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Symbolic expressions for fully differential single top quark production
cross section and decay width of polarized top quark in the presence
of anomalous W¢b couplings
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Spin correlations in the t-channel single top quark production and its subsequent decay are investigated
for the case of contributions involving anomalous Wtb couplings. We obtain analytical expressions for the
differential widths of the three-particle decay of a polarized t quark in its rest frame and also expressions for
the differential cross sections of the full process of production and decay of the t quark (2 — 4) as a
function of the energy of a charged lepton and two angles of orientation of the quantization axis of the
t-quark spin. The expression is presented in the most general form for the case of real and imaginary vector
and tensor anomalous Wtb couplings. We show that shapes of certain multidimensional kinematic
distributions of final state particles are significantly different for the contributions proportional to different
combinations of the anomalous couplings. The most noticeable differences appear in the shape of the
surfaces of two-dimensional distributions, where one of the variables is the energy of a charged lepton and
the other is one of the t-quark spin orientation angles. Observed properties are confirmed by two methods of
computations either from the obtained symbolic expression for the differential cross sections of the full
process of the polarized single top quark production with its subsequent decay or by means of the CompHEP
program for the complete process involving the t-channel single top. In addition, using the obtained
analytical expressions, we estimate the statistical accuracy of extracting values of the anomalous Wtb

couplings for different levels of the expected integral luminosity at the LHC.

DOI: 10.1103/PhysRevD.101.055012

I. INTRODUCTION

With the Higgs boson discovery at the LHC, the
Standard Model (SM) is completed in a sense that all
predicted particles are found and all the interactions
between particles are fixed. However, most likely, the
SM is a kind of effective field theory working (and working
amazingly well) at the energy range determined by the
electroweak (EW) energy scale. The top quark being the
heaviest found fundamental particle with closest to the EW
scale mass is a promising place to search for possible
deviations from the SM (see recent reviews on the top quark
[1-6]). In particular, such deviations may be related to the
presence of the top quark anomalous couplings which are
usually parametrized in terms of a number of the gauge-
invariant dimension-six operators given in [7] and in the
Warsaw basis [8] following the notations from [9]

.*_boos@theory. sinp.msu.ru
lbunichev@theory. sinp.msu.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020/101(5)/055012(23)

055012-1

05;433) :é[fffl (D) = (D" )7 (1377 q15).

Oy =i(d™ D) (Frr*br). OG5 = (41307 bR) WL,
Ofv?/) = (51L30””TIIR)<;5W;IW (1)

These operators lead to the effective Lagrangian [10]
allowed by the Lorentz invariance parametrizing the
anomalous terms in the Wtb vertex

L=——"=by"(fryPrL + frvPr)ItW,

S

o
- %bzl;[—w (fLrPr + frrPr)tWy, +He.,  (2)
where My, is the W-boson mass, P, x = (1 F ys5)/2 is the
left- (right-) handed projection operator, W,, = d,W, -
0,W,, g is the weak isospin gauge coupling, and param-
eters fry(r) and fry(r) are the dimensionless coefficients
that parametrize the strengths of the left-vector (tensor) and
the right-vector (tensor) structures in the Lagrangian.
The couplings in the Lagrangian (2) are related in the
following way to constants C$q’33), C;ffﬁ, Cgf,), Cff‘f,) in front
of the gauge-invariant dimension-six operators [11-14]:
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If one assumes that naturally the constants in front of the
operators are of the order of unity, the natural values for the

anomalous couplings are of the order of £ AZ’ and therefore

rather small. This is confirmed by the recent most stringent
experimental limits [15].

In the SM, all fermions interact through the left-handed
currents and all constants (3) are equal to zero, except f;y =
V,, (CKM-matrix element). Note that the anomalous cou-
pling parameters could be complex in the most general case.

In this paper, we discuss a simple idea allowing us to
improve further the limits on anomalous couplings. The idea
is based on the top quark spin correlation properties in the t-
and s-channel single top production with its subsequent
decay. Spin correlations in the presence of anomalous
couplings have been studied previously in [16-27]. The
effect of decoupling of anomalous top decay vertices in
angular distributions has been studied in [28-30]. 7-odd
correlations in polarized top quark decays have been studied
in [31]. Decays of polarized top quarks in the frame of the
SM at next-to-leading and next-to-next-to-leading order in
QCD have been studied in papers [32-35]

As well known in the SM, the positively charged lepton
from the top quark decay in its rest frame tends to follow the
top quark spin direction [16,17]. In the t- and s-channel
single top production, the direction of the top quark spin in
the top rest frame is highly correlated with the d-quark
momentum for the t channel (outgoing light jet) and anti-d-
quark momentum (incoming parton corresponding to the
beam axis) for the s channel [18,19]. One can understand this
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FIG. 1. Top quark leptonic decay process.

very simply by considering the single top production as a
decay back in time [22]. The direction of the preferred spin
configuration in the single top production in the presence of
anomalous couplings is changed insignificantly compared
to the SM due to the smallness of the anomalous couplings,
so one can choose the direction related to the mentioned d-
quark momentum as a top spin quantization axis and make
sure that this will be the preferred spin direction of the top
quark in its rest frame similar to the SM. After production,
the highly polarized top quark decays (Fig. 1), and one can
use the properties of such a polarized decay.

II. TOP DECAY

To investigate the effect of anomalous parameters on the
decay of a polarized top quark, we will calculate the
differential width of the three-body t-quark decay. At first,
using Feynman rules from Lagrangian (2), with the help of
the symbolic manipulation system FORM [36], we calculate
the matrix element squared of the polarized t-quark decay
into a charged lepton, d quark, and b quark:

(Pe+s) - my)

m,)

(Pup:)(Pe+s))

m; + (pys)(Pe-Pi) = (PuP:)(Pe+s))

V m;
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where s is the spin vector of the top quark.

For further analytic calculations, we use the coordinate
system shown in Fig. 2. Here, the angle 6 is the angle between
the charged lepton momentum and the direction of the top
quark spin quantization axis, and ¢ is the angle in the plane
perpendicular to the lepton momenta counted from the decay
plane formed by the top quark decay products. Therefore, in
the top quark rest frame, we have the following parametriza-
tion for the direction of the quantization axis of the top quark
and for the 3-momentum of the positron and b quark:

s = (sin 6 cos ¢, sin O sin ¢, cos 6),
P = [pe+|-(0,0,1),
Py = |pb| : (Sin gbe’()? Ccos gbe)' (5)

The cosine of the angle between the b quark and the top
quark spin quantization axis is cos 6, = sin8,, - sin 6-
cos ¢ + cos @y, - cos@. One can also express the cos ¢ in
terms of other angles: cos¢ = (cos ), — cos 8, - cos )/
(sin @, - sin ). It leads to

¢ = arccos(

cos 0, — cos By, - cosd
sin @y, - sin@

(6)

The expression (6) is used to reconstruct the ¢ angle in a
numerical Monte Carlo simulation.

dUypyet a’ - m} [

de-dcos@-dp 128 - 7-sin*@y - Ty - my,
+fv? (1 —€)-e- (14 cos)
+\fir)? - (e=r*)-e- (1 +cosb)
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FIG. 2. Top quark spin quantization axis.

We substitute parametrization (5) to the matrix element
squared (4). Using the 4-momentum conservation law in
the t-quark rest system, one can express the neutrino
momentum through the momentum of the b quark and
positron. Then, we integrate the matrix element squared of
the polarized t-quark decay (4) over the b-quark energy
using the narrow-width approximation for the W-boson
decay and neglecting the b-quark mass in comparison to the
top quark and W-boson masses. Symbolic computation
gives the following expression for the fully differential
partial decay width of the top quark in its rest frame:

2r- 2r?

r C<€)-sin9cos¢+ (L—l—e—rz— 1) -cos@)
€ €

2r- 2r?

r—@-sinﬁcosq’)—l—(L—i—e—rz—l) -cosQ)
€ €

+ (Refry -Refrr +Imf y - Imfpr) - (1 —€) -2+ (c(e) - sinf@cosp + r- (14 cosh))
+ (Refrr-Refry +Imf - Imfry) - (e—=r%) -2+ (c(e) - sin@cosp + r- (1 + cos 9))
+ (Refry - Imfrr —Imfyy - Refrr) - (1 —€) - (=2~ c(e) - sinOsin )

+ (Refrr - Imfry —Imf; 7 - Refry) - (€ - ”2) (=2 c¢(e) - sin@sin ¢)] ) (7)

where c(e) = /(1 —¢€)(e =7?), € =2E,+/m;, €max = 1,
€min = 12, T = my/m,.

This expression was obtained for the first time in such a
complete form for such a parametrization. The expression (7)
contains eight terms corresponding to different possible
quadratic combinations of the coupling products. Each term
contains a multiplier (1 — €) or (e — r?), as well as a poly-
nomial multiplier being a function of kinematic variables e,

|

cos 0, sin @, cos ¢, or sin ¢b. One should note that all eight terms
are different functions of the variables resulting in different
shapes of multidimensional distributions. Therefore, such
multidimensional distribution shapes (multidimensional sur-
faces) can be used to separate contributions from different

anomalous coupling combinations.
Let us integrate the expression of the fully differential
partial decay width of the top quark (7) over the angle ¢
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from 0 to 27 and obtain the doubly differential partial width - "”’”* . Since the first six terms in (7) are even functions of ¢,

their integral over ¢ in the range of 7z to 2z is equal to the 1ntegral over ¢ in the range of 0 to z. At the same time, the last two
terms in (7) proportional to sin ¢ are odd functions of ¢, and their integral over ¢ in the range of 7 to 2z equals the integral
over ¢ in the range of 0 to x taken with the opposite sign,

2 3
drt—»byeJr i drt—)bmfr ¢ / drt—»bveJr o a” - m; . |:

= —  —  _d¢ =
de - dcos@ o de-dcos@-d¢ de-dcos@-d¢ ¢ 64 - sin*@y, - Ty, - myy,

+ |frvl*- (1—€)-e-(1+cosb)
+ |frrl*- (€= 1) -€e- (1 +cosb)

22
+ | frrl - (1=€)- <1—|—r2—€+ <;+€—r2—1> ~cos9>

22
+|frvl* (e=71%)- <1+r —€+<€r +€—r2—1>-cos9>

+ (RefLy -Refrr +Imfpy - Imfrr) - (1 —€) - 2r- (1 + cos0)
+ (Refrr - Refry + Imf - Imfgy) - (€ = r*) - 2r- (1 + cos 0)

+ (Ref Ly - Imfry —Imfy - Refrr) - (1 —€) - <_%> ~c(e) -sin@- (1-1)

T

+ (Refrr - Imfry —Imf7 - Refry) - (€ - ’”2) : (—2) -c(e) -sin@ - (1 - 1)] (8)

T

The angular dependence of the expression was simplified after integration, but the energy-dependent factors (1 — ¢€)
and (e — r?) did not change, and the differences between the various terms of the expression remained. The first six
terms of formula (8) agree with the expression previously obtained in [29]. The last two terms give zero contribution
to the 2D distribution on the energy and cos @, but we kept them in (8) as a factor (1-1) stressing that the term consists
of two equal contributions with different signs at ¢ intervals from 0 to z and from 7 to 2z. This fact allows one to
extract corresponding anomalous couplings looking at the differences (or asymmetry in ¢) of the two distributions.

Also, integrating the expression (7) over cos@ from -1 to 1, one can obtain the doubly differential partial width
drt—»hbeJr.

de-d¢p *

dFt—JweJr o o m?
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Parts of polynomials containing the cos € function disappear after integrating the expression (7) over cos 6. The function
sin @ in the remaining parts of (7) is replaced by the factor z/2. However, despite these changes, the differences between the
eight terms of formula (9), proportional to anomalous couplings, remain.

Now, integrating the expression of the fully differential top quark partial decay width (7) over € from 7> to 1, we obtain

the doubly differential partial width j{gg&% as a function of the two orientation angles:
dFt—»bl/eJr _ o m?
dcosf-dp  256-3 -z -sin*@y - Ty - my

+ 1 fv? (1 =r)2(1+2r%) - (1 4+ cos )
+\frl? - (A =r2)2(r* +2) - (1 + cos )

3zr )
+ |frr|* ((1 - (r*+2) +%(—3 +8r—6r2 4+ r*) - sinfcos ¢

—((1=r)2=r*+11r%) +247% - In(r)) -cosQ)

2 212 2y, 7T 2 3 4 o
+ [frvl?- [ (1 =7r)2(1 +2r )+7(1 —6r* +8r* —3r*) -sinfcos ¢
— (=7 (1 =2r* = 1172) = 247* - In(r)) -COS(9>

+ (Refry - Refrr +Imfy - Imfry) - (1 —r2)? <Zﬂ(1 —r?)-sinfcos¢p + 6r- (1 + cosH))

+ (Refrr - Refry +Imf 7 - Imfgy) - (1 —12)? <34—”(1 —r?) -sinfcos¢ + 67 - (1 —|—cos€)>
+ (Refry - Imfpy —Imfy - Refpr) - (—%T)(l —7r?)3 - sin@sin ¢

+ (Refrr - Imfry —Imf - Refgy) - <—¥> (1-72)>3 -sin@sinqﬁ} (10)

The first term in the expression (10) is the well-known SM-like contribution [16,17] corresponding to 100%
spin correlation behavior (1 + cosf). The interference between the left-vector term with real coupling and
the right-tensor term with the imaginary coupling corresponding to the charge-parity-violating part coincides exactly
with the expression presented in [23]. As one can see, integration (7) over ¢ eliminates the factors (1 —e¢)
and (e — r?) and makes the terms proportional to anomalous couplings in the expression (10) more similar to each other.

Finally, integrating (7) over ¢, cos @, and ¢ (ranging from O to 2z), we obtain the expression for the t-quark three-body
leptonic partial decay width I',_,,,.+,

o’ -mp
64-3- Sin4®w FW * My

~(142r%) + (Ref Ly - Refgr +Imfyy - Imfpr) - 6r + (Ref 7 - Refry +Imf 7 - Imfgy) - 6r].

r (L= [P D+ 27 + | ferl - (P 4 2) + [ frel - (P 42) + [ fryl?

t—bvet —

(11)

|

The dominant process of single top production at the
LHC collider is the t-channel process shown in Fig. 3. It
is known that in the framework of the SM in a t-channel
process ub — td, in its rest frame the t quark is produced
polarized in the direction of the d quark. Therefore, we

For the case of purely real anomalous couplings, this
expression is consistent with the previously obtained [37].

III. TOP PRODUCTION AND DECAY

Now we use the expression for the differential decay
width of the t quark to derive a differential cross section for
the complete process of the single top production with its
subsequent decay.

set the components of the spin vector of the t quark along
this direction (Fig. 4) in amplitudes of the production and
decay and square the amplitude of the complete process
ub — d,b,v,e™. Going into the t-quark rest frame and
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u d

FIG. 3. t-channel single top quark production and its leptonic
decay processes.

writing explicit scalar products through the components
of the 4-momentum and angles, summing over the spin
components one gets an expression for the matrix
element of the complete process ub — d,b,v,e™.

X K

FIG. 4. Top quark spin quantization axis in the top rest frame
is chosen as the direction of the d-quark momentum for the
t-channel (outgoing light jet).

To calculate the cross section of the complete process,
we use the formula for the t-channel anomalous production
of the top quark [38],

R - V2,

G(S)uh—»td 4 sm4®W-m%V
+ |frvl* - et
+ |frrl*- BP(cy - In(a) = 25%)
+ vl (=1 +c)rs - In(a) + (1 +2r5) - p?)
+ |frrl? - (1 +2r3) - In(a) = (1 + ¢;) - c2ff)
+ (Refry - Refpr +Imfpy - Imfrr) - 2ry/ 1 = f*(In(a) — c2f5%)
+(RefLT'RefRV+ImeT'ImfRV)'er\/1_ﬂ2(_c In(a) +2p%)|, (12)

where
p? 1 7
a:1+r—§, 61=ﬂ2+2r%, sz/}zTr%, ﬁ2:]_mT’ rxznj/%/.

Integrating the matrix element of the complete process ub — d, b, v, e™ over all variables of the phase space, except (e,
cos 60, ¢), neglecting the b-quark mass in comparison to the top quark and W-boson masses, using formulas (7) and (12), and
keeping only terms up to the second order of magnitude of anomalous parameters in the numerator, we obtain the differential
cross section of the polarized single top quark production with its subsequent decay:

dG("s\‘)ub—>db1/:fr :i ( ) drt—>bl/efr
de-dcos@-dp T, ub=td " e dcos 0 - dgp
at-m} V2

—og(3) (13)

1—¢)-€-cosd]|,
Wl Gr s @y Toy oy (€

where I, is the total decay width of the t quark taking into
account the anomalous couplings and all decay modes,
6(8)psa 18 the cross section of the unpolarized t-quark
production (12), 6(8),,.4 is part of the cross section of
the unpolarized t-quark production that is proportional to
|frv|* and |frr|?, and s—=etz s the differential partial
width of the polarized t-quark decay (7), and 8 and ¢ are
orientation angles of the positron with respect to the

|

direction of the d-quark momentum. We mean that we
omit terms of the third and fourth order of magnitude of
anomalous couplings in the numerator of the first part
of (13).

The expression (13) was obtained for the first time. The
detailed derivation of the expression (13) as well as the full
expression, which includes terms of all orders by anoma-
lous parameters is given in the Appendix of the article.
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Expression (13) contains the contribution of the Standard
Model, which has the form

dosm(8) up—dbve*

de-dcos@-dg

_ @ Vi Vi
8-3-sin*@y - my, - (1 —r2)%(1 +21?)

(5 —m?)?

'M'(l—e)-e-(1+cos9). (14)

The expression (14) was also obtained for the first time.
After integrating it over all variables, we have
2.2 L2 S22
_ ma Vi Vi, ($-mi)
4-9.sin*@y, -m3, 3(5—m?+mi,)

OsM(3) updbve (15)

Integrating (13) over one of the variables, we obtain
expressions for all possible double-differential scattering
cross sections:

da(g)uh—whl/fr _ l . G(S‘) . dlﬂt—»bv(fr
de-dcos® T, ub=1d " e . d cos @
. o’ -mp - V,zb
= ok uia " 3575086y, Ty iy
‘(1—6)‘€'C089:|, (16)
A0 (3) up— abye 1 dly e
ub— ve — -~ R ve , 17
d€ . d¢ G(S)le—ﬂd Ft d€ . d¢ ( )
da(g)ub—nibufr _ l A dFt—>hw+
- ' G(S)ub—nd :
dcos@-d¢ I, dcos@-d¢
- O-R(g)ub—nd
aemi -V, (1 - r?)?2(1+2r7) cosal.
128‘3‘ﬂ‘sln4®w'rw'mw
(18)

After integration over all variables, the cross section takes
on a well-known simple form:

1 d(o— USM)ub—»dhve* _ 1

6(3‘)141;—>dl71124r = 6(§)ub—>td ' Brt—»bue*, (19)

where Br,_per = Tippe /T

IV. NUMERICAL ILLUSTRATION, REAL
COUPLINGS

As the first numerical illustration, we draw normalized
plots (Fig. 5) of differential partial width dT',_,,.+/(de -
dcos0) at the ¢ interval from O to z for all eight terms of
formula (8), which correspond to different combinations of
anomalous couplings. As one can see, the shapes of the
surfaces corresponding to the various terms of (8) are very
different from each other. This set of eight different surfaces
can be used as a basis for a multiparametric fitting function
to get limits on anomalous couplings.

To verify this statement, we present the following
numerical illustration for a few simple scenarios where
we alternately set one of the anomalous couplings to a
nonzero value. In each case, we present surfaces corre-
sponding to formulas (8)—(10) for the differential t-quark
width. Then, we show surfaces for the same kinematic
variables for differential cross sections as follows from
formulas (16)—(18) after integration with the parton dis-
tribution functions' at 14 TeV energy at the LHC collider.
To validate the correctness of the results, we perform
Monte Carlo event generation for the 2 — 4 process for
the dominating t-channel single top production with sub-
sequent three-body decay of the t quark ub — d,b,v,I"
(Fig. 3) using the CompHEP program [39] and show the same
multidimensional distributions in the top rest frame taking
all angles with respect to the d-quark momentum (Fig. 4)
and restore angle ¢ using the expression (6). Note that the
anomalous couplings are included both in the top quark
production and decay process. Values for anomalous
couplings are taken according to the latest experimental
upper limits [15]. To make deviations from the SM more
pronounced, we subtract the SM contribution. To correctly
compare the shapes of different distributions, we normal-
ized them to the value of the full integral. Writing explicitly
from (13) the leading terms up to the second order of
magnitude on anomalous couplings, one can write

de-dcosO-dp

I norm

(Gubetdrtebuﬁ A (GSM)ubetd(rSM)r—»bye*)

d(r — FSM) —bvet d<FSM) —bret
+(OsM)upora - de - dcos&t- 245 + (Oup—ia = 1 (OsM) up—ia) ‘m
dr + 2.3, VZ
+ (URT) ( RT)t—>bye (GR) a” - my th ) (1 _ 6) e-cosb)|,

ub=td " e dcos@- dp

ub=1d 64 . 1. sin*@y - Ty - my

(20)

"The CTEQ6I parton distribution functions (PDFs) are used for definiteness. We have checked that various sets of PDFs do not

influence the shapes of the surfaces.
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where 6,,;,_,,4 is the cross section of the unpolarized t-quark

production (12) and (6g) -, is @ part of this cross section

that is proportional to | f gy |> and | fr7|?, (GRrT) up—ya 1S @ part

that is proportional to V;, - Ref gz, (Trr) o ppet 1S @ part of

the top partial width that is proportional to V,, - Refrr and

Vi - Imfrr, (6sM)upra 1S the SM cross section of the
T

unpolarized t-quark production rp = o I, is the total

de-dcos @

decay width of the t quark, taking into account the
anomalous couplings and all decay modes, and (I'gy), is
the SM total decay width of the t quark.

The detailed derivation of the expression is given in
the Appendix of this article. The first term of for-
mula (20) reproduces shapes of the distributions as

follows from the formula for the differential width (7),
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FIG. 6. Scenario Ref;, = 1.03. The upper figures show plots of the normalized double-differential t-quark decay partial width

‘Zggcr‘f:’g , d(g;g;“) , and Z<<£:(;-S:1/[r/2 built from formulas (8)—(10). The middle figures show plots of the normalized double-differential cross

sections 477w, X-esu) and S-esu) puilt from formulas (16)-(18). The lower figures show plots of the normalized double-differential

cross sections built from Monte Carlo events.

whereas the second, third, and fourth terms give addi-  zero, and the first two terms reproduce the same shapes of
tional contributions. the surfaces as those for the Standard Model with 100%

As the first scenario, we consider the case where the  spin correlation behavior (1 + cos @), the maximum of the
left-vector anomalous coupling (Ref;, — V) is not equal energy distribution at E,- = m,/4~43 GeV, and no
to 0, and the remaining anomalous couplings are equal to  dependence on the ¢ angle. Figure 6 shows normalized
0. In this case, the last two terms of the expression (20) are  distributions corresponding to this scenario. The upper

055012-9



EDWARD BOOS and VIACHESLAV BUNICHEV

PHYS. REV. D 101, 055012 (2020)

L d(rT,,, )/(de doose) 1 d(rT, )/(de do)

SN e
SR

S0
SR

1.2 '“:::::“:‘:::‘::“:-‘:‘:‘:::::::‘\ T e
= N
1 & 0.8 4" NC e
081 /':"';?f'o =
SEISIEIEESSS 064 N\ e
g OB IAPEEIIESIES
S AIGESIESSS
AT IEEIIESS 0.4 -
0052 RS
e A ORI IIEEIEES
W g s
A2 y
U 55557 iy
l SIS i
o KU &
1N LGy
Ul it iy
o5 YLK g L
& Gy 1 ik
) AN Qi
L Uyl
05 & € TN
0.4 0.4
1 0

I : e ] - -
y 4 : g y
V1) 277 7/ . 7
i . S5 i i
iy, 707 .. (555 7 a7
it iy \ ve{ g
3 Uy
///// 7] 1/

i

il
il

i

I d(c-oSM)/(de dcosf)

NN

QNN

\\Q\\ )

0.25 9~

0.2

0.15 4"\

0.14

0.25 4"

0.2

0.15 4~

0.14~

L q(rr, )/(dcoso do)

norm

IL d(o-o,,,)/(dcosh do)

norm

04

d(o-cSM)/(dcose do)

EE S e
/.l.". X
o A

FIG. 7. Scenario Refry = 0.16. The upper figures show plots of the normalized double-differential t-quark decay partial width

d(T=Tgy) d(T=Tsw) q 4E=Tsw)

dedeost® —dedg > A Toogin built from formulas (8)—(10). The middle figures show plots of the normalized double-differential cross

d(o—osm) d(o—osm)
de-dcos®’  de-d¢p

cross sections built from Monte Carlo events.

d(o=osm)

sections

s and 7o 7 built from formulas (16)—(18). The lower figures show plots of the normalized double-differential

figures show plots of the normalized double-differential For the second scenario, Refy is set to be nonzero while
t-quark decay partial width. The middle figures show  the remaining anomalous couplings are taken to be zero.
plots of the normalized double-differential cross sec-  Unlike the previous one, in this scenario, all terms of

tions, and the lower figures show plots of the normalized  formula (20) have different behavior with respect to the
double-differential cross sections built from Monte Carlo  kinematic variables and give contributions to two-dimensional
events. surfaces shown in Fig. 7. The first term (20) depends on used
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FIG. 8. Scenario Ref;7 = 0.057. The upper figures show plots of the normalized double-differential t-quark decay partial width

‘Zggcr‘f:’g , d(g;g;“) , and Z<<£:(;-S:1/[r/2 built from formulas (8)—(10). The middle figures show plots of the normalized double-differential cross

sections 477w, X-esu) and S-esu) puilt from formulas (16)-(18). The lower figures show plots of the normalized double-differential
cross sections built from Monte Carlo events.

variables €, cos @, and the ¢ angle and reproduces the same  significantly. Since this term is proportional to cos @, its
shapes as those from the differential top width (upper plotin  influence is most noticeable in cos @ distributions (Fig. 7
Fig. 7). The second term in (20) gives the shapes as forthe SM~ middle left and middle right).

slightly affecting the common shapes. The third term is zero. For the third scenario, we set Ref; r not equal to 0, and
The fourth term does not depend on the ¢ angle, but being  the remaining anomalous couplings are equal to 0. In this
proportional to the | f gy |? coupling changes the overall shapes  case, the last two terms of the expression (20) are zero, and
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FIG. 9. Scenario Refry = 0.048. The upper figures show plots of the normalized double-differential t-quark decay partial width

‘Zggcr‘f:’g , d(g;g;“) , and Z<<£:(;-S:1/[r/2 built from formulas (8)—(10). The middle figures show plots of the normalized double-differential cross

sections 477w, X-esu) and S-esu) puilt from formulas (16)-(18). The lower figures show plots of the normalized double-differential

cross sections built from Monte Carlo events.

here is no dependence on the angle ¢ in the first and  shapes for the differential width (Fig. 8 upper left and
second terms. The dependence of both terms on cos@ is  upper central).

the same as in the SM, but the energy distributions are For the fourth scenario, we set Refpy nonzero and
different. The second term of formula (20) slightly  positive, and the remaining anomalous couplings are equal
deviates the shapes of differential cross sections (Fig. 8  to 0. For this scenario, the formula for the differential cross
middle left and middle central) from the corresponding  section (20) is the most complex of all the listed scenarios.
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The first part of formula (20) contains quadratic anomalous
terms, as well as the leading linear interference term, which
mainly determines the shape of the differential cross sections.
The second, third, and fourth terms of formula (20) contain
quadratic anomalous terms, which only slightly affect the
shape of the differential cross sections (Fig. 9, middle).
For the last scenario, Refpr is set to be nonzero and
negative, and the remaining anomalous couplings are equal
to 0. The overall picture (Fig. 10) is very similar to the
previous case, but one needs to keep in mind that devia-
tions from the prediction of the Standard Model have the
opposite sign, and this sign is not displayed on normalized
distributions. Despite the similarities, Fig. 10 is not identical
to Fig. 9 (middle). Differences can be observed from the
bottom of the left and right plots. In the case of the
(Refrr # 0) scenario, the differential cross section of the
process includes linear and quadratic anomalous terms.
Although the relative contribution of the quadratic terms
is small, they have an influence on the total sum, which will
be different for the case of positive and negative couplings.
In the general case, the differential scattering cross section
for this scenario can be written as do = dogy+
frr - dS; + f3; - dS,. The normalized difference of the
differential scattering cross section with anomalous cou-
plings and the scattering cross section of the Standard Model

d(o—ogy) _ [rrdSi+fadSy _ dS,+frrdS, .
1s = = 2. The leading term of
FrrSi /25 SitarS: g

this expression dS1/S1 is independent of anomalous cou-
plings and is crucial for the distribution shape. A term of the
following order is proportional to anomalous coupling and
depends on its sign. This term defines the small differences
between the corresponding pictures of Fig. 9 middle
and Fig. 10.

One can see good agreement of the plots obtained using
the analytical formula (13) with the corresponding
Monte Carlo distributions for all listed scenarios. This
comparison confirms the correctness of the analytical
calculations performed. It should be noted that the presence
of an additional subprocess db - I, v, b, it does not have

0—0sM

de-dcos @’  de-d¢p dcos@-dp*

a noticeable effect on the shape of the distributions. It is
clearly seen that in all scenarios listed above, except for the
second one, the shape of the differential cross section is
determined mainly by the differential width of the t-quark
decay. But in the case of scenario (Refzy # 0), the second
and fourth terms of formula (20) significantly change the
shape of the differential cross sections.

As the main conclusion, it can be noted that the
corresponding shapes of the surfaces in the coordinate
space (e, cos ) and (e, ¢) are very different for various
scenarios. The most spectacular differences can be
observed in coordinate space (e, cos#). This allows one
to separate all scenarios from each other. At the same time,
the plots in the space (cos#, ¢) are quite similar for the
listed scenarios (except for the Refry # 0 case) and do not
allow them to be uniquely identified.

In addition to the two-dimensional distributions, we
draw plots showing the probability density % in
3D space (e, cos 0, ¢) for the cases listed (Fig. 11). The size
of each cell in the figures is proportional to the probability
density. One can see that the areas of maximum density for
the different scenarios are located in different places of the
3D cube (¢, cos 0, ¢). Although the three-dimensional areas
are almost the same for cases (Refpr = 0.048) and
(Refrr = —0.048), the corresponding deviations from
the Standard Model due to anomalous contributions for
these scenarios have opposite signs.

Now we use the obtained analytical expressions to
extract the values of anomalous coupling applying a fitting
procedure. For completeness of the MC simulation, we also
included additional subprocess db — I*,v,, b, i with a d
quark in the initial state. In the case of the SM, the
contribution to the rate from such events is about 13%,
while the impact on the distribution shapes is practically the
same. We generate SM Monte Carlo event samples for
different values of the integral luminosity and collision
energy of the LHC collider: 30 fb~! at 13 TeV, and 300 and
3000 fb~! at 14 TeV. For these events, we constructed
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Refrr = 0.048

FIG. 11. Plots of probability density dﬁ("_&

1

Refrr = —0.048

dcos 007 in 3D space (e, cos@, ¢) for the scenarios Ref;y = 1.03, Refry = 0.16,

RefLT = 0.057, RefRT = _0.048, and RefRT = 0.048.

2D histograms %. Using the method of maximum
likelihood, we fit histograms built from these SM MC
events. We used formula (16) as a fitting function. The
values of the coupling Ref;, and one of the nonzero
anomalous couplings of the above scenarios were used as
fitting parameters. Applying the fitting function to the

Standard Model MC events, we expect to extract Ref;
values close to 1 and Ref; g, Ref;r, Refry values close
to 0. It should be noted that in this study, we are not
interested in the values themselves but in the prediction of
the accuracy of their measurement ORef;y, ORefry,
OoRefr, ORefrr. We did not use information about the

TABLE I. The accuracy of measuring the two anomalous parameters by fitting in the 2D coordinate space (e, cos 8).

L, fb! ORefv/6Ref gy ORefy/6Ref 7 ORefy/6Refrr
30 6.9 x 1074/1.2 x 1072 8.1x 107#/5.0 x 1073 1.6 x 1073/2.5 x 1073
300 1.9 x 1074/4.7 x 1073 2.5x1074/1.9 x 1073 5.6 x 1074/8.7 x 107*
3000 59%x1073/6.8 x 10~ 8.0x 107/8.0 x 107 1.6 x 1074/2.4 x 107*
TABLE II. The accuracy of measuring the two anomalous parameters by fitting in the 3D coordinate space (e, cosd, ¢).

L, fo! ORefry/0Ref gy oRefry/0Ref 1 ORefry/0Ref gr
30 6.1 x1074/8.2 x 1073 6.8 x 1074/6.4 x 1073 1.3x1073/1.8 x 1073
300 1.8 x1074/3.1 x 1073 25x%x1074/2.3x 1073 4.0x107/5.6 x 107*
3000 59%x107/7.1 x 107 8.0x 1073/8.1 x 107* 1.2x1074/1.7 x 107*
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latest experimental limits and did not set boundaries for
finding parameter values when fitting. For fitting, we use
the MINUIT algorithm [40] build into the ROOT package [41].
The results of the two-parametric fitting of the two-dimen-
sional histogram are given in Table I.

Similar to the two-dimensional case, we fit the distri-
bution of the SM events in 3D space (e, cos 6, ¢). Table 11
shows the results of this fitting. The values of coupling
Refy and one of the nonzero anomalous couplings of the
above scenarios were used as fitting parameters.

It can be seen that fitting in 3D space (e, cos 6, ¢) made it
possible to improve the accuracy of measuring the couplings
frvs frv, and fgry. But the accuracy of measuring the
coupling f; was slightly worse than the results of fitting in
two-dimensional space (e, cos 6). Despite the fact that the 3D
histogram contains more information than the 2D histogram,
the fitting in the case of 3D distribution is technically more
complex. Here, much depends on the histogram binning and
some other settings. By optimizing these parameters and also
using information on the latest experimental limits, it is
possible to further increase the measurement accuracy of the
couplings. It can be seen that the predicted accuracy of
measuring of anomalous couplings is much higher (for
Refy the accuracy is 50 times higher, for Refpy it is 20

1
(3 GSM)/(dE dcosB)

d(o-o,,)/(de d0) L d(o-0,

times higher, for Ref; it is 12 times higher, and for Ref
it is 30 times higher) than the current available experimental
accuracy [15] with the corresponding value of the integral
luminosity of the LHC. Of course, our simulation corre-
sponds to the ideal case where we can accurately restore the
t-quark system and do not take into account the effects of the
detector response. However, this illustration demonstrates
the potential for increasing the measurement accuracy using
the proposed method.

V. NUMERICAL ILLUSTRATION,
IMAGINARY COUPLINGS

In the previous examples, we considered cases where only
¢-even terms of formula (13) were involved. To use the
remaining terms proportional to sin ¢, we must consider a
scenario with nonzero anomalous imaginary couplings.
It should be noted that in the above simulation, we had
in mind that the ¢ angle is restored by formula (6). With this
approach, events corresponding to the angles ¢ and 27 — ¢)
are counted as events with the same ¢. Therefore, integration
of the differential cross section (13) over (6) from O to 7 is
equivalent to integration over angle ¢ from 0 to 2z. This
made sense in the considered cases where the ¢-even terms

)/(dcos6 do)
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FIG. 12. Scenario Imfz; = —0.048. The upper figures show plots of the normalized double-differential cross sections fl(" dgésMa)’
ﬂZTZ;W, and dﬁg‘;% The lower figures show the plots of probability density m in 3D space (e, cos 8, ¢). The lower left figure

corresponds to the ¢ range (0, x), while the lower right figure corresponds to the ¢ range (z, 2x).
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FIG. 13.

Scenario (Imf;, = 0.03, Imfr; = —0.048). Plots of probability density dj

% in 3D space (e, cos 0, ¢). The left figure

corresponds to the ¢ range (0, z), while the right figure corresponds to the ¢ range (z, 27).

of formula (13) were involved. In this case, the analysis was
simplified without loss of information, but not in the case of
the scenarios where terms proportional to sin ¢ are involved.
To reflect the contribution of such terms, it is necessary to
carefully separate the events corresponding to angle ¢ in the
range of 0 to z, and the events corresponding to ¢ ranging

o0, )/(de dcose) 1

\\\\\\\\\\\\\\\\“\\\\\

'l// ’//7
7
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0.4 /
\\\\ \\ \\‘\\'/
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from 7z to 2z by using triple product T =
T>0¢€0n. T <0: ¢ € (n,2n).

As the first numerical illustration with imaginary cou-
plings, we draw plots of double-differential cross sections
(Fig. 12, upper plots) and plots of the probability density in
3D phase space (Fig. 12, lower plots) for the scenario where

(Pe+ xPp) - s. If

o-cSM)/(dcose do)
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FIG. 14. Scenario (Refrr = 0.00876, Imfrr = —0.048). The upper figures show plots of the normalized double-differential cross

d(o—osm) d(o—osm)
de-dcos0’ dedp

d(o=osm)

sections dcos 0-dip”

and

The lower figures show plots of probability density dj

(6=0sm)

Zedeos 0.0 0 3D space (€, cos 6, ¢). The lower

left figure corresponds to the ¢ range (0, x), while the lower right figure corresponds to the ¢ range (7, 2x).
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‘;i‘_’;:g:”g), d(;;;fp“), and Z(C‘;Z%Z The lower figures show plots of probability density dﬁ

0.4

Scenario (Ref; 7 = 0.057, Imfy, = 0.16). The upper figures show plots of the normalized double-differential cross sections

(o=0osm)

Jedoos 6-05 in 3D space (¢, cos 8, ¢). The lower left

figure corresponds to the ¢ range (0, z), while the lower right figure corresponds to the ¢ range (7, 27).

Imfry is not equal to 0, and the remaining anomalous
couplings are equal to 0. For a correct comparison with the
case of a real coupling, we set the value of the imaginary

coupling Imfzy = —0.048 similar to the corresponding
d(o—osm)
de-dcos €

corresponding to ¢ ranging from O to z, while 7d(;;2f;4)

and Z(c%‘m corresponding to ¢ ranging from O to 2z. It can

be seen that the deviation from the prediction of the
Standard Model due to anomalous contributions (o —
osm) on the intervals of the angle ¢, (0, x) and (z, 27)
differ in sign for this scenario. One can also notice a slight
difference in the absolute values of the deviations from the
SM corresponding to different intervals of ¢ (Fig. 12, lower
plots). This is due to the fact that the linear anomalous term
from the first part of (20) is an odd function of ¢ and, when
changing the interval of ¢, it changes sign, while the other
quadratic anomalous terms from (20) are even and do not
change. Therefore, the total sum of the even and odd terms
will differ at different intervals, but since the linear term
dominates, and the contribution of quadratic terms is
substantially suppressed, this difference is small.

For another example, when (Imf; , and Imf 7 # 0), the
joint contribution of the quadratic terms becomes

real one. The upper plots of Fig. 12 show

0550

somewhat larger, and the difference in the absolute values
of the deviations at different intervals increases (Fig. 13).

It is also interesting to consider the case (Refry and
Imfrr #0) when both linear terms of formula (7) are
involved in the game, but one of them proportional to
Refrr is even, and the other one proportional to Imf 7 is
an odd function of ¢. It is possible to choose a combination
of coupling values in which the even and odd components
amplify each other in one interval ¢, (0, z), and fully
compensate each other in another interval ¢, (z, 2x), as
shown in Fig. 14.

Finally, we consider a scenario (Ref;r and Imfzy, # 0)
where linear anomalous terms are absent, and even and odd
components are represented by quadratic terms only (Fig. 15).
It can be seen that in this case the even terms dominate;
therefore, the deviation from the SM does not change sign on

TABLE IIl. The accuracy of measuring the two anomalous
parameters by fitting in the 3D coordinate space (e, cos 8, ¢).

L, fb_] 5Reva/5ImfRT

30 7.5x107*/3.4 x 1073
300 24x107*/1.0 x 1073
3000 7.1 x107/3.3 x 107
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all intervals of the ¢ angle. However, the contribution of the
odd components is manifested in the asymmetry of the
deviations at different intervals of the ¢ angle.

As the main conclusion of this part, we note that various
combinations of real and imaginary couplings belonging to
the terms of formula (7) that are odd with respect to the ¢
angle can manifest themselves in the form of asymmetries
of differential cross sections at different intervals of
¢: (0, ) and (7, 27). The shapes of such distributions
differ significantly from the corresponding distributions for
cases of pure real couplings, which will allow us to
experimentally detect and identify imaginary couplings.

Similar to the considered case of real couplings, we apply
the method of fitting the Monte Carlo events with the
obtained analytical formula to estimate the accuracy of
measuring imaginary anomalous couplings. Accuracy val-
ues for the joint measurement of Ref; ;, and Im f ;- couplings
by fitting in 3D space (e, cos 6, ¢) are given in Table III.

VI. CONCLUSIONS

We obtained an analytical expression for the differential
width of the three-particle decay of a polarized t quark in its
rest frame as a function of the energy of a charged lepton
and two angles of orientation of the quantization axis of the
t-quark spin. The expression was presented in the most
general form for the case of real and imaginary vector and
tensor anomalous Wb couplings. The parts of this expres-
sion containing the contribution of the SM and its inter-
ference with the anomalous contributions are fully
consistent with the published results. We showed that
the expression for the differential width of the t quark
can be divided into eight kinematically different terms
corresponding to possible combinations of anomalous
parameters. These eight terms have different dependences
on distribution variables, and we suggest using them as
basis functions when fitting experimental data and
extracting anomalous parameter values. Also, these eight
analytic functions can be used as multidimensional vari-
ables for analysis based on the neural network method. This
makes it possible to most effectively separate various
anomalous contributions.

In addition, expressions for the differential width of the t
quark were obtained as functions of various combinations
of two variables: the energy of the charged lepton and one
of the t-quark spin orientation angles, as well as two spin
orientation angles. Using the obtained analytical expres-
sions, we constructed various two-dimensional plots cor-
responding to different anomalous scenarios. The most
noticeable differences appear in the shape of the surfaces of
two-dimensional distributions, where one of the variables is
the energy of a charged lepton, and the other is one of the
t-quark spin orientation angles. At the same time, the
dependence of the t-quark width only on two angles is less
informative and does not effectively separate one anoma-
lous component of the width from the other.

Also, we showed that the formulas obtained for the
differential width of the t quark can be used to derive the
differential cross section for the full process of the produc-
tion and decay of the t quark (ub — d, b, v, ["), where the
optimal direction of the quantization axis of the t quark in its
rest frame is the direction of the d quark from the t-quark
production.

To verify the obtained analytical results, we performed
a numerical simulation of the full t-channel processes of
t-quark production and decay at the LHC collider for
various scenarios with real and imaginary anomalous
couplings. The values of the recent experimental upper
limits were taken as the values of the anomalous param-
eters. Based on the Monte Carlo generators created by
CompHEP, various two-dimensional distributions with
respect to the energy of the charged lepton and the
orientation angles of the t-quark spin in its rest frame were
constructed. Also, for the considered scenarios, using the
obtained analytical expressions for the t-quark production
and decay differential cross sections, the corresponding
two-dimensional plots were constructed. A comparison of
the shapes of Monte Carlo distributions with the plots
obtained from the formulas showed their full agreement
with each other and confirmed the correctness of the
analytical calculations performed.

In addition, using the obtained analytical expressions,
we estimated the accuracy of extracting the values of the
anomalous Wb couplings for different levels of the
integral luminosity of the LHC collider using fitting
methods. The predicted accuracy values are much higher
(for Ref;y, the accuracy is 50 times higher; for Refy, the
accuracy is 20 times higher; for Ref; 7, the accuracy is 12
times higher; for Ref 7, the accuracy is 30 times higher)
than the current experimental accuracy for the same
integral luminosity. Despite the ideal nature of our
theoretical experiment, it showed the potential for improv-
ing the accuracy of measurements using the method we
proposed in addition to the experimental methods
already used.
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APPENDIX: DERIVATION OF A SYMBOLIC
EXPRESSION FOR FULLY DIFFERENTIAL
SINGLE TOP QUARK PRODUCTION
CROSS SECTION

We explicitly express scalar products, containing the
t-quark spin vector, through 4-momentum components in
the t-quark decay matrix element (4). The matrix element of
the polarized t-quark decay takes the form
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M7

t—bve™

= F{. (1 +cos@,+5) + F¥ - (1 —cosb,,)
+ Fd . (1 + o8 0,+; — €08 0,0+ — 08 0,,) + FI - 8in O+ Sinh+ sin O+, (A1)

intl

where

2
Fiee = K. (Ival2 (popy) + f Ll o (Poper )(pype+)> -my - E,+,
My,
2
e
my,

F%CC—Kd°°-(|fRV| (pope) + 1furl- (php»(pypﬁ))‘mt-a,

2
Fl = K. (Ref,y - Refrr + Imfpy - Imf ) e (pppy) - my; - EJE+
w

2
+ K% . (Ref 7 - Refgy + Imfr - Imfry) g (Ppper) -my - EJE,+,
W

F:irft% K%® - (Refry - Imfry —ImfLy - Refpr) - ”_1_‘?/ <m7,2 - (Pe*l’t)) cmy - EpE
dec -2 m;
+ K% (Refrr - Imfry —Imfr - Refry) iy ((Phpz) + (Perpi) — 7) “my - EyE,+,
Ko = 94 (A2)
(2(puper) = miy)* + Tjymy,”

Changing e™ to d and v to u in (A1) and using crossing symmetry, we write in the same manner the matrix element of the t-
channel production of the polarized t quark. In this case, the components of the 4-momentum are also written in the t-quark
rest frame

M2, = FP*4 (14 cosO) + FR* - (1 = cos6,)
+ Fﬂfﬁd (14 cosOys — cos O,y — cos 0,,) + Ffrffzd - 8in @, sin ¢4 sin O, (A3)

where

2
Fird — gomd. (|fw|2 (popa) + | furl <Pde><PuPd>> e B
w

2
Fird — gomd (|fRV|2 (Popa) + | frrP <PbPu><PuPd>) e B
w

2
d
Fol = KP4 (Refyy - Refpr + Imfpy - Imfpr) iy (Popu) M- EEq
2
+ KP4 (Ref 7 Refry + Imf - Imfry) - — - (pppa) - m, - E,Ey,
myy

-2

d

Fﬁ:tOZ = Kvod (Refry -Imfrr —Imf,y - Refrr) - — (— - (pdpt)) ~my - EyEy
myy

4+ Kprod (RefLT Imfpy —Imf - RefRV)

94 ) Vﬁd
2(pupa) — miy)*

my

my
(Pop:) + (Papi) = o) e ELEq4,

Kprod —

(A4)

The matrix element of the complete process of single top production with its subsequent decay has the form
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2

M3 =Dy ; (AS)

ub—dbve™

E Mub—>dt : Alt—»bl/fr
s

where

|
D, — . (A6)
" ((pp+ Pyt per )t —m2) +Tm?

After squaring the amplitude of the complete process, the remaining nonzero parts can be expressed in terms of the matrix
elements of polarized production and polarized decay of the t quark:

|]w|ib—>dbyfr = Z[(FEFOd : (1 + cos ed‘v) + F%md : (] — COS gu.s')

A

d 4. . .
+ FPE - (14 cos Oy — cos 0, — cos O,5) + FLO - sin 0,4 sin g sin O,

X Dy (F$ - (14 cos@,+4) + F - (1 —cos8,)
+ Fd . (1 +c080,+y — 080, —c0s0,,) + F& - sin0),+ singh,+ sin,+)]. (A7)

We chose the direction of the d-quark three-momentum as the quantization axis of the t-quark spin, and we explicitly write
out two components of expression (A7). The t-quark spin projection is directed along the d-quark momentum in the first
component and against the d-direction in the second one:

IME, e = (FE* 24 FRO - (1= 008 0,0) + Finy' -2+ (1= €08 0,,0))D; - (FI - (1 4 c08 Og) + F§E© - (1 = c05 60,)

intl

+ Fd . (1 + 080,44 — cO8 O+ — 08 G,4) + FI - sin O+ sin iy sin6,+,)

+ F2Y (1 4 cos0,0)D, - (FI - (1 = co5 0,+4) + FE° - (1 + cos 6,,)

+ Fd . (1 = cos 0,44 — O8O, + 08 0,4) + FI - sin Oy, sin iy sind,+ ). (A8)

In order to separate the factorized part equal to the cross section multiplied by the width, we add and subtract the term F },’;"d -1
in the first factor of the first term of (A8). Then, collecting similar terms proportional to F2*® - (1 + cos ), we get

M, e = (FE°0 -2 4 FRP 24 FRE -2 (1= €05 0,0))D, - (F§E - (1 4 €08 0pg) + Fig - (1= c056,,)

intl

+ Fd - (1 4+ cos Oy — €08 0,0+ — €08 0,4) + FIS - sin0p+ Sin o g SIN G+ )

— FY* 2 (14 cosB,,) X D, - (FI¢ - cos 0, — FI¢ . cos 0,4 + FE< . (cos 0,4 — cos0,)). (A9)
The first term corresponds to the factorized product of the unpolarized t-quark production matrix element and the matrix
element of the polarized t-quark decay. The second term consists of the factorized product of the part of the unpolarized t-quark
production matrix element F° %md multiplied by the factor (1 + cos 6,,4) and the part of the polarized t-quark decay width. Also,
both terms are multiplied by the square of the t-quark propagator denominator. We tested this expression analytically using the
CompHEP package [39]. Writing down expression (A9) in a compact form, we obtain

|M|§h—>dhue+ = <Z|M|ﬁb->dz> XD, (|M|t2—>bye+)polar - <Z|MR|ﬁb—>dt) (1 +cos,)

N s

X D+ (F§° - cos 0,y — F¥¢ - 08 0,5 + FI - (co8 0, g — c080,4)). (A10)
Using the narrow-width approximation of the t quark, we integrate this matrix element over all phase space variables, except for
the positron energy E,+ and its orientation angles (cos @ and ¢b) with respect to the d-quark direction. It should be noted that after
integration, the factor (1 4 cos 8,,;) becomes equal to 2. As an integration result, we obtain the differential cross section of the
t-channel production of the polarized t quark, with its subsequent decay
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dg(:s:)ub—nlbye+ _ O'( ) 1 dl—‘t—>bmfr

de-dcos®-dp

ub=td T " de - dcos 0 - dep
2

—UR(:V)

+ |fov*- (1
+ | frrl*-(e=7r*)-€-cosb

+ | frrl? - (1 =€) (2r cle)

—€)-€e-cosf

HlrP =) (221

+ (Refry - Refrr +Imfry - Imfpr) - (1

1 a’ - m}
ub=td P64 . - sin@y - Ty - myy

. 2r? 5
-sinfcos¢p+ | ——+e—r"—1]) -cosf
€

2 2
-sinécos ¢ + (L—Fe—r — 1) -cosQ)

€

—€)-2-(c(e)-sinfcosep + r-cosh)

+ (Refrr - Refry +Imf 7 - Imfry) - (€ — %)

-2+ (c(e) - sinfcos ¢ + r'COSH)]’

where c(e) = /(1 —¢€)(e = 1?), € = 2E,+ /my, €max = 1,
€min = I, ' = my/m,, 6,4 1S the cross section of the
unpolarized t-quark production (12), and (6y),,_,4 1S part
of this cross section that is proportional to |fgy|> and
2, T, is the total decay width of the t quark, taking
into account the anomalous couplings and all decay
modes, % is the differential partial width of the
polarized t-quark decay (7), and € and ¢ are orientation
angles of the positron with respect to direction of the
d-quark momentum.

This expression was obtained for the first time and
includes terms of all orders of magnitude of anomalous
couplings. Once again, we note that this expression was
|

do(5 + 1
a(s)ub—nibue . 6(3‘)
de-dcos@-d¢p T,

(Al1)

|
obtained in the approximation of the t-quark narrow width
and m;, = 0. The denominator of the expression is equal to
the total width of the unpolarized decay of the t quark,
which is constant and does not contain functional depend-
ences that affect the shape of the differential distributions
but only changes their normalization. To study spin
correlations, we use a differential cross section normalized
to the full integral. In this case, the dependence of the
denominator of the expression on anomalous couplings
does not play a role. To simplify the analysis, we leave in
the numerator of expression (All) only terms up to the
second order of magnitude of the anomalous couplings and
we get formula (13):

. dl—‘t—>b1/e+
ub=1d " e . d cos @ - dep
2

3 2
.ml -th

_6R<§)

ub=1d 64 . . sin*@yy - Ty - my

(I —¢€)-€-cosb|.

We left the first term of the sum (13) unchanged to simplify the notation, but we mean that we omit in it the terms of the third

and fourth order of magnitude of anomalous couplings.

Now, for the first term of expression (13), we write out explicitly the terms only up to the second order of magnitude of

anomalous couplings:

dr t—bret

dTsv + (T =Tsm)) i~ pyer

Oub—id * m (GSM+(U GSM))ub—nd’

d(FS )—» vet
= (osm + (6 = Osm))up—1a .de-dl:o—;eb-d(ﬁ + (OsM)upra -
d<1—‘SM)t—>byeJr d(r - FSM)I—)bU€+
N Ouid " g o0 dg T OMub=d g deos0 - dp T

de-dcos@-dg

d(F - FSM)[_JW€+
de-dcosO-dg + (0 = 0sM)up—ia

(6 ) . d(l—‘RT)t—JmeJr
RTJub=td " e dcos 0 - dep’

d(r - FSM)[—>I71/EJr
de-dcos@-d¢

(A12)
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where (6gr),p—rq 1S the part that is proportional to V,;, - Refrr, (Trr),Lpe+ is @ part of the top partial width that is
proportional to V;, - Refrr and V, - Imf r7, (65Mm) up—a 18 the SM cross section of the unpolarized t-quark production, and

(I'sm), is the SM total decay width of the t quark.

Substituting expression (A12) into (13) and subtracting expression (6sy) ,p—rq *

1 d<FSM)rahpe+

(Tsw),  de-dcos 0-dip from (13), we obtain

the expression for the difference of the differential cross section with anomalous couplings and the Standard Model

differential cross section:

d(G - 65M)ub—>dbl/€+ _ l d(r - FSM)t—»IweJr

de-dcos@-dp T, (OsM)upa* de-dcos@-dg

d(FRT)t—%weJr

+ (OrT) upta “de-dcosO-dp

r
where rpr = m

(or)

ub=td 64 . 1 sin*@y - Ty - my

d(FS ) —bret
+ (Cupota = 11 (OsM) up—1a) .a’e-dlc\:/lo—;;-ckﬁ
a’-m}

V2 (1—¢)-e-cosb|,

(A13)

Normalizing this expression by the value of the full integral, we obtain expression (20).
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