
Prog. Theor. Exp. Phys. 2018, 083B01 (20 pages)
DOI: 10.1093/ptep/pty080

Revisiting the A4 model for leptons in light
of NuFIT 3.2

Sin Kyu Kang1,∗, Yusuke Shimizu2,∗, Kenta Takagi2,∗, Shunya Takahashi2, and
Morimitsu Tanimoto3

1School of Liberal Arts, Seoul-Tech, Seoul 139-743, Korea
2Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
3Department of Physics, Niigata University, Niigata 950-2181, Japan
∗E-mail: skkang@seoultech.ac.kr, yu-shimizu@hiroshima-u.ac.jp, takagi-kenta@hiroshima-u.ac.jp

Received May 8, 2018; Revised June 15, 2018; Accepted June 21, 2018; Published August 14, 2018

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We revisit the A4 model for leptons in light of the new result of NuFIT 3.2. We introduce a
new flavon η transforming as an A4 singlet 1′ or 1′′, which couples to both charged leptons
and neutrinos in next-to-leading-order operators. The model consists of five parameters: the
lightest neutrino mass m1, the vacuum expectation value of η, and three CP-violating phases
after inputting the experimental values of �m2

atm and �m2
sol. The model with the 1′′ singlet flavon

gives the prediction of sin2 θ12 around the best fit of NuFIT 3.2 while staying near the maximal
mixing of θ23. Inputting the experimental mixing angles with the 1 σ error-bar, the Dirac CP-
violating phase is clearly predicted to be |δCP| = 50–120◦, which will be tested by the precise
observed value in the future. In order to get the best-fit value sin2 θ23 = 0.538, the sum of three
neutrino masses is predicted to be larger than 90 meV. The cosmological observation for the sum
of the neutrino masses will also provide a crucial test of our predictions. It is remarked that the
model is consistent with the experimental data only for the normal hierarchy of neutrino masses.
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1. Introduction

The origin of the quark/lepton flavor is still unknown in spite of the remarkable success of the
standard model (SM). To reveal the underlying physics of flavors is challenging work. The recent
developments in neutrino oscillation experiments have provided us with important clues to investigate
flavor physics. Indeed, the neutrino oscillation experiments have determined precisely two neutrino
mass-squared differences and three neutrino mixing angles. In particular, the recent data from both
the T2K [1,2] and NOνA [3,4] experiments show us that the atmospheric neutrino mixing angle
θ23 is favored near the maximal angle 45◦. The global analysis by NuFIT 3.2 presents the best-fit
θ23 = 47.2◦ for the normal hierarchy (NH) of neutrino masses [5]. The closer the observed θ23 is to
the maximal mixing, the more likely we are to believe in some flavor symmetry behind it. In addition
to the precise measurements of the mixing angles, the T2K and NOνA results strongly indicate the
presence of CP violation in the neutrino oscillation [2,4]. Thus, we are in the era of the development
of the flavor structure of the lepton mass matrices with a focus on the leptonic flavor mixing angles
and CP-violating phase.

Before the reactor experiments measured a non-zero value for θ13 in 2012 [6,7], the paradigm of
the tri–bimaximal (TBM) mixing [8,9], a highly symmetric mixing pattern for leptons, had attracted
much attention. It is well known that this mixing pattern is derived in the framework of the A4 flavor
symmetry [10–13]. Therefore, non-Abelian discrete groups have become the center of attention in
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the flavor symmetry [14–17]. In order to obtain non-vanishing θ13, two of the authors improved the
A4 model by a minimal modification by introducing another flavon that transforms as 1′(′′) of A4

and couples only to the neutrino sector [18]. Then, the predicted values of θ13 are consistent with the
experimental data. This pattern is essentially the trimaximal mixing TM2 [19–21], which leads to
sin2 θ12 ≥ 1/3. However, the predicted sin2 θ12 is outside the 2 σ interval of the experimental data in
the NuFIT 3.2 result [5]. Therefore, the A4 model should be reconsidered in light of the implications
of the new data from T2K and NOνA.

In this work, we introduce a new flavon transforming as an A4 singlet, η (1′ or 1′′), which couples
to both charged leptons and neutrinos in next-to-leading-order operators. The model consists of five
parameters: the lightest neutrino mass m1, the vacuum expectation value (VEV) of η, and three
CP-violating phases after inputting the observed values of �m2

atm and �m2
sol. The model with a 1′′

singlet flavon gives the prediction of sin2 θ12 around the best fit of NuFIT 3.2 while staying near
the maximal mixing of θ23. The non-vanishing θ13 is derived from both charged lepton and neutrino
sectors. Inputting the observed mixing angles with the 1 σ error-bar, the CP-violating Dirac phase
is clearly predicted to be |δCP| = 50–120◦. Therefore, the observation of the CP-violating phase is
essential for testing the model in the future.

It is remarked that the model is consistent with the experimental data only for NH of neutrino
masses. The inverted hierarchy (IH) of neutrino masses is not allowed in the recent experimental
data. This situation comes from the singlet 1′ or 1′′ flavon coupling to leptons in the next-to-leading
order. It is in contrast with the model in Ref. [18] where both NH and IH are allowed.

We present our framework for the A4 model in Sect. 2 where lepton mass matrices and VEVs of
scalars are discussed. The numerical results are shown in Sect. 3. Section 4 is devoted to the summary.
Appendix A shows the lepton mixing matrix and CP-violating measures that are used in this work.
The relevant multiplication rules of A4 are represented in Appendix B. The derivation of the lepton
mixing matrix is given in Appendix C. Appendix D presents the distributions of our parameters that
are used in our numerical calculations.

2. Our framework for the A4 model

We discuss our A4 model in the framework of supersymmetry (SUSY). In the non-Abelian finite
group A4, there are four irreducible representations: 1, 1′, 1′′, and 3. The left-handed leptons l and
right-handed charged leptons ec, μc, τ c are assigned to the triplet and singlets, respectively, as seen
in Table 1. The two Higgs doublets (hu, hd) are assigned to the A4 singlets, and their VEVs are
denoted as (vu, vd) as usual. We introduce several flavons as listed in Table 1. The flavons φT and φS

are A4 triplets while ξ and ξ̃ are the same A4 singlet 1. In addition, η and η̃ are the same non-trivial
singlet 1′′ or 1′. The A4 flavor symmetry is spontaneously broken by VEVs of gauge singlet flavons,
φT , φS , ξ , and η, whereas ξ̃ (1) and η̃ (1′′, 1′) are defined to have vanishing VEVs through the linear
combinations of ξ and ξ̃ and η and η̃, respectively, as discussed in Ref. [13]. In the original model
proposed by Altarelli and Feruglio [12,13], φT , φS , and ξ were introduced, and then the specific
vacuum alignments of the triplet flavons led to the tri–bimaximal mixing where the lepton mixing
angle θ13 vanishes. In 2011, two of the authors minimally modified the model by introducing an
extra flavon η (1′) on top of those flavons to generate non-vanishing θ13 [18]. This modification
of the model leads to the trimaximal mixing of neutrino flavors, so-called TM2, which predicts
sin2 θ12 ≥ 1/3 [19–21]. Unfortunately, this prediction for θ12 is inconsistent with the data at the 2 σ

confidence level (C.L.) given in the NuFIT 3.2 result [5]. In this work, we force the flavon η (1′′ or 1′)
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Table 1. Assignments of leptons, Higgs, flavons, and driving fields, where ω = exp (2π i/3).

l ec μc τ c hu,d φT η η̃ φS ξ ξ̃ 
 φT
0 η0 φS

0 ξ0

SU (2) 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
A4 3 1 1′′ 1′ 1 3 1′′(1′) 1′′(1′) 3 1 1 1 3 1′(1′′) 3 1
Z3 ω ω2 ω2 ω2 1 1 1 1 ω ω ω 1 1 ω2 ω ω

U (1)FN 0 4 2 0 0 0 0 0 0 0 0 −1 0 0 0 0
U (1)R 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2

to couple to both the charged lepton and neutrino sectors in next-to-leading operators by assigning
a Z3 charge to η appropriately.

We impose the Z3 symmetry to control Yukawa couplings in both the neutrino sector and charged
lepton sector. The third row of Table 1 shows how each chiral multiplet transforms under Z3 with its
charge ω = exp(2π i/3).

In order to obtain the natural hierarchy among lepton masses me, mμ, and mτ , we resort to the
Froggatt–Nielsen mechanism [22] with an additional U (1)FN symmetry under which only the right-
handed lepton sector is charged. The field 
 denotes the Froggatt–Nielsen flavon in Table 1. The
U (1)FN charges are taken as (4, 2, 0) for (ec, μc, τ c), respectively. By assuming that 
, carrying a
negative unit charge of U (1)FN, acquires a VEV, the relevant mass ratio is reproduced through the
Froggatt–Nielsen charges.

We also introduce a U (1)R symmetry in Table 1 to distinguish the flavons and driving fields φT
0 ,

φS
0 , ξ0, and η0, which are required to build a non-trivial scalar potential so as to realize the relevant

symmetry breaking.
In this setup, the superpotential for respecting A4 × Z3 × U (1)FN × U (1)R symmetry is written

by introducing the cutoff scale � as

w = wY + wd ,

wY = wl + wν ,

wl = ye (φT l)1 echd
4/�5 + yμ (φT l)1′ μchd
2/�3 + yτ (φT l)1′′ τ chd/�

+ y′
e (φT l)1′(1′′) echdη
4/�6 + y′

μ (φT l)1′′(1) μchdη
2/�4 + y′
τ (φT l)1(1′) τ chdη/�2,

wν = yS(ll)3huhuφS/�2 + yξ (ll)1huhuξ/�2

+ y′
1(ll)1huhu(φSφT )1/�

3 + y′
2(ll)1′huhu(φSφT )1′′/�3

+ y′
3(ll)1′′huhu(φSφT )1′/�3 + y′

4(ll)3huhu(φSφT )3/�
3

+ y′
5(ll)3huhuφSη/�3 + y′

6(ll)3huhuξφT /�3 + y′
7(ll)1′(1′′)huhuξη/�3,

wd = wT
d + wS

d ,

wT
d = −MφT

0 φT + gφT
0 φT φT + λφT

0 φT η̃

− λ1η0φT φS + λ2η0ηξ + λ3η0ηξ̃ + λ4η0η̃ξ + λ5η0η̃ξ̃ ,

wS
d = g1φ

S
0 φSφS + g2φ

S
0 φS ξ̃ − g3ξ0φSφS + g4ξ0ξξ + g5ξ0ξ ξ̃ + g6ξ0ξ̃ ξ̃ , (1)

where the subscripts 1′(1′′) in (φT l)1′(1′′), etc. correspond to the case of η for 1′′(1′). The Yukawa
couplings y and y′ are complex numbers of order one and M is a complex mass parameter, while g and
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λ are trilinear couplings, which are also complex numbers of order one. Both leading operators and
next-to-leading ones are included in wY , which leads to the flavor structure of lepton mass matrices
including next-to-leading corrections.

On the other hand, wd only contains leading operators, where we can force ξ̃ (η̃) to couple with
φS

0 φS (φT
0 φT ), but not ξ (η) with it since ξ̃ and ξ (η̃ and η) have the same quantum numbers [13]. We

can study the vacuum structure and lepton mass matrices with these superpotentials.

2.1. Vacuum alignments of flavons

Let us investigate the vacuum alignments of flavons. The superpotentials wT
d and wS

d in Eq. (1) are
written in terms of the components of triplet flavons:

wT
d = −M

(
φT

01φT 1 + φT
02φT3 + φT

03φT 2
) + λ

(
φT

01φT 2 + φT
02φT1 + φT

03φT3
)
η̃

+ 2g

3

[
φT

01

(
φ2

T 1 − φT2φT 3
) + φT

02

(
φ2

T2 − φT1φT3
) + φT

03

(
φ2

T 3 − φT1φT2
)]

− λ1η0 (φT2φS2 + φT 1φS3 + φT3φS1) + λ2η0ηξ + λ3η0ηξ̃ + λ4η0η̃ξ + λ5η0η̃ξ̃ ,

wS
d = 2g1

3

[
φS

01

(
φ2

S1 − φS2φS3
) + φS

02

(
φ2

S2 − φS1φS3
) + φS

03

(
φ2

S3 − φS1φS2
)]

+ g2
(
φS

01φS1 + φS
02φS3 + φS

03φS2
)
ξ̃

− g3ξ0
(
φ2

S1 + 2φS2φS3
) + g4ξ0ξ

2 + g5ξ0ξ ξ̃ + g6ξ0ξ̃
2, (2)

where wS
d is the same superpotential given in Ref. [13]. Note that new terms including η and η̃ are

added in wT
d .

Then, the scalar potential of the F-term is given as

V ≡ VT + VS ,

VT =
∑

i

∣∣∣∣∣
∂wT

d

∂φT
0i

∣∣∣∣∣
2

+ h.c.

= 2

∣∣∣∣−MφT 1 + λφT2η̃ + 2g

3

(
φ2

T1 − φT 2φT3
)∣∣∣∣

2

+ 2

∣∣∣∣−MφT3 + λφT1η̃ + 2g

3

(
φ2

T2 − φT 1φT3
)∣∣∣∣

2

+ 2

∣∣∣∣−MφT2 + λφT3η̃ + 2g

3

(
φ2

T3 − φT 1φT2
)∣∣∣∣

2

+ 2
∣∣∣−λ1 (φT2φS2 + φT 1φS3 + φT 3φS1) + λ2ηξ + λ3ηξ̃ + λ4η̃ξ + λ5η̃ξ̃

∣∣∣2
,

VS =
∑ ∣∣∣∣∣

∂wS
d

∂X

∣∣∣∣∣
2

+ h.c.

= 2

∣∣∣∣2g1

3

(
φ2

S1 − φS2φS3
) + g2φS1ξ̃

∣∣∣∣
2

+ 2

∣∣∣∣2g1

3

(
φ2

S2 − φS1φS3
) + g2φS3ξ̃

∣∣∣∣
2
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+ 2

∣∣∣∣2g1

3

(
φ2

S3 − φS1φS2
) + g2φS2ξ̃

∣∣∣∣
2

+ 2
∣∣∣−g3

(
φ2

S1 + 2φS2φS3
) + g4ξ

2 + g5ξ ξ̃ + g6ξ̃
2
∣∣∣2

. (3)

The vacuum alignments of φT , φS and VEVs of η, η̃, ξ , and ξ̃ are derived from the condition of the
potential minimum, i.e., VT = 0 and VS = 0 in Eq. (3), as

〈φT 〉 =vT (1, 0, 0), 〈φS〉 = vS(1, 1, 1), 〈η〉 = q, 〈η̃〉 = 0, 〈ξ〉 = u, 〈ξ̃〉 = 0,

vT = 3M

2g
, v2

S = g4

3g3
u2, q = λ1vT vS

λ2u
= λ1

λ2

√
g4

3g3
vT , (4)

where the VEVs of ξ̃ and η̃ are taken to be zero by the linear transformation of ξ and ξ̃ (η and η̃)
without loss of generality. The coefficients λi and gi are of order one since these flavons have no
FN charges. Therefore, the VEVs of η and ξ are of the same order as vT and vS , respectively. In our
numerical analyses, q/� is scanned around vT /�, which is fixed by the tau-lepton mass.

On the other hand, the FN flavon 
 is not contained in wd due to the U (1)FN invariance. The
VEV of 
 can be derived from the scalar potential of the D-term by assuming gauged U (1)FN. The
Fayet–Iliopolos term leads to the non-vanishing VEV of 
 as discussed in Ref. [23]. Thus, its VEV
is determined independently of vT , vS , u, and q.

2.2. Lepton mass matrices

The explicit lepton mass matrices are derived from the superpotentials wl and wν in Eq. (1) by use
of the multiplication rule of A4 given in Appendix B. Let us begin with writing down the charged
lepton mass matrices by imposing the vacuum alignments in Eq. (4) as:

M� = vdα�

⎛
⎜⎝

yeλ
4 0 y′

τ αη

y′
eαηλ

4 yμλ2 0
0 y′

μαηλ
2 yτ

⎞
⎟⎠ for η(1′′), vdα�

⎛
⎜⎝

yeλ
4 y′

μαηλ
2 0

0 yμλ2 y′
τ αη

y′
eαηλ

4 0 yτ

⎞
⎟⎠ for η(1′),

(5)
where α�, αη, and λ are defined in terms of the VEVs of φT , η, and 
, respectively:

α� ≡ 〈φT 〉
�

= vT

�
, αη ≡ 〈η〉

�
= q

�
, λ ≡ 〈
〉

�
. (6)

We note that the off-diagonal elements arise from the next-to-leading operators.
The left-handed mixing matrix of the charged lepton is derived by diagonalizing M�M †

� . We obtain

the mixing matrix U †
� approximately for the cases of η being 1′′ or 1′ of A4 as (more explicitly

presented in Appendix C):

U †
� 	 1√

1 + ατ 2
η

⎛
⎜⎝

1 −O(α2
η) ατ

ηeiϕ

O(α2
η)

√
1 + ατ 2

η O(αηλ
4)

−ατ
ηe−iϕ O(α3

η) 1

⎞
⎟⎠ for η(1′′),

U †
� 	 1√

1 + α
μ2
η

1√
1 + ατ 2

η

⎛
⎜⎜⎜⎝

√
1 + ατ 2

η

√
1 + ατ 2

η α
μ
η eiϕ′ O(α2

ηλ
4)

−α
μ
η e−iϕ′

1
√

1 + α
μ2
η ατ

ηeiϕ

O(α2
η) −ατ

ηe−iϕ
√

1 + α
μ2
η

⎞
⎟⎟⎟⎠ for η(1′), (7)
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where

ατ
ηeiϕ ≡ y′

τ

yτ

αη, αμ
η eiϕ′ ≡ y′

μ

yμ

αη. (8)

The mass eigenvalues m2
e , m2

μ, and m2
τ are obtained by U�M�M †

� U †
� as shown in Appendix C.

In the leading-order approximation, U� depends on one real parameter ατ
η and one phase ϕ for the

case of η(1′′), whereas it depends on ατ
η , α

μ
η , ϕ, and ϕ′ for the case of η(1′). The parameter αη is

expected to be much less than 1 as discussed in the next section. As seen in Eq. (7), the off-diagonal
(1,3) and (3,1) entries in U †

� are dominant for the case of η(1′′) while the off-diagonal (1,2) and (2,3)

(also (2.1) and (3,2)) entries in U †
� are dominant for the case of η(1′). Thus, it is expected that the

assignments of η(1′′) and η(1′) give rise to different predictions of the mixing and the CP violation.
It is found that the effects of the next-to-leading terms of O(α2

η), O(α3
η), and O(αηλ

4) in the mixing

matrix U †
� are negligibly small by our numerical estimation.

The neutrino mass matrix is derived from the superpotential wν in Eq. (1) by imposing the vacuum
alignments given in Eq. (4). The next-to-leading operator y′

5llhuhuφSη can be absorbed in the leading
one ySllhuhuφS due to the alignment of 〈φS〉 ∝ (1, 1, 1). Although the next-to-leading operators
llhuhuφSφT and llhuhuφT ξ cannot be absorbed in the leading one, their effects are expected to
be suppressed because 〈φT 〉/� is fixed to be small. We have confirmed that the effect of these
next-to-leading operators is negligibly small in our numerical calculations.

On the other hand, the operator y′
7llhuhuξη leads to a significant contribution to the neutrino mass

matrix because 〈η〉/� could be significantly larger than 〈φT 〉/� as discussed in Appendix D. For
η(1′′), we have

Mν = a

⎛
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎠ + b

⎛
⎜⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎠ + c

⎛
⎜⎝

1 0 0
0 0 1
0 1 0

⎞
⎟⎠ + d

⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠, (9)

where the coefficients a, b, c, and d are given in terms of the Yukawa couplings and VEVs of flavons
as follows:

a = ySαν

�
v2

u, b = −ySαν

3�
v2

u, c = yξαξ

�
v2

u, d = y′
7αξαη

�
v2

u, (10)

with

αν ≡ 〈φS〉
�

= vS

�
, αξ ≡ 〈ξ〉

�
= u

�
. (11)

Since the parameter d is induced from the next-to-leading operator llξηhuhu, the magnitude of d is
expected to be much smaller than a, b, and c.

For η(1′), we get

Mν = a

⎛
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎠ + b

⎛
⎜⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎠ + c

⎛
⎜⎝

1 0 0
0 0 1
0 1 0

⎞
⎟⎠ + d

⎛
⎜⎝

0 0 1
0 1 0
1 0 0

⎞
⎟⎠, (12)

where the last matrix of the right-hand side is a different one compared with the case of η(1′′).
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There are three complex parameters in the model since the coefficient b is given in terms of a
(a + 3b = 0). We take a to be real without loss of generality and reparametrize them as follows:

a → a, c → c eiφc , d → d eiφd , (13)

where a, c, and d are real parameters and φc, φd are CP-violating phases.
For the lepton mixing matrix, Harrison–Perkins–Scott proposed a simple form of the mixing

matrix, so-called TBM mixing [8,9],

VTBM =

⎛
⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎠, (14)

by which Mν is diagonalized in the case of d = 0. We obtain the neutrino mass matrix in the TBM
basis by rotating it with VTBM as:

M̂ν = V T
TBMMνVTBM =

⎛
⎜⎝

a + ceiφc − d
2 eiφd 0 ∓

√
3

2 deiφd

0 ceiφc + deiφd 0

∓
√

3
2 deiφd 0 a − ceiφc + d

2 eiφd

⎞
⎟⎠, (15)

where the upper (lower) sign in front of the (1,3) and (3,1) components corresponds to η transforming
as 1′′(1′). The neutrino mass eigenvalues are explicitly given in Appendix C.

The mixing matrix Uν is derived from the diagonalization of M̂νM̂ †
ν apart from the Majorana

phases such as

Uν (M̂νM̂ †
ν ) U †

ν =
⎛
⎜⎝

m2
1 0 0

0 m2
2 0

0 0 m2
3

⎞
⎟⎠. (16)

As shown in Appendix C, we get

U †
ν =

⎛
⎜⎝

cos θ 0 sin θe−iσ

0 1 0
− sin θeiσ 0 cos θ

⎞
⎟⎠, (17)

where θ and σ are given in terms of parameters in the neutrino mass matrix.
As seen in Eq. (10), the parameter d is related to c as

d

c
=

∣∣∣∣y′
7

yξ

∣∣∣∣ αη ≡ αν
η , (18)

where y′
7 and yξ are coefficients of order one. On the other hand, a and c are given in terms of m1,

αν
η , and the experimental data �m2

sol and �m2
atm as shown in Appendix C. Therefore, m1 and αν

η are
free parameters in addition to φc and φd in our model.

It is remarkable that neutrino mass eigenvalues do not satisfy �m2
sol > 0 for the case of IH of

neutrino masses as discussed in Appendix C because of the relations a ∼ c and c � d in our model.
This is understandable by considering the case of the d = 0 limit, which corresponds to the exact
TBM mixing. It is allowed only for NH of the neutrino mass spectrum.
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Finally, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [24,25] is given as

UPMNS = U� VTBM U †
ν P, (19)

where P is the diagonal matrix responsible for the Majorana phases obtained from

PUνM̂νU T
ν P = diag{m1, m2, m3}, (20)

where m1, m2, and m3 are real positive neutrino masses.
The effective mass for the neutrinoless double beta (0νββ) decay is given as follows:

|mee| = ∣∣m1U 2
e1 + m2U 2

e2 + m3U 2
e3

∣∣ , (21)

where Uei denotes each component of the PMNS matrix UPMNS, which includes the Majorana phases.
From Eq. (19), we can write down the three neutrino mixing angles of Appendix A in terms of

our model parameters for the case of the 1′′ singlet η, which shows how experimental results can be
accommodated in our model:

sin θ12 	 1√
1 + ατ 2

η

1√
3

∣∣∣1 − ατ
ηeiϕ

∣∣∣ ,

sin θ13 	 1√
1 + ατ 2

η

∣∣∣∣ 2√
6

sin θe−iσ − 1√
2
ατ

η cos θeiϕ
∣∣∣∣ ,

sin θ23 	
∣∣∣∣− 1√

2
cos θ − 1√

6
sin θe−iσ

∣∣∣∣ , (22)

where the next-to-leading terms are omitted. It is remarkable that sin θ13 is composed of contributions
from both the charged leptons and neutrinos. On the other hand, the deviation from the trimaximal
mixing of θ12 comes from the charged lepton sector, whereas the deviation from the maximal mixing
of θ23 comes from the neutrino sector. Since these are given in terms of four independent parameters,
we cannot obtain the sum rules in the PMNS matrix elements. However, the tau-lepton mass helps
us to predict the allowed region of the CP-violating Dirac phase δCP and Majorana phases α21 and
α31 as discussed in the next section.

3. Numerical results

First, we present the framework of our calculations to predict the CP-violating Dirac phase δCP

and Majorana phases α21 and α31. We explain how to get our predictions in terms of three real
parameters ατ

η , αν
η , and m1 on top of three phases ϕ, φc, and φd for NH of neutrino masses. We can

put for simplicity

αη = ατ
η = αν

η , (23)

i.e., |y′
7/yξ | = |y′

τ /yτ | = 1 since all Yukawa couplings are of order one.
The result of NuFIT 3.2 [5] is used as the input data to constrain the unknown parameters. By

taking m2
3 −m2

1 = �m2
atm and m2

2 −m2
1 = �m2

sol with the 3 σ and 1 σ data given in Table 2, a, c, and d
are fixed in terms of m1, αη, φc, and φd . There is also the CP-violating phase ϕ in the charged lepton
mixing matrix. In our numerical analysis, we perform a parameter scan over these three phases and
m1 by generating random numbers. The scan ranges of the parameters are −π � (ϕ, φc, φd) � π and
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Table 2. The best-fit, 1 σ , and 3 σ ranges of neutrino oscillation param-
eters from NuFIT 3.2 for NH [5].

Observable Best fit and 1 σ 3 σ range

�m2
atm (2.494+0.033

−0.031) × 10−3 eV2 (2.399–2.593) × 10−3 eV2

�m2
sol (7.40+0.21

−0.20) × 10−5 eV2 (6.80–8.02) × 10−5 eV2

sin2 θ23 0.538+0.033
−0.069 0.418–0.613

sin2 θ12 0.307+0.013
−0.012 0.272–0.346

sin2 θ13 0.022 06+0.000 75
−0.000 75 0.019 81–0.024 36

0 � m1 � 50 meV. Note that the range of m1 is restricted by the lower bound of the cosmological
data for the sum of the neutrino masses, 160 meV [26]. The parameter αη is constrained by the
tau-lepton mass:

mτ = |yτ |α�vd , (24)

which gives α� = 0.0316 and 0.010 for the minimal supersymmetric standard model (MSSM) with
tan β = 3 and SM, respectively. Here we put |yτ | = 1. Since αη is of the same order as α� as seen
in Eq. (4), we vary the parameter αη around α� = 0.0316 (0.010) by using the � distribution (χ2

distribution), which is presented in Appendix D.
We calculate three neutrino mixing angles in terms of the model parameters while keeping the

parameter sets leading to values allowed by the experimental data at 1 σ and 3 σ C.L. as given in
Table 2. Then, we calculate the CP-violating phases and |mee| with those selected parameter sets.
Accumulating enough parameter sets surviving the above procedure, we make various scatter plots
to show how the observables depend on the model parameters.

In Sect. 3.1, we show our numerical results for η(1′′). The numerical results for η(1′) are briefly
shown in Sect. 3.2.

3.1. Case of a 1′′ singlet η

Let us show numerical results for the case of a 1′′ singlet η. We analyze only the case of NH of
neutrino masses since the case of IH of neutrino masses is inconsistent with the experimental data
as discussed in Appendix C.

First, we show the prediction of δCP versus sin2 θ23 in Fig. 1 where the blue and green dots
correspond to the input of the 3 σ and 1 σ data in Table 2, respectively. This result is similar to
the prediction of TM2 since the deviation from the maximal mixing of θ23 is due to the extra (1,3)
family rotation of the neutrino mass matrix in Eq. (15). In order to compare our prediction with the
TM2 result [27,28], we show its prediction by a red curve, which is obtained by taking the best-fit
data in Table 2. We see that our predicted region is inside the TM2 boundary. For the maximal
mixing θ23 = π/4, the absolute value of δCP is expected to be 60–90◦. It is also predicted to be
90◦ � |δCP| � 110◦ at the best fit of sin2 θ23 = 0.538. All values between −180◦ and 180◦ are
allowed for δCP in the case of the input data at 3 σ as seen in Fig. 1. However, for the input data
at 1 σ , |δCP| is restricted to 50–120◦, which is completely consistent with the present data at 1 σ ,
−157◦ � δCP � −83◦, apart from its sign. Thus, the precise data of θ23 and δCP would provide us
with a crucial test of our prediction. We note that the model has three CP-violating phases, which
are scanned as −π � (ϕ, φc, φd) � π in our numerical analysis. It is possible to obtain the observed

9/20



PTEP 2018, 083B01 S. K. Kang et al.

Fig. 1. The allowed region on the sin θ23–δCP plane, where the blue and green dots correspond to the input of
the 3 σ and 1 σ data in Table 2, respectively. The red curve represents the prediction of TM2.

Fig. 2. The allowed region on the sin2 θ12–δCP plane. The meaning of the colors is the same as in Fig. 1. The
red curve represents the model without rotation to the neutrino mass matrix in the TBM basis.

values for the case of φc = ±π and φd = 0 in the neutrino mixing matrix. Then, we obtain the
restricted predictions as 0.46 � sin2 θ23 � 0.48 and 30◦ � |δCP| � 60◦. In this case, the CP violation
of leptons requires the source of the CP-violating phase ϕ in the charged lepton sector. On the other
hand, it is also possible to obtain the observed values for the case of φd = 0 and ϕ = 0 in the neutrino
and charged lepton mixing matrices, respectively. In this case, the CP violation of leptons requires
the source of the CP-violating phase φc in the neutrino sector.

Next, we show the prediction of δCP versus sin2 θ12 in Fig. 2. The deviation from the trimaximal
mixing of θ12 is due to the (1,3) family rotation of the charged lepton sector as seen in Eq. (22).
The model without the additional rotation to the neutrino mass matrix in the TBM basis presented
a clear correlation between sin2 θ12 and δCP [27,28]. We also show its prediction by a red curve,
which is obtained by taking the best-fit data in Table 2. Predicted points are scattered around the red
curve. Our predicted region is broad for the 3 σ data for the mixing angles. However, the 1 σ data
force the predicted region to be rather narrow. Then, |δCP| = 60–120◦ is predicted at the best fit of
sin2 θ12 = 0.307, where the maximal CP violation |δCP| = 90◦ is still allowed.

On the other hand, we cannot find any correlation between δCP and sin2 θ13 since both phases σ

in the neutrino mass matrix and ϕ in the charged lepton mass matrix contribute to sin2 θ13 as seen in
Eq. (22). We do not present the result in a figure.

In order to understand the role of the key parameter αη, we show how the three neutrino mixing
angles and the CP-violating Dirac phase depend on αη in Figs. 3–6. First, in Fig. 3, we show the
prediction of sin θ13 versus αη where the 3 σ data are taken as the input except for sin θ13. The red
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Fig. 3. The allowed region on the αη–sin θ13 plane, where the 3 σ data are taken except for sin θ13. The red
lines represent the upper and lower bounds of the experimental data.

Fig. 4. The allowed region on the αη–sin2 θ23 plane. The meaning of colors is the same as in Fig. 1.

Fig. 5. The allowed region on the αη–sin2 θ12 plane. The meaning of colors is the same as in Fig. 1.

Fig. 6. The allowed region on the αη–δCP plane. The meaning of colors is the same as in Fig. 1.
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Fig. 7. The predicted Majorana phases on the α21–α31 plane. The meaning of colors is the same as in Fig. 1.

Fig. 8. The prediction of |mee| versus m1. The meaning of colors is the same as in Fig. 1.

lines denote the upper and lower bounds of the 3 σ experimental data for sin θ13. Note that sin θ13

depends on αη crucially as seen in Eq. (22). As shown in Fig. 3, the observed value sin θ13 is not
reproduced unless αη is larger than 0.07.

The clear dependence between αη and the predicted sin2 θ23 can be seen in Fig. 4. In order to
reproduce the maximal mixing of θ23, αη should be larger than 0.12. The highly probable prediction
of sin2 θ23 is near 0.47–0.5 for 0.1 ≤ αη ≤ 0.2.

The deviation from the trimaximal mixing of sin2 θ12 explicitly depends on αη as seen in Eq. (22).
We show the prediction of sin2 θ12 versus αη in Fig. 5. The predicted sin2 θ12 is almost independent
of αη as long as αη ≥ 0.1.

The αη dependence on δCP gives the characteristic prediction as shown in Fig. 6. The CP conser-
vation δCP = 0 is excluded in the smaller region αη ≤ 0.12 for the experimental data with 3 σ . By
inputting the 1 σ data in Table 2, we obtain the prediction of δCP as ±(50–120◦), which is almost
independent of αη for αη = 0.1–0.2.

We show the prediction of the Majorana phases α21 and α31 in Fig. 7. While both Majorana phases
are allowed in the full region of −180–180◦, there is a clear correlation between both phases.

In Fig. 8, we present the predicted |mee|, the effective mass for the 0νββ decay, versus m1, which
is another key parameter in our model. The parameter m1 should be larger than 12 meV in order to
reproduce the observed mass-squared differences, and it is smaller than 46 meV due to the cosmo-
logical constraint on the sum of neutrino masses [26]. In the hierarchical case of neutrino masses
m1 < m2 � m3, the predicted value |mee| is at most 10 meV but close to 45 meV for degenerate
neutrino masses.

Next, we discuss the sum of three neutrino masses �mi because the cosmological observation
gives us a upper bound for it. We show the predicted region of the �mi–sin2 θ23 plane in Fig. 9.
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Fig. 9. The �mi dependence of the predicted sin2 θ23. The meaning of colors is the same as in Fig. 1.

Fig. 10. The �mi dependence of the predicted δCP. The meaning of colors is the same as in Fig. 1.

The minimum of the sum of three neutrino masses �mi is 75 meV in our model. In order to get
sin2 θ23 ≥ 0.5, �mi should be larger than 85 meV. For the best fit of sin2 θ23 = 0.538, �mi is
expected to be larger than 90 meV. We show the predicted region of the �mi–δCP plane in Fig. 10.
The predicted |δCP| is smaller than 90◦ if �mi is smaller than 85 meV. Thus, the cosmological
observation for the sum of neutrino masses will be a crucial test of these predictions.

We have neglected the next-to-leading terms llφSφT huhu and llφT ηhuhu in the neutrino mass matrix
of Eq. (9) because α� = 0.0316 (0.010) is small compared with αη ≥ 0.1. We have confirmed that
those effects are small with our numerical calculation by inputting 1 σ data. Indeed, the prediction
of sin2 θ23–δCP almost remains inside the red curve in Fig. 1.

It is also worthwhile commenting on the αη distribution in our numerical results. In order to remove
the predictions for αη > 0.3 smoothly, which is about ten times larger than α� = 0.0316, we have
used the Gamma distribution for αη given in Eq. (D3) of Appendix D. We have confirmed that
our results are not changed even if we adopt another Gamma distribution presented in Eq. (D4) of
Appendix D although the number density of dots gets lower. We have also used α� = 0.010, which
corresponds to SM in our calculations. In this case, the number density of dots gets significantly
lower, but the allowed region is almost unchanged. Moreover, we have found that the allowed region
is also unchanged even if we use a flat distribution of αη in the region 0 ≤ αη ≤ 0.3. Thus, our
results are robust for any distribution of αη.

3.2. Case of a 1′ singlet η

We show the numerical results for a 1′ singlet η briefly because the correlations of the observables
appear to be weak. We show the predicted δCP versus sin2 θ23 in Fig.11. The region of |δCP| ≤ 50◦ is
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Fig. 11. The allowed region on the sin θ23–δCP plane for η(1′). The meaning of colors is the same as in Fig. 1.

Fig. 12. The allowed region on the sin2 θ12–δCP plane for η(1′). The meaning of colors is the same as in Fig. 1.

almost excluded while the regions near ±180◦ are allowed. There is no correlation between sin2 θ23

and δCP.
We also show the predicted δCP versus sin2 θ12 in Fig. 12. The predicted |δCP| increases as sin2 θ12

decreases from the trimaximal mixing 1/3, but its correlation is rather weak.
Both results in Figs. 11 and 12 are due to mixing of the (1,2) and (2,3) families in the charged

lepton sector. Thus, the model with the 1′ singlet η is less attractive than that with the 1′′ singlet η in
light of the NuFIT 3.2 data.

4. Summary

The flavor symmetry of leptons can be examined precisely in light of the new data and the upcoming
experiments [29]. We study the A4 model with minimal parameters by using the results of NuFIT
3.2. We introduce the A4 singlet 1′ or 1′′ flavon η, which couples to both the charged lepton and
neutrino sectors in the next-to-leading order due to the relevant Z3 charge for η. The model with the
1′′ (1′) flavon is consistent with the experimental data of �m2

sol only for NH of neutrino masses. The
key parameter is αη, which is derived from the VEV of the flavon η. The parameter αη is distributed
around α� = 0.0316 (0.010) in the Gamma distribution of the statistic. Our results are robust for
different distributions of αη.

In the case of the singlet η(1′′), αη should be larger than 0.07 in order to reproduce the observed
value of sin θ13. The numerical prediction of δCP versus sin2 θ23 is similar to the prediction of TM2.
However, our predicted region is inside the TM2 boundary. The absolute value of the predicted δCP is
60–90◦ for the maximal mixing θ23 = π/4. For the best fit of sin2 θ23 = 0.538, |δCP| is in the region
of 90–110◦. The predicted sin2 θ12 is also allowed around the best fit of NuFIT 3.2 while staying near
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the maximal mixing of θ23. Inputting the data with the 1 σ error-bar, we obtain a clear prediction of
the CP-violating Dirac phase of |δCP| = 50–120◦. The lightest neutrino mass m1 is expected to be
12–46 meV, which leads to |mee| < 45 meV. In order to get the best fit of sin2 θ23 = 0.538, the sum
of the three neutrino masses is expected to be larger than 90 meV. The cosmological observation for
the sum of the neutrino masses will also provide a crucial test of these predictions.

The model with η(1′) is not attractive in light of the NuFIT 3.2 result because the input data given
in Table 2 do not give a severe constraint for the predicted region of δCP.

We expect a precise measurement of the CP-violating phase to test the model in the future.
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Appendix A. Lepton mixing matrix

Supposing neutrinos to be Majorana particles, the PMNS matrix UPMNS [24,25] is parametrized in
terms of the three mixing angles θij (i, j = 1, 2, 3; i < j), one CP-violating Dirac phase δCP, and two
Majorana phases α21, α31 as follows:

UPMNS =
⎛
⎜⎝

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

⎞
⎟⎠

⎛
⎜⎝

1 0 0

0 ei α21
2 0

0 0 ei α31
2

⎞
⎟⎠,

(A1)

where cij and sij denote cos θij and sin θij, respectively.
The rephasing invariant CP-violating measure, the Jarlskog invariant [30], is defined by the PMNS

matrix elements Uαi. It is written in terms of the mixing angles and the CP-violating phase as:

JCP = Im
[
Ue1Uμ2U ∗

e2U ∗
μ1

]
= s23c23s12c12s13c2

13 sin δCP, (A2)

where Uαi denotes each component of the PMNS matrix.
There are also other invariants I1 and I2 associated with Majorana phases [31–35]:

I1 = Im
[
U ∗

e1Ue2
] = c12c12c2

13 sin
(α21

2

)
, I2 = Im

[
U ∗

e1Ue3
] = c12s13c13 sin

(α31

2
− δCP

)
.

(A3)
We calculate δCP, α21, and α31 with these relations.

Appendix B. Multiplication rule of the A4 group

We use the multiplication rule of the A4 triplet as follows:
⎛
⎜⎝

a1

a2

a3

⎞
⎟⎠

3

⊗
⎛
⎜⎝

b1

b2

b3

⎞
⎟⎠

3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′
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⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1

3

⎛
⎜⎝

2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a1b3 − a3b1

⎞
⎟⎠

3

⊕ 1

2

⎛
⎜⎝

a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

⎞
⎟⎠

3

,

1 ⊗ 1 = 1, 1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′, 1′ ⊗ 1′′ = 1 . (B1)

More details are shown in Refs. [15,16].

Appendix C. Charged lepton and neutrino mass matrices

The left-handed mixing matrix of the charged lepton is derived from the diagonalization of
U�M�M †

� U †
� in Eq. (5). The diagonalizing matrix U †

l for the charged lepton is given as follows:

U †
� 	

⎛
⎜⎜⎜⎝

1 − y′
μ

yμ

y′
τ

yτ
α2

η
y′
τ

yτ
αη

(
y′
μ

yμ

y′
τ

yτ
)∗α2

η 1
yμy′∗

μ

|yτ |2 αηλ
4

−(
y′
τ

yτ
)∗αη

y′
μ

yμ
| y′

τ

yτ
|2α3

η 1

⎞
⎟⎟⎟⎠ for η (1′′),

U †
� 	

⎛
⎜⎜⎜⎝

1
y′
μ

yμ
αη

y′
τ

yτ

y′
μ

yτ
(

yμ

yτ
)∗α2

ηλ
4

−(
y′
μ

yμ
)∗αη 1 y′

τ

yτ
αη

(
y′
μ

yμ

y′
τ

yτ
)∗α2

η −(
y′
τ

yτ
)∗αη 1

⎞
⎟⎟⎟⎠ for η (1′). (C1)

The mass eigenvalues of the charged leptons are given in a good approximation:

me = |ye|α�λ
4vd , mμ = |yμ|α�λ

2vd , mτ = |yτ |α�vd , (C2)

where the Yukawa couplings are of order one.
Next, we consider the neutrino mass matrix in the TBM basis. M̂νM̂ †

ν is written as follows:

M̂νM̂ †
ν =

⎛
⎜⎝

(1, 1) 0 (1, 3)

0 |ceiφc + deiφd |2 0
(1, 3)∗ 0 (3, 3)

⎞
⎟⎠, (C3)

where

(1, 1) = a2 + c2 + d2 + 2ac cos φc − cd cos(φc − φd) − ad cos φd ,

(3, 3) = a2 + c2 + d2 − 2ac cos φc − cd cos(φc − φd) + ad cos φd ,

(1, 3) = ∓√
3 [ad cos φd + icd sin(φc − φd)]. (C4)

Here, the upper (lower) sign in front of the (1,3) component corresponds to the assignment of 1′′ and
1′ for η, respectively. We obtain the neutrino mass eigenvalues for NH as follows:

m2
1 = a2 + c2 + d2 − cd cos(φc − φd)

−
√

3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd),
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m2
3 = a2 + c2 + d2 − cd cos(φc − φd)

+
√

3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd),

m2
2 = c2 + d2 + 2cd cos(φc − φd). (C5)

M̂νM̂ †
ν is diagonalized by the (1,3) family rotation as:

Uν (M̂νM̂ †
ν ) U †

ν =
⎛
⎜⎝

m2
1 0 0

0 m2
2 0

0 0 m2
3

⎞
⎟⎠, (C6)

where

U †
ν =

⎛
⎜⎝

cos θ 0 sin θe−iσ

0 1 0
− sin θeiσ 0 cos θ

⎞
⎟⎠ . (C7)

θ and σ are given in terms of parameters in the neutrino mass matrix:

tan 2θ = √
3

d
√

a2 cos2 φd + c2 sin2(φc − φd)

a(d cos φd − 2c cos φc)
, tan σ = −c sin(φc − φd)

a cos φd
. (C8)

The parameters a, c, and d are written in terms of m1 and αη. As seen in Eq. (10) , the parameter d
is related to c as

d

c
=

∣∣∣∣y′
7

yξ

∣∣∣∣ αη ≡ αν
η , (C9)

where y′
7 and yξ are order-one coefficients. On the other hand, a and c are given in terms of m1, αν

η ,
�m2

31 ≡ m2
3 − m2

1, and �m2
21 ≡ m2

3 − m2
1 since we have the following relations in Eq. (C5):

1

4
(�m2

31)
2 = 3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd),

�m2
21 = c2 + d2 + 2cd cos(φc − φd) − m2

1. (C10)

Then, putting �m2
atm = �m2

31 and �m2
sol = �m2

21,

c2 = �m2
sol + m2

1

1 + (αν
η)2 + 2αν

η cos(φc − φd)
, a2 = 1

16c2

�m2
atm − 12c4(αν

η)2 sin2(φc − φd)

cos2 φc + (αν
η)2 cos2 φd − αν

η cos φc cos φd
,

(C11)

where m1 and αν
η are free parameters as well as φc and φd .

We comment on the case of IH of neutrino masses. In this case, the neutrino mass eigenvalues are
given as

m2
1 = a2 + c2 + d2 − cd cos(φc − φd)

+
√

3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd),
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Fig. D1. αη distribution for α� = 0.0316 (blue) and α� = 0.010 (red) in Eq. (D3) (α = 3/2, β = 2,
γ = 1, μ = 0).

m2
3 = a2 + c2 + d2 − cd cos(φc − φd)

−
√

3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd),

m2
2 = c2 + d2 + 2cd cos(φc − φd), (C12)

where m2
1 and m2

3 are exchanged with each other in Eq. (C5). Then, �m2
sol is given as

�m2
sol = m2

2 − m2
1 = 3cd cos(φc − φd) − a2

−
√

3c2d2 sin2(φc − φd) + 4a2(c2 cos2 φc + d2 cos2 φd − cd cos φc cos φd). (C13)

It is impossible to reproduce the observed value of �m2
sol since a ∼ c and c � d in our model as

seen in Eq. (10). Indeed, d/c is expected to be 0.1–0.2 in our numerical analysis.

Appendix D. Distribution of αη

The magnitude of the parameter α� is determined by the tau-lepton mass as seen in Eq. (24). The
key parameter αη is related to α� through the vacuum structure as discussed in Eq. (4):

αη = λ1

λ2

√
g4

3g3
α�. (D1)

The coefficients λ1(2) and g3(4) are of order one. Then, the factor in front of α� in Eq. (D1) could be
O(10). We scan αη by using Eq. (D1) after fixing α� in the statistical approach. For this purpose, we
use the Gamma distribution that is available to find the distribution of the order-one parameter:

f = (x − μ)(αγ−1)e

(
x−μ
β

)γ

. (D2)

Taking γ = 1 with α = 3/2, μ = 0, and β = 2, we obtain

f = √
x e− 1

2 x, (D3)

which is equivalent to the χ2 distribution. When we take γ = 2 with α = 1, μ = 0, and β = √
2,

we obtain

f = x e− 1
2 x2

, (D4)

which damps like a Gaussian distribution at large x.
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Fig. D2. αη distribution for α� = 0.0316 (blue) and α� = 0.010 (red) in Eq. (D4) (α = 1, β = √
2,

γ = 2, μ = 0).

It is easy to check that f is maximal at x = 1 and f = 0 at x = 0 for both types of Gamma
distribution. We obtain the distribution of αη by multiplying α� by f , which is used in our numerical
calculations. We show the distribution of αη in Figs. D1 and D2 for α� = 0.0316 (MSSM tan β = 3)
and α� = 0.010 (SM) in the case of the distributions of Eqs. (D3) and (D4), respectively.
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