
16πG(10)

N

∫
d10x
√
G

[
e−2Φ

(
−R− 4∂µΦ∂µΦ + 1

2 |H3|2
)

+ 1
2 |Fp|

2
]
, (2.3)
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with H3 = dB2, Fp+1 = dCp and |Fp|2 = 1
p!Fµ1...µpF

µ1...µp . G
(10)
N is the 10-dimensional

gravitational constant. The last term stands for the possible RR Fp fluxes, and we omitted
the possible Chern-Simons terms for brevity.

Considering the action for the winding mode, the new ingredient compared to [1] is
that here we need to describe the coupling of the winding mode to the Kalb-Ramond field.
The leading interaction comes from the electric coupling of the fundamental string to the
Kalb-Ramond field along the t direction. It is convenient to define the 1-form gauge field

Ai = Bt i, and F = dA. (2.4)

In these conventions for Ai, χ is electrically charged under the U(1) winding with charge
g = β

2πα′ .
3 Up to O(α′) terms, the χ d-dimensional action takes the form

Iχ = β

16πGN

∫
ddx vol e−2Φ

(
|Dχ|2 +m2 (R(x)) |χ|2 +O(α′−1|χ|4) (2.6)

+
(
g1RD[g] + g2

gtt

2 FijF
ij + g3

12HijkH
ijk

)
|χ|2

)
,

with R(x) ≡ β
2π
√
gtt, Dj = ∂j − igAj , and g1, g2, g3 are some unknown O(1) couplings.

GN and
vol = √g√gtt, (2.7)

are the D-dimensional gravitational constant and volume respectively. For type II string
theory the winding mode mass and the flat space Hagedorn temperature RH = 1

2πβH are

m2(R) = R2 −R2
H

α′2
, R2

H/α
′ = 2. (2.8)

In these notations, we also define the effective mass for the winding mode as

m2
eff(x) = m2(R(x)) + g2AiA

i. (2.9)

In (2.2) we added the first winding mode and the supergravity fields but neglected
the rest of the higher winding modes and the rest of the massive string spectrum. This
is consistent only when the mass of the winding mode is parametrically below the string
scale α′m2

eff � 1 at the support of χ. In practice, we need to tune the temperature of
the background to be close to the Hagedorn temperature R − RH � RH . The second
line of (2.6) includes all the α′−1 terms. After fine-tuning the quadratic mass term to be
small, we still have higher order interaction terms starting at α′−1|χ|4. We will neglect
these terms below by our assumption that the deformation is perturbative and the profile
of the winding mode is parametrically small |χ| � 1.

3To see this, notice the worldsheet action of the configuration t(σ, τ) = β
2πσ, x

i(σ, τ) = xi(τ) is

SB = iβ

2πα′

∫
dτẋi(τ)Bti(xi). (2.5)

– 5 –
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In the third line of (2.6) we listed the first α′0 terms in the action. These terms correct
the mass term by a curvature scale (which also controls the Kalb-Ramond flux) amount
∆m2 ∼ O(1).4 These terms are naively leading whenever the size of the winding mode
profile is comparable to the curvature scale. Indeed some of the solutions we will find below
will satisfy this condition. Nevertheless, we will argue that these terms are negligible for
these cases.

Imagining a general deformation of the supergravity fields, what are the leading in-
teraction terms? Expanding the total action around the background, the quadratic order
(as in any Euclidean theory) is trivial. The leading α′−1 cubic interaction comes by ex-
panding the kinetic term for χ to linear order around the background. Parametrizing the
deformation of the tt component of the metric by Gtt = gtte

2ϕ(x), there is a universal cubic
interaction by expanding the mass term

m2(x)|χ|2 = m2(R(x))|χ|2 + 2R(x)2

α′2
ϕ|χ|2 +O(ϕ2|χ|2), (2.10)

where on the r.h.s. R(x) is of the (undeformed) background metric. Close to the Hagedorn
temperature R ∼ ls the interaction term is of leading α′−1 order. Whenever the background
solution has a non-trivial Kalb-Ramond flux around the temporal circle Fij 6= 0 there is
also a leading cubic term from the AiAi|χ|2 term, of the schematic form 1

α′ δAi|χ|
2 (we will

deal with this term in the next section). However, the dilaton Φ cubic coupling to χ is of
higher α′ order due to our assumption L � ls and is negligible.5 Considering a general
deformation of the supergravity fields, the leading cubic interactions of ISUGRA are all with
O(1) (the curvature scale) couplings and can be neglected as well. Only the quadratic
interactions in ISUGRA around the saddle are leading.

It is, therefore, crucial to find out which fields couple to ϕ (and δAi) at quadratic
order in ISUGRA. The Einstein-Hilbert term by itself gives only a kinetic term for ϕ, but
the linear term does give a quadratic coupling to the dilaton. To see this we proceed as
follows. The overall volume in (2.3) is

√
G exp(ϕ − 2Φ). It is therefore useful to redefine

the dilaton as
φ = Φ− 1

2ϕ. (2.11)

In this form, the quadratic order of the metric + dilaton action is given by

1
16πG(10)

N

∫
d10x
√
Ge−2Φ [−R− 4∂µΦ∂µΦ]

= β

16πGN

∫
ddxvol

[
∂iϕ∂

iϕ− 4∂iφ∂iφ− 2φ∂igtt∂
iϕ

gtt
+ (. . .)

]
.

(2.12)

On the r.h.s. we integrated over the other 10 − d directions (including t) and kept only
quadratic terms in ϕ, φ. The last term gives a leading quadratic φ∂ϕ interaction, that
generically appears whenever gtt is not flat.6 The dilaton however is expected to couple

4One can also write α′0 terms that correct the ϕ|χ|2 coupling, which are also subleading.
5We assume Φ = 0 for the undeformed background.
6This is the reason this term is absent in [5, 12, 16].

– 6 –
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quadratically in a similar way to any supergravity field with a non-trivial profile along the xi

directions. To find a saddle with a winding condensate, it is necessary to consider a general
deformation of the metric and the dilaton (and other fields present in the background).

In many cases, however, there is a significant simplification that can be considered
assuming the solution’s length scale is also much smaller than the curvature scale L � 1.
For those cases, we can further expand in orders of L and neglect lower derivatives or
higher powers of x. Looking back at (2.12), the kinetic terms are of order L−2 while the
interaction term is of L−1 subleading order. In fact, in the gauge we will choose Ai ∼ O(L),
and it is possible to show that the δB|χ|2 is also subleading (we will explain it for the AdS3
case below). As a result, at leading order in L the dilaton φ and the Kalb-Ramond field
decouple, and we can consistently consider a perturbative deformation of the winding mode
χ and the temporal metric ϕ alone. The effective action in this limit will be reviewed in
section 3.1. Whenever the size of the profile reaches the curvature scale L ∼ 1, this
approximation breaks. For those cases a general supergravity deformation is necessary.
We will describe such a case in section 4 below.

2.2 The mixed AdS3 background

In this section, we begin the discussion of the AdS3 string star. We work in units of lads = 1.
The set of backgrounds we will consider are Euclidean 10d solutions of type IIB string
theory with both NS-NS and RR fluxes, and the geometry of (thermal) AdS3 × S3 ×M4,
where M4 can be a four torus T 4 or a K3 manifold [27, 30, 31]. The thermal AdS3
component is given by the following background

ds2 = dρ2 + sinh2 ρ dφ2 + cosh2 ρ dt2,

B2 = iλ sinh2 ρ dφ ∧ dt,

C2 = i
√

1− λ2 sinh2 ρ dφ ∧ dt,

(2.13)

with t ∼ t + β and 0 ≤ λ ≤ 1.7 The gauge fields B,C also have fluxes from the S3

component, which we omitted. λ = 0 is the pure RR solution, for which string stars
solutions were studied in [1], and λ = 1 is the pure NS-NS solution. We note that the
latter can be studied not only for type IIB but in any closed string theory, and it is also
known exactly in α′ via an SL(2, R) WZW worldsheet description [28, 29, 48]. As in [1] β
is also the holographic temperature in the dual CFT on S1

2π × S1
β .

In these conventions the background gauge field (2.4) is Aφ = iλ sinh2 ρ and R(ρ) =
R0 cosh(ρ), with R0 = β

2π . The (background) effective mass (2.9) is given by

m2
eff(ρ) = 1

α′2

(
R2

0

(
cosh2 ρ− λ2 sinh2 ρ

)
−R2

H

)
. (2.14)

For self consistency we assumed scale separation α′m2
eff(ρ) � 1, which in this case gives

R0−RH � RH for ρ ∼ O(1). The EFT is therefore applicable only for temperatures close
to the Hagedorn temperature.

7The quantization of the fluxes (on S3) requires both λ/α′,
√

1− λ2/α′ to be integers. In this work, we
expand at leading order in α′, and therefore this quantization is invisible [27, 31].

– 7 –
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Following the previous section, to write the two-dimensional EFT we need to expand
ISUGRA to quadratic order around a general supergravity deformation. Assuming the
spherical symmetry of the solution, we are instructed to consider a deformation for every
field with a nontrivial background profile along the ρ direction. A general spherically
symmetric deformation of the AdS3 components of (2.13) has the form8

Φ = φ+ 1
2(ϕ+ ψ),

G = dρ2 + e2ϕ cosh2 ρ dt2 + e2ψ sinh2 ρ dφ2,

B2 = iλeζ sinh2 ρ dt ∧ dφ,

C2 = i
√

1− λ2eη sinh2 ρ dt ∧ dφ,

(2.15)

with φ, ϕ, ζ and η all function of ρ. In particular, we don’t need to consider deformations
of other RR fluxes. Similar to (2.11), we redefined Φ in such a way to satisfy

√
Ge−2Φ = vol e−2φ, (2.16)

with vol = cosh ρ sinh ρ the volume form of the background metric.
Following the discussion in the previous section, we assume small back-reaction

|φ|, |ϕ|, |ψ|, |ζ|, |η| � 1 and consider only its leading coupling to χ. Expanding the winding
mode action (2.6) to (α′−1) cubic order, and integrating over the angular direction, gives

Iχ = 2πβ
16πGN

∫
dρ vol

[
|χ′|2 +m2

eff(ρ)|χ|2 + 2R2
0

α′2

(
cosh2 ρ ϕ− sinh2 ρ (ζ − ψ)

)
|χ|2

]
,

(2.17)
with GN being the 3-dimensional gravitational constant, and the effective mass (2.14).
Here and below, primes are derivatives with respect to ρ. In particular, we find both ϕ|χ|2

and (ζ −ψ)|χ|2 terms of the same leading α′−1 order. Substituting the deformation (2.15)
in the SUGRA action (2.3) gives to quadratic order

I
(2)
SUGRA = 2πβ

16πG(3)
N

∫
dρ vol

[
−4(φ′)2 +(ϕ′)2 +(ψ′)2

−λ2
(1

2 tanh2 ρ (ζ ′)2 +4(ψ+ϕ−ζ)2−4tanhρ ζ ′(ψ+ϕ−ζ)
)

−(1−λ2)
(1

2 tanh2 ρ (η′)2 +4η2−4η(ϕ+ψ)−2tanhρ η′(ψ+ϕ−2η)
)

−4φ
(
tanhρ ϕ′+cothρ ψ′+λ2(2ϕ+2ψ−2ζ−tanhρ ζ ′)

)]
.

(2.18)

To avoid a curvature singularity at ρ = 0 we need to maintain ψ(0) = 0. Regularity of the
fields at ρ = 0 also sets χ′(0) = φ′(0) = ϕ′(0) = ψ′(0) = ζ ′(0) = η′(0) = 0. At ρ = ∞ all
the fields should vanish for normalizability.

8We gauge fixed the field potential B2, C2 to also depend solely on ρ, which fixes the allowed components.
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2.3 Thermodynamics and the BTZ/string transition

The total EFT action compared to that of thermal AdS3 is the sum of (2.17) and (2.18)

IString star − ITAdS3 = I
(2)
SUGRA + Iχ. (2.19)

The AdS3 string star is the bound state saddle of (2.19). Being a solution of the action, it
is a Euclidean saddle of the (Euclidean) string theory partition function with asymptotic
thermal AdS3 boundary condition. As a Euclidean saddle, it has free energy of order G−1

N ,
just like black holes. It is applicable only near the Hagedorn temperature R0−RH � RH .

In d = 2 the AdS black hole solution is known by the BTZ solution [21]. It’s on-shell
action, compared to the thermal AdS3, is (in units lads = 1)

IBTZ − ITAdS3 = − π

4GN

(
R−1

0 −R0
)
. (2.20)

Thus, thermal AdS3 is canonically dominant for low temperatures R0 > 1, while the
BTZ is dominant for high temperatures R0 < 1. Whenever the string star saddle is re-
liable R ∼ RH � 1 the dominant saddle is the BTZ. The string star saddle is therefore
non-perturbatively unstable, and exponentially subdominant canonically. As we will see
numerically in figure 7 below (and also in [1]) the string star free energy (2.19) is posi-
tive (note that the expression is not clearly positive due to the ζ, η kinetic terms (2.18)).
Therefore it is subdominant also compared to the thermal AdS3 solution.

For higher dimensional AdSd+1 d > 2 an AdS black hole/string transition was suggested
between the AdS string star saddle and AdS black holes [1]. The argument was carried
from the black hole/string transition previously suggested between the flat-space string star
saddle (or the Horowitz-Polchinski solution) and the (Euclidean) Schwarzschild saddle [5,
12]. The reason is that at the two ends of the correspondence point around R0 ∼ ls, both
the AdS black hole and the AdS string star are of size much smaller than the AdS scale
and can be well approximated by their asymptotically flat counterparts.

In d = 2 however asymptotically flat Schwarzschild solutions simply don’t exist, so a
similar argument can’t be drawn. Going back to AdSd+1, AdS black holes exist only for
R0 < lads/

√
d(d− 2). For small enough horizon radius rh/lads <

√
d−2
d the temperature

grows as the radius shrinks, just like in flat space. This is not the case for d = 2. The
temperature of the BTZ solution always grows with the radius R0 = 1/rh. As a result,
any attempt to connect the AdS3 string star to a small black hole close to the Hagedorn
temperature is impossible, because at high temperatures only large black hole solutions
exist. A clue comes when we consider the asymptotic symmetries of the question. Any
worldsheet with asymptotic S1

φ × S1
β has two U(1) windings. The thermal AdS3 saddle

breaks the S1
φ winding spontaneously, while the BTZ saddle breaks the S1

β winding. The
AdS3 string star saddle on the other hand (spontaneously) breaks both winding symmetries.
To connect the AdS3 string star saddle to the BTZ we need to consider deformations of
the BTZ by S1

φ winding strings.
Denoting the AdS3 Hagedorn temperature by Rc, the BTZ solution has a known insta-

bility at R′c = 1/Rc [22–24]. This instability is exactly the tachyon instability of the thermal
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Figure 1. A conjectured phase diagram for AdS3 (for lads � ls). The Euclidean action as a function
of the inverse temperature R0 is sketched. The gray and black lines describe the thermal AdS3 and
the BTZ respectively. The string star saddle is the blue line close to the Hagedorn temperature
Rc. Its dual, a BTZ winding condensate, is the blue line connected to the BTZ saddle at R′

c. A
BTZ/string transition in AdS3 would be a hypothetical line of saddles connecting the two (dashed
blue line). We note that the sketch should be understood in the limit gs → 0. At finite but small gs

the string star saddle can’t be trusted arbitrarily close to Rc whenever the 1-loop effect is leading.

AdS3 at the AdS Hagedorn temperature after we switch the roles of the two asymptotic
circles (R0 7→ 1/R0). In other words, below R0 > R′c strings winding around the φ-circle
are tachyonic. Considering the AdS3 string star saddle after switching the circles we get
a new saddle that describes a normalizable φ-winding condensate in the BTZ background.
This saddle also breaks both winding symmetries spontaneously, but it is connected (in
its regime of validity R′c − R0 � R′c) to the BTZ instead of the thermal AdS3. In terms
of global symmetries pattern, it is therefore natural to speculate these two branches meet
around R0 ∼ 1.9 This phase diagram for AdS3 was also suggested in [26]. A schematic
plot of this suggested picture is drawn in figure 1.

3 Sub-AdS solutions and confining strings

3.1 General discussion

This section studies general properties of holographic thermal confining theories, in cases
where the “IR wall” is geometrically realized by a contractible (non-thermal) cycle. Ther-
mal AdSd+1 is one such example [1], in which an Sd−1 closes in the IR region. We start
by showing that around such a background there exists a saddle of thermal winding string

9By ‘meet’ we mean through a line of string theory backgrounds labeled by the asymptotic temperature
β = 2πR0.
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condensate that depends (to leading order) only on the curvature scale at the IR point
at which the cycle closes. The reason would be that for this background, the size of the
solution would be much smaller than the characteristic curvature scale. In terms of AdSd+1
these solutions satisfy L � lads and were reviewed in [1]. The analysis allows us to find
the characteristic behavior of the solution and the leading correction to the Hagedorn
temperature in the dual holographic theory.

The topology of the geometries we will study is S1
β × Rd ×M. S1

β asymptotes to the
thermal cycle of the holographic theory, Rd is made of a radial direction r and a shrinking
Sd−1, and M is some (perhaps non-compact) manifold. We further assume the solution
preserves SO(2) × SO(d) symmetry. The string metric close to the shrinking point r = 0
of the Sd−1 sphere is, to subleading order in r2,

ds2 = dr2 +
(

1 + r2

l2

)
dt2 + r2dΩ2

d−1 + ds2
M (3.1)

The Euclidean time direction satisfies t ∼ t+2πR0. Higher orders of the metric are assumed
to be down by higher orders of r2/l2 with l being the curvature scale of the (IR) geometry.
As a result, we implicitly assume r � l and ls � l. On general grounds the parameter
R0 is related linearly to the holographic theory temperature β. We also assume that for
r � l the internal space geometry ds2

M is independent of r. In this geometry, and for
temperatures close to the Hagedorn temperature, we look for non-trivial winding solutions
that are homogeneous both on M and on the closing Sd−1 sphere. In cases that M is
non-compact these solutions are dual (in the holographic theory) to a gas of interacting
(confining) strings, and so we term them “winding-string gas” solutions.

In section 2.1 we explained that whenever the winding mode profile size is parametri-
cally smaller than the curvature scale L� l we can expand the EFT in orders of L/l and
consider only the winding mode χ and the temporal metric deformation ϕ. In practice, we
take only the highest number of derivatives (within the O(α′) action) and fewer powers of
r. Assuming both χ(r), ϕ(r) depend only on r, the leading O(l2/L2) terms in (2.2) are

IL�l = βVd−1
16πGN

∫
rd−1dr

[
(ϕ′)2 + |χ′|2 +m2

eff(r)|χ|2 + 2R2
0

α′2
ϕ|χ|2

]
, (3.2)

with Vd−1 the volume of a unit Sd−1 sphere. At leading order for small r it is enough to
expand the effective mass to quadratic order in r. Assuming no Kalb-Ramond flux in the
t direction the effective mass (2.9) is

m2
eff(r) = 1

α′2

(
R2

0 −R2
H + R2

0r
2

l2

)
. (3.3)

Notice that the only l dependence in the action (3.2) is through (3.3). Whenever a (non-
singular) Kalb-Ramond flux exists it only corrects the r2 term and can be swallowed into
a redefinition of l. Naively the second term is subleading for L � l, but for temperatures
close enough to the Hagedorn temperature (R2

0 − R2
H)/R2

0 ∼ L2/l2 it is of the same order
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and should be added (while higher orders in r are still subleading). The resulting equations
for χ(r), ϕ(r) are

χ′′ + d− 1
r

χ′ −
(
m2

eff(r) + 4
α′
ϕ

)
χ = 0,

ϕ′′ + d− 1
r

ϕ′ − 2
α′
|χ|2 = 0.

(3.4)

These equations are of the same form found in the near-Hagedorn limit at [1].
The winding EFT regime of validity for the winding EFT is (R2

0 − R2
H)/R2

H � 1. In
this section, we further restrict ourselves to (R2

0 − R2
H)/R2

H ∼ ls/l. We will denote this
regime of temperatures as “near-Hagedorn” and parameterize it explicitly by defining

R2
0 ≡ R2

H + δ · l
3
s

l
. (3.5)

We can further reparameterize

χ(r) = ls
l
· χ̂(r/L), ϕ(r) = ls

l
· ϕ̂(r/L), (3.6)

with L2 ≡ lsl, to get (x = r/L)

χ̂′′ + d− 1
x

χ̂′ −
(
δ + 2x2 + 4ϕ̂

)
χ̂ = 0,

ϕ̂′′ + d− 1
x

ϕ̂′ − 2|χ̂|2 = 0,
(3.7)

with ′ denote an x derivative. These equations were studied numerically in [1]. Be-
cause (3.7) is dimensionless we find |χ|, |ϕ| ∼ ls/l and solution’s size L ∼

√
lsl. Be-

cause (for the original metric to be weakly curved) ls/l � 1 the solutions for (3.7) are
all self-consistent. Specifically note that ls � L � l, justifying the approximation (3.2).
Numerically it was found that the solution’s size increases with the temperature [1].

The Hagedorn temperature of the theory is defined as the temperature where the
linearized equations have a normalizable solution, giving rise to a normalizable zero mode
in the partition function. At the order we work with, this is given by δc = −

√
2d, and the

corresponding normalizable mode is χ(r) = exp(−r2/(
√

2L2)). In other words, the leading
curvature correction to the Hagedorn value for R0 is

R2
c = 2α′

(
1− d√

2
ls
l

+O(l2s/l2)
)
. (3.8)

However, R0 is not directly related to the holographic theory temperature β. In the ex-
amples below the geometry is given by an analytic continuation from a Lorentzian manifold
with a boundary of Rp,1 for some p. The Lorentzian solutions take the general form

ds2 = dr2 + f(r)
(
−(dx0)2 +

p∑
i=1

(dxi)2
)

+ (. . .), (3.9)

where r is again the radial bulk direction, x0, . . . , xp are parallel to the boundary Rp,1,
and in the bracket we ignored the rest of the coordinates. The Euclidean solution is then
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taken by analytically continuing x0 = it, with the same t ∼ t + β as in (3.1). Comparing
to (3.1) gives f(r = 0) = 4π2R2

0/β
2 at r = 0. The confining string tension Tst is given by

calculating the bulk worldsheet action in the t, xi IR plane (r = 0) measured in units of
the holographic boundary lengths given by β:

Tst = 1
2πα′

√
gttgxx |r=0= f(0)

2πα′ = 2πR2
0

α′β2 . (3.10)

Together with (3.8), the leading curvature correction to the holographic Hagedorn temper-
ature is

βc =
√

4π
Tst

(
1− d

2
√

2
ls
l

+O(l2s/l2)
)
. (3.11)

3.2 AdS3 with finite RR flux

We now go back to study the AdS3 string star solutions in the background (2.13). Following
the previous section we will when small solutions L� lads exist. Assuming ρ� lads we can
directly expand (2.18) and (2.17) to L−2 order and see that all the fields besides ϕ decouple,
leaving us with (3.2) (at d = 2). In particular, notice that while both ϕ and ζ couple to χ at
the same α′−1 order (2.17), the ζ coupling is smaller by a factor of ρ2/l2ads � 1. Expanding
the effective mass (2.14) to leading order gives (bringing back the lads units)10

m2
eff(ρ) = 1

α′2

(
R2

0 + (1− λ2)R2
0

l2ads
ρ2 −R2

H

)
. (3.12)

This is the same form as in (3.3) only with the effective scale l = lads/
√

1− λ2. We can
follow the same steps as in the previous section and assume a small solution ls � L � l.
We also note that as the winding mass of order m2 ∼ lads/l

3
s , we can consistently neglect

higher-curvature contributions to the mass which are of subleading order ∆m ∼ l−2
ads.

Following the previous section, for near-Hagedorn temperatures (R2
0 − R2

H)/R2
H ∼

ls/lads the AdS3 string star solution has an amplitude of

|χ|, |ϕ| ∼ ls
lads

√
1− λ2, (3.13)

and a characteristic size
L ∼

√
lslads(1− λ2)−1/4. (3.14)

In this geometry β = 2πR0 and therefore, following (3.11), the leading correction to the
AdS3 Hagedorn temperature is

R2
c = 2α′ − 23/2

√
1− λ2 l3s

lads
+O(α′2/l2ads). (3.15)

In [1] the leading correction for the Hagedorn temperature in AdS5 × S5 was matched
with an integrability analysis of N = 4 SYM [18]. It would be interesting to find a way

10The discussion here is for λ ∼ O(1). We note that for small enough λ ∼ ls/lads the λ (and the entire
NS-NS flux) dependence is absent at leading order in α′, and appears together with the suppressed higher
α′ terms in (2.6).
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to similarly compare (3.15) to the recent integrability results for the pure RR AdS3 case
(λ = 0) [51–54].

The thermodynamic stability of these solutions was studied in [1]. ζ is negligible in (7)
and the string star free energy can be shown to be positive. This saddle is therefore non-
perturbatively unstable compared to the thermal AdS3 saddle (and to the BTZ saddle).

This discussion is self-consistent only when the size of the solution is smaller than the
AdS curvature scale, L � lads, or 1 − λ2 � α′/l2ads. Note that

√
1− λ2 is the magnitude

of the RR flux F3 (2.13). We, therefore, conclude that for near-Hagedorn temperatures
(R2

0 − R2
H)/R2

H ∼ ls/lads and large enough RR-flux 1− λ2 � α′/l2ads the leading behavior
of the mass around ρ = 0 solely controls the profile of the string star. As we lower the RR
flux the profile size is larger and the amplitude is smaller. Around 1 − λ2 ∼ α′/l2ads the
solution size reaches the AdS scale and the approximation we took breaks. We will discuss
this case in section 4 below.

For lower temperatures, the solution size turns shorter. Below the near-Hagedorn
regime, but for temperatures in which the EFT is still valid ls/lads � (R2

0 −R2
H)/R2

H � 1
one might expect reliable solutions that are arbitrarily short (although with L� ls). This
is not the case and for a good reason. If arbitrarily small solutions would exist, they
would approximately solve the flat space equations for d = 2, and it is known that no
such solutions exist [5, 12]. Instead, whenever the solution is reliable (|χ|, |ϕ| � 1) its size
remains comparable to L ∼

√
lslads. In other words, this section describes the behavior of

AdS3 string stars whenever they exist for finite RR flux 1− λ2 � α′/l2ads.

3.3 The D4 Witten model

Consider 4 +1 dimensional maximally symmetric SU(N) Yang-Mills theory (with coupling
g5) compactified on a circle of radius R with anti-periodic boundary condition for the
fermions. We denote the 4 + 1 ’t Hooft coupling by λ5 = g2

5N . It is holographically dual
to the near horizon limit of N D4 branes [55], with the 9 + 1 (type IIA) metric

ds2 =
(

u

RD4

)3/2
[
−(dx0)2 +

3∑
i=1

(dxi)2 + f(u)(dx4)2
]

+
(
RD4
u

)3/2
[
du2

f(u) + u2dΩ2
4

]

F(4) = 2πN
V4

ε4, eφ = gs

(
u

RD4

)3/4
, R3

D4 ≡ πgsNl3s , f(u) ≡ 1−
(
uΛ
u

)3
, (3.16)

The string coupling gs is related to the 4 + 1 Yang-Mills coupling by 4π2gsls = g2
5. Here

x4 ∼ x4 + 2πR with R = 2
3

(
R3
D4
uΛ

)1/2
(by demanding smooth solution where the x4 circle

shrinks at u = uΛ).
The thermodynamics of this system was studied in [44]. The thermal solution is

produced by analytically continuing the time direction to a circle of size β, x0 = it t ∼ t+β.
On the gravity side, the analytically continued solution is the dominating solution for low
temperatures. For high temperatures, one can take the same solutions, only with the R and
β circles switched, so that now the temporal circle shrinks in the bulk. This last solution
is a Euclidean black brane solution. The phase transition between the two happens at
β = 2πR [44].
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Here we are interested in winding condensate solutions around the (analytically con-
tinued) thermal saddle (3.16). The solutions extend homogeneously on the xi directions

but localize around u = uΛ. Defining r2 = 4
3

(
R3
D4
uΛ

)1/2
(u − uΛ), x0 = it and φ = x4

R we

have to leading order in r2

ds2 =
(
uΛ
RD4

)3/2
[
dt2 +

3∑
i=1

(dxi)2
]

+ r2dφ2 + dr2 +
(
R3
D4
uΛ

)1/2

dΩ2
4. (3.17)

And at the next order in r2

Gtt =
(
uΛ
RD4

)3/2 (
1 + 3

2
u− uΛ
uΛ

)
=
(
uΛ
RD4

)3/2
(

1 + 27R
16R3

D4
r2
)
. (3.18)

Comparing with (3.1) we find the curvature scale l2 = 16
27
R3
D4
R . In this model, the (confining)

string tension is given by Tst = 1
2πα′

(
uΛ
RD4

)3/2
= 4

27πα′ (RD4/R)3 and the mass gap (called
the glueball mass) is of order Mgb = 1/R. Plugging inside (3.11) with d = 2 gives the
leading correction to the holographic Hagedorn temperature

βc =
√

4π
Tst
− 1√

2
Mgb

Tst
+O(M2

gbT
−3/2
st ), (3.19)

or in terms of the dimensionless ratio λ5/R:

βc/R =
√

108π3 · (λ5/R)−1/2 − 27π2
√

2 (λ5/R)−1 +O((λ5/R)−3/2). (3.20)

For a worldsheet derivation of (3.19), see [56].
We found that this model admits a ‘winding-string gas’ saddle for near-Hagedorn

temperatures: a normalizable condensate of winding strings around Euclidean time t that
extends homogeneously on the R3 directions (and x4). The condensate is localized in the
bulk around u = uΛ with a size of L ∼

√
lsl ∼ ls · (Tst/M2

gb)1/4.
The winding-string gas saddle is highly metastable, as it has free energy higher than

both the thermal solution and (because we are above the phase transition) the black brane
solution. Note that the phase diagram is very similar to that of the AdS3, due to 2πR ⇐⇒
β symmetry. Just like for the BTZ solution, the black brane solution has a tachyonic
instability below the temperature

β′c = 4π
3 RD4

(
R2

α′

)1/3

= 24/3π
(
TstM

−5
gb

)1/3
. (3.21)

For temperatures slightly above it, there exists a condensate of winding x4 strings homoge-
neous on R3×S1

β , obtaining by interchanging the asymptotic circles for the winding-string
gas saddle. It is possible to speculate a new kind of correspondence principle or a black
brane/string transition. The black brane with x4 winding condensate and the thermal
solution with t-winding condensate are connected via a line of metastable saddles.
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To understand the relation to pure Yang-Mills, it is useful to write the critical tem-
peratures in terms of R and the 4 + 1 Yang-Mills coupling λ5

βc/R =
√

108π3 R

λ5
, βHP /R = 2π, β′c/R = 2

3

(
π2λ5
R

)1/3
. (3.22)

The semiclassical approximation is valid when l � ls � lpl or 1 � λ5/R � N . In this
regime βc/R � 1 � β′c/R. In the opposite limit, λ5/R � 1 the holographic theory at
energies below ∼ 1/R is that of pure 3 + 1 Yang-Mills. In [44] the phase diagram of the
system was suggested for any λ5, R. At λ5/R � 1 and for low temperatures β � R the
theory is described by 3+1 SYM. This theory has a first-order confinement/deconfinement
close to its Hagedorn temperature βc � R. As a result, we also expect a phase transition
at high temperatures β′c � R. The simplest scenario suggested in [44] was a single new
dominating phase for temperatures β′c < β < βc. In such a scenario, this phase should have
the unique property that it maps to itself when interchanging β,R.11

Going back to the gravity limit 1 � λ5/R � N . If indeed the winding-string gas
saddle is the one that connects the two saddles between βc and β′c, the simplest option
would be that its continuation to the λ5/R � 1 is the dominant phase for temperatures
β′c < β < βc, see figure 2. Notice that because the winding-string gas phase breaks
the winding of both circles, it is indeed invariant to switching β,R. This picture is also
supported by the analysis of [57] which studied 2d SYM on a torus. In the weakly coupled
regime, the authors found a dominating phase with non-zero holonomies on both circles.

3.4 The D3 Witten model

It is possible to repeat the previous construction also for D3s compactified on a circle [34,
58, 59]. The holographic theory is now 3+1 N = 4 SU(N) Yang-Mills on R3×S1 with anti-
periodic boundary conditions on the fermions. The gravity dual is the near-Horizon limit
of N D3 branes on S1. After analytically continuing x0 = it we find the thermal solution

ds2/l2ads = f(u)dτ2 + f−1(u)du2 + u2
[
dt2 +

2∑
i=1

(dxi)2
]

+ dΩ2
5,

f(u) = u2 − u4
0
u2 , F5 = 16πNα′2ω5,

(3.23)

with l2ads =
√

4πgsNα′, τ ∼ τ + π/u0 (the τ -circle closes at u = u0) and the length of the
asymptotic circle is R = 1/(2u0). There is a non-zero RR flux through the S5,

∫
S5 ω5 = π3.

Close to u = u0 the radial coordinate is r = R((u− u0)/u0)1/2 and

Gtt = R2u2
0

(
1 + 2 r2

l2ads
+ . . .

)
. (3.24)

11In other words, the line of solutions is smooth at β = 2πR and the saddle there is mapped to itself
under switching the circles. In more complicated scenarios, there are further phase transitions and phases
that are mapped to each other under interchanging β,R.
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→

1� λ5/R� N λ5/R� 1� N

Figure 2. The phase diagram of the D4 Witten model as suggested by the analysis of [44]. Left: the
phase diagram when the bulk geometry is weakly curved R� λ5. The two black lines represent the
thermal and the black brane geometry, with a Hawking-Page transition at β = 2πR. The two red
dots represent the two critical temperatures βc, β′

c above (below) which the thermal (black brane)
saddle suffers from tachyonic instability. The blue line represents the ‘winding-string gas’ saddle,
which we suggest connects the two winding condensate solutions of each saddle. Right: in the regime
R � λ5 the low energy behavior is that of 3 + 1 Yang-Mills, with a confinement/deconfinement
transition at βc � R. A similar transition happens for the ‘black brane’ below some β′

c � R. We
suggest that the dominating phase for β′

c < β < βc is nothing but the ‘winding-string gas’ saddle.

Comparing with (3.1) we find the curvature scale l2 = l2ads/2 with d = 2 (shrinking S1).
Following (3.11) the leading correction to the holographic Hagedorn temperature is

βc =
√

4π
Tst

(
1− (4πgsN)−1/4 +O

(
(4πgsN)−1/2

))
, (3.25)

with Tst = R2u2
0/(2πα′). The phase diagram of this model (when the gravity approxima-

tion is valid) is similar to the D4 case. A black brane solution exists by replacing the two
Euclidean circles and dominates the canonical ensemble for high temperatures β > 2πR.
The black brane is tachyonic for temperatures below (at leading gsN order)

β′c = π

23/2
R

lsu0
= π

4

√
4πgsN
Tst

. (3.26)

The same line of argument used for the D4 suggests a similar black brane/string transi-
tion. The black brane and the thermal saddle are connected between βc ≤ β ≤ β′c, with
perturbative winding condensates being the near-critical description at each side.

3.5 The Maldacena-Nuñez background

In [35] Maldacena and Nuñez (interpreting the solutions of [60]) considered N D5 branes
on R4 × S2, with a twisted normal bundle on S3. The holographic effective description is
5 + 1 maximally supersymmetric YM on R4 × S2 with twisting of the S2 using a gauge
background for a U(1)R ⊂ SU(2)R ⊂ SO(4) global symmetry. In terms of R4 the twist
preserves N = 1 supersymmetry. We denote the 5 + 1 ’t Hooft coupling λ6 and the radius
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of the S2 by R. The near horizon 10d metric and RR flux of the D5 system is given by

ds2
str/α

′ = eφD

(
−(dx0)2 +

3∑
i=1

(dxi)2 +N

[
dρ2 + e2g(ρ)dΩ2

2 + 1
4

3∑
a=1

(wa −Aa)2
])

F3 = N

[
−1

4(w1 −A1) ∧ (w2 −A2) ∧ (w3 −A3) + 1
4
∑
a=1

3F a ∧ (wa −Aa)
]
,

(3.27)

with

e2φD = g2
s

sinh 2ρ
2eg = g2

s

(
1 + 8

9ρ
2 +O(ρ4)

)
,

e2g = ρ coth(2ρ)− ρ2

sinh2(2ρ)
− 1

4 .
(3.28)

here wa label 1-forms on S3, and Aa is a smooth solution that asymptotes at large ρ to the
prescribed S2 twist, and F = dA. In this geometry, the asymptotic S2 shrinks at ρ = 0.
This solution is weakly coupled and curved for 1 � gsN � N , or 1 � λ6/R

2 � N . For
λ6/R

2 � 1 (in which gravity is highly curved) on the other hand the four-dimensional
N = 1 theory decouples at energies below 1/R [35].

The thermal ensemble is produced by analytically continuing x0 = it/ls (t ∼ t + β).
Close to ρ = 0 the radial coordinate is r = (α′gsN)1/2ρ, and the temporal (string) metric
component is

Gtt = eφD = gs

(
1 + 4

9
r2

α′gsN
+O

(
r4

(α′gsN)2

))
. (3.29)

At r = 0 the S3 has no twist (Ai is flat), and as long as the solution’s size is smaller
than L � (α′gsN)1/2 we can approximate the geometry by S1 × R3 × R3 × S3 (r being
the radial direction in R3). Comparing with (3.1), we find ‘winding-string gas’ saddles
χ(r), ϕ(r) homogeneous on R3×S3 for near-Hagedorn temperatures. In terms of section 3.1
l = 3

2(α′gsN)1/2 and d = 3 (as we have a shrinking S2), and the first correction to the
Hagedorn temperature is (3.11)

βc =
√

4π
Tst

(
1− (2gsN)−1/2 +O(N−1)

)
. (3.30)

with Tst = 1
2πα′ gs.

12

Close to the Hagedorn temperature β − βc � βc there exists a reliable winding-string
gas saddle homogeneous on the R3 (and the rest of the compact directions) and localize
at the IR ρ = 0 region with size L ∼ ls(gsN)1/4. The black brane-like solution, in which
the thermal circle closes, and its thermodynamics were studied in [40–42].13 A black
brane/string transition for this model suggests the black brane (with a small horizon radius)
is connected to the winding-string gas saddle via a line of worldsheet CFTs.

12The high energy description of this model is in terms of little string theory, which has its own, different,
Hagedorn temperature [61]. The latter appear at much higher temperatures βH,LST = 2π(α′N)1/2 � βc
(in the case we are considering gsN � 1).

13For the thermodynamics of other supergravity duals of 4d confining gauge theories see [37, 43, 46].
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3.6 The Klebanov-Strassler conifold background

The Klebanov-Strassler geometry is given by [36]

ds2 = h−1/2
(
−(dx0)2 +

3∑
i=1

(dxi)2
)

+ h1/2
(
ε4/3K(τ)
6K3(τ) dτ

2 + (. . .)
)

(3.31)

In (. . .) we omitted the remaining 5 dimensions of the conifold geometry. For small τ

K(τ) = (2/3)1/3 − τ2/(5 · 22/3 · 31/3) +O(τ4)

h(τ) = (gsMα′)222/3ε−8/3(a0 − 2−1/33−4/3τ2 +O(τ4)),
(3.32)

and a0 ≈ 0.71805 [62]. Here M is the number of fractional D3 branes and ε is the
deformation parameter. The background also includes RR and NS-NS fluxes, which are
immaterial in the discussion of winding condensate.

The thermodynamics of Klebanov-Strassler was studied in [38, 39, 45, 47]. Here we
are interested only in the thermal solution, given by analytically continuing (3.31) by
x0 = ilst (t ∼ t+ β). At τ = 0 an S2 of the conifold geometry closes, and the geometry is
approximately R4 ×R3 × S3. Defining the radial coordinate r = G

1/2
ττ τ we find14

Gtt = ε4/3

21/3a
1/2
0 gsM

(
1 + 1

3a3/2
0

r2

gsMα′

)
. (3.33)

In terms of (3.1) d = 3 and a curvature scale l2 = 3a3/2
0 gsMα′. As a result, the leading

correction to the Hagedorn temperature in this background is

βc =
√

4π
Tst

(
1− 31/2

23/2a
3/4
0

(gsM)−1/2 +O
(
(gsM)−1

))
, (3.34)

they with the confining string tension Tst = ε4/3

24/3a
1/2
0 π

(α′gsM)−1.

4 AdS-sized solutions for AdS3 with small RR flux

4.1 The effective action

In section 3.2 we concluded that the analysis for sub-AdS solutions breaks for small RR
fluxes 1 − λ2 ∼ α′/l2ads, where the solution’s size reaches the AdS scale L ∼ lads. For
those cases, we can’t neglect the backreaction of the winding mode on the supergravity
fields (2.15). In this section, we turn to study the behavior of AdS3 string stars for small
RR fluxes, as well as the pure NS-NS case. To that end we define

1− λ2 ≡ a · α
′

l2ads
, (4.1)

14Here the xi have units of length squared. When we write Gtt we already multiplying by α′ to make
contact with (3.1).
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and assume 0 ≤ a � l2ads/α
′.15 Section 3.2 considered only near-Hagedorn temperatures

(R2
0 − R2

H)/R2
H ∼ ls/lads. For small RR flux, the important regime is the tighter (R2

0 −
R2
H)/R2

H ∼ α′/l2ads (which we can call the very-near-Hagedorn regime). We therefore define

R2
0 = R2

H + m̂2 · α
′2

l2ads
. (4.2)

Solutions are expected to be valid as long as R2
0 − R2

H � R2
H , or m̂2 � l2ads/α

′, which we
will therefore assume.

In the rest of the section, we will set the units to lads = 1 for brevity. In terms of the
new variables and at leading order in ls/lads the effective mass (2.14) is

m2
eff = m̂2 + 2a sinh2 ρ. (4.3)

In the limit λ ≈ 1 the RR flux terms in the action (2.18) are subleading and can be
neglected η = 0. For the rest of the fields, it is useful to redefine by (in lads = 1 units)

χ = α′χ̂, φ = α′φ̂, ϕ = α′ϕ̂, ψ = α′ψ̂, ζ = α′ζ̂. (4.4)

At leading order, we get the action

IString star − ITAdS3 = βα′2

16πGN
· F, (4.5)

with, upon integrating by parts, the normalized free energy (compared to that of thermal
AdS3)

F =
∫
dρ vol

[
(ψ̂′)2 + (ϕ̂′)2 − 4(φ̂′)2

− 1
2 tanh2 ρ (ζ̂ ′)2 − 4(ψ̂ + ϕ̂− ζ̂)2 + 4 tanh ρ ζ̂ ′(ψ̂ + ϕ̂− ζ̂)

+ 4φ̂′
(
tanh ρ ϕ̂+ coth ρ ψ̂ − tanh ρ ζ̂

)
+ |χ̂′|2 +m2

effρ |χ̂|2 + 4
(
cosh2 ρ ϕ̂− sinh2 ρ (ζ̂ − ψ̂)

)
|χ̂|2

]
,

(4.6)

The equation of motion for the dilaton gives the first-order constraint (upon using the
boundary conditions for ψ̂)

2φ̂′ = tanh ρ ϕ̂+ coth ρ ψ̂ − tanh ρ ζ̂. (4.7)

Substituting (4.7) gives the equations of motion for the rest of the fields

χ̂′′ + v(ρ)χ̂′ = (m̂2 + 2a sinh2 ρ)χ̂+ 4
(
cosh2 ρ ϕ̂+ sinh2 ρ (ψ̂ − ζ̂)

)
χ̂,

ϕ̂′′ + v(ρ)ϕ̂′ = 2 tanh ρ ζ̂ ′ + tanh2 ρ (ϕ̂− ζ̂) + ψ̂ − 4(ϕ̂+ ψ̂ − ζ̂) + 2 cosh2 ρ |χ̂|2,
ψ̂′′ + v(ρ)ψ̂′ = 2 tanh ρ ζ̂ ′ + ϕ̂− ζ̂ + coth2 ρ ψ̂ − 4(ϕ̂+ ψ̂ − ζ̂) + 2 sinh2 ρ |χ̂|2,
ζ̂ ′′ + u(ρ)ζ̂ ′ = 4 coth ρ (ϕ̂′ + ψ̂′) + 2(ϕ̂− ζ̂ + coth2 ρ ψ̂) + 4 cosh2 ρ |χ̂|2,

(4.8)

15Notice that the quantization of the RR charge requires
√

1− λ2l2ads/α
′ =
√
alads/ls to be integers. In

our lads � ls limit it gives no restriction on the range of a.
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with
v(ρ) = tanh ρ+ coth ρ, u(ρ) = 3 coth ρ− tanh ρ. (4.9)

a adds a potential to the linear equation for χ̂ and therefore for a > 0 we expect a normaliz-
able solution with size L ∼ 1. Assuming an O(1) result (for m̂2 ∼ O(1)) gives |χ|, |ϕ|, |ζ| ∼
α′ � 1 which is self-consistent with our assumptions. The reader may worry that as
the effective mass is now m2

eff(ρ) ∼ O(1) (in lads units), higher curvature corrections are
now leading. In section 4.3 below we argue that the resulting mass shift is proportional to
∆m2 ∝ (1−λ2). For finite a this is a O(α′) correction to the mass and therefore subleading.

In the extreme case a = 0 (λ = 1) we find the pure NS-NS background. In this case,
the ρ dependence in m2

eff is exactly canceled between the metric and the NS-NS flux, which
results in a constant mass

m2
eff(ρ) = m̂2 = 1

α′2
(R2

0 −R2
H), (4.10)

equals to the flat space result (2.8). This property means that very close to the Hagedorn
temperature strings winding around the thermal circle are light arbitrarily close to the
boundary ρ � 1, although the proper length of the thermal circle diverges exponentially.
Physically, this is due to the cancellation between the gravitational attraction (of AdS
space) and the electric repulsion (or the non-zero H3). This is related to the well-studied
pure NS-NS AdS3 long strings [32, 33]. These strings wind around the angular circle of
Lorentzian AdS3 with finite energy arbitrarily close to the boundary. Because asymptoti-
cally there is no difference between the two circles, the cancellation of the energy divergence
at large ρ is of the same origin. As a result, for a = 0 the potential in (4.8) is quadratic
and not exponential. Nevertheless, we expect a normalizable solution for χ, ϕ, ζ also in
this case for high enough m̂2, with a generic L ∼ 1. We present numerical solutions to this
equation in section 4.4 below.

4.2 The AdS3 Hagedorn temperature

To find the leading correction to the AdS3 Hagedorn temperature, we should look for
the maximal value of m̂2 (as a function of a ≥ 0) for which there’s a solution to the
linearized (4.8) equation for χ̂16

χ̂′′ + v(ρ) χ̂′ −
(
m̂2 + 2a sinh2 ρ

)
χ̂ = 0. (4.11)

Denoting this critical value by m̂2
c , the first correction to the AdS3 Hagedorn temperature

is
R2
c(λ) = 2

k
+ m̂2

c

k2 +O(k−3), (4.12)

with k = l2ads/α
′. For a = 0 the (smooth) linear solution can be found analytically to be

χ̂lin(ρ) = P−1+
√

1+m̂2
2

(cosh(2ρ)), (4.13)

16At the linearized order the other fields in (4.8) have no non-trivial solutions.
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Figure 3. The value of the leading correction to the Hagedorn temperature m̂2
c as a function of a

(blue). The a� 1 behavior from section 3.2 is plotted in a black dashed line.

with Pn(x) being the Legendre function [22]. For ρ � 1 and m̂2 > −1 we have χ̂lin ∼
exp(−∆χρ) with ∆χ = <(1 −

√
1 + m̂2), and as χ̂lin ∼ ρ exp(−ρ) for m̂2 = −1. The

solution is thus non-normalizable for any m̂2, but it turns delta-function normalizable at
m̂2 = −1 (at the Breitenlohner-Freedman bound). Therefore for a = 0 the critical value is
m̂2
c = −1, and the first correction to the pure NS-NS AdS3 Hagedorn temperature is

R2
c(λ = 1) = 2

k
− 1
k2 +O(k−3). (4.14)

Interestingly, for the type II pure NS-NS this is also the exact result R2
c = 2/k − 1/k2 [22,

63].17 The fact that the zero-mode (4.13) is only delta-function normalizable is similar to
flat space [16], and probably corresponds to the fact the Lorentzian spectrum, in this case,
is continuous.

For a > 0 the linear equation has a potential and so we expect only discrete values of
m̂2 for which exist normalizable solutions. We are interested in the ‘ground state’ solution,
with the largest m̂2. We weren’t able to find an analytical solution in this case, but it is
possible to find it numerically. In figure 3 we plotted m̂2

c as a function of a. It can be
seen from the figure that m̂2 decreases as a grows. This is to be expected, as when a� 1
we expect from section 3.2 to find m̂2

c = −23/2a1/2 (by translating (3.15) in terms of m̂2).
This behavior is shown in the figure by a black dashed line.

17I thank David Kutasov for pointing out that the first correction here is O(k−2), and not O(k−3/2) as
found above (3.15) and in [1]. It is his comment that led me to study the AdS3 case.
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4.3 An argument against higher curvature corrections

Higher curvature corrections always appear with non-negative powers of the string scale
and therefore are naively subleading. For d = 2, two operators still contribute at zeroth
order in the string scale: R2|χ|2 and gttFijF ij |χ|2. For the mixed background (2.13) their
value is exactly a constant

R2 = −2, gttFijF
ij = −4λ2. (4.15)

We can write these terms in the Lagrangian as

Lhige-curv = g1 · R2|χ|2 + g2 ·
1
2g

ttF ij |χ|2 = −2(g1 + g2λ
2)|χ|2, (4.16)

for some unknown couplings g1, g2 ∼ O(1). Therefore the overall effect of these two terms
is to shift the effective mass of χ by a constant ∆m2 = −2(g1 + g2λ

2).18 As a result, the
effective mass for the pure NS-NS case is (k = l2ads/α

′)

m2
eff(ρ) = k2(R2

0 −R2
H) + ∆m2 +O(1/k). (4.17)

We now turn specifically to the pure NS-NS theory λ = 1, in which the worldsheet theory
on thermal AdS is known [22, 24, 63]. The mass of the particle dictates the asymptotic
behavior of its mode close to the boundary. As such, it should match the AdS3 SL(2, R)
Casimir of the corresponding worldsheet vertex operator. To find the exact worldsheet
mass, we follow the discussion of [63], which uses the description of thermal AdS3 as a
specific coset of SL(2, C) [64]. For a given β, a bosonic SL(2, C) WZW primary with
winding ±1 and SL(2, C) Casimir J2 = s2 + 1

4 (and hint = 0) has dimension

h = h̄ =
s2 + 1

4
k − 2 + kβ2

16π2 (4.18)

We change variables to R0 = β
2π , −4m2 = s2 + 1

4 to get

h = h̄ = −1
4
m2

k − 2 + kR2
0

4 . (4.19)

To write the type II expression we shift k 7→ k + 2 (only for the first term, as we keep the
temperature in string units kR2

0 constant) and find

h = h̄ = −1
4
m2

k
+ kR2

0
4 = 1

2 . (4.20)

As a result, the mass of the winding vertex operator as a function of R0 is

m2 = k2
(
R2

0 −
2
k

)
. (4.21)

Comparing with (4.17) we find that the higher curvature correction to the mass vanishes
∆m2 = 0, for λ = 1. In other words g1 = −g2, and (for any λ)

∆m2 = −2g1(1− λ2). (4.22)

Because in this section we consider only 1− λ2 ∼ 1/k, this is a subleading effect.
18Of course, both terms also induce a correction to the coupling of ϕ, ζ to |χ|2. Whenever the constant

shift is subleading, so is the coupling.
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Figure 4. The two profiles of χ̂, ϕ̂ and ζ̂ for temperature m̂2 = 0 in the pure NS-NS theory a = 0
(left) and for a = 0.5 (left).

Figure 5. The value of χ̂(0), ϕ̂(0) and ζ̂(0) as a function of m̂2, for a = 0.1 (left) and a = 0.5
(right). The horizontal dashed green line indicates the AdS Hagedorn temperature m̂2

c .

4.4 Numerical results

To further study the profile of the AdS-sized string star solution we used numerical analysis
to find the non-linear solutions for (4.8) of χ̂, ϕ̂, ψ̂ and ζ̂ as a function of a and m̂2. We
set the boundary condition ψ̂(0) = 0 to avoid curvature singularity and for a smooth and
normalizable solution

χ̂′(0) = ϕ̂′(0) = ψ̂′(0) = ζ̂ ′(0) = 0, χ̂(∞) = ϕ̂(∞) = ψ̂(∞) = ζ̂(∞) = 0. (4.23)

In practice, we chose ρmin = 0.00001 and ρmax = 3, and tried to satisfy ψ(ρmin) = 0 with

χ̂′(ρmin) = ϕ̂′(ρmin) = ψ̂′(ρmin) = ζ̂ ′(ρmin) = 0,
χ̂(ρmax) = ϕ̂(ρmax) = ψ̂(ρmax) = ζ̂(ρmax) = 0, (4.24)

using the shooting method. That is, we optimized the initial values at ρmin to satisfy the
boundary condition at ρmax. Notice that the variable ρ is already the dimensionless length
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Figure 6. The size of χ̂(ρ) as a function of m̂2, for a = 0.1 (left) and a = 0.5 (right). The size is
defined as the radius ρ in which the value of χ̂(ρ) is decreased by a factor of e compared to χ̂(0).
The horizontal dashed green line indicates the AdS Hagedorn temperature m̂2

c .

Figure 7. The string star normalized free energy as a function of m̂2, in the pure NS-NS theory
a = 0.1 (left) and a = 0.5 (right). The horizontal dashed green line indicates the AdS Hagedorn
temperature m̂2

c .

in which the characteristic size of the solution should be O(1). Figure 4 shows the profile
of the solution at m̂2 = 0 for the pure NS-NS system a = 0 and for a = 0.5. We found
that the near-Hagedorn solutions require higher and higher accuracy for smaller values
of a. The reason is that a controls the size of the potential for χ̂. In the extreme case
of a = 0, the linear equation for χ̂ has a continuous normalizable spectrum above the
Hagedorn temperature. As a result, below we treat a as a regulator for the simulation and
plot a = 0.1 instead of a = 0.

As the solutions are monotonically decreasing functions of x, the initial value at ρ = 0
sets the amplitude of the solution. Figure 5 shows the initial values χ̂(0) (black), ϕ̂(0) (red)
and ζ̂(0) (blue) as a function of the temperature m̂2. For large m̂2 � 1 (lower temperatures)
the solution amplitude seems to grow linearly with m̂2, or |χ| ∼ (R2

0 − R2
H)/R2

H . This is
the same scaling found for (higher dimensional) flat space solutions [12]. As in flat space,
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the solution is no longer reliable at |χ| ∼ (R2
0 − R2

H)/R2
H ∼ 1 or for m̂2 ∼ l2ads/α

′. This is
self-consistent, as we assumed m̂2 � l2ads/α

′ to derive (4.8). Notice that the temperature
regime considered for finite RR flux m̂2 ∼ lads/ls is inside the regime of validity.

As expected, the solution merges with the trivial solution χ̂ = ϕ̂ = ψ̂ = ζ̂ = 0 at the
Hagedorn temperature m̂2

c (drawn in green dashed line). Close to m̂2
c the winding mode

gets similar to the linear mode χ̂lin found numerically above, while |ϕ̂|, |ψ̂|, |ζ̂| � |χ̂| are
much smaller. This behavior is similar to the one found for higher dimensional AdS string
stars [1] as well as for finite RR flux above (which is the large a� 1 limit of the simulation).

Figure 6 shows the size L of the winding mode profile (in AdS units) as a function of
the temperature. L is defined as the value of ρ at which the amplitude of χ̂ reaches e−1χ̂(0).
The length grows with the temperature, as was found for finite RR flux (including higher
dimensions [1]). For finite m̂2 the size is at the AdS scale and bounded from above by the
size of the linear solution at the Hagedorn temperature m̂2 = m̂2

c . At lower temperatures,
m̂2 � 1 the solution size reaches the string scale and the solutions are unreliable.

The normalized AdS3 string star free energy F (4.6) is presented in figure 7 as a
function of the temperature. The free energy turns out to always be positive, which is not
immediately clear from its form (4.6). The AdS3 string star is therefore thermodynamically
disfavored compared to the thermal AdS3 solution. As we explain above, the solution is
also non-perturbatively metastable due to the dominant BTZ solution. The free energy
decreases with the temperature and goes to zero at the Hagedorn temperature when the
solution becomes trivial. General EFT arguments predict that close enough to the critical
value |χ̂| ∼ (m̂2 − m̂2

c)1/2 (and |ϕ̂|, |ψ̂|, |ζ̂| ∼ (m̂2 − m̂2
c)1). As a result, we expect the

Euclidean action to scale as

IString star − ITAdS3 ∼
α′2

GN
(m̂2 − m̂2

c)2 ∼ ls
GN

(
R0 −Rc
Rc

)2
, (4.25)

where in the last line we moved back to general units for brevity.

Acknowledgments

I would like to thank Micha Berkooz, Shai Chester, Rajesh Gopakumar, Indranil Halder,
Daniel Jafferis, Yiyang Jia, Zohar Komargodski, Suman Kundu, Ohad Mamroud, Adar
Sharon, Tal Sheaffer, Gabriel Wong and Xi Yin for useful discussions and comments. I
especially thank Ofer Aharony and David Kutasov for their guidance and comments on
the manuscript.

This work was partly funded by an Israel Science Foundation center for excellence grant
(grant number 2289/18), by grant no. 2018068 from the United States-Israel Binational
Science Foundation (BSF), by the Minerva foundation with funding from the Federal Ger-
man Ministry for Education and Research, by the German Research Foundation through
a German-Israeli Project Cooperation (DIP) grant “Holography and the Swampland”, and
by a research grant from Martin Eisenstein.

– 26 –



J
H
E
P
0
9
(
2
0
2
3
)
1
5
6

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] E.Y. Urbach, String stars in anti de Sitter space, JHEP 04 (2022) 072 [arXiv:2202.06966]
[INSPIRE].

[2] G. Veneziano, A stringy nature needs just two constants, EPL 2 (1986) 199 [INSPIRE].

[3] L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145
[INSPIRE].

[4] G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings,
Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

[5] G.T. Horowitz and J. Polchinski, Selfgravitating fundamental strings, Phys. Rev. D 57
(1998) 2557 [hep-th/9707170] [INSPIRE].

[6] T. Damour and G. Veneziano, Selfgravitating fundamental strings and black holes, Nucl.
Phys. B 568 (2000) 93 [hep-th/9907030] [INSPIRE].

[7] R.R. Khuri, Selfgravitating strings and string/black hole correspondence, Phys. Lett. B 470
(1999) 73 [hep-th/9910122] [INSPIRE].

[8] D. Kutasov, Accelerating branes and the string/black hole transition, hep-th/0509170
[INSPIRE].

[9] A. Giveon and D. Kutasov, The charged black hole/string transition, JHEP 01 (2006) 120
[hep-th/0510211] [INSPIRE].

[10] Y. Chen and J. Maldacena, String scale black holes at large D, JHEP 01 (2022) 095
[arXiv:2106.02169] [INSPIRE].

[11] R. Brustein and Y. Zigdon, Black hole entropy sourced by string winding condensate, JHEP
10 (2021) 219 [arXiv:2107.09001] [INSPIRE].

[12] Y. Chen, J. Maldacena and E. Witten, On the black hole/string transition, JHEP 01 (2023)
103 [arXiv:2109.08563] [INSPIRE].

[13] B. Balthazar, J. Chu and D. Kutasov, Winding tachyons and stringy black holes,
arXiv:2204.00012 [INSPIRE].

[14] A. Bedroya, High energy scattering and string/black hole transition, arXiv:2211.17162
[INSPIRE].

[15] B. Balthazar, J. Chu and D. Kutasov, On small black holes in string theory,
arXiv:2210.12033 [INSPIRE].

[16] J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of
string theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].

[17] O. Aharony et al., The Hagedorn-deconfinement phase transition in weakly coupled large N
gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

[18] T. Harmark and M. Wilhelm, Solving the Hagedorn temperature of AdS5/CFT4 via the
quantum spectral curve: chemical potentials and deformations, JHEP 07 (2022) 136
[arXiv:2109.09761] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP04(2022)072
https://arxiv.org/abs/2202.06966
https://inspirehep.net/literature/2032794
https://doi.org/10.1209/0295-5075/2/3/006
https://inspirehep.net/literature/228165
https://arxiv.org/abs/hep-th/9309145
https://inspirehep.net/literature/36167
https://doi.org/10.1103/PhysRevD.55.6189
https://arxiv.org/abs/hep-th/9612146
https://inspirehep.net/literature/427427
https://doi.org/10.1103/PhysRevD.57.2557
https://doi.org/10.1103/PhysRevD.57.2557
https://arxiv.org/abs/hep-th/9707170
https://inspirehep.net/literature/446109
https://doi.org/10.1016/S0550-3213(99)00596-9
https://doi.org/10.1016/S0550-3213(99)00596-9
https://arxiv.org/abs/hep-th/9907030
https://inspirehep.net/literature/503176
https://doi.org/10.1016/S0370-2693(99)01265-4
https://doi.org/10.1016/S0370-2693(99)01265-4
https://arxiv.org/abs/hep-th/9910122
https://inspirehep.net/literature/508664
https://arxiv.org/abs/hep-th/0509170
https://inspirehep.net/literature/693036
https://doi.org/10.1088/1126-6708/2006/01/120
https://arxiv.org/abs/hep-th/0510211
https://inspirehep.net/literature/696076
https://doi.org/10.1007/JHEP01(2022)095
https://arxiv.org/abs/2106.02169
https://inspirehep.net/literature/1867137
https://doi.org/10.1007/JHEP10(2021)219
https://doi.org/10.1007/JHEP10(2021)219
https://arxiv.org/abs/2107.09001
https://inspirehep.net/literature/1887120
https://doi.org/10.1007/JHEP01(2023)103
https://doi.org/10.1007/JHEP01(2023)103
https://arxiv.org/abs/2109.08563
https://inspirehep.net/literature/1923692
https://arxiv.org/abs/2204.00012
https://inspirehep.net/literature/2061390
https://arxiv.org/abs/2211.17162
https://inspirehep.net/literature/2605920
https://arxiv.org/abs/2210.12033
https://inspirehep.net/literature/2168953
https://doi.org/10.1016/0550-3213(88)90151-4
https://inspirehep.net/literature/261790
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://arxiv.org/abs/hep-th/0310285
https://inspirehep.net/literature/632130
https://doi.org/10.1007/JHEP07(2022)136
https://arxiv.org/abs/2109.09761
https://inspirehep.net/literature/1925150


J
H
E
P
0
9
(
2
0
2
3
)
1
5
6

[19] B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys.
B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

[20] L. Alvarez-Gaume, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action, AdS5
black holes, and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227] [INSPIRE].

[21] M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[22] M. Berkooz, Z. Komargodski and D. Reichmann, Thermal AdS3, BTZ and competing
winding modes condensation, JHEP 12 (2007) 020 [arXiv:0706.0610] [INSPIRE].

[23] F.-L. Lin, T. Matsuo and D. Tomino, Hagedorn strings and correspondence principle in
AdS3, JHEP 09 (2007) 042 [arXiv:0705.4514] [INSPIRE].

[24] M. Rangamani and S.F. Ross, Winding tachyons in BTZ, Phys. Rev. D 77 (2008) 026010
[arXiv:0706.0663] [INSPIRE].

[25] D.L. Jafferis and E. Schneider, Stringy ER = EPR, JHEP 10 (2022) 195
[arXiv:2104.07233] [INSPIRE].

[26] I. Halder, D.L. Jafferis and D.K. Kolchmeyer, A duality in string theory on AdS3, JHEP 07
(2023) 049 [arXiv:2208.00016] [INSPIRE].

[27] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[28] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor.
Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].

[29] D. Kutasov and N. Seiberg, More comments on string theory on AdS3, JHEP 04 (1999) 008
[hep-th/9903219] [INSPIRE].

[30] J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string
theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

[31] M. Cho, S. Collier and X. Yin, Strings in Ramond-Ramond backgrounds from the
Neveu-Schwarz-Ramond formalism, JHEP 12 (2020) 123 [arXiv:1811.00032] [INSPIRE].

[32] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02
(1999) 011 [hep-th/9812073] [INSPIRE].

[33] N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017
[hep-th/9903224] [INSPIRE].

[34] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[35] J.M. Maldacena and C. Nunez, Towards the large N limit of pure N = 1 superYang-Mills,
Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

[36] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades
and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

[37] D.Z. Freedman and J.A. Minahan, Finite temperature effects in the supergravity dual of the
N = 1∗ gauge theory, JHEP 01 (2001) 036 [hep-th/0007250] [INSPIRE].

[38] S.S. Gubser, C.P. Herzog, I.R. Klebanov and A.A. Tseytlin, Restoration of chiral symmetry:
a supergravity perspective, JHEP 05 (2001) 028 [hep-th/0102172] [INSPIRE].

– 28 –

https://doi.org/10.1016/S0550-3213(00)00044-4
https://doi.org/10.1016/S0550-3213(00)00044-4
https://arxiv.org/abs/hep-th/9908001
https://inspirehep.net/literature/504954
https://doi.org/10.1103/PhysRevD.71.124023
https://arxiv.org/abs/hep-th/0502227
https://inspirehep.net/literature/677483
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/literature/32290
https://doi.org/10.1088/1126-6708/2007/12/020
https://arxiv.org/abs/0706.0610
https://inspirehep.net/literature/752311
https://doi.org/10.1088/1126-6708/2007/09/042
https://arxiv.org/abs/0705.4514
https://inspirehep.net/literature/751838
https://doi.org/10.1103/PhysRevD.77.026010
https://arxiv.org/abs/0706.0663
https://inspirehep.net/literature/752330
https://doi.org/10.1007/JHEP10(2022)195
https://arxiv.org/abs/2104.07233
https://inspirehep.net/literature/1858436
https://doi.org/10.1007/JHEP07(2023)049
https://doi.org/10.1007/JHEP07(2023)049
https://arxiv.org/abs/2208.00016
https://inspirehep.net/literature/2129500
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.4310/ATMP.1998.v2.n4.a3
https://doi.org/10.4310/ATMP.1998.v2.n4.a3
https://arxiv.org/abs/hep-th/9806194
https://inspirehep.net/literature/472215
https://doi.org/10.1088/1126-6708/1999/04/008
https://arxiv.org/abs/hep-th/9903219
https://inspirehep.net/literature/497373
https://doi.org/10.1016/S0370-1573(02)00271-5
https://arxiv.org/abs/hep-th/0203048
https://inspirehep.net/literature/583776
https://doi.org/10.1007/JHEP12(2020)123
https://arxiv.org/abs/1811.00032
https://inspirehep.net/literature/1701430
https://doi.org/10.1088/1126-6708/1999/02/011
https://doi.org/10.1088/1126-6708/1999/02/011
https://arxiv.org/abs/hep-th/9812073
https://inspirehep.net/literature/480669
https://doi.org/10.1088/1126-6708/1999/04/017
https://arxiv.org/abs/hep-th/9903224
https://inspirehep.net/literature/497378
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://doi.org/10.1103/PhysRevLett.86.588
https://arxiv.org/abs/hep-th/0008001
https://inspirehep.net/literature/531147
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://inspirehep.net/literature/530835
https://doi.org/10.1088/1126-6708/2001/01/036
https://arxiv.org/abs/hep-th/0007250
https://inspirehep.net/literature/531104
https://doi.org/10.1088/1126-6708/2001/05/028
https://arxiv.org/abs/hep-th/0102172
https://inspirehep.net/literature/553525


J
H
E
P
0
9
(
2
0
2
3
)
1
5
6

[39] A. Buchel et al., Nonextremal gravity duals for fractional D3 branes on the conifold, JHEP
04 (2001) 033 [hep-th/0102105] [INSPIRE].

[40] A. Buchel and A.R. Frey, Comments on supergravity dual of pure N = 1 super Yang-Mills
theory with unbroken chiral symmetry, Phys. Rev. D 64 (2001) 064007 [hep-th/0103022]
[INSPIRE].

[41] S.S. Gubser, A.A. Tseytlin and M.S. Volkov, Non-Abelian 4d black holes, wrapped five-branes,
and their dual descriptions, JHEP 09 (2001) 017 [hep-th/0108205] [INSPIRE].

[42] A. Buchel, On the thermodynamic instability of LST, hep-th/0107102 [INSPIRE].

[43] A. Buchel and J.T. Liu, Thermodynamics of the N = 2∗ flow, JHEP 11 (2003) 031
[hep-th/0305064] [INSPIRE].

[44] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and
chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].

[45] O. Aharony, A. Buchel and P. Kerner, The black hole in the throat: thermodynamics of
strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768]
[INSPIRE].

[46] A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2∗ strongly
coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [INSPIRE].

[47] A. Buchel, Klebanov-Strassler black hole, JHEP 01 (2019) 207 [arXiv:1809.08484]
[INSPIRE].

[48] J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, R) WZW model 1. The spectrum,
J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].

[49] N. Agia, I. Halder and D.L. Jafferis, upcoming work.

[50] J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University
Press, Cambridge, U.K. (2007) [DOI:10.1017/CBO9780511618123] [INSPIRE].

[51] A. Cavaglià et al., Quantum spectral curve for AdS3/CFT2: a proposal, JHEP 12 (2021) 048
[arXiv:2109.05500] [INSPIRE].

[52] S. Ekhammar and D. Volin, Monodromy bootstrap for SU(2|2) quantum spectral curves: from
Hubbard model to AdS3/CFT2, JHEP 03 (2022) 192 [arXiv:2109.06164] [INSPIRE].

[53] A. Cavaglià, S. Ekhammar, N. Gromov and P. Ryan, Exploring the quantum spectral curve
for AdS3/CFT2, arXiv:2211.07810 [INSPIRE].

[54] S. Frolov and A. Sfondrini, Mirror thermodynamic Bethe ansatz for AdS3/CFT2, JHEP 03
(2022) 138 [arXiv:2112.08898] [INSPIRE].

[55] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,
Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[56] F. Bigazzi, T. Canneti and A.L. Cotrone, On the Hagedorn temperature in holographic
confining gauge theories, JHEP 01 (2023) 034 [arXiv:2210.09893] [INSPIRE].

[57] O. Aharony et al., The phase structure of low dimensional large N gauge theories on tori,
JHEP 01 (2006) 140 [hep-th/0508077] [INSPIRE].

[58] O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000)
183 [hep-th/9905111] [INSPIRE].

– 29 –

https://doi.org/10.1088/1126-6708/2001/04/033
https://doi.org/10.1088/1126-6708/2001/04/033
https://arxiv.org/abs/hep-th/0102105
https://inspirehep.net/literature/553220
https://doi.org/10.1103/PhysRevD.64.064007
https://arxiv.org/abs/hep-th/0103022
https://inspirehep.net/literature/553778
https://doi.org/10.1088/1126-6708/2001/09/017
https://arxiv.org/abs/hep-th/0108205
https://inspirehep.net/literature/561999
https://arxiv.org/abs/hep-th/0107102
https://inspirehep.net/literature/559932
https://doi.org/10.1088/1126-6708/2003/11/031
https://arxiv.org/abs/hep-th/0305064
https://inspirehep.net/literature/618403
https://doi.org/10.1016/j.aop.2006.11.002
https://arxiv.org/abs/hep-th/0604161
https://inspirehep.net/literature/715199
https://doi.org/10.1103/PhysRevD.76.086005
https://arxiv.org/abs/0706.1768
https://inspirehep.net/literature/752952
https://doi.org/10.1016/j.nuclphysb.2007.06.019
https://arxiv.org/abs/hep-th/0701142
https://inspirehep.net/literature/742417
https://doi.org/10.1007/JHEP01(2019)207
https://arxiv.org/abs/1809.08484
https://inspirehep.net/literature/1695197
https://doi.org/10.1063/1.1377273
https://arxiv.org/abs/hep-th/0001053
https://inspirehep.net/literature/522878
https://doi.org/10.1017/CBO9780511618123
https://inspirehep.net/literature/487241
https://doi.org/10.1007/JHEP12(2021)048
https://arxiv.org/abs/2109.05500
https://inspirehep.net/literature/1921020
https://doi.org/10.1007/JHEP03(2022)192
https://arxiv.org/abs/2109.06164
https://inspirehep.net/literature/1921085
https://arxiv.org/abs/2211.07810
https://inspirehep.net/literature/2182408
https://doi.org/10.1007/JHEP03(2022)138
https://doi.org/10.1007/JHEP03(2022)138
https://arxiv.org/abs/2112.08898
https://inspirehep.net/literature/1992044
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arxiv.org/abs/hep-th/9803131
https://inspirehep.net/literature/468222
https://doi.org/10.1007/JHEP01(2023)034
https://arxiv.org/abs/2210.09893
https://inspirehep.net/literature/2166813
https://doi.org/10.1088/1126-6708/2006/01/140
https://arxiv.org/abs/hep-th/0508077
https://inspirehep.net/literature/689661
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://inspirehep.net/literature/499969


J
H
E
P
0
9
(
2
0
2
3
)
1
5
6

[59] C. Csaki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP
01 (1999) 017 [hep-th/9806021] [INSPIRE].

[60] A.H. Chamseddine and M.S. Volkov, Non-Abelian BPS monopoles in N = 4 gauged
supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].

[61] D. Kutasov and D.A. Sahakyan, Comments on the thermodynamics of little string theory,
JHEP 02 (2001) 021 [hep-th/0012258] [INSPIRE].

[62] L.A. Pando Zayas, J. Sonnenschein and D. Vaman, Regge trajectories revisited in the
gauge/string correspondence, Nucl. Phys. B 682 (2004) 3 [hep-th/0311190] [INSPIRE].

[63] T.G. Mertens, H. Verschelde and V.I. Zakharov, The thermal scalar and random walks in
AdS3 and BTZ, JHEP 06 (2014) 156 [arXiv:1402.2808] [INSPIRE].

[64] S. Hemming, E. Keski-Vakkuri and P. Kraus, Strings in the extended BTZ space-time, JHEP
10 (2002) 006 [hep-th/0208003] [INSPIRE].

– 30 –

https://doi.org/10.1088/1126-6708/1999/01/017
https://doi.org/10.1088/1126-6708/1999/01/017
https://arxiv.org/abs/hep-th/9806021
https://inspirehep.net/literature/471357
https://doi.org/10.1103/PhysRevLett.79.3343
https://arxiv.org/abs/hep-th/9707176
https://inspirehep.net/literature/446176
https://doi.org/10.1088/1126-6708/2001/02/021
https://arxiv.org/abs/hep-th/0012258
https://inspirehep.net/literature/539479
https://doi.org/10.1016/j.nuclphysb.2003.12.006
https://arxiv.org/abs/hep-th/0311190
https://inspirehep.net/literature/633719
https://doi.org/10.1007/JHEP06(2014)156
https://arxiv.org/abs/1402.2808
https://inspirehep.net/literature/1281085
https://doi.org/10.1088/1126-6708/2002/10/006
https://doi.org/10.1088/1126-6708/2002/10/006
https://arxiv.org/abs/hep-th/0208003
https://inspirehep.net/literature/591781

	Introduction
	General properties of the AdS(3) string star
	Winding-string condensates in type II string theory
	The mixed AdS(3) background
	Thermodynamics and the BTZ/string transition

	Sub-AdS solutions and confining strings
	General discussion
	AdS(3) with finite RR flux
	The D4 Witten model
	The D3 Witten model
	The Maldacena-Nuñez background
	The Klebanov-Strassler conifold background

	AdS-sized solutions for AdS(3) with small RR flux
	The effective action
	The AdS(3) Hagedorn temperature
	An argument against higher curvature corrections
	Numerical results


