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We study the nonleptonic two-body weak decays of Λb by modifying the MIT bag model without
introducing new parameters to construct the momentum eigenstates of the baryons. We find that the
branching ratios of Λ0

b → Λþ
c π

−, Λþ
c K−, pπ−, and pK− are ð4.5� 0.2Þ × 10−3, ð3.4� 0.1Þ × 10−4,

ð5.0� 0.5Þ × 10−6, and ð6.0� 0.7Þ × 10−6, which are all consistent with the current experimental data,
respectively. We also explore P and CP asymmetries for the decays of Λ0

b → pðπ−; K−Þ. In particular, we
obtain that the direct CP-violating rate asymmetries in Λ0

b → pπ− and Λ0
b → pK− are around −4.4% and

6.7%, in comparison with ð−2.5� 2.9Þ% and ð−2.5� 2.2Þ% from the Particle Data Group in 2020,
respectively.

DOI: 10.1103/PhysRevD.102.034033

I. INTRODUCTION

There have been many interesting measurements in
the decays of b baryons by the LHCb Collaboration,
including those for the charmful modes of Λ0

b → Λþ
c M

[1] and charmless ones of Λ0
b → pM [2] (M ¼ π−; K−) as

well as the discoveries of the hidden-charm pentaquarks in
Λ0
b → J=ψpM [3,4] and double-charm baryon state of Ξþþ

cc

via Ξþþ
cc → Λþ

c K−πþπþ [5]. In particular, based on the new
experimental data from LHCb [6], the Particle Data Group
(PDG) of 2020 [7] has updated the average values for the
direct CP-violating rate asymmetries (ACPs) in Λ0

b → pπ−

and Λ0
b → pK− to be

ACPðΛ0
b → pπ−ÞPDG ¼ ð−2.5� 2.9Þ%;

ACPðΛ0
b → pK−ÞPDG ¼ ð−2.5� 2.2Þ%; ð1Þ

respectively. In the standard model, these two decay
amplitudes contain Vub and loop-induced penguin oper-
ators [8], which could provide weak and strong phases,
respectively, resulting in nonvanishing direct CP-violating
rate asymmetries (ACPs). Previous theoretical studies
of ACPs in Eq. (1) have been performed in various
QCD models, such as the perturbative QCD method [9],

generalized factorization approach [10], and light-front
quark model (LFQM) [11]. These calculations in the
literature are important to check if the results in the standard
model are consistent with the experimental measurements.
In this work, wewould like also to explore theCP-violating
asymmetries with the MIT bag model.
It is known that to calculate the decay processes of the

baryons, we need to know the details of the baryon wave
functions. In the MIT bag model, the quarks in the baryon
are confined in a static bag. The model enjoys various
successes in its simple structure to explain the mass spectra
and magnetic dipole moments of the baryons [12–15].
However, the construction of the baryon wave functions in
the MIT bag model is localized in a fixed space. As a result,
the center motions of the baryons are not moved. In other
words, the baryon wave functions are not in the momentum
eigenstates. Such a defect makes the model questionable
when one discusses the decay processes involving essen-
tially the momentum eigenstates. Nonetheless, many cal-
culations in the bag model have been done by ignoring
this problem [16–22]. In this work, we will modify the MIT
bag model to construct the momentum eigenstates for
the baryons to study the decays without introducing extra
parameters.
On the other hand, it is known that one can examine

the heavy quark symmetry in the charmful decays of
Λ0
b → Λþ

c M. Particularly, the baryonic matrix element is
related to the Isgur Wise function of ξðωÞ [23], given by

hΛþ
c jc̄γμð1 − γ5ÞbjΛ0

bi ¼ ūΛþ
c
ξð1 − γ5ÞuΛ0

b
; ð2Þ
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where ω ¼ v1 · v2 with v1;2, the velocities of the two
baryons, and uB is the four-component Dirac spinor for
the corresponding baryon of B. In the heavy quark limit, in
which the relative velocity between the two baryons
vanishes, we have that ξðωÞ ¼ 1 with ω ¼ v1 · v2. We will
check if the heavy quark symmetry is valid in our modified
MIT bag model.
This paper is organized as follows. In Sec. II, we introduce

the decay amplitudes and parameters. In Sec. III, we
constitute the baryon wave functions in the modified MIT
bag model, where we sum over the localized baryon wave
functions with different centers. In Sec. IV, we compute the
form factors accordingly. In Sec. V, we present our numeri-
cal results and compare them with the experimental data as
well as the theoretical evaluations in the literature. We
conclude our study in Sec. VI.

II. DECAY AMPLITUDES AND PARAMETERS

We start with the two-body decays of Bi → BqM,
where BiðqÞ is the initial (final) baryon with spin 1=2
andM represents the pseudoscalar meson. In this study, we
concentrate on the corresponding decays with Bi ¼ Λ0

b,
Bq ¼ ðΛþ

c ; pÞ, and M ¼ ðπ−; K−Þ. The spin-dependent
amplitude for Bi → BqM can be written as

AðBi → BqMÞ ¼ ūBq
ðA − Bγ5ÞuBi

; ð3Þ

where A and B are the s-wave and p-wave amplitudes,
corresponding to the parity violating and conserving
ones, and uBi;q

are the baryon Dirac spinors, respectively.
In general, A and B are not relatively real, resulting in
CP-violating effects. The decay branching ratio and for-
ward-backward asymmetry for the initial baryon in the rest
frame are given as [24]

ΓðBi → BqMÞ ¼ jp⃗qj
8π

�ðMBi
þMBq

Þ2 −m2
M

M2
Bi

jAj2

þ ðMBi
−MBq

Þ2 −m2
M

M2
Bi

jBj2
�
;

αPðBi → BqMÞ ¼ 2κReðA�BÞ
jAj2 þ κ2jBj2 ; κ ¼ jp⃗qj

EBq
þmBq

; ð4Þ

where mM is the meson mass and p⃗q represents the
3-momentum of the daughter baryon Bq, while αP
describes the decay asymmetry between the helicity states
of Bq, defined by

αPðBi→BqMÞ¼ Γðp̂q · ŝq¼ 1Þ−Γðp̂q · ŝq¼−1Þ
Γðp̂q · ŝq ¼ 1ÞþΓðp̂q · ŝq ¼−1Þ ð5Þ

with p̂qðŝqÞ the unit vector in the p⃗qðs⃗qÞ direction of Bq,
provided with the initial baryon Bi unpolarized. We can

also define the decay asymmetries for the antiparticles,
given by

ᾱPðBi → BqMÞ ¼ αPðB̄i → B̄qM̄Þ: ð6Þ

The nonzero mean value between αP and ᾱP is a
consequence of CP violation, which is defined by [25,26]

ĀCPðBi → BqMÞ ¼ αPðBi → BqMÞ þ ᾱPðBi → BqMÞ
αPðBi → BqMÞ − ᾱPðBi → BqMÞ :

ð7Þ

On the other hand, the directCP-violating rate asymmetries
of the decays are given by

ACPðBi→BqMÞ¼ ΓðBi→BqMÞ−ΓðB̄i → B̄qM̄Þ
ΓðBi →BqMÞþΓðB̄i→ B̄qM̄Þ : ð8Þ

In the present work, to relate αP, ĀCP, and ACP directly
to the weak interactions, we ignored the final state
interactions in our calculations. As a result, the complex
phases of A and B solely come from the Wilson coefficients
and the Cabibbo-Kobayashi-Maskawa (CKM) elements.
We note that possible sizable CP-violating effects in Λb →
pðπ−; K−Þ could be induced due to the weak phase from the
CKM matrix element of Vub.

III. BARYON WAVE FUNCTIONS

In the MIT bag model, the quarks in the baryon are
constrained in a certain bag with radius R. Inside the bag,
each quark obeys the free Dirac equation, given by

i∂=ψ −mqψ ¼ 0; ð9Þ

due to the mean field approximation of the gluon field,
where mq is the current quark mass. The boundary
condition on the surface of the bag is given as

ini∂iψ ¼ ψ ; ð10Þ
where ni is the unit vector toward the surface.
In this work, we only consider the ground states of the

baryons with their angular momenta to be J ¼ 1=2, where
the spatial parts of the quark wave functions satisfy the
spherical symmetry. Consequently, by inserting the boun-
dary condition of Eq. (10) into Eq. (9), we get

tanðpqRÞ ¼
pqR

1 −mqR − EqR
; ð11Þ

where pq is the magnitude of the 3-momentum for the

quark and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
q þm2

q

q
. The lowest momentum given

in Eq. (11) corresponds to the ground state. The quark wave
function centered in x⃗ ¼ 0 is written as
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ψðxÞ ¼ ϕðx⃗Þe−iEqt ¼ Nffiffiffiffiffiffi
4π

p
�

ωþj0ðpqrÞχ
iω−j1ðpqrÞr̂ · σ⃗χ

�
e−iEqt;

ð12Þ

where ω� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�mq=Eq

p
, χ is the two-component spinor

of the quark, describing the orientation of the angular
momentum, ji represents the ith spherical Bessel function
of the first kind, and N stands for the normalized factor,
given by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EqðEq −mqÞ
R3j20ðpqRÞ½2EqðEq − 1

RÞ þ
mq

R �

s
: ð13Þ

Since the baryon is made of the product of the three quarks,
we write its wave function in term of the quark wave
functions ψqi , given by

Ψðx⃗q1 ; x⃗q2 ; x⃗q3 ; tÞ
¼ ϕq1ðx⃗q1Þϕq2ðx⃗q2Þϕq3ðx⃗q3Þe−iðEq1

þEq2
þEq3

Þt; ð14Þ

where qi (i ¼ 1, 2, 3) denote the ith quarks and Eqi are the
corresponding energies. Here, the spin, flavor, and color
configurations have not been written down explicitly.
However, the above construction of the baryon wave

function is valid only around x⃗ ¼ 0, which is mainly used
to discuss the mass spectrum and magnetic dipole moment
of the baryon. To calculate the dynamical processes, we
need the baryon state to be in the particular 4-momentum
eigenstate of the spacetime translation.
On the other hand, in Eq. (14) one assumes that the

baryons are at rest, and the centers of the initial and final
baryons locate in the same spot at a particular time, t ¼ t0.
However, if the baryons are not at relatively rest, the centers
will be not coincident at t ≠ t0 and the results of the
dynamical factors will no longer be the same. Clearly, the
baryon wave function in Eq. (14) is not the eigenstate of
the spacetime translation.
To construct the baryon wave function to be invariant

under the space translation, we have to modify the MIT bag
model. To do that, we first integrate Eq. (14) with different
center locations, leading to

Ψðxq1 ; xq2 ; xq3Þ

¼ N
Z

d3x⃗
Y

i¼1;2;3

ϕqiðx⃗qi − x⃗Þe−iEqi
tqi ; ð15Þ

where N is the normalization factor. We then consider the
space translation

Ψðxq1 þ d; xq2 þ d; xq3 þ dÞ

¼ N
Z

d3x⃗
Y

i¼1;2;3

ϕqiðx⃗qi þ d⃗ − x⃗Þe−iEqi
tqi ; ð16Þ

where d has only the spatial component. By changing the
integration variable x⃗ to x⃗ − d⃗, we see that the wave
function is indeed invariant under the space translation.
The energy of the baryon at rest essentially corresponds

to the mass of the baryon, which can be read off from
Eq. (15) to be M ¼ Eq1 þ Eq2 þ Eq3 . We note that the bag
energy has not been included in our study. In principle, one
can calculate the energy contribution from the complicated
gluon and gluon-quark interactions. However, we will not
include such effects. Instead, we will simply use M ¼
Eq1 þ Eq2 þ Eq3 in the integral associated with the energy-
momentum conservation as an approximation.
The wave function for the baryon at rest is given in

Eq. (15). To obtain the function in a certain 4-momentum,
we boost it in the z direction, given by

Ψvðxq1 ; xq2 ; xq3Þ
¼ SBvΨðxvq1 ; xvq2 ; xvq3Þ

¼ N
Z

d3x⃗
Y

i¼1;2;3

Sqvϕqiðx⃗vqi − x⃗Þe−iγEqi
ðtqi−vzqi Þ: ð17Þ

Here, SBðqÞv is the pure Lorentz boost matrix for the baryon
(quark) 4 spinor in the z direction with Sqv given by

Sqv ¼
�

aþI a−σz
a−σz aþI

�
; ð18Þ

where I is the 2 × 2 unity matrix, a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðγ � 1Þ

q
and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1 − v2Þ

p
. In addition, v in the superscript of Sqv

indicates the Lorentz transformation of the coordinate,
given explicitly as

ðxvqiÞ0 ¼ γðxqiÞ0 − γvðxqiÞ3;
ðxvqiÞ1 ¼ ðxqiÞ1; ðxvqiÞ2 ¼ ðxqiÞ2;
ðxvqiÞ3 ¼ γðxqiÞ3 − γvðxqiÞ0; ð19Þ

where ðxqiÞ0 is the time component of the coordinate.
To obtain the proper normalization factor, we calculate

the overlap between the two baryon wave functions with
different speeds at time t, given by
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Z
Ψ†

v0 ðx⃗q1 ; x⃗q2 ; x⃗q3 ; tÞΨvðx⃗q1 ; x⃗q2 ; x⃗q3 ; tÞd3x⃗q1d3x⃗q2d3x⃗q3

¼ e−iMðγ−γ0ÞtN 2

Z
d3x⃗d3x⃗0

Y
i¼1;2;3

d3x⃗qiϕ
†ðx⃗v0qi − x⃗0Þ

× Sqv0S
q
vϕðx⃗vqi − x⃗ÞeiEqi

ðγv−γ0v0Þzqi ; ð20Þ

where Sq†v ¼ Sqv for the pure Lorentz boost and M ¼
Eq1 þ Eq2 þ Eq3 for the mass of the baryon. To simplify
the integral, we adopt the following variables:

x⃗rqi ¼ x⃗vqi −
1

2
ðx⃗þ x⃗0Þ;

x⃗Δ ¼ x⃗ − x⃗0;

x⃗A ¼ 1

2
ðx⃗þ x⃗0Þ: ð21Þ

Now, the overlap integral is read as

e−iMðγ−γ0ÞtN
2

γ3

Z
d3x⃗Δd3x⃗A

Y
i¼1;2;3

d3x⃗rqiϕ
†
�
x⃗rqi þ

1

2
x⃗Δ

�

× Sq2v ψ

�
x⃗rqi −

1

2
x⃗Δ

�
eiE

B
qi
ðv−v0Þzrqi eiEqi

ðv−v0ÞzA

¼ N 2γð2πÞ3δ3ðp⃗ − p⃗0Þ
Z

d3x⃗Δ
Y

i¼1;2;3

d3x⃗rqi

× ϕ†
�
x⃗rqi þ

1

2
x⃗Δ

�
ϕ

�
x⃗rqi −

1

2
x⃗Δ

�
; ð22Þ

where 1=γ3 comes from the Jacobian in Eq. (21), and p⃗ and
p⃗0 are the 3-momenta of the baryons. Here, we have used
the fact that the integral does not vanish if and only if
v ¼ v0 to reduce the complexity in ϕ.
By normalizing the baryon wave function as

hp0jpi ¼ γð2πÞ3δ3ðp⃗ − p⃗0Þ, we find that

1

N 2
¼

Z
d3x⃗Δ

Y
i¼1;2;3

d3x⃗rqiϕ
†
�
x⃗rqi þ

1

2
x⃗Δ

�
ϕ

�
x⃗rqi −

1

2
x⃗Δ

�
;

ð23Þ

which is clearly independent of the velocity by the
construction of the baryon wave functions.
It is worthwhile to take a look at the physical inter-

pretation of the baryon wave function in Eq. (15). In
contrast to the original wave function in Eq. (14) with the
quarks confined in a static bag located at x⃗ ¼ 0, those
quarks for Eq. (15) distribute all over the space to fulfill the
translation-invariant requirement. Note that the distance
between two arbitrary quarks is limited within 2R in the
bag model. For the case in Eq. (15), it is due to the fact that
if jx⃗q1 − x⃗q2 j > 2R, then either jx⃗q1 − x⃗j or jx⃗q2 − x⃗j will
exceed R, resulting in the vanishing integral. So, the quarks

are entangling to each other in the spatial part of the wave
function, which is not the case in Eq. (14).
The average distance between the quarks is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx⃗q1 − x⃗q2Þ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx⃗2q1i þ hx⃗2q2i − 2hx⃗q1 · x⃗q2i

q
: ð24Þ

In the original MIT bag model, as the quark positions
are independent to each other, we have that hx⃗q1 · x⃗q2i ¼hx⃗q1i · hx⃗q2i ¼ 0. However, they do not vanish in our
modified MIT bag model. For the proton with three
massless light quarks, the average distance in our modified
model is roughly 20% shorter than the original one with the
same bag radius.

IV. BARYON FORM FACTORS

To calculate the Λ0
b decays, we use the factorization

approach. In this approach, the amplitudes for Λ0
b → Λþ

c M
can be written as

AðΛ0
b→Λþ

c MÞ ¼
GFffiffiffi
2

p a1V�
cbVuqhMjūγμð1 − γ5Þqj0i

× hΛþ
c jc̄γμð1 − γ5ÞbjΛ0

bi

¼ i
GFffiffiffi
2

p a1V�
cbVuqfMqμhΛþ

c jc̄γμð1 − γ5ÞbjΛ0
bi

¼ i
GFffiffiffi
2

p a1V�
cbVuqfM½ðmb −mcÞhΛþ

c jc̄bjΛ0
bi

þ ðmb þmcÞhΛþ
c jc̄γ5bjΛ0

bi�; ð25Þ

whereGF is the Fermi constant, a1 ¼ c1 þ c2=3 ¼ 1.02 [8]
with c1;2 the Wilson coefficients, Vij represent the CKM
elements with q ¼ dðsÞ corresponding toM ¼ π−ðK−Þ, fM
is the meson decay constant, and the quarks operators are
evaluated at x ¼ 0. For the decay of Λ0

b → pM, the
amplitude is given by [10]

AðΛ0
b → pMÞ

¼ i
GFffiffiffi
2

p mbfM½αMhpjūbjΛ0
bi þ βMhpjūγ5bjΛ0

bi�; ð26Þ

where αM (βM) and αV in Eq. (29) are defined by

αM ¼ VubV�
uqa1 − VtbV�

tqða4 þ rMa6Þ;
βM ¼ VubV�

uqa1 − VtbV�
tqða4 − rMa6Þ; ð27Þ

with rM≡2m2
M=½mbðmqþmuÞ� and ai ≡ ceffi þ ceffi�1=N

ðeffÞ
c

for i ¼ odd (even), composed of the effective Wilson
coefficients ceffi defined in Ref. [27].
Now, we are left with the matrix elements of the scalar

and pseudoscalar operators in Eqs. (25) and (26), which can
be parametrized as
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hBqjq̄bð0ÞjΛ0
bi ¼ f

Bq
s ūBq

uΛ0
b

hBqjq̄γ5bð0ÞjΛ0
bi ¼ f

Bq
p ūBq

γ5uΛ0
b
; ð28Þ

where Bq represents Λþ
c ðpÞ with q̄ being c̄ðūÞ.

We evaluate the form factors of f
Bq
s and f

Bq
p in the Briet

frame, in which the initial and final baryons have opposite
velocities, i.e., v⃗1;2 ¼ −v⃗; v⃗. In the derivations of the matrix
elements, one actually deals with the quark operators in the
x dependence, given by

Z
hBqjq̄ðγ5ÞbðxÞeipMxjΛ0

bid4x

¼ hBqjq̄ðγ5Þbð0ÞjΛ0
bið2πÞ4δðpi − pq − pMÞ; ð29Þ

for the scalar (pseudoscalar) matrix element with pM being
the 4-momentum of the M meson. Here, we have used that
the initial and final baryons are in the momentum eigen-
states to reduce the integral with the Dirac δ function of
ð2πÞ4δðpi − pq − pMÞ. Clearly, one can evaluate the form
factors with either the quark operators located at x ¼ 0 in
Eq. (28) or the x-dependent ones in the left-hand side of
Eq. (29). We start with the baryon wave functions in
Eq. (17), given by

Z
hBqjq̄bðxq3ÞeipMxq3 jΛbid4xq3

¼ N Λb
N Bq

Z
d3x⃗d3x⃗0d4xq3 ϕ̄qðx⃗vq3 − x⃗0Þ

× Sq2−vϕbðx⃗−vq3 − x⃗Þei½γðEq−EbÞþp0�te−i½γvðEqþEbÞþp3�z3

×
Y
j¼1;2

ϕ†
qjðx⃗vqj − x⃗0Þϕqjðx⃗−vqj − x⃗Þe−2iγvEqj

vzqj ; ð30Þ

with Sq†v γ0 ¼ γ0S
q
−v for the Lorentz boost and ðq1; q2Þ ¼

ðu; dÞ. Similar to the case in Eq. (20), we adopt the variable
transformations with some modifications, given by

ðx⃗rqiÞj ¼ ðx⃗qiÞj −
1

2
ðx⃗0 þ x⃗Þj;

ðx⃗rqiÞ3 ¼ γðx⃗qiÞ3 −
1

2
ðx⃗0 þ x⃗Þ3;

x⃗A ¼ 1

2
ðx⃗þ x⃗0Þ;

ðx⃗ΔÞj ¼ ðx⃗ − x⃗0Þj;
ðx⃗ΔÞ3 ¼ ðx⃗ − x⃗0Þ3 − 2γvt; ð31Þ

where i ¼ 1, 2, 3 and j ¼ 1, 2. Subsequently, we have that

Z
Z

d3x⃗Δd3x⃗rq3 ϕ̄q

�
x⃗rq3 þ

1

2
x⃗Δ

�
Sq2−vϕb

�
x⃗rq3 −

1

2
x⃗Δ

�

× eivðMBf
þMΛb−Eq−EbÞzrq3

Y
j¼1;2

Dqjðx⃗ΔÞ;

Z≡ ð2πÞ4δ4ðpi − pf − qMÞ
N Λb

N Bf

γ2
;

Dqjðx⃗ΔÞ≡
Z

d3x⃗ϕ†
qj

�
x⃗þ 1

2
x⃗Δ

�
ϕqj

�
x⃗−

1

2
x⃗Δ

�
e−2iEqj

vzqj :

ð32Þ

Alternatively, one can evaluate the integral with b and q
quarks located at x ¼ 0 in Eq. (28), given as

Zγ2
Z

d3x⃗d3x⃗0ϕ̄qð−x⃗0ÞSq2−vϕbð−x⃗Þ

×
Y
j¼1;2

ϕ†
qiðx⃗vqi − x⃗0Þϕqiðx⃗−vqi − x⃗Þe−2iγEqj

vzqj : ð33Þ

After changing the integral variables by

ðx⃗rqjÞk ¼ ðx⃗qjÞk −
1

2
ðx⃗þ x⃗0Þk;

ðx⃗rqjÞ3 ¼ γðx⃗qjÞ3 −
1

2
ðx⃗0 − x⃗Þ3;

x⃗B ¼ −
1

2
ðx⃗þ x⃗0Þ;

x⃗Δ ¼ x⃗ − x⃗0; ð34Þ

where k, j ¼ 1, 2, one obtains the identical equation as the
one in Eq. (32) with M ¼ Eq1 þ Eq2 þ Eq3 .
Similarly, the pseudoscalar part can be given as

Z
hBqjðq̄γ5bÞðxÞeipMxjΛ0

bid4x

¼ Z
Z

d3x⃗Δd3x⃗rq3ϕ̄q

�
x⃗rq3 þ

1

2
x⃗Δ

�
γ5S

q2
−vϕb

�
x⃗rq3 −

1

2
x⃗Δ

�

× eivðMBqþMΛb−Eq−EbÞzrq3
Y
j¼1;2

Dqjðx⃗ΔÞ: ð35Þ

With the normalization in Eq. (23), we derive that

fs¼
η

γð2πÞ4δ4ðpi−pf−pÞ
Z

hBqjðq̄bÞðxÞeipMxjΛ0
bid4x;

fp¼
η

γð2πÞ4δ4ðpi−pf−pÞ
Z

hBqjðq̄γ5bÞðxÞeipMxjΛ0
bid4x;

ð36Þ

where η is the overlap factor of the spin-flavor configura-
tion. For Λb → Λþ

c ðpÞ, we have η ¼ 1ð ffiffiffiffiffiffiffiffi
3=2

p Þ [17].
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V. NUMERICAL RESULTS AND DISCUSSIONS

We use the bag radius of the Λþ
c baryon as RðΛþ

c Þ ¼
4.8 GeV−1 from Ref. [14]. In the limit of the heavy quark
symmetry, the baryon wave functions for Λ0

b and Λþ
c can be

taken to be the same. As a result, the bag radius for the Λ0
b

should be also around 4.8 GeV. For the proton, it is usually
chosen to be 5 GeV−1. However, to simplify our numerical
calculations, we choose the same bag radiuses for Λ0

b, Λþ
c

and p, i.e., R¼RðΛ0
bÞ¼RðΛþ

c Þ¼RðpÞ¼4.8�0.2GeV−1,
where the uncertainty is to account for the dependence of
the bag radius. In general, an increase of the bag radius
would reduce the form factors. In addition, we take that
mu ¼ md ¼ 5 MeV. Note that the variation of the light
quark masses from 0 to 10 MeV does not make much of a
difference for the numerical values of the form factors. To
determine the heavy quark masses, we assume that the
baryon mass differences are related to the corresponding
quark energies, i.e.,

Eb ¼ MΛ0
b
−Mp þ Eu;

Ec ¼ MΛþ
c
−Mp þ Eu; ð37Þ

where Eb, Ec, and Eu are the energies of b, c, and u quarks
in the bag, and MΛ0

b
, MΛþ

c
, and Mp are the corresponding

baryons masses, respectively. With R ¼ 4.8 GeV−1,
we find ðmb;mcÞ ¼ ð5.1; 1.8Þ GeV, which satisfy the
relation of the heavy quark symmetry, given bymb −mc ¼
MΛ0

b
−MΛþ

c
.

The form factors associated with the vector and axial-
vector currents are defined by

hBqjq̄γμbjΛ0
bi¼ ūfðf1γμ−f2iσμνðpMÞνþf3ðpMÞμÞuΛ0

b
;

hBqjq̄γμγ5bjΛ0
bi¼ ūfðg1γμ−g2iσμνðpMÞνþg3ðpMÞμÞγ5uΛ0

b
:

ð38Þ

By using the equations of motion and comparing Eqs. (28)
and (38), we obtain the form factors associated with the
vector and axial currents from the scalar and pseudoscalar
ones, given by

f1 ¼ ðmb −mqÞ=ðMΛ0
b
−MBq

Þfs;
g1 ¼ ðmb þmqÞ=ðMΛ0

b
þMBq

Þfp; ð39Þ

respectively. Here, we have neglected the contributions
from f3 and g3, which are suppressed based on the heavy
baryon mass of Λb. Because of the relation of mb −mc ¼
MΛ0

b
−MΛþ

c
, we find that fΛ

þ
c

s ¼ fΛ
þ
c

1 , whereas fp is larger
than g1 in all cases.
Our numerical results of the form factors with different

values of p2
M are listed in Table I, where we only consider

the uncertainties from the bag radius. For Λ0
b → Λþ

c , with
the heavy quark symmetry limit we have that

fΛ
þ
c

1 ðp2
MÞ¼gΛ

þ
c

1 ðp2
MÞ;

fΛ
þ
c

1 ðp2
M¼ðMΛ0

b
−MΛþ

c
Þ2Þ¼gΛ

þ
c

1 ðp2
M¼ðMΛ0

b
−MΛþ

c
Þ2Þ¼1;

ð40Þ

which are well consistent with our numerical values. The
results with the heavy quark symmetry indicate that our
constructions for baryon wave functions are reasonable,

while the form factors of fΛ
þ
c

3 and gΛ
þ
c

3 can be safely

neglected. It is interesting to note that fΛ
þ
c

1 and gΛ
þ
c

1

correspond to the Isgur Wise function in the context of

the heavy quark symmetry The first derivatives of fΛ
þ
c

1 and

gΛ
þ
c

1 are found to be

ρ2V ¼ −
d
dω

f1ðωÞ
���
ω¼1

¼ 1.96� 0.04;

ρ2A ¼ −
d
dω

g1ðωÞ
���
ω¼1

¼ 2.07� 0.04 ð41Þ

where the slight difference between ρ2V and ρ2A can be
viewed as the ð1=mbÞ correction. Our results in Eq. (41) are
consistent with ρ2 ¼ ρ2V ¼ ρ2A ¼ 1.3–3.7 in the literature
based on the heavy quark symmetry [18,28–30]. On the
other hand, the experimental measurement on Λ0

b →
Λþ
c l−ν̄l gives [31]

ρ2 ¼ 2.04� 0.46ðstatÞþ0.72
−1.00ðsystÞ; ð42Þ

in which the central value is very close to our values
in Eq. (41).
The decay widths and asymmetries are shown in Table II.

As f1 ¼ g1 from the heavy quark symmetry and m2
M ≈ 0

due to the soft meson limit, we expect that A ¼ κB, leading
to αPðΛ0

b → Λþ
c π

−;Λþ
c K−Þ ¼ 1, as given in the table.

TABLE I. Form factors for Λ0
b → Λþ

c =p.

p2
M fΛ

þ
c

s fΛ
þ
c

p fΛ
þ
c

1 gΛ
þ
c

1 fps fpp fp1 gp1

ðMΛ0
b
−MΛþ

c
Þ2 1.02� 0.00 1.20� 0.00 1.02� 0.00 1.04� 0.01 1.32� 0.00 2.10� 0.04 1.44� 0.00 1.64� 0.03

M2
π 0.50� 0.00 0.58� 0.01 0.50� 0.00 0.50� 0.00 0.14� 0.01 0.18� 0.01 0.16� 0.01 0.14� 0.01

M2
K 0.51� 0.01 0.59� 0.01 0.51� 0.01 0.51� 0.00 0.14� 0.01 0.18� 0.01 0.16� 0.01 0.14� 0.00
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In Table III, we compared our results with those of
Refs. [9–11,32] in the literature as well as the experimental
data [7]. In the literature, the form factors are evaluated by
fitting the experimental data in the generalized factorization
approach [10], considering the LFQM for the baryon wave
functions [11,32], and using the perturbative QCD method
with the hybird scheme [9]. As shown in Table III, the
decay branching ratios for Λ0

b → Λþ
c ðπ−; K−Þ from the

modified bag model are close to those in LFQM [32] as
well as the experimental data. We also find that our
predicted branching ratio for Λ0

b → pK− is about 1.2 times
larger than that for Λ0

b → pπ−, which agrees with the data
and that in the generalized factorization approach [10],
but is different from the results of perturbative QCD [9]
and LFQM [11]. On the other hand, our results for the
direct CP-violating rate asymmetries of Λ0

b → pðπ−; K−Þ
are sizable, which are consistent with all other theo-
retical predictions, and the experimental data except
ACPðΛ0

b → pK−ÞPDG. As the experimental value of
ACPðΛ0

b → pK−ÞPDG in Eq. (1) is consistent with zero
with a negative central value, whereas our prediction of
þ6.7% along with the others in Refs. [10,11] is positive, it
is very interesting to see if such CP asymmetry can be
measured precisely by the ongoing experiment at LHCb. In
addition, we see that ĀCPðΛ0

b → pK−Þ is predicted to be
ð−19.6� 0.2Þ%, which is very large.

In Table IV, we illustrate the ratio of R ¼ BðΛ0
b →

Λþ
c K−Þ=BðΛ0

b → Λþ
c π

−Þ in various approaches. In the
table, the result of the U-spin symmetry is based on the
SUð2Þ symmetry between d and s quarks, which leads to
the naive relation for R, given by

RU-spin ¼
���� Vus

Vud

����2 ≈ 5.3%: ð43Þ

In the factorization approach, R receives an extra factor due
to the meson decay constants, read as

RFactorization ¼
����VusfK
Vudfπ

����2 ≈ 7.7%; ð44Þ

which is consistent with our result and that in LFQM [32]
as well as the data [7,33]. Clearly, it shows the evidence that
the decays of Λ0

b → Λþ
c ðπ−; K−Þ are factorizable.

VI. CONCLUSIONS

We have studied the decays of Λ0
b → Λþ

c ðπ−; K−Þ and
Λ0
b → pðπ−; K−Þ in the modified MIT bag model. We have

provided a new way to construct the baryon momentum
eigenstates in the bag model without introducing new
parameters. In particular, we have summed over the
localized baryon wave function in Eq. (14) with different

TABLE III. Decay branching ratios and direct CP asymmetries.

Our results [10] [11] [9] [32] PDG [7]

103BðΛ0
b → Λþ

c π
−Þ 4.5� 0.2 … … … 4.16þ2.43

−1.73 4.9� 0.4
104BðΛ0

b → Λþ
c K−Þ 3.4� 0.1 … … … 3.1þ1.8

−1.3 3.6� 0.3
106BðΛ0

b → pπ−Þ 5.0� 0.5 4.2� 0.7 4.30 5.2þ2.5
−1.9 … 4.5� 0.8

106BðΛ0
b → pK−Þ 6.0� 0.7 4.8� 0.7 2.17 2.0þ1.0

−1.3 … 5.4� 1.0
102ACPðΛ0

b → pπ−Þ −4.4� 0.1 −3.9� 0.2 −3.37þ0.29
−0.37 −31þ43

−1 … −2.5� 2.9
102ACPðΛ0

b → pK−Þ 6.7� 0.0 5.8� 0.2 10.1þ1.3
−2.0 −5þ26

−5 … −2.5� 2.2

TABLE IV. Values (10−2) of R ¼ BðΛ0
b → Λþ

c K−Þ=BðΛ0
b → Λþ

c π
−Þ in various approaches.

Our result U-spin Factorization LFQM [32] LHCb [33] PDG [7]

7.6� 0.1 5.3 7.7 7.5 7.21� 0.22 7.35� 0.86

TABLE II. Decay widths and symmetries.

Channel Γðs−1Þ αP (%) ᾱP (%) ĀCP (%) ACP (%)

Λ0
b → Λþ

c π
− ð3.03� 0.07Þ × 109 100.0� 0.0 −100.0� 0.0 0 0

Λ0
b → Λþ

c K− ð2.33� 0.06Þ × 108 100.0� 0.0 −100.0� 0.0 0 0
Λ0
b → pπ− ð3.41� 0.38Þ × 106 85.6� 0.0 −83.2� 0.1 1.4� 0.0 −4.4� 0.1

Λ0
b → pK− ð4.11� 0.49Þ × 106 −29.7� 0.3 44.4� 0.4 −19.6� 0.2 6.7� 0.0
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centers to fulfill the requirement of the invariant for the
space translation.
For Λ0

b → Λþ
c ðπ−; K−Þ, we have found that the decay

branching ratios are ð4.5�0.2Þ×10−3 and ð3.4�0.1Þ×10−4
with the uncertainties only from the bag radius, which agree
well with the experimental data of ð4.9� 0.4Þ × 10−3 and
ð3.6� 0.3Þ × 10−4, respectively. We have also shown that
our results of the first derivatives for the form factors f1ðωÞ
and g1ðωÞ in Eq. (41) match with the data as well as those in
the literature, indicating the validation of the heavy quark
symmetry in the decay processes.
For Λ0

b → pðπ−; K−Þ, our predicted decay branching
ratios of ð5.0� 0.5Þ × 10−6 and ð6.0� 0.7Þ × 10−6 are
consistent with the current data of ð4.5� 0.8Þ × 10−6 and
ð5.4� 1.0Þ × 10−6 [7], respectively. In addition, we have

explored the CP-violating asymmetries for the decays.
Particularly, we have obtained that ACPðΛ0

b → pπ−Þ and
ACPðΛ0

b → pK−Þ are ð−4.4� 0.1Þ% and ð6.7� 0.0Þ%, in
comparison with ð−2.5� 2.9Þ% and ð−2.5� 2.2Þ% from
the Particle Data Group in 2020, respectively. It is also
interesting to note that ĀCPðΛ0

b → pK−Þ is predicted to be
ð−19.6� 0.2Þ%, which is very large. It is clear that
more precise future experimental measurements on these
CP-violating asymmetries are needed.
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