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Continuous phase transitions can be classified into ones characterized by local-order parameters and
others that need additional topological constraints. The critical dynamics near the former transitions have
been extensively studied, but the latter is less understood. We fill this gap in knowledge by studying the
transition dynamics to a parity-breaking topological ground state called the chiral soliton lattice in quantum
chromodynamics at finite temperature, baryon chemical potential, and an external magnetic field. We find a
slowing down of the soliton’s translational motion as the critical magnetic field approaches, while the local
relaxation rate to the solitonic state remains finite. The time required to converge to the stationary state
strongly depends on the symmetry of the initial configuration, determining whether translational motion
occurs during the dynamic process.
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I. INTRODUCTION

The most traditional way of classifying phase transitions
is by distinguishing between the discontinuous (first-order)
and continuous (second-order) types. A further classifica-
tion has been proposed based on topology [1] for the latter.
Standard ones are topologically trivial and can be described
by local-order parameters, such as the magnetization of a
ferromagnet. However, there are also continuous transitions
in which the characteristic order parameters cannot be
defined similarly but with additional topological con-
straints, such as the transition between a type-II super-
conductor’s Meissner and mixed states, which involves a
change in the topological number of Abrikosov vortices [2]
(see also Ref. [3]). Trivial transitions are characterized
by scaling power laws, while nontrivial ones have a
ubiquitous logarithmic behavior either below or above
the transition point, e.g., in chiral magnets [4], cholesteric
liquid crystals [5], etc.
Topologically trivial second-order phase transition

dynamics have been extensively studied [6], but relatively
little is known about the nontrivial transitions. One general
phenomenon of trivial transitions is the critical slowing

down of hydrodynamic modes coupled with the order
parameter or the order parameter itself (see [7,8]), such as
the vanishing diffusion coefficients of a binary fluid near
the liquid-gas critical point. Is any singular dynamical
behavior exhibited by topological objects, including
domain walls and vortices, near the transition?
This paper presents the first study of the relaxation

dynamics of reaching the chiral soliton lattice (CSL), a
parallel stack of domain walls with a topological charge.
Similar solitonic structure has also been observed in various
condensed matter systems [4,5] and in quantum chromo-
dynamics (QCD) under an external magnetic field [9–14],
rotation [15–17], time-periodic circularly polarized
laser [18], and in QCD-like theories [19,20]. We examine
QCD under specific conditions: finite temperature T, finite
baryon chemical potential μB, and an external magnetic
field B. This exploration is motivated by potential mani-
festations of inhomogeneous states within magnetar cores
and during noncentral heavy-ion collisions (see also a
recent proposal in Ref. [21]). Given the initially large
magnetic fields in these systems and their subsequent
decay, a potential exists for realizing the CSL transiently
during dynamic processes. Concurrently, there is a need to
establish a dynamic framework incorporating the CSL
states known in the static theory. However, to our knowl-
edge, such a comprehensive theory has yet to be developed.
Figure 1(a) schematically illustrates the relaxation

dynamics of the neutral pion field to its CSL state with
two characteristic features. The first is the local relaxation
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dynamics toward the domain wall, represented by the
magenta region and arrows transitioning from the red to
blue configurations. The second feature is the translational
motion of the domain wall, often termed motion in the
moduli space, which is depicted by cyan arrows moving
from the blue to the black configurations. In this illus-
tration, the red and black configurations signify a general
initial state and a stationary CSL unit, respectively. An
intermediate state is described by the blue configuration, a
translating domain wall positioned away from the sta-
tionary state. This transient state has a slightly higher
energy than the stationary state, prompting the system to
evolve toward the stationary configuration.
Our analysis shows a pronounced timescale separation

between these two characteristic “modes” as the transition
to the CSL approaches. The local relaxation time remains
finite as the transition point, t ∼m−1

π at the order of the
inverse pion mass, whereas the typical completion time for
translational motion increases significantly, t ≫ m−1

π .
These behaviors indicate that the presence or absence of
translational motion in the dynamical process considerably
impacts the duration required to achieve a stationary state.
In Figs. 1(a) and 1(b), we juxtapose the dynamics of two

initial configurations, ϕiniðzÞ: (a) represents a general
(nonsymmetric) form, while (b) depicts an odd function
at the center of the domain wall in the stationary state zc,

i.e., ϕiniðz−zcÞ−ϕiniðzcÞ¼−ϕiniðzc−zÞþϕiniðzcÞ. Owing
to this symmetry, the relaxation process in (b) avoids the
translational motion of the kink. This is because it already
aligns with the stationary state’s position from the outset,
as evidenced by d2ϕini=dz2 ¼ 0 at z ¼ zc. We will further
illustrate and quantify these behavioral differences using
examples in Figs. 3 and 4. Our findings reveal a unique
facet of second-order phase transition dynamics driven by
topological solitons.
This paper is organized as follows: In Sec. II A, we

present our setup, incorporating both static and dynamic
formulations. In Sec. III, we analyze the stationary solutions
and their alterations due to dissipation. In Sec. IV, we present
our numerical results on the time evolution of the system,
highlighting the rapid and slow processes leading to the CSL
state. Section V discusses the physical origins of the time-
scale separation and its implications in tabletop experiments
of chiral magnets. We conclude in Sec. VI. Appendix is
dedicated to establishing a connection between the termi-
nologies of QCD and helimagnets within the CSL context.

II. FORMULATION

A. Setup

Weconsider an effective theory of two-flavorQCDat finite
T, μB, andB such that CSL appears as the ground state [9,13].
Our theory takes into account low-energydegrees of freedom,
such as the Nambu-Goldstone (NG) modes and conserved
charge densities that respect the chiral symmetry, i.e., the
neutral pion ϕ with q̄q ∼ e2iϕt

3

and the axial isospin charge
density ρ ¼ q̄γ0γ5t3q, where q is the quark field, and ta is the
SU(2) generatorwith trðtatbÞ ¼ δab=2. Note here thatϕ is the
(pseudo) NG mode associated with the spontaneous sym-
metry breaking of the axial t3 rotation of the chiral symmetry,
SUð2ÞL × SUð2ÞR, denoted by UL−Rð1Þt3, which is an
approximate symmetry in the presence of the quark mass.
ρ is the conserved charge density for the same approximate
symmetry, UL−Rð1Þt3 . Near the transition between the QCD
vacuum and the CSL state, we can discard the charged pions
π� with an additional mass due to B ≠ 0 and the other
conserved charge densities (see Refs. [9,22] for interesting
phenomena among π�). However, to describe the dynamics
near the transition to the nuclearmatter at μB comparablewith
the nuclear mass, we may need to include the energy and
momentum densities (see Ref. [23]). We set e ¼ 1.

B. Statics

The Hamiltonian density of the system, H ¼ Hϕ þHρ,
consists of the pion and charge sectors,

Hϕ ¼ f2π
2
ð∇ϕÞ2 − f2πm2

π cosϕ −
μB
4π2

B · ∇ϕ; ð1aÞ

Hρ ¼
1

2χ
ρ2: ð1bÞ

FIG. 1. Schematic illustration of the relaxation dynamics of the
neutral pion field to its CSL state for a single lattice unit with the
periodic length l. We consider two types of initial configurations
in the modulation direction z: (a) a general (nonsymmetric) form
and (b) a symmetric form (see main texts for details).
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Here, the pion decay constant fπ characterizes the stiffness
of the chiral order, mπ is the pion screening mass, and χ is
the axial isospin charge susceptibility. The first two terms
onHϕ are the kinetic and mass terms, which can be derived
based on the chiral symmetry and its explicit breaking by a
small quark mass; the third one is a topological term due to
the anomalous coupling of the neutral pion and B in the
presence of μB [10,24]. The transition we are interested in
occurs through the competition between the kinetic and
topological terms, which disfavor and favor inhomogene-
ity, respectively. We have neglected any nonlinear and
spatially varying terms in the density term Hρ.

C. Dynamics

We employ the Poisson bracket method to derive the
hydrodynamic equations that follow from the system’s
symmetries (for general construction, see Refs. [7,25]),

∂tϕðxÞ ¼
Z

dy½ϕðxÞ; ρðyÞ� δH
δρðyÞ − κ

δH
δϕðxÞ ; ð2aÞ

∂tρðxÞ ¼
Z

dy½ρðxÞ;ϕðyÞ� δH
δϕðyÞ þ λ∇2

δH
δρðxÞ ; ð2bÞ

whereH ¼ R
dxH, and κ and λ are relaxation rate and axial

isospin conductivity. In each of (2), the first and the second
terms describe the macroscopic Hamiltonian dynamics
and the thermal dissipation, which preserves and breaks
the time-reversal symmetry, respectively. We postulate a
Poisson bracket such that ϕ and ρ are canonical conjugates,
½ϕðxÞ; ρðyÞ� ¼ δðx − yÞ, consistent with the Uð1Þt3 sym-
metry [26,27]: L¼Lð∂tϕþμA;∇ϕÞ, hence ρ≡ δL=δμA ¼
δL=δð∂tϕÞ. The coefficients of the functional derivative
in the dissipative terms are determined by a derivative
expansion. The leading contribution of (2) is Oð∇2Þ due to
the approximate axial isospin conservation. For simplicity,
we neglect noise terms and the anisotropy in the
conductivity.
By performing functional derivatives, we arrive at the

following expression:

∂tϕ ¼ ρ

χ
þ f2πκ

�
−m2

π sinϕþ ∇2ϕ
�
; ð3aÞ

∂tρ ¼ f2π∇2ϕ −m2
πf2π sinϕþ λ

χ
∇2ρ; ð3bÞ

which represents a nonlinear and dissipative extension
of previous studies [23,28]. It is worth noting that both
features are crucial for the system to converge to the correct
stationary state in the presence of an infinite potential of the
form ∝ cosϕ rather than a mass term ∝ ϕ2.
We set B ¼ Bez and use units of m−1

π and M−1
π for space

and time coordinates, respectively. Here, Mπ ¼ mπc

represents the pion pole mass, where c2 ¼ f2π=χ denotes
the pion velocity in the chiral limit [28]. Note that the
system is homogeneous in the xy plane as ∂x;y only enters
the first term of Hϕ. We first eliminate ρ and, neglecting
Oð∂4zÞ from the original equations (3), we obtain one of the
main equations of this paper,

□ϕþ sinϕþ γ∂t sinϕ − α∂2z∂tϕ − β∂2z sinϕ ¼ 0; ð4Þ

where□≡ ∂
2
t − ∂

2
z , γ ¼ mπf2πκ=c, α ¼ γ þmπλ=ðcχÞ, and

β ¼ κλm2
π . We can track the dynamics of ρ by substituting

ϕ back into the following dimensionless form of Eq. (3a):

ρ

mπχ
¼ ∂tϕþ γðsinϕ −∇2ϕÞ: ð5Þ

III. CHIRAL SOLITON LATTICE AND
DISSIPATION

A. Stationary equation

The stationary solution of the time-evolution equation (4),
ϕ̄ðzÞ contains the spatial profile of the CSL given by

∂
2
zϕ̄ ¼ sin ϕ̄ − β∂2z sin ϕ̄: ð6Þ

B. Dissipationless solution

Let us first examine the dissipationless limit, β ¼ 0
(see [9] for details). This equation has the same math-
ematical form as the simple pendulum, and we can solve it
analytically using Jacobi’s elliptic function (a dimension-
less form),

ϕ̄ðz; kÞ ¼ 2am

�
z
k
; k

�
þ π; ð7Þ

where kð0 ≤ k ≤ 1Þ is the elliptic modulus, a free param-
eter at this stage. Note that this solution (7) has periodic
minima at ϕ̄ðð2mþ 1ÞkKðkÞ; kÞ ¼ 2πm, with m being an
integer, and the periodic length is given by l ¼ 2kKðkÞ.
Here, KðkÞ and EðkÞ (for later purposes) are the complete
elliptic functions of the first and second kinds, respectively.
We now determine the optimal k for given B with fixed

μB by minimizing the total energy in the z direction per unit
area in the xy plane,

R
l
0 dzHϕ¼ϕ̄=l with the solution (7).

After a straightforward calculation, we find the minimiza-
tion condition reduces to EðkÞ=k ¼ B=BCSL with BCSL ¼
16πmπf2π=μB. The solution kðBÞ exists if and only if
EðkÞ=k ≥ 1 and the equality holds in the critical magnetic
field BCSL, which separates the QCD vacuum ðB < BCSLÞ
and the CSL ðB > BCSLÞ. By substituting k ¼ kðBÞ into l,
we numerically determine the B dependence of the periodic
length lðBÞ.
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Near BCSL from above, an asymptotic form of the
complete elliptic functions (k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
) can be used [29],

KðkÞ ≃ log
4

k0
þ k02

4

�
log

4

k0
− 1

�
; ð8aÞ

EðkÞ ≃ 1þ k02

2

�
log

4

k0
−
1

2

�
: ð8bÞ

The energy minimization condition reduces to k ≃ BCSL=B
and thus lðBÞ ≃ − logðΔB=BÞ with ΔB≡ B − BCSL. The
leading logarithmic behavior can also be derived from the
balance between the repulsion energy of the kinks separated
by l [30] (see also Ref. [31]) and the binding energy gain
from the topological term measured from B ¼ BCSL,

e−lmπ ∼
μBΔB
4π2

Z
l

0

dz∂zϕ ¼ μBΔB
2π

; ð9Þ

where we have restored the unit length m−1
π . The bulk

quantities reflect the logarithmic behavior of lðBÞ, e.g., the
baryon number per unit area in the xy plane,

ðNBÞtot ¼
NB

l
∼ −

1

logðΔB=BÞ ; ð10Þ

where NB ¼ −
R
l
0 dz∂Hϕ¼ϕ̄=ð∂μBÞ ¼ B=ð2πÞ is the baryon

number per unit CSL [9,10]. By integrating ∂Hϕ¼ϕ̄=ð∂BÞ
instead of ∂Hϕ¼ϕ̄=ð∂μBÞ, the same behavior of the mag-
netization can be checked. Note that, even when taking into
account the quantum fluctuations of the pions, the total
number density [as given in Eq. (10)] andmagnetization near
the critical magnetic field maintain characteristics of the
continuous transition with a singular derivative. This has
been recently demonstrated in Ref. [14].

C. Dissipative solution

Now let us consider the dissipative case β ≠ 0, applied
to the stationary solution (6). Figure 2(a) shows the β
dependence of a unit CSL configuration of the ϕ̄ field with
the boundary condition, ϕ̄ð0Þ ¼ 0 and ϕ̄ðlÞ ¼ 2π for an
arbitrary B > BCSL. As β increases, the domain wall at the
center sharpens, corresponding to a reduction in the width
of the kink in the ∂zϕ̄ configuration. Interestingly, nonlinear
effects arise in the dissipation of the CSL,∝ ∂

2
z sin ϕ̄ ≠ ∂

2
zϕ̄.

If one neglects the nonlinearity from the right-hand sides of
the dynamical equation (4), sinϕ ≈ ϕ leads to a different
convergence of the pion field. For the convergence to occur,
β must be less than 1; otherwise, the solution becomes
unstable at β ≥ 1.

IV. RELAXATIONAL DYNAMICS TO THE
CHIRAL SOLITON LATTICE

A. Numerical setup

We numerically study the dynamical relaxation proc-
esses toward the stationary state discussed so far by solving
Eq. (4). We consider a finite length in the z direction
(0 ≤ z ≤ L) and vary B such that lðBÞ ¼ L=n discontin-
uously [32], where n ¼ 1; 2;… corresponds to the number
of kinks in the system. We discuss a possible problem in
the infinite system later. We impose each of the initial-
boundary conditions as follows:

ðIÞ ϕð0; zÞ ¼ 0; ϕðt; LÞ ¼ 2nπθðt − t0Þ; ð11aÞ
ðIIÞ ϕð0; zÞ ¼ 2nπz=L; ϕðt; LÞ ¼ 2nπ; ð11bÞ

which have a common ground state at t → ∞. Note that
minimizing the total energy determines n at fixed L and B.
In this sense, the information of the magnetic field is
implemented as the boundary condition. Case (I) describes
a quench from the vacuum to the CSL state at t ¼ t0, while
case (II) describes the relaxation process starting with a
symmetric inhomogeneous configuration that is not in the
ground state. Here, we have selected representative initial
configurations: (I) with and (II) without translational
motion in the subsequent dynamic process. We emphasize
here that, instead of the liner configuration adopted in (11),
one can choose any initial configurations that exhibit odd
symmetry about the center at zc ¼ ði − 1=2ÞL=n for an
arbitrary ith cell ði ¼ 1;…; nÞ, defined as ði − 1ÞL=n <
z < iL=n. Owing to this symmetry, the kink emerges at
each center and does not move throughout the entire
dynamic process. Throughout the simulations below, we
set the parameters ðα; β; γÞ ¼ ð2.2; 0.4; 0.2Þ.

B. Time evolution

Figure 3 shows a typical time evolution for each of the
initial-boundary conditions (11) with two values of

FIG. 2. Static configurations of the neutral pion field ϕ̄
described by Eqs. (6). Variations for different strengths of
dissipation β are shown. A unit of CSL is depicted, with the
spatial coordinate z normalized by the period of the CSL, l.
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B ¼ l−1ðL=nÞ (n ¼ 1, 2) for L ¼ 8.0, which is sufficiently
larger than the typical size of the soliton (∼1.0 in the unit of
m−1

π ) so that we can neglect boundary effects. The yellow
curves correspond to case (I), where the solitonic object
(for each n ¼ 1 and n ¼ 2) is initially created at the edge
z ¼ L and moves rigidly to the ground-state position as
time progresses. The green curves correspond to case (II),
where the initial uniform configuration of ∂zϕ approaches
the stationary configuration without any translational
motion in the moduli space and only by the local relaxation.
As the time intervals are different orders of magnitudes,
case (I) at B ≃ BCSL (top left) takes significantly longer
compared to the others: case (I) relatively far from BCSL
(top right) and case (II) for any B (bottoms).

C. Relaxation rate

To quantify the soliton’s slow motion in Fig. 3, we define
the displacement from the stationary state ϕ̄ðzÞ given by
Eq. (6): ΔΦðtÞ≡ R

L
0 dzjϕðt; zÞ − ϕ̄ðzÞj=Lnπ, where the

normalization is chosen so that ΔΦð0Þ ¼ 1. We obtain
the characteristic time τ such that the deviation decays
“exponentially,” ΔΦðτÞ ¼ e−1, and evaluate how fast the
system approaches the stationary state using the character-
istic rate τ−1. Figure 4 shows the dependence of this rate on
the magnetic field for each initial-boundary condition (11)
and different system size L. For case (I), the rate tends
to 0 as B=BCSL → 1, whereas it remains finite for case (II).

The first two circles (L ¼ 8) for each yellow and green
plot correspond to the demonstration in Fig. 3, for
B ¼ 1.01BCSL and B ¼ 1.33BCSL, respectively. Note that
the behavior as a function of B=BCSL is independent of L,
although it will generally break down in a large B region,
where the spatial separation of the soliton is insuffi-
cient, lðBÞ ∼ 1.

V. DISCUSSION

As depicted in Fig. 4 (see also Fig. 3 for a demonstra-
tion), we observe a slowing down of the translational
motion of the soliton as the external magnetic field B
approaches the transition value BCSL. Interestingly, the
local relaxation rate to the domain wall remains finite as
B → BCSL. This is due to the singularity at B ¼ BCSL
characterized by the divergence of the CSL separation
length, lðBÞ → ∞, which only affects the solitonic motion.
Specifically, the yellow plots reach exactly zero at
B ¼ BCSL, consistent with the fact that the kink remains
stationary in the exact infinite volume, where the transla-
tional invariance is restored. We attribute the finite relax-
ation process to the excited-state dynamics of the soliton,
whose typical frequency ω ≃mπ remains gapped even at
B ¼ BCSL [29,33,34] (see also Ref. [35] for the review).
We can extend this analysis to an infinite system

perturbed locally by a single CSL unit. We assume the
initial deformation does not affect the other configurations,
which are kept as ground states. This assumption is justified
near BCSL since lðBÞ is large and the nearest neighbors
are sufficiently separated. We can consider similar initial
configurations as we discussed previously [see Eq. (11)
with n ¼ 1] and vary B continuously. The characteristic

FIG. 3. Time evolution of ∂zϕ for different combinations of
initial-boundary conditions (I) or (II) and external magnetic field,
B ≈ 1.01BCSL or B ≈ 1.33BCSL. The black dashed curves re-
present the stationary-state solution (6), corresponding to Fig. 2 at
β ¼ 0.4. The plotted data are limited to a time where the deviation
from the stationary solution becomes less than 1% of the initial
deviation.

FIG. 4. Dependence of the characteristic rate τ−1 on the
magnetic field for each initial-boundary condition, (I) with and
(II) without translational motion in the dynamical process,
represented in yellow and green curves, respectively. The
symbols (circle, triangle, and square) represent different system
sizes, L ¼ 8, 9, and 10, respectively. As the applied magnetic
field B approaches to the critical value BCSL, the number of kinks
in the system (n ¼ 1, 2, 3) decreases, leading to a slower (yellow)
and faster (green) approach to the stationary state.
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time to reach a stationary state will have a magnetic field
dependence similar to that shown in Fig. 4, where cases (I)
and (II) correspond to the dynamics resulting from an initial
dislocation and deformation of the kink, respectively. It
would be interesting to test these predictions, for instance,
in chiral magnets [36] (see the Appendix for an analogy
between the CSL in QCD and chiral magnets).

VI. CONCLUSION

We have presented a dissipative hydrodynamic frame-
work with a small quark mass for QCD at finite temper-
ature, baryon chemical potential, and the external magnetic
field [see Eq. (3)]. Our effective theory incorporates a
nonlinear representation of the neutral pion field and
successfully has a stational solution associated with a
topological ground state, known as the CSL state. This
would be the first step to describe the dynamics of the CSL
in noncentral heavy-ion collisions and the cores of magnet-
ars. It would be interesting to apply our model to the
quench dynamics of the transient CSL state sustained only
for a short time by a sufficiently strong magnetic field.
Our numerical simulations reveal a slowing down of the

soliton’s translational motion in the moduli space near the
transition point between topologically trivial/nontrivial
states while the local relaxation to the topological soliton
keeps finite in the same region (see Figs. 3 and 4). We
propose that this dynamical characteristic is not exclusive
to the CSL but may represent a general feature of second-
order transitions involving a change in topological number.
We expect analogous slow and fast dynamics by consid-
ering the relaxation process to a topological object and
controlling the motion in the moduli space by imposing the
appropriate symmetry on the initial condition. This feature
contrasts with the standard trivial second-order phase
transitions, where both collective motions and local dis-
sipation show simultaneous critical slowing down due to
the large correlation length of the order parameter.
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APPENDIX: ANALOGY BETWEEN CSL IN QCD
AND CHIRAL MAGNETS

The CSL is also manifested in a certain class of
helimagnets, which are stabilized by the relativistic spin-
orbit coupling known as the Dzyaloshinskii-Moriya (DM)
interaction. In this system, spins align within an easy plane
(the xy plane) and undergo periodic rotation along the
normal z direction. This rotation is generated by the DM
interaction, which promotes the orthogonal alignment of
adjacent spins. Within the easy plane, rotational symmetry
is spontaneously broken. The corresponding NG mode is
the magnon, characterized by the spin angle in the easy
plane. The conserved charge associated with this rotational
symmetry is identified as the longitudinal magnetization
density along the z axis. The total spin in the z direction is a
symmetry generator within this easy plane. For a peda-
gogical review of general easy plane magnet dynamics,
readers may refer to Sec. 3.3.4 of Ref. [37].
Utilizing the correspondence between the symmetry

groups Uð1Þ ≃ Oð2Þ, we can map the effective
Hamiltonian of the CSL in QCD to that of chiral magnets
as follows: First, the Hamiltonian of the magnon along the z
direction exhibits the same form as that of the pion, as
denoted by Eq. (1a) [see also Eq. (45) in Ref. [35] ]. In this
mapping, the pion mass term is analogous to an external
symmetry-breaking term, represented by the magnetic field
within the easy plane, that is to say, in the x-direction. The
anomaly and DM interaction terms exhibit equivalent
mathematical behavior despite having different physical
origins. Second, the Hamiltonian of the longitudinal spin is
equivalent to that described by the axial isospin charge, as
represented by Eq. (1). The corresponding Hamiltonian in
chiral magnets is identified as the anisotropy term [refer to
the term proportional to K⊥ in Eq. (9) of Ref. [35]].
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