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Following previous work by one of the authors [M. V. Altaisky, Unifying renormalization group and the
continuous wavelet transform, Phys. Rev. D 93, 105043 (2016).], we develop a new approach to the
renormalization group, where the effective action functional ΓA½ϕ� is a sum of all fluctuations of scales from
the size of the system L down to the scale of observation A. It is shown that the renormalization flow
equation of the type ∂ΓA

∂ lnA ¼ −YðAÞ is a limiting case of such consideration, when the running coupling
constant is assumed to be a differentiable function of scale. In this approximation, the running coupling
constant, calculated at one-loop level, suffers from the Landau pole. In general, when the scale-dependent
coupling constant is a nondifferentiable function of scale, the Feynman loop expansion results in a
difference equation. This keeps the coupling constant finite for any finite value of scale A. As an example,
we consider Euclidean ϕ4 field theory.
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I. INTRODUCTION

The renormalization group (RG) was discovered by
Stueckelberg and Petermann as a group of parametrizations
of the S matrix emerging after cancellation of UV diver-
gences in quantum electrodynamics [1]. The RG method
has become popular in high-energy physics since Gell-
Mann and Low, who used the functional equation to study
the renormalized photon propagator in QED, have shown
that the charge distribution surrounding a test charge in
vacuum does not depend on the coupling constant at small
scales, except for a scale factor, i.e., it possesses a kind of
self-similarity [2]. The breakthrough in the RG approach
has been achieved by Wilson, who applied it to statistical
mechanics, where continuously many degrees of freedom
are correlated over long distances. It was found that if there
are many degrees of freedom within the correlation length
ξ, the behavior of the system is primarily determined by

cooperative behavior and the number of degrees of free-
dom, rather than by the type of Hamiltonian interaction [3].
The core of the Wilson formulation was to successively
integrate out the fluctuations of small scales to obtain
progressively coarse-grained descriptions of fluctuations at
larger scales [4,5]. By doing so, the RG approach unifies
the theory of phase transitions, quantum field theory,
turbulence, and many other branches of physics. The
RG approach not only provides an explanation of critical
phenomena, but also renders a practical tool for calculation
of second-order phase transitions [3,6].
Having started from the weak interaction limit, where

one-loop corrections to the correlation functions have
tractable physical meaning, the RG approach has gradually
evolved into the scaling equations for the exact (“dressed”)
correlation functions. In this paper, following the previous
papers [7–9], we sum up the fluctuations starting from the
IR edge and go down to the observation scale. If the
fluctuations are summed up in a thin shell of scales, the beta
function coincides with the known results, regardless if the
summation starts from the IR or from the UVedge [8]. We
have shown that summing up the fluctuations from the IR
edge (from size of the system) down to the observation
scale in a finite range of scales renders a finite renormal-
ization of the coupling constant without any Landau poles.
The use of continuous wavelet transform is not the

only way the wavelet regularization in quantum field
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theory aimed to sum up the fluctuations of different scales.
Historically, the first attempts to use wavelets in quantum
field theory were related to the numerical simulation of
quantum field theory (QFT) models. For instance,
Ref. [10] presents a simple 2D model with local ϕ4

interaction simulated using discrete wavelet transform
(DWT) of the field ϕðxÞ performed with orthogonal
Daubechies wavelets. The Daubechies wavelets [11] form
an orthogonal basis of the compactly supported functions

ψ j
kðxÞ ≔ 2−

j
2ψð2−jx − kÞ, where ψðxÞ is a function with

compact support, obeying certain recursive equation. The
advantage found in wavelet simulations was that the
coefficients of different scales jwere varied independently
when searching for the ground state of the field configu-
ration. This effectuates the simulation if compared to the
usual Metropolis algorithm.
The main advantages of DWT in quantum field theory

simulations are more or less the same as its advantages in
signal and image processing, where independence of
coefficients of different scales provides fast and efficient
algorithms for data processing [12,13]. As it concerns the
quantum field theory itself, the technique based on DWT
was later generalized to the multiscale entanglement
renormalization ansatz, closely related to the real space
renormalization group [14,15]. Wavelet technique is also
closely related to the RG, since the wavelet basis is
generated by a single basic function, which is shifted
and dilated to form the bases of different scales. This scale
hierarchy of wavelet bases provides a natural framework
for renormalization on a lattice [16–18].
There is an essential difference between usual renorm-

alization procedures—Kadanoff blocking procedure [19],
Wilson’s RG [4], etc.—and the wavelet technique. In the
usual approach there is only one universal operator D,
which makes the blocks of different sizes behave like each
other, although with different values of the coupling
constant. In discrete wavelet transform there are two
distinct operators: the low- and high-pass filters. The
former averages degrees of freedom of the small scales
into the coarser degrees of freedom of the block—exactly
as in the usual RG approach—the latter processes the
details lost in block averaging l̂þ ĥ ¼ Î [12,16]. For the
case of discrete wavelet transform, the problem of lattice
renormalization was described in detail in the mono-
graph [20].
In this paper, we are not going to dig into the details of

DWT methods in quantum field theory, but we do mention
that these methods have gradually evolved into an effective
numerical technique for finding the ground state of many-
body quantum field theory models [21]. Their promising
implementation is arising due to the analogy between DWT
and the tensor networks [22,23] as expected on quantum
computers [24]. Discrete wavelet representation of field
theory models with the orthogonal Daubechies wavelets

also provides an interesting approach to the evolution of
lattice Hamiltonian systems [21,25,26].
To the authors knowledge, the first attempt to use

wavelets for an analytic study of a continuous field theory
of practical importance—the quantum chromodynamics
beyond the lattice approximation—was made by
Federbush [27], but has turned out to be technically
complicated. In this study the basis was not restricted to
the orthogonal wavelets, and the general type of DWT
was considered, with the examples of Meyer wavelets. The
mathematical idea itself was expressed even earlier [28].
In our approach, following the previous papers [8,29,30],

we use continuous wavelet transform, rather than discrete
wavelet transform. By doing so, we lose orthogonality of
the basis, but harness the capability of analytical calcu-
lations in the perturbation theory and shape our model into
the framework of the group field theory [31,32], defined on
the affine group G∶ x0 ¼ axþ b. The use of continuous
wavelet transform provides a quantum field theory model
finite by construction, if the scale argument of wavelet
transform (a) is considered as a physical scale of meas-
urement of a quantum field performed with a certain
aperture function–mother wavelet and the causality restric-
tion being imposed on scale arguments, as the absence of
scales in the internal lines of Feynman diagrams less than
the best scale of measurement, given as minimal scale of all
external lines [29,33]. In this setting, the scale dependence
of the observed Green’s functions [field correlators
hϕa1ðx1Þ…ϕanðxnÞi] is completely expressed in terms of
the wavelet scale arguments ai, no external renormalization
scale μ is required, and the role of renormalization group
symmetry is merely to relate the fluctuations of different
scales to each other: there is no need for removal of
divergences [8].
The remainder of this paper is organized as follows. In

Sec. II we briefly remind the reader of some definitions of
the Euclidean field theory in its statistical interpretation.
Section III presents the formalism of continuous wavelet
transform in Euclidean QFT. In Sec. IV we present the one-
loop contribution to the vertex in the ϕ4 model and show
that accurate summation of contributions of all scales from
the size of the system down to the observation scale does
not produce any singularities such as Landau poles. A few
concluding remarks are given in the last section.

II. STATISTICAL MECHANICS VIEW ON
QUANTUM FIELD THEORY

Let us briefly remind the reader of the statistical view on
the formalism of Euclidean quantum field theory. At the
state of thermodynamic equilibrium, the distribution of a
continuous field ϕðxÞ, say a magnetization, is given by the
canonical partition function

Z ¼ Tre−βH;
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where H ¼ H½ϕ� is the Hamiltonian, β ¼ 1
T is the inverse

temperature, and the trace operator assumes the summation
over all degrees of freedom. The trace can be expressed in
terms of the Feynman integral,

Z½J� ¼
Z

Dϕ exp
�
−S½ϕ� þ

Z
JðxÞϕðxÞddx

�
; ð1Þ

where the formal source JðxÞ can be understood as an
external magnetic field.
The Euclidean action functional S½ϕ� is proportional to

the Hamiltonian of the field ϕðxÞ,

S½ϕ� ¼ 1

T

Z
ddx

�
1

2
ð∂ϕÞ2 þm2

2
ϕ2 þ λ

4!
ϕ4

�
; ð2Þ

in the Ginzburg-Landau theory of phase transitions [34].
The correlation functions of the field ϕðxÞ can be derived as
functional derivatives,

GðnÞðx1;…; xnÞ ¼
δnW½J�

δJðx1Þ…δJðxnÞ
����
J¼0

; ð3Þ

where W½J� ¼ lnZ½J� is the connected Green’s function
generating functional, which is proportional to the
Helmholtz free energy F½J� ¼ −T lnZ½J�. The effective
action functional Γ½ϕ� is defined via the Legendre transform
of W½J�,

Γ½ϕ� ¼ −W½J� þ
Z

JðxÞϕðxÞddx: ð4Þ

(Here we keep the notation of [35].)
The functional derivatives of W½J� with respect to the

external source JðxÞ determine the mean field ϕ ¼ ϕ½J�,

δW½J�
δJðxÞ ¼ ϕðxÞ:

The functional derivatives of the effective action Γ½ϕ� are
the “vertex functions” ΓðnÞ½ϕ�. In the above considered ϕ4

model, the (renormalized) vertex function Γð4Þ½ϕ� accounts
for the value of the coupling constant calculated at some
reference scale; the Γð2Þ½ϕ� function is the renormalized
inverse propagator, which defines the renormalization of
mass at the same reference scale.
The most instructive case of the locally known micro-

scopic interaction is the Ising model, described by the
microscopic Hamiltonian

H ¼ −J
X
hiji

SiSj − B
X
i

Si; ð5Þ

where J is the coupling constant of interaction between the
neighboring spins, B is the external magnetic field, and the

Ising spins, with the values Si ¼ �1, are located on some
regular lattice. In the continuous limit, the Hamiltonian of
the Ising model (5) with the nearest-neighbor interaction is
transferred into the Euclidean QFT model with ϕ4 inter-
action (2), which meets the Ginzburg-Landau theory [3,34].
In many cases, the interaction Hamiltonian or the bare

action functional is known at some macroscopic scale μ,
but the microscopic theory at smaller scales (higher
momentum transfer) should be unveiled. The typical cases
are the QED and the quantum gravity—both having 1=r
asymptotic behavior at macroscopic scales, but different
behavior at smaller scales [36,37].
The renormalization group method displays its best

merits when the microscopic fluctuations of atomic scales
cooperate their behavior into large-scale fluctuations,
which are well described by classical mean-field equations.
This happens in the theory of phase transitions, critical
behavior, kinetic description of gases, etc. [3,38,39].
However, if fluctuations of all scales do matter equally,
the averaging of fluctuations from the atomic scales up to
the larger scales (say, by Bogoliubov’s chain) becomes
notoriously difficult. It turns out to be easier, say in
hydrodynamics, to start with the laminar large-scale motion
and to sum up all fluctuations arising from instabilities
down to the atomic scales, where these fluctuations are
completely damped by viscosity [38].

III. USING CONTINUOUS WAVELET
TRANSFORM IN QUANTUM FIELD

THEORY MODELS

A. Continuous wavelet transform

To separate fluctuations of different scales in quantum
field theory, it is convenient to use the formalism of
continuous wavelet transform, as described, e.g., in
[29,33]. Let us briefly remind the reader of the basics of
wavelet transform; see the monographs [12,40] for a
detailed introduction.
Let ϕðxÞ∈L2ðRdÞ be a square-integrable function. Let

χðxÞ∈L2ðRdÞ be a suitably well-localized function, which
satisfies the “admissibility condition,”

Cχ ¼
Z

jχ̃ðkÞj2 ddk
Sdjkjd

< ∞; ð6Þ

where the tilde denotes the Fourier transform,

χ̃ðkÞ ≔
Z
Rd

e{kxχðxÞddx;

and Sd ¼ 2πd=2

Γðd=2Þ is the area of the unit sphere in Rd. Then it

is possible to decompose the function ϕ with respect to the
basis, provided by shifted, dilated, and rotated copies of
χðxÞ. This decomposition is known as the continuous
wavelet transform [41,42],
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ϕðxÞ¼ 1

Cχ

Z
1

ad
χ

�
R−1ðθÞx−b

a

�
ϕaθðbÞ

daddb
a

dμðθÞ; ð7Þ

where RðθÞ is the rotation matrix, dμðθÞ is the left-invariant
measure on the SOðdÞ rotation group, usually written in
terms of the Euler angles,

dμðθÞ ¼ 2π
Yd−2
k¼1

Z
π

0

sink θkdθk:

The functions

ϕa;θðbÞ ≔
Z
Rd

1

ad
χ̄

�
R−1ðθÞ x − b

a

�
ϕðxÞddx ð8Þ

are known as wavelet coefficients of the function ϕ with
respect to the mother wavelet χ.
The decomposition (8) and the reconstruction formula (7)

represent a particular case of the “partition of unity” in
Hilbert spaceHwith respect to representationUðgÞ of a Lie
group G acting transitively on H [43,44],

Î ¼ 1

Cχ

Z
G
UðgÞjχidμðgÞhχjU�ðgÞ; ð9Þ

with G being the group of affine transformations,

G∶ x0 ¼ aRðθÞxþ b; x; b∈Rd; a∈Rþ; θ∈ SOðdÞ: ð10Þ

Wavelet coefficients (8) have clear physical meaning:
The convolution of the analyzed function ϕ with a well-
localized function χ at a fixed window width a comprise
only the fluctuations with typical scales close to a and is
insensitive to all other fluctuations.

B. Scale-dependent fields

The reconstruction (7) of the function ϕ from the set of
its wavelet coefficients is generally nonorthogonal, and the
wavelet basis is overcomplete [40]. Although the integrationR∞
0

da
a … in (7) provides a formally exact reconstruction

formula, depending on the physics of the considered prob-
lem, we can restrict the integration by the minimal scale A
from below (lattice size, in the case of ferromagnetism) and
by the system size L from above:

R
L
A

da
a ….

Moreover, as we know from the Heisenberg uncertainty
principle, the value of a quantum field ϕ sharp at a point x
is physically meaningless, since any measurement with
Δx → 0 implies an infinite momentum transfer Δp → ∞,
which definitely drives us out of the applicability of the
model. For this reason, we have to consider A as the best
available scale of measurement (observation).
There is a distinction between quantum field theory

models considered as an effective large-scale description of
a microscopic theory with a fundamental microscopic

length scale—say, a ferromagnetic model—and fundamen-
tal models of quantum field theory. Our approach is
oriented for the latter case. In the former case, we have
physical evidence of what is happening at the fundamental
scale, and the goal of the RG or any other technique is
to construct an effective large-scale theory by a certain
averaging procedure. In the latter case, our physical
evidence is related to some large-scale processes—say,
the interaction of charged particles in classical electrody-
namics—and our goal is to construct a microscopic theory
capable of describing physical phenomena at a given
microscopic scale of observation. We know from theoreti-
cal calculations in QED, which harness the RG technique
in the space of local square-integrated functions L2ðRdÞ,
that some experimental results, such as Lamb shift and
anomaly in magnetic momentum, can be explained in this
way [45,46].
Nevertheless, we do not have any proof that the

description of quantum fields in terms of local square-
integrable fields and constant charges is the unique way to
describe quantum phenomena. The techniques of continu-
ous wavelet transform, as presented in [29] and other
papers, suggests an alternative description: quantum fields
may be defined on affine group G∶ x0 ¼ axþ b, rather
than on Euclidean or Minkowski space: ϕ ¼ ϕaðbÞ. In this
case, the charges may be explicitly dependent on scale
Q ¼ QðaÞ. In such a theory the no-scale (“bare”) coupling
constant may have no physical meaning, but we still keep it
to link with the known results. There is a counterpart for
this situation in classical statistical mechanics and turbu-
lence theory. The definition of viscosity and other kinetic
coefficients is explicitly dependent on the size of the
averaging domain; there is nothing strange in it: if the
averaging size is less than the mean-free path, neither
viscosity nor hydrodynamic velocity is defined,which drives
us out of the model applicability. The continuous wavelet
transform can be also applied to such problems [47].
In the remainder of this paper, following the previous

papers [7,29], wewill assume the mother wavelet χðxÞ to be
an isotropic function of x and thus ignore the rotation factor
RðθÞ. In this setting, the scale component of the field ϕ,
measured in a point b at the scale a with respect to the
mother wavelet χ (considered as an aperture function by the
analogy from optics [48]) is given by wavelet coefficient,

ϕaðbÞ≡ ha; b; χjϕi ¼
Z

1

ad
χ̄

�
x − b
a

�
ϕðxÞddx: ð11Þ

However, the space of scale-dependent functions fϕaðbÞg
is more general than the space of point-dependent functions
ϕðxÞ∈L2ðRdÞ. Even if all fields ϕaðbÞ are well defined
∀ a∈Rþ; b∈Rd, the limit

ϕðxÞ ¼ lim
A→0

Z
∞

A

da
a

Z
Rd

1

ad
χ

�
x − b
a

�
ϕaðbÞddx
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does not necessarily exist. The divergence of the sum of all
scale components happens in UV-divergent theories, where
the value of a physical field ϕ sharp at a point x is
meaningless.
If ϕðxÞ is understood as a wave function of a physical

particle, its normalization

hϕjϕi ¼
Z

ϕ̄ðxÞϕðxÞddx ¼ 1

is the statement of existence: the probability of finding this
particle anywhere in space Rd is exactly 1. The wavelet
approach, based on the affine group (10), generalizes the
statement of existence in the form

1

Cχ

Z
g∈G

jhϕjUðgÞjχij2dμðgÞ ¼ 1; g ¼ ða; b; θÞ: ð12Þ

The latter equation states that sweeping the measurement
parameters, position b, resolution a, and direction θ, over
all possible values will necessarily imply the registration of
the particle.
Technically, the use of the scale-dependent functions

ϕaðbÞ in a local quantum field theory is rather straightfor-
ward: one can express local fields in terms of their wavelet
transform,

ϕðxÞ ¼ 1

Cχ

Z
da
a

Z
ddk
ð2πÞd e

−{kxχ̃ðakÞϕ̃aðkÞ; ð13Þ

where ϕ̃aðkÞ are the Fourier images of the wavelet
coefficients (11). This defines an easy rule to redefine
the Feynman diagram technique,

ϕ̃ðkÞ → ϕ̃aðkÞ ¼ χ̃ðakÞ ϕ̃ðkÞ: ð14Þ

Doing so, we have the following modification of the
Feynman diagram technique [7,33]:
(1) Each field ϕ̃ðkÞ is substituted by the scale compo-

nent: ϕ̃ðkÞ → ϕ̃aðkÞ ¼ χ̃ðakÞ ϕ̃ðkÞ.
(2) Each integration in the momentum variable is

accompanied by the corresponding scale integration,

ddk
ð2πÞd →

ddk
ð2πÞd

da
a

1

Cχ
:

(3) Each interaction vertex is substituted by its wavelet
transform; for the Nth power interaction vertex, this
gives multiplication by the factor

Q
N
i¼1 χ̃ðaikiÞ.

According to these rules, the bare Green’s function of a
massive scalar field in wavelet representation takes the
form

Gð2Þ
0 ða1; a2; pÞ ¼

χ̃ða1pÞχ̃ð−a2pÞ
p2 þm2

:

The finiteness of loop integrals is provided by the following
rule: There should be no scales ai in internal lines smaller
than the minimal scale of all external lines [29,33].
Therefore, the integration in ai variables is performed from
the minimal scale of all external lines up to infinity or up to
the system size. This corresponds to the summation of all
fluctuations of all scales from the system size down to the
finest scale of observation.
The cutoff in scale variables a is a milder assumption

than momentum cutoff Λ in a usual theory. Since the scale
a is a setting of observation, rather than a measurable
quantity like momentum, the cutoff in it results neither in
violation of momentum conservation, nor in violation of
other important symmetries.
For a theory with local ϕNðxÞ interaction, the presence of

two conjugated factors χ̃ðakÞ and χ̃ðakÞ on each diagram line
connected to an interaction vertex simply means that each
internal line of the Feynman diagram carrying momentum p
is supplied by the cutoff factor f2ðApÞ, where

fðxÞ ≔ 1

Cχ

Z
∞

x
jχ̃ðaÞj2 da

a
; fð0Þ ¼ 1; ð15Þ

with A being the minimal scale of all external lines of this
diagram.
The mildness of the cutoff in scale argument A, if

compared to the momentum cutoff Λ ∼ A−1, is quite easy
to understand. Let us take the ϕ4 model and consider a
“fish” diagram

ð16Þ

with the loop momenta q1 and q2 satisfying the momentum
conservation in both vertices. In the case of the Fourier
decomposition of fields, the restriction of momentum inte-
gration by cutoff momentum Λ results in low-frequency
fields,

ϕ<
ΛðxÞ ≔

Z
jqj<Λ

e−{qxϕ̃ðqÞ ddq
ð2πÞd :

If bothq1 andq2 are above the cutoff valueΛ, the contribution
of both components to the loop integral will be discarded.
More than that, since the Fourier transform is a decomposition
with respect to the representations of the translation group, the
application of cutoff violates translational invariance. Since
the momentum basis is orthogonal basis,
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Î ¼
Z

jki ddk
ð2πÞd hkj; hkjk0i ¼ ð2πÞdδðk − k0Þ;

some information is lost after cutting high momenta.
In contrast to that, the wavelet basis is generally non-

orthogonal and overcomplete and, in the discrete case,
forms a frame; see, e.g., [40] for a general introduction to
wavelets. In the continuous case, wavelet transform is a
decomposition of a function with respect to representations
of affine group G∶ x0 ¼ axþ b, see Eq. (9). When we
restrict the integration over a scale domain A ≤ a < ∞, the
translation subgroup (b) is not affected, and the translation
invariance is preserved. For the fish diagram (16), after
application of scale cutoff A, both components, with
momenta q1 and q2, will contribute, but their contributions
will be modulated by f2ðAq1Þ and f2ðAq2Þ, respectively.
The analogs of these contributions are completely lost in
the usual Fourier method.
This is a typical story in information theory, when

introduction of a new dimension—scale a in our case—
enables one to preserve more information than available for
usual methods. In machine learning, this stimulates the use
of higher-dimensional feature maps [49]. For the same
reasons, wavelets benefit in signal processing, where they
are capable of distinguishing the low frequencies coming
from the differences of two high-frequency harmonics from
those coming from a natural low-frequency source [41].
The summation of all fluctuations from the system size

down to the finest observation scale, but not below it, seems
quite natural, for the integration over infinitely small scales
is often beyond the applicability range of a particular
physical model. This happens in ferromagnetic theories
below the grid spacing, in turbulence below the mean-free
path, etc.

C. Mother wavelets

In our calculations, we use different derivatives of the
Gaussian function as mother wavelets. The admissibility
condition (6) is rather loose: practically any well-localized
function with the Fourier image vanishing at zero momen-
tum [χ̃ð0Þ ¼ 0] obeys this requirement. As for the Gaussian
functions,

χnðxÞ ¼ ð−1Þnþ1
dn

dxn
e− x2

2ffiffiffiffiffiffi
2π

p ; n > 0; ð17Þ

where x is a dimensionless argument, they are easy to
integrate in Feynman diagrams. The graphs of first two
wavelets of the (17) family,

χ1ðxÞ ¼ −
xe−

x2
2ffiffiffiffiffiffi

2π
p ; χ2ðxÞ ¼

ð1 − x2Þe−x2
2ffiffiffiffiffiffi

2π
p ;

are shown in Fig. 1. Their Fourier images are

χ̃nðkÞ ¼ −ð{kÞne−k2
2 : ð18Þ

Respectively, the normalization constants and the wavelet
cutoff functions are

Cχn ¼
ΓðnÞ
2

; fχnðxÞ ¼
Γðn; x2Þ
ΓðnÞ ;

where Γð·Þ is the Euler gamma function, and Γð·; ·Þ is the
incomplete gamma function. For the first two wavelets of
the family (17), the cutoff functions are

fχ1ðxÞ ¼ e−x
2

; fχ2ðxÞ ¼ ð1þ x2Þe−x2 : ð19Þ

IV. AN EXAMPLE OF ϕ4 MODEL

Let us consider an Euclidean action functional of a
massive scalar field with the local ϕ4 interaction (2),

S½ϕ� ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þm2

2
ϕ2 þ λ

4!
ϕ4

�
:

This model is an extrapolation of a classical interacting spin
model to the continual limit [50]. Known as the Ginzburg-
Landau model [34], it describes phase transitions in super-
conductors and other magnetic systems fairly well, but it
produces divergences when the correlation functions are
evaluated from the generating functional (1) by perturba-
tion expansion; see, e.g., [51] for a discussion.
The parameter λ in the action functional (2) is a

phenomenological coupling constant, which knows noth-
ing about the scale of observation and becomes the running
coupling constant only because of renormalization or the
cutoff application. The straightforward way to introduce
scale dependence into the local model (2) is to express local
field ϕðxÞ in terms of its scale components ϕaðbÞ using the
inverse wavelet transform (7). This leads to the generating
functional for scale-dependent fields,
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FIG. 1. First two wavelets of the wavelet family (17).
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ZW ½Ja� ¼ N
Z

DϕaðxÞ exp
�
−
1

2

Z
ϕa1ðx1Þ

×Dða1; a2; x1 − x2Þϕa2ðx2Þ
da1ddx1
Cχa1

da2ddx2
Cχa2

−
λ

4!

Z
Va1;…;a4
x1;…;x4ϕa1ðx1Þ � � �ϕa4ðx4Þ

×
da1ddx1
Cχa1

da2ddx2
Cχa2

da3ddx3
Cχa3

da4ddx4
Cχa4

þ
Z

JaðxÞϕaðxÞ
daddx
Cχa

�
; ð20Þ

where Dða1; a2; x1 − x2Þ is the wavelet transform of the
ordinary propagator, and N is a formal normalization
constant [33].
The functional (20)—if integrated over all scale argu-

ments in infinite limits
R
∞
0

dai
ai
—will certainly drive us back

to the known divergent theory (1). All scale-dependent
fields ϕaðxÞ in Eq. (20) still interact with each other with
the same coupling constant λ, but their interaction is now
modulated by the wavelet factor Va1a2a3a4

x1x2x3x4 , which is the
Fourier transform of

Q
4
i¼1 χ̃ðaikiÞ.

As usual in the functional renormalization group tech-
nique [52], we can introduce the effective action functional
(4), the functional derivatives of which are the vertex
functions ΓðnÞ

ðAÞ,

ΓðAÞ½ϕa� ¼ Γð0Þ
ðAÞ þ

X∞
n¼1

Z
ΓðnÞ
ðAÞða1; b1;…; an; bnÞϕa1

× ðb1Þ…ϕanðbnÞ
da1ddb1
Cχa1

…
danddbn
Cχan

:

The subscript (A) indicates the presence in the theory of
some minimal scale—the observation scale.
In one-loop approximation, the two- and four-point

vertex functions, Γð2Þ and Γð4Þ, respectively, are given by
the following diagrams:

ð21Þ

ð22Þ

Each vertex of the Feynman diagram corresponds to −λ,
and each external line of the one-particle irreducible
diagram contains wavelet factor χ̃ðakÞ. In one-loop
approximation, we have the following expressions, for

the renormalized inverse propagator Γð2Þ
ðAÞ and renormalized

vertex function Γð4Þ
ðAÞ, respectively:

Γð2Þ
ðAÞða1; a2; pÞ

χ̃ða1pÞχ̃ð−a2pÞ
¼ p2 þm2 þ λ

2
Td
χðAÞ; ð23Þ

Γð4Þ
ðAÞ

χ̃ða1p1Þχ̃ða2p2Þχ̃ða3p3Þχ̃ða4p4Þ
¼ λ −

3

2
λ2Xd

χðAÞ; ð24Þ

where A is the minimal scale of all external lines of the
corresponding diagram.
The tadpole integral in Eq. (23),

Td
χðAÞ ¼

Z
ddq
ð2πÞd

f2χðAqÞ
q2 þm2

;

determines the contribution of all fluctuations with scales
from A to ∞ to the “dressed mass” at the observation scale
A. In the local theory with ϕ4 interaction, the natural length
scale is the bare mass, the parameter of the action (2).
Expressing the momenta in the units of mass m, we get

Td
χðAÞ ¼

Sdmd−2

ð2πÞd
Z

∞

0

f2χðAmxÞ x
d−1dx
x2 þ 1

; ð25Þ

where x is dimensionless, and α ¼ Am is the dimensionless
scale of observation.
For the n ¼ 1 wavelet, we get

T4
χ1ðAÞ ¼

m2

8π2

Z
∞

0

e−2α
2x2 x3dx

x2 þ 1

¼ m2

32π2

�
1

α2
− 2e2α

2

Ei1ð2α2Þ
�
; ð26Þ

where α ¼ Am, and

Ei1ðzÞ ≔
Z

∞

1

e−xz

x
dx

is the exponential integral of the first kind.
Similarly, for the n ¼ 2 wavelet, we get

T4
χ2ðAÞ ¼

m2

8π2

Z
∞

0

e−2α
2x2ð1þ α2x2Þ2 x3dx

x2 þ 1

¼ m2

32π2

�
5

2α2
−
5

2
þ α2 þ 2e2α

2

Ei1ð2α2Þ

× ½2α2 − α4 − 1�
�
: ð27Þ
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For small scales (Am ≪ 1) the one-loop contribution to
the effective mass in (23) is dominated by the square
term ∝ λ

A2.
Similarly, the one-loop contribution to the vertex func-

tion is given by the fish integral,

Xd
χðAÞ ¼

Z
ddq
ð2πÞd

f2χðqAÞf2χððq − sÞAÞ
½q2 þm2�½ðq − sÞ2 þm2� : ð28Þ

Let us consider one-loop integrals (25) and (28) in d ¼ 4
dimension, where the coupling constant λ is dimensionless,
for different mother wavelets n ¼ 1, 2 of the family (17).
The fish integral contribution (28) to the vertex function

(24) can be evaluated by symmetrization of loop momenta
q → qþ s=2, where s ¼ p1 þ p2 is the sum of the incom-
ing momenta. In terms of the dimensionless momentum
y ¼ q=jsj, the integral (28) takes the form

Xd
χðAÞ¼

Sd−1sd−4

ð2πÞd
Z

π

0

dθsind−2θ
Z

∞

0

dyyd−3

×
f2χ
�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þycosθþ1

4

q 	
f2χ
�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2−ycosθþ1

4

q 	
h
y2þ1

4
þm2

s2

y þcosθ
ih

y2þ1
4
þm2

s2

y −cosθ
i ;

ð29Þ

where θ is the angle between the loop momentum q and the
total momentum s.
The integral (29) can be evaluated in the relativistic limit

s2 ≫ 4m2. In logarithmic dimension d ¼ 4, where the
coupling constant λ is dimensionless, relativistic approxi-
mation drastically simplifies the integral: the dependence
on the total momentum s is manifested only through the
dimensionless scale As in wavelet cutoff factors f2χ .
For n ¼ 1 this gives

X4
χ1ðAÞ ¼

1

16π2

�
2Ei1ð2α2Þ − Ei1ðα2Þ þ e−α

2 1 − e−α
2

α2

�
;

ð30Þ

where α ¼ As. Similarly, for n ¼ 2 we have

X4
χ2ðAÞ ¼

1

16π2

�
2Ei1ð2α2Þ − Ei1ðα2Þ − e−2α

2

�
5

2α2
þ 1

2

�

þ e−α
2

�
67

128
þ 9

128
α2 þ 1

256
α4 þ 5

2α2

��
: ð31Þ

The details of integral evaluation can be found in the
Appendix of [9].
Since Eq. (24) gives an exact (in one-loop approxima-

tion) contribution of all fluctuations with scales from A to
infinity to the dependence of the effective coupling constant
on the observation scale A, this dependence can be written

as a function of the dimensionless scale α ¼ As. These
dependences, calculated with χ1 wavelet (30) and with χ2
wavelet (31), respectively, are

λð1Þeff ðα2Þ¼ λþ3

2

λ2e−α
2

16π2

×

�
eα

2ð2Ei1ð2α2Þ−Ei1ðα2ÞÞþ
1−e−α

2

α2

�
;

λð2Þeff ðα2Þ¼ λþ3

2

λ2e−α
2

16π2

�
eα

2ð2Ei1ð2α2Þ−Ei1ðα2ÞÞþ
1−e−α

2

α2

þα6þ18α4þ134α2þ384−e−α
2ð128α2þ384Þ

256α2

�
;

ð32Þ

where we have changed sign in (24) to invert it from λ ¼
λbare to λ ¼ λphys.
Let us consider the contribution of a finite shell of scales

ðA;LÞ, when a classical field is known at certain finite scale
L, in contrast to the previous construction [(30), (32)],
where we have integrated out all fluctuations in the semi-
infinite range ðA;L ¼ ∞Þ. The value of the effective
coupling constant of the type (32) does not diverge for
any finite scale A > 0 [in contrast to its differential analog
(40), presented below, which suffers from the Landau pole].
The reason for this can be understood physically, if we
assume a system of size L in equilibrium, with well-defined
coupling constant λL. Any measurements on such system
can be executed at scales A < L. The effective coupling
constant relevant to a measurement at the scale A is λA. Its
particular value is determined by all fluctuations in the
range of scales ½A; L�. In one-loop approximation for the ϕ4

theory, this effective coupling constant is

λA ¼ λL þ 3

2
λ2L½Xd

χðAÞ − Xd
χðLÞ�; ð33Þ

where the function XðAÞ is the fish integral of the type (30).
Analogously, we can express effective mass at scale α,
using the value of physical mass mL at some large scale L
and the tadpole correction to mass,

m2
A ¼ m2

L −
λL
2
ðTd

χðAÞ − Td
χðLÞÞ: ð34Þ

The renormalization of the coupling constant (33) and the
mass (34), due to the integration over fluctuations within the
range ½A;L�, can be considered as a counterpart of the RG
flow of the standard ϕ4

4 model. An example, calculated from
the scaleL ¼ 4 down to the scaleA ¼ 0.0625with a

ffiffiffi
2

p
step

in scale, is shown in Fig. 2. We cannot give any comments
concerning the dimension of stable and unstablemanifolds of
theRG flow for a number of reasons. First of all, in contrast to
the usual RG, the case of wavelet field theory contains
explicit dependence on the scale argumentA. That is whywe
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cannot draw a β function as a function of coupling constants
only and find a critical point βðλ�Þ ¼ 0 to estimate the RG
flow near these points. What we can do, instead, is to
calculate the logarithmic derivatives A ∂

∂A of the coupling
constants and, starting from some large-scale value λL of the
coupling constant, iterate themodel parameters to the smaller
scales, exactly as was shown in Fig. 2 according to Eqs. (33)
and (34). Needless to say, since the physical fields in our
model ϕaðxÞ explicitly depend on scale, there is no field
renormalization in ourmodel. Perhaps, theRG flow shown in
Fig. 2 can be considered only “above the critical temper-
ature” m2 > 0 where the wavelet evaluation of integrals is
valid. Instead of considering the fixed points βðλ�Þ ¼ 0, we
have the explicit dependence of the coupling constant on the
scale A. If the size of the system tends to infinity, and the
physicalmassmL and coupling constant λL are defined in this
limit, the scale dependence of the coupling constant λ ¼
λðAÞ can be explicitly calculated from (33) at Xd

χðLÞ ¼ 0.
The examples of this dependence are shown in Fig. 3.
If the scales A and L are sufficiently close to each other,

the difference equation (33),

−
Δλ
λ2

¼ −
3

2
ΔX;

can be transformed to the differential equation
d 1

λ ¼ − 3
2
dX, which has the solution

λðAÞ ¼ λL
1 − 3

2
λLðXðAÞ − XðLÞÞ ; ð35Þ

which coincides with the solution of the original Eq. (33)
only for small values of λL; otherwise, it suffers from
the pole.

The formal differentiation of the effective coupling
constant (32) with respect to the logarithmic scale argument
gives the scaling equation

α2
∂λ

∂α2
¼ 3

2
λ2α2

∂X4
χ1

∂α2
¼ 3λ2

32π2
e−α

2 − 1

α2
e−α

2 ð36Þ

for the first wavelet χ1. The asymptote of (36) for small
values α ≪ 1 coincides with the standard result,

∂λeff
∂μ

≈
3λ2

16π2
; μ ¼ − ln α:

Similar equations can be obtained for other wavelets of the
family (17). For either of these wavelets, the asymptote of
logarithmic derivatives for small scales α2 ≪ 1 gives the
same slope,

di ≔ α2
∂X4

χi

∂α2
¼ −

1

16π2
þOðα2Þ

for the dependence of coupling constant λ on the logarithm
of scale. For the first two wavelets, the small-scale Taylor
series gives

d1 ¼ −
1

16π2
þ 3α2

32π2
−

7α4

96π2
þOðα6Þ;

d2 ¼ −
1

16π2
−

13α2

1024π2
þ 139α4

3072π2
þOðα6Þ:

The shape of the mother wavelet works as an aperture of the
microscope used to study the details of different scales [48].
Different apertures can see different values when the scale
of aperture is comparable to size of the object, but the
asymptote at small scales is certainly the same—since the
cutoff function (15) calculated for the family (17) is an
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FIG. 2. Iteration of the finite shell renormalization (33), (34).
The iteration process goes from L ¼ 4 with the value of coupling
constant λ ¼ 1

2
at the left of the picture by setting Liþ1 ¼ffiffiffi

2
p

Li ≡ Ai. The right side of the picture corresponds to the
UV limit of iteration. The graphs are shown for different values of
mass and different wavelets. An arbitrary value of s ¼ 2 was
chosen.
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FIG. 3. Dependence of the coupling constant on the logarithm
of the dimensionless scale α ¼ As calculated in one-loop
approximation, with χ1 and χ2 wavelets, respectively. The value
of the coupling constant is normalized to λL ¼ 1 at infinity. The
parameter s ¼ 2 was taken.
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exponent multiplied by a polynomial 1þOðx2Þ—and
coincides with the standard RG result; see also [9] for a
similar result in quantum electrodynamics.
In the limit of small α, the RG equation for the coupling

constant,

∂λ

∂ ln α
¼ −

3λ2

16π2
; ð37Þ

has a well-known solution,

λðαÞ ¼ λ1
1þ 3λ1

16π2
ln α

α1

; ð38Þ

where λ1 ≡ λðα1Þ is a reference value of the coupling
constant at a certain reference value α1. The solution (38)
suffers from a Landau pole.
In the full form, the ordinary differential equation (36)

can be solved as an RG-type equation,

d

�
1

λ

�
¼ −

3

32π2
e−α

2ðe−α2 − 1Þ
α4

dα2: ð39Þ

If the value of the effective coupling constant λ is known at
certain squared dimensionless scale λ1 ¼ λðx1 ¼ ðA1sÞ2Þ,
its value at other scales x ¼ ðAsÞ2 is given by the explicit
solution,

λðxÞ ¼ 1
1
λ1
þ 3

32π2
½FðxÞ − Fðx1Þ�

; ð40Þ

where FðxÞ ≔ 2Γð−1; 2xÞ − Γð−1; xÞ, with

Γða; zÞ ¼
Z

∞

z
ta−1e−tdt

being the incomplete gamma function. Similar to the
small-scale case, the solution (40) also suffers from the
Landau pole.
In the actual sense of the Ginzburg-Landau model, we

cannot really assert that ϕ4ðxÞ interaction is a realistic
large-scale interaction from which one can derive the small-
scale interaction of fields at A → 0 by means of the RG and
loop corrections to the large-scale theory. Instead, what we
can do is to approximate some medium-scale interaction
from the known parameters of the Hamiltonian at micro-
scopic scale, i.e., at the UV-cutoff scale. In the case of a
ferromagnetic model, this is the grid size. From this
microscopic interaction, we can infer the interaction
strength λ for bigger (Kadanoff’s) blocks, but not for the
ground state of the whole crystal of finite size [4]. In this
case, the Ginzburg-Landau model is not a fairly good
approximation.
However, there are QFT models in which the large-scale

fields provide a good approximation for the measured

physical fields, and the renormalization group with the loop
corrections provides a good estimation of field interactions
at smaller scales. Quantum electrodynamics is a well-
known example.

V. CONCLUSIONS

We have shown in this paper that the summation of all
fluctuations with scales from the size of the system down
to the observation scale by means of continuous wavelet
transform results in a finite renormalization of the coupling
constant without any Landau poles. It was demonstrated on
a simple example of ϕ4 field theory in d ¼ 4 dimensions.
Our conclusion seems rather general, since the same
technique can be applied to QED [9], QCD [7], and other
models. The same method of summing up the fluctuations
from IR scale—the size of the system—down to the
observation scale can be also applied in other dimensions,
different from the dimension of physical spacetime, but the
calculations may be more difficult technically. The one-
loop integrals for the case of ϕ4 theory in d ¼ 3 dimensions
are presented in the Appendix for completeness.
The essence of this paper is to show that the extension of

the functional space of quantum fields from the space of
square-integrable local functions ϕðxÞ to the space of scale-
dependent functions ϕaðxÞ, defined on the affine group
with the help of continuous wavelet transform, leads to a
theory finite by construction. The singularities—Landau
poles and UV and IR divergences—turn out to be the
artifacts of the L2ðRdÞ space of functions, which is too poor
to provide a correct account of the dependence of physical
fields on the observer’s settings, i.e., on the observation
scale. Especially, the Landau poles then remain the artifacts
of approximation of the results in a finite range of scales by
the results obtained from the differential equation defined
in an infinitesimally thin shell.
In a probabilistic sense, the summation of all fluctuations

from large scales down to smaller scales may be related to
the probabilities of small-scale fluctuations constrained by
the fluctuations of larger scales [53].
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APPENDIX: EVALUATION OF ONE-LOOP
CORRECTIONS IN 3D

The one-loop corrections (23) and (24) can be evaluated
for arbitrary dimension d, although the calculations may be
more difficult than in d ¼ 4, where the coupling constant is
dimensionless. Here we present the results for d ¼ 3
calculated for the χ1 wavelet.
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The tadpole integral (25) can be evaluated explicitly for d ¼ 3 with the cutoff function (19) fχ1ðxÞ ¼ e−x
2

,

T3
χ1ðAÞ ¼

m
2π2

Z
∞

0

e−2A
2m2x2 x2dx

x2 þ 1
¼ m

2π2

�
π

2
e2A

2m2ðerfð
ffiffiffi
2

p
AmÞ − 1Þ þ

ffiffiffiffiffiffi
2π

p

4Am

�
: ðA1Þ

The fish integral (24) in d ¼ 3 takes the form

X3
χðAÞ ¼

1

ð2πÞ2s
Z

π

0

dθ sin θ
Z

∞

0

dy
f2χ

�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ y cos θ þ 1

4

q �
f2χ

�
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − y cos θ þ 1

4

q �
�
y2þ1

4
þm2

s2

y þ cos θ

��
y2þ1

4
þm2

s2

y − cos θ

�
;

ðA2Þ

where s ¼ p1 þ p2 is the sum of the incident momenta, and
fχð·Þ is the cutoff function corresponding to the chosen
wavelet.
For the simplest case of the χ1 wavelet, the product of the

two squared Gaussian cutoff functions in the numerator
gives the factor exp ð−α2ð4y2 þ 1ÞÞ, where α ¼ As. The
whole integral (A2), after the change of variables
u ¼ − cos θ, takes the form

X3
χ1ðAÞ ¼

1

ð2πÞ2s
Z

1

−1
du
Z

∞

0

dy
e−4α

2ðy2þ1
4
Þ

β2ðyÞ − u2
; ðA3Þ

where

βðyÞ ¼ y2 þ 1
4
þ m2

s2

y
> 1

in the domain of integration in the dimensionless momen-
tum y. Having integrated over the angular variable u, we get

X3
χ1ðAÞ¼

1

ð2πÞ2s
Z

∞

0

dyye−4α
2ðy2þ1

4
Þ

y2þ 1
4
þ ϵ

×

�
ln
h�

yþ1

2

	
2þ ϵ

i
− ln

h�
y−

1

2

	
2þ ϵ

i�
; ðA4Þ

where we have introduced a presumably small parameter
ϵ≡ m2

s2 . In the IR limit ϵ → 0 the integral (A4) is divergent
at y ¼ 1

2
, otherwise its value can be calculated approxi-

mately, using the Laplace method.
Changing the integration variable y ¼ 1

2
þ t, we get the

integral

X3
χ1ðAÞ ¼

1

ð2πÞ2s
Z

∞

−1
2

dtð1
2
þ tÞe−4α2ðt2þtþ1

2
Þ

t2 þ tþ 1
2
þ ϵ

ln
ðtþ 1Þ2 þ ϵ

t2 þ ϵ

≡ 1

ð2πÞ2s
Z

∞

−1
2

dt expðSðt; ϵÞÞ: ðA5Þ

The “action,”

Sðt; ϵÞ≡ ln

�
tþ 1

2

�
− ln

�
t2 þ tþ 1

2
þ ϵ

�

− 4α2
�
t2 þ tþ 1

2

�
þ ln ln

ðtþ 1Þ2 þ ϵ

t2 þ ϵ
; ðA6Þ

has a sharp maximum at t ≈ 0. The exact value of the
extremal point t0 is given by the equation

∂S
∂t

����
t¼t0

¼ 0;

where

∂S
∂t

¼ 1

tþ 1
2

−
2tþ 1

t2 þ tþ 1
2
þ ϵ

− 4α2ð2tþ 1Þ þ
2tþ2

ðtþ1Þ2þϵ
− 2t

t2þϵ

ln ðtþ1Þ2þϵ
t2þϵ

:

ðA7Þ

The decomposition of the latter equation in a power series
in t, omitting the Oðt2Þ order terms, leads to

t0 ≈
−2α2 þ 1

ln1ϵ

2þ 4α2 þ
1þ1

ϵþ 2

ln1ϵ

ln1ϵ

: ðA8Þ

The estimation (A8) tends to zero for ϵ → 0. The second
derivative of the action,

∂
2S
∂t2

¼ −
1

ðtþ 1
2
Þ2 −

2

t2 þ tþ 1
2
þ ϵ

þ
�

2tþ 1

t2 þ tþ 1
2
þ ϵ

�
2

− 8α2 −

 
2tþ2

ðtþ1Þ2þϵ
− 2t

t2þϵ

ln ðtþ1Þ2þϵ
t2þϵ

!
2

þ
2

ðtþ1Þ2þϵ
− ð2tþ2Þ2

ððtþ1Þ2þϵÞ2 −
2

t2þϵ
þ 4t2

ðt2þϵÞ2

ln ðtþ1Þ2þϵ
t2þϵ

: ðA9Þ
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The value of second derivative near the extremal point is

Sttð0; ϵÞ ¼ −4 − 8α2 −
2

1
2
þ ϵ

þ 1�
1
2
þ ϵ
	
2
þ

2
1þϵ −

4
ð1þϵÞ2 −

2
ϵ

ln 1þϵ
ϵ

−
4

ð1þ ϵÞ2
h
ln 1þϵ

ϵ

i
2
: ðA10Þ

Thus, the fish integral for ϕ4
3 theory with the χ1 wavelet can be estimated as

X3
χ1ðAÞ ≈

1

ð2πÞ2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Sttð0; ϵÞ

s
expðSð0; ϵÞÞ; where Sð0; ϵÞ ¼ ln

1
2

1
2
þ ϵ

− 2α2 þ ln ln
1þ ϵ

ϵ
: ðA11Þ
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