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We study relativistic magnetohydrodynamics with longitudinal boost invariance in the presence of chiral
magnetic effects and finite electric conductivity. With initial magnetic fields parallel or antiparallel to
electric fields, we derive the analytic solutions of electromagnetic fields and the chiral number and energy
density in an expansion of several parameters determined by initial conditions. The numerical solutions
show that such analytic solutions work well in weak fields or large chiral fluctuations. We also discuss the
properties of electromagnetic fields in the laboratory frame.
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I. INTRODUCTION

Recently some novel transport phenomena of chiral
(massless) fermions in strong electromagnetic (EM) fields
have been extensively studied in relativistic heavy ion
collisions and condensed matter physics. One of them is the
chiral magnetic effect (CME): an electric current can be
induced by the strong magnetic field when the numbers of
left- and right-handed fermions are not equal [1–3].
Similarly the strong magnetic field can also lead to the
chiral separation effect for the chiral charge current. These
effects are associated with the chiral anomaly and can be
described by chiral kinetic equations (CKE). The CKE
are derived from various approaches, e.g., the path integral
[4–6], the Hamiltonian approach [7,8], the quantum kinetic
theory via Wigner functions [9–17], and the world-line
formalism [18,19]. The chiral separation can also be
induced by an electric field, which is called the chiral
electric separation effect (CESE) [20–23]. If the electric
field is perpendicular to the magnetic field, a Hall current
for chiral fermions is expected, which is called chiral Hall
separation effect [23]. The chiral particle production in
strong EM fields is found to be directly connected to the
Schwinger mechanism [24,25], and similar calculation has
been done analytically via the world-line formalism [26]
and Wigner functions [27]. Recent reviews about chiral
transport phenomena can be found in Refs. [28–31].
The chiral transport phenomena are expected to have

observables in relativistic heavy ion collisions in which
very strong magnetic fields of the order B ∼ 1018 G are

produced [32–35]. At the very early stage of the quark-
gluon plasma (QGP), the topological fluctuations in non-
Abelian gauge fields give rise to the imbalance of chirality
from event to event (event by event). Such an imbalance of
chiralitymay lead to the charge separationwith respect to the
reaction plane in heavy ion collisions. The STAR collabo-
ration has observed the charge separation in Auþ Au
collisions [36,37]. However, due to the huge backgrounds
from collective flows [38,39] it is a challenge to extract the
weak CME signal from the overwhelming background. It is
expected that the ongoing isobar collision experiment at
STARmay shed light on the CME signal (see e.g., Ref. [40]
for discussions on isobar collisions).
In order to extract the CME signal, we need the precise

simulation of the QGP evolution in the time-evolving EM
field. One approach is through the simulation of the CKE.
Very recently, the boost invariant formulation of the CKE
has been done with the chiral circular displacement
introduced [41]. The CKE has been solved numerically
in heavy ion collisions [42,43]. Another approach is the
classical statistical simulation based on solving the coupled
equations of Yang-Mills and Dirac applied to heavy ion
collisions [44–46]. Besides the relativistic hydrodynamic is
a widely used model in relativistic heavy ion collisions.
The relativistic hydrodynamic model is one of the

main approaches to the QGP evolution [47–53]. A natural
extension of the hydrodynamic model in the presence of the
magnetic field is themagentohydrodynamics (MHD),which
is hydrodynamics coupled with Maxwell’s equations. The
idealMHDequationswith longitudinal boost invariance and
a transverse magnetic field have been calculated [54,55],
where the magnetic field decays as ∼1=τ with τ being the
proper time, much slower than in vacuum [2]. The mag-
netization effect has also been systematically studied [54].
Later the calculation was extended to 2þ 1 dimensions
[56,57]. There is an enhancement of the elliptic flowv2 of π−
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from the external magnetic field [58]. Recently the MHD
with the longitudinal boost invariance has been extended to
include the finite conductivity in the Gubser flow [59].
Readers may look at Ref. [60] for recent numerical simu-
lations of the ideal MHD.
In this work, we consider the relativistic MHD in the

presence of the CME and finite conductivity. Usually
the numerical simulations of MHD with the CME could
be very unstable because of chirality instability [61].
Therefore stable analytic solutions in some special cases
are very important for providing a test of numerical
simulations and a simple physical picture for such a
complicated process. As a first attempt, we consider the
MHD with the longitudinal boost invariance. To avoid
the acceleration of the fluid by the EM field, we assume
an electric charge neutral fluid. We then search for the
EM fields that can keep the Bjorken fluid velocity
unchanged. It is very similar to the case of the force-
free magnetic field discussed in classical electrodynamics
[62,63]. To solve the coupled equations of the anomalous
conservation equation and Maxwell’s equations, we
assume that the terms proportional to the anomaly
constant (proportional to the Planck constant ℏ) are
perturbations, this is equivalent to an expansion in ℏ.
We compare our approximate analytic solutions with the
numerical results. Finally we compute the EM field in
the laboratory frame and discuss the coupling between
the EM field and the chiral current.
The organization of the paper is as follows. In Sec. II,

we give a brief review for the relativistic MHD with the
CME. In Sec. III, we assume the form of the fluid
velocity in longitudinal boost invariance. We choose
a configuration of the EM field that is orthogonal to
the fluid velocity. In Secs. IVA and IV B, we solve
Maxwell’s equations coupled with the anomalous con-
servation equation for the chiral charge. We obtain the
approximate analytic solutions for two different equations
of state. We compare our approximate analytic solutions
with numerical ones. In Sec. IV C, we compute the EM
field in the laboratory frame to show the consistence with
previous results. Finally we make a summary of our
results in Sec. V.
Throughout this work, we use the metric gμν¼

diagfþ;−;−;−g; thus, the fluid velocity satisfies uμuμ¼1,
and the orthogonal projector to the fluid four-velocity
is Δμν ¼ gμν − uμuν. We also choose the Levi-Civita
tensor satisfying ϵ0123 ¼ −ϵ0123 ¼ þ1 and ϵμναβϵμνρσ ¼
−2!ðgαρgβσ − gασg

β
ρÞ.

II. ANOMALOUS MAGNETOHYDRODYNAMICS

In this section, we give a brief preview to the relati-
vistic MHD with CME, which is called anomalous
magnetohydrodynamics. The MHD equations consist of
conservation equations and Maxwell’s equations (see, e.g.,

Refs. [54–57,64–66] for details). The energy-momentum
conservation equation reads

∂μTμν ¼ 0; ð1Þ

where Tμν is the energy-momentum tensor including the
contributions from the fluid and the EM fields

Tμν ¼ Tμν
F þ Tμν

EM: ð2Þ

The fluid part has the usual form,

Tμν
F ¼ εuμuν − ðpþ ΠÞΔμν þ πμν; ð3Þ

where ε and p are the energy density and pressure,
respectively, uμ ¼ γð1; vÞ is the fluid velocity satisfying
uμuμ ¼ 1, Δμν ¼ gμν − uμuν is the projector, and Π and πμν

are bulk viscous pressure and shear viscous tensor, respec-
tively. For simplicity, we neglect viscous effects in this
paper, i.e., Π ¼ πμν ¼ 0. The EM field part of the energy-
momentum tensor reads

Tμν
EM ¼ −FμλFν

λ þ
1

4
gμνFρσFρσ: ð4Þ

One can introduce the four-vector form of the electric and
magnetic fields in terms of the fluid velocity

Eμ ¼ Fμνuν; Bμ ¼ 1

2
ϵμναβuνFαβ; ð5Þ

which satisfies uμEμ ¼ 0 and uμBμ ¼ 0 meaning that both
Eμ and Bμ are spacelike. Then, the EM field strength tensor
can be put into the form

Fμν ¼ Eμuν − Eνuμ þ ϵμναβuαBβ: ð6Þ

Inserting the above formula into Eq. (4), we obtain the
complete form of the energy-momentum tensor from
Eq. (2),

Tμν ¼ ðεþ pþ E2 þ B2Þuμuν −
�
pþ 1

2
E2 þ 1

2
B2

�
gμν

− EμEν − BμBν − uμϵνλαβEλBαuβ − uνϵμλαβEλBαuβ;

ð7Þ

where E and B are defined by

EμEμ ¼ −E2; BμBμ ¼ −B2: ð8Þ

The conservation equations are

∂μj
μ
e ¼ 0;

∂μj
μ
5 ¼ −e2CE · B; ð9Þ
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where jμe is the electric charge current and jμ5 is the
chiral (axial) charge current. Note that the chiral anomaly
term appears in the second line of Eq. (9) with
C ¼ 1=ð2π2Þ. These currents can be decomposed into
three parts,

jμe ¼ neuμ þ σEμ þ ξBμ;

jμ5 ¼ n5uμ þ σ5Eμ þ ξ5Bμ; ð10Þ

where ne and n5 are the electric and chiral charge density,
respectively, σ and σ5 are the electric and chiral electric
conductivity, respectively [20,21,23], and ξ and ξ5 are
associated with the CME and CESE [3,9,10], which are
given by

ξ ¼ eCμ5; ξ5 ¼ eCμe: ð11Þ

For simplicity, we neglect all other dissipative effects in jμe
and jμ5 such as the heat conducting flow. The chiral electric
conductivity σ5 is usually parametrized as σ5 ∝ μeμ5 in the
small μe and μ5 limit [20,21,23].
Maxwell’s equations can be put into the following form,

∂μFμν ¼ jνe; ð12Þ

∂μðϵμναβFαβÞ ¼ 0: ð13Þ

To close the system of equations, we need to choose
the equations of state (EoS) for the thermodynamic
quantities. In the dense limit with high chemical potentials,
we use

ε ¼ c−2s p;

ne ¼ aμeðμ2e þ 3μ25Þ;
n5 ¼ aμ5ðμ25 þ 3μ2eÞ; ð14Þ

where a is a dimensionless constant and cs is the speed of
sound also taken as a constant. On the other hand, in the hot
limit with high temperatures, we use

ε ¼ c−2s p;

ne ¼ aμeT2;

n5 ¼ aμ5T2; ð15Þ

where a is again a dimensionless constant. Note that the
value of a in Eq. (15) is different from that in Eq. (14). For
the ideal fluid, we have a ¼ 1=ð3π2Þ and a ¼ 1=3 for
Eq. (14) and (15), respectively [9,67].
Usually the electric field would accelerate charged

particles and the charged fluid. To avoid such a problem,
we simply set the chemical potential for electric charge
vanishing, μe ¼ 0, which also leads to ne ¼ σ5 ¼ ξ5 ¼ 0.
Such a condition means the fluid is neutral: the number

of positively charged particles is the same as that of
negatively charged particles. Actually we look for a special
configuration of EM fields coupled with the media, very
similar to the force-free case in classical electrodynamics.
In Sec. IV C, we discuss the details and check the
consistence of this assumption.
Here are the whole system of equations we are going

to solve: conservation equations (1) and (9), Maxwell’s
equations (12) and (13), constitutive equations (7), (6), and
(10), and equations of state (14) and (15).

III. EQUATIONS WITH LONGITUDINAL
BOOST INVARIANCE

We assume that the fluid has longitudinal boost invari-
ance. It is convenient to introduce the Milne coordinates
z ¼ τ sinh η and t ¼ τ cosh η, with τ ¼ ðt2 − z2Þ1=2 being
the proper time and η ¼ 1

2
ln½ðtþ zÞ=ðt − zÞ� being the

space-time rapidity. The fluid velocity with longitudinal
boost invariance can be written as [68]

uμ ¼ ðcosh η; 0; 0; sinh ηÞ ¼ γð1; 0; 0; z=tÞ; ð16Þ

where γ ¼ cosh η is the Lorentz contraction factor.
For simplicity we neglect the EM field in the longitudinal

direction, so the general form of the EM field satisfying
u · E ¼ u · B ¼ 0 is

Eμ ¼ ð0; E cos ζ; E sin ζ; 0Þ;
Bμ ¼ ð0; B cosφ; B sinφ; 0Þ; ð17Þ

where ζ and φ are the azimuthal angle of the electric and
magnetic field in the transverse plane, respectively. To
search for possible analytic solutions, we assume that Eμ

and Bμ will always be in the transverse plane and that E, B,
ζ, φ are only functions of τ. We can further simplify the
problem by assuming that Eμ and Bμ are parallel or
antiparallel. Without loss of generality, the EM field can
be put in the y direction,

Eμ ¼ ð0; 0; χEðτÞ; 0Þ; Bμ ¼ ð0; 0; BðτÞ; 0Þ; ð18Þ

where χ ¼ �1. We check the self-consistence of these
assumptions after we find the solution in Sec. IV C. Note
that the authors of Ref. [69] have found another possible
configuration of the EM fields in the absence of the chiral
magnetic effect, in which the direction of the electric and
magnetic field depends on η. As this configuration is
irrelevant to the heavy ion collisions, we do not consider
it in this paper.
By projecting the energy-momentum conservation equa-

tion (1) onto the spatial direction, Δμα∂νTμν ¼ 0, we obtain
the acceleration of the fluid velocity,
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ðu ·∂Þuα ¼ 1

ðεþpþE2þB2Þ
�
Δν

α∂ν

�
pþ1

2
E2þ1

2
B2

�

þΔμαðE ·∂ÞEμþEαð∂ ·EÞþΔμαðB ·∂ÞBμ

þBαð∂ ·BÞþ ϵνλρσEλBρuσð∂νuαÞ

þð∂ ·uÞϵαλρσEλBρuσþΔμαðu ·∂ÞϵμλρσEλBρuσ

�
:

ð19Þ

According to our assumption that the electric and magnetic
field are constant in transverse coordinates ðx; yÞ, we have
ðE · ∂ÞEμ ¼ ð∂ · EÞ ¼ ðB · ∂ÞBμ ¼ ð∂ · BÞ ¼ 0. Also, if p,
Eμ and Bμ are only the functions of τ, the first term inside
the square brackets is vanishing. So we obtain the non-
acceleration of the fluid velocity

ðu · ∂Þuα ¼ 0; ð20Þ

which means that the fluid velocity always takes the value
in Eq. (16). This is consistent to the previous assumption
that the fluid is charge neutral.
The energy conservation equation can be obtained by a

contraction of uμ with Eq. (1) or uμ∂νTμν ¼ 0,

ðu · ∂Þ
�
εþ 1

2
E2 þ 1

2
B2

�
þ ðεþ pþ E2 þ B2Þð∂ · uÞ

¼ uμðE · ∂ÞEμ þ uμðB · ∂ÞBμ þ ϵνλαβ∂νðEλBαuβÞ
þ uμðu · ∂ÞϵμλαβEλBαuβ: ð21Þ

With Eq. (18), the above equation is reduced to

ðu ·∂Þ
�
εþ1

2
E2þ1

2
B2

�
þðεþpþE2þB2Þð∂ ·uÞ¼ 0:

ð22Þ

Now we look at Maxwell’s equations. Inserting Eq. (18)
for the EM fields into Eq. (12) yields for ν ¼ y

d
dτ

Eþ 1

τ
Eþ σEþ χξB ¼ 0; ð23Þ

where we have used d=dτ≡ ðu · ∂Þ. For other indices
ν ¼ t, x, z, we obtain identities using μe ¼ 0 and ne ¼ 0.
Similarly, from Eq. (13), we obtain for ν ¼ y

d
dτ

Bþ B
τ
¼ 0: ð24Þ

For other indices ν ¼ t, x, z, we obtain identities using
μe ¼ 0 and ne ¼ 0.
Using the simplified Maxwell’s equations (23) and (24),

we can rewrite Eq. (22) into a compact form

d
dτ

εþ ðεþ pÞ 1
τ
− σE2 − χξEB ¼ 0: ð25Þ

This equation can also be derived by rewriting Eq. (1) as

∂μT
μν
F ¼ −∂μT

μν
EM ¼ Fνλjeλ: ð26Þ

Contracting the above equation with uν yields uν∂μT
μν
F ¼

−Eλjeλ, which is consistent with Eq. (25).
From Eq. (9) and using μe ¼ 0, the (anomalous) con-

servation equation of the chiral charge can be reduced to

d
dτ

n5 þ
n5
τ
¼ e2CχEB: ð27Þ

The conservation equation for jμe is automatically satisfied
with μe ¼ 0 and Eμ, Bμ taking the form of Eq. (18).
Before we end this section, we make some remarks about

the simplified equations with longitudinal boost invariance.
To enforce the fluid velocity not accelerated, the EM field is
assumed to take the form as Eq. (18). Using Maxwell’s
equations the energy conservation equation uμ∂νTμν ¼ 0 is
reduced to Eq. (25). The momentum conservation equation
Δμα∂νTμν ¼ 0 is reduced to Eq. (20), meaning that the fluid
velocity always takes value in (16). Maxwell’s equa-
tions (12) and (13) are simplified to Eqs. (23) and (24).
The chiral charge conservation equation in Eq. (9) is
simplified to Eq. (27).

IV. ANALYTIC SOLUTIONS

We use the nonconserved charges method [69,70] to
solve Eqs. (23), (24), (25), and (27) with the EoS (14)
or (15).
The nonconserved charges method is to solve the

equation for fðτÞ in the following form,

d
dτ

fðτÞ þm
fðτÞ
τ

¼ fðτÞ d
dτ

λðτÞ; ð28Þ

where m is a constant and λðτÞ is a known function. The
general solution is

fðτÞ ¼ fðτ0Þ exp ½λðτÞ − λðτ0Þ�
�
τ0
τ

�
m
; ð29Þ

where τ0 is an initial proper time and fðτ0Þ is determined by
an initial value at τ0. In this paper we rewrite Eqs. (23),
(24), (25), and (27) in the form of Eq. (28) and obtain the
solutions in the form of Eq. (29).
Note that generally f can also be a function of rapidity η

[69,70]. However, in this paper we focus on the central
rapidity region in heavy ion collisions, which implies η ≃ 0
with longitudinal boost invariance; therefore we do not
consider the rapidity dependence.
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From Eq. (24), we immediately obtain

BðτÞ ¼ B0

τ0
τ
; ð30Þ

where B0 ¼ Bðτ0Þ is the initial value of the magnetic field.
We see that the proper time behavior of the magnetic field
seems to be the same as the case without the CME [54–56].
But we show in Sec. IV C that the contribution from the
CME and finite conductivity to the EM field appear in the
lab frame.

A. EoS (14)

For the EoS (14), we solve Eq. (23) with Eq. (27) to
obtain n5ðτÞ and EðτÞ. Then we insert n5ðτÞ and EðτÞ into
Eq. (25) to obtain the energy density εðτÞ.
We need to put Eqs. (23) and (27) into the form of

Eq. (28),

d
dτ

Eþ E
τ
¼ E

d
dτ

E;

d
dτ

n5 þ
n5
τ
¼ n5

d
dτ

N ; ð31Þ

where

d
dτ

E ¼ −σ − χξ
B
E
;

d
dτ

N ¼ e2CχEB
n5

; ð32Þ

and ξ is given by Eq. (11) and depends on n5 through the
EoS (14). Following Eq. (29), the formal solutions are in
the form

n5ðτÞ ¼ n5;0 exp ½N ðτÞ −N ðτ0Þ�
τ0
τ
;

EðτÞ ¼ E0 exp ½EðτÞ − Eðτ0Þ�
τ0
τ
; ð33Þ

where n5;0 ¼ n5ðτ0Þ and E0 ¼ Eðτ0Þ. Inserting the above
n5ðτÞ and EðτÞ as well as BðτÞ in Eq. (30) into Eq. (32), we
obtain

d
dτ

x ¼ −σx −
a1
τ0

�
τ0
τ

�
1=3

y1=3;

d
dτ

y ¼ a2
x
τ
; ð34Þ

where we have introduced the new variables

xðτÞ ¼ exp ½EðτÞ − Eðτ0Þ�;
yðτÞ ¼ exp ½N ðτÞ −N ðτ0Þ�; ð35Þ

with xðτ0Þ ¼ yðτ0Þ ¼ 1; and a1 and a2 are dimensionless
constants determined by the initial conditions

a1 ¼ eCχ

�
n5;0
a

�
1=3 B0

E0

τ0;

a2 ¼
e2CχE0B0τ0

n5;0
: ð36Þ

Instead of solving Eqs. (23) and (27) or Eq. (31), now we
only need to solve Eq. (27) with the initial condition
xðτ0Þ ¼ yðτ0Þ ¼ 1. We see that both a1 and a2 are linearly
proportional to the anomaly constant C, which is linearly
proportional to the Planck constant. This means a1 and a2
are of quantum nature.
Now we try to solve Eq. (34) under some approxima-

tions. We can rewrite Eq. (34) in an integral form

xðτÞ ¼ e−σðτ−τ0Þ −
a1
τ0

e−στ
Z

τ

τ0

dτ0eστ0
�
τ0
τ0

�
1=3

y1=3ðτ0Þ;

yðτÞ ¼ 1þ a2

Z
τ

τ0

dτ0
xðτ0Þ
τ0

: ð37Þ

Since a1 and a2 terms are quantum corrections as a1,
a2 ∝ ℏ, we can deal with these terms as perturbations to the
classical terms, so Eq. (34) or (37) can be solved order by
order in powers of ℏ.
To the linear order in ℏ, we have the solutions for xðτÞ

and yðτÞ,

xðτÞ¼e−σðτ−τ0Þ−
a1
τ2=30

e−στ½τ2=30 E1=3ð−στ0Þ−τ2=3E1=3ð−στÞ�;

yðτÞ¼1þa2½eστ0 −a1E1=3ð−στ0Þ�½E1ðστ0Þ−E1ðστÞ�;

where EnðzÞ≡
R
∞
1 dtt−ne−zt is the generated exponential

integral. Then we obtain the solutions for EðτÞ and n5ðτÞ,

EðτÞ ¼ E0

τ0
τ

�
e−σðτ−τ0Þ −

a1
τ2=30

e−στ½τ2=30 E1=3ð−στ0Þ

− τ2=3E1=3ð−στÞ�
�
;

n5ðτÞ ¼ n5;0
τ0
τ
f1þ a2eστ0 ½E1ðστ0Þ − E1ðστÞ�g: ð38Þ

At early proper time, τ → τ0, we can expand EnðτÞ near τ0
and obtain

EðτÞ≃E0

τ0
τ

�
e−σðτ−τ0Þ−

a1
τ0
ðτ− τ0Þþa1

1þ3τ0σ

6τ20
ðτ− τ0Þ2

�
;

n5ðτÞ≃n5;0
τ0
τ

�
1þa2

τ− τ0
τ0

−a2
1þστ0
2τ20

ðτ− τ0Þ2
�
: ð39Þ

Finally the energy density and the pressure can be solved
by using the solutions for μ5, E, B. From Eq. (25), we
obtain the energy density
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εðτÞ¼ ε0

�
τ0
τ

�
1þc2s ð1þΔεÞ;

ΔεðτÞ¼ 1

ε0

Z
τ

τ0

dτ0
�
τ0

τ0

�
1þc2s ½σE2ðτ0Þþχξðτ0ÞEðτ0ÞBðτ0Þ�:

ð40Þ

We can also solve Eq. (34) numerically. We choose the
initial proper time τ0 ¼ 0.6 fm=c. The values of the electric
conductivity vary in different situations. The lattice QCD
calculations give σ ∼ 5.8T=Tc MeV [71–73], while in holo-
graphic QCD models it takes the value σ ∼ 20–30 MeV for

T ¼ 200 MeV [21,23]. For σ in the weakly coupled
QGP at finite temperature and chemical potential, see,
e.g., Ref. [74]. In our numerical calculation, we choose
σ ∼ 5–30 MeV ≃ 0.04 − 0.25τ0.
In Fig. 1, we plot the normalized electric field E=E0 ×

ðτ=τ0Þ and chiral charge density n5=n5;0 × ðτ=τ0Þ as func-
tions of the proper time τ. The solid lines are the numerical
results from Eqs. (34), while the dashed lines are from the
approximate analytic solution (38). Note that the approxi-
mate analytic solution for EðτÞ is independent of a2 and
n5ðτÞ independent of a1 and σ. From these results, we see
that the approximation works very well for small a1 and a2.

FIG. 1. The normalized electric field E=E0 × ðτ=τ0Þ and chiral charge density n5=n5;0 × ðτ=τ0Þ as functions of the proper time τ. We
have chosen τ0 ¼ 0.6 fm=c. The solid lines are obtained by solving Eq. (34) numerically and the dashed lines are from the approximate
analytic solution (38). In the first row, we fix σ=τ0 ¼ 0.1, a2 ¼ �0.2 and change the values of a1. In the second row, we fix σ=τ0 ¼ 0.1,
a1 ¼ �0.5 and change the values of a2. In the last row, we fix ða1; a2Þ ¼ �ð0.05; 0.02Þ and change the values of σ=τ0.
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For positive a1 and a2, E decay faster as a1 increases,
while for negative a1 and a2, E decay slower as ja1j
increases. For positive a1 and a2, n5 decays slower as a2
grows, while for negative a1 and a2, n5 decays faster as ja2j
grows. Such behaviors are obvious in the approximate
analytic solution (38).
We observe that for large positive a1 or large σ with

positive a1 and a2, E=E0 can be negative at late proper
time. It means that the electric field flips its sign at the late
time. From Eq. (38), one can see that a very large a1 in the
second term may dominate and make E=E0 negative. Since
a1 is proportional to the initial chiral charge density,
such a behavior may come from the competition between
the anomalous conservation equation ∂μj

μ
5 ¼ −CE · B and

Maxwell’s equations.
One may expect that n5 may have oscillation with time

because it can be converted from the magnetic helicity and
vice versa [61]. However, since the medium is expanding,
the possible oscillation of n5 is outperformed by its
decay n5=n5;0 ∼ τ0=τ.
In Fig. 2, we show the results of Δε in Eq. (40), which is

amplified by a factor 100. The solid lines are numerical
results from Eq. (34), while the dashed lines are given by
the approximate analytic solution (38). Even with 100
times amplification of the difference, we see that the
approximate analytic solution (38) still works well. For
both positive and negative a1 and a2, Δε are positive
because the first term dominates over the second one inside
the square brackets in Eq. (40).

B. EoS (15)

For EoS (15), the equations for the energy density εðτÞ,
EðτÞ and n5ðτÞ are coupled together. We need to rewrite
Eqs. (25), (23), and (27) as

d
dτ

εþ ð1þ c2sÞε ¼ ε
d
dτ

L;

d
dτ

Eþ E
τ
¼ E

d
dτ

E;

d
dτ

n5 þ
n5
τ
¼ n5

d
dτ

N ; ð41Þ

where

d
dτ

L ¼ 1

ε
σE2 þ 1

ε
eCχμ5EB;

d
dτ

E ¼ −σ − eCχμ5
B
E
;

d
dτ

N ¼ e2CχEB
n5

: ð42Þ

With the help of Eq. (29), the solutions are

εðτÞ ¼ ε0

�
τ0
τ

�
1þc2s

exp ½LðτÞ − Lðτ0Þ�; ð43Þ

and n5ðτÞ and EðτÞ are similar to Eq. (33).
From the EoS (15), one can express all thermodynamic

quantities as functions of T and μ5. Since the critical
temperature Tc ∼ 200 MeV is much larger than the chiral
chemical potential in relativistic heavy ion collisions, i.e.,
μ5 ≪ T, all terms proportional to μ5 in the thermodynamic
relations are negligible. As a consequence, we obtain

ε ¼ ε0

�
T
T0

�
1þc−2s þOðμ25=T2Þ; ð44Þ

where ε0 ¼ εðτ0Þ and T0 ¼ Tðτ0Þ. By introducing

FIG. 2. The energy density correction Δε (×100) as functions of the proper time τ. The parameters are set to τ0 ¼ 0.6 fm=c,
E2
0=ϵ0 ¼ 0.1, E0B0=ϵ0 ¼ 0.2, μ5;0=τ0 ¼ 1, and c2s ¼ 1=3. The solid lines are numerical solutions of Eq. (34) and the dashed lines are

from the approximate analytic solution (38). In the left panel, we fix σ=τ0 ¼ 0.1 and change the values of a1 and a2. In the right panel,
we fix ða1; a2Þ ¼ �ð0.05; 0.02Þ and change the values of σ=τ0.
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xðτÞ ¼ exp ½EðτÞ − Eðτ0Þ�;
yðτÞ ¼ exp ½N ðτÞ −N ðτ0Þ�;
zðτÞ ¼ exp ½LðτÞ − Lðτ0Þ�; ð45Þ

Eq. (42) is reduced to

d
dτ

x ¼ −σx −
a1
τ0

yðτÞ
�
τ

τ0

�
−1þ2c2s

z−2c
2
s=ð1þc2sÞ;

d
dτ

y ¼ a2
xðτÞ
τ

;

d
dτ

z ¼ σ
E2
0

ε0

�
τ0
τ

�
1−c2s

x2ðτÞ þ a3
τ0

�
τ

τ0

�
−2þ3c2s

× xðτÞyðτÞz−2c2s=ð1þc2sÞ; ð46Þ
where xðτ0Þ ¼ yðτ0Þ ¼ zðτ0Þ ¼ 1, and a1, a2 and a3
are dimensionless constants determined by the initial
conditions

a1 ¼ eCχ
B0n5;0
aT2

0E0

τ0;

a2 ¼
e2CχE0B0

n5;0
τ0;

a3 ¼
eCχ
a

n5;0E0B0

ε0T2
0

τ0: ð47Þ

These dimensionless constants are all linearly proportional
to ℏ through the anomaly constant C, which means they are
of quantum nature. So we can deal with the terms propor-
tional to a1, a2 and a3 in Eq. (46) as perturbations to the
classical terms, and Eq. (46) can be solved order by order in
powers of ℏ.
To the linear order in ℏ, we have the solutions for xðτÞ,

yðτÞ and zðτÞ,

xðτÞ ¼ e−σðτ−τ0Þ −
a1
τ0

e−στ
Z

τ

τ0

dτ0eστ0
�
τ0

τ0

�
−1þ2c2s ½z0ðτ0Þ�−2c2s=ð1þc2sÞ;

yðτÞ ¼ 1þ a2eστ0 ½E1ðστ0Þ − E1ðστÞ�;

zðτÞ ¼ z0ðτÞ þ
a3
τ0

Z
τ

τ0

dτ0
�
τ0

τ0

�
−2þ3c2s

e−σðτ0−τ0Þ½z0ðτ0Þ�−2c2s=ð1þc2sÞ; ð48Þ

where

z0ðτÞ ¼ 1þ σ
E2
0

ε0
e2στ0

�
τ0E1−c2s ð2στ0Þ − τ

�
τ

τ0

�
c2s−1

E1−c2s ð2στ0Þ
�
: ð49Þ

We can further simplify the integration in xðτÞ and zðτÞ. Since initial energy density ε0 is much larger than the initial energy
of the EM fields ε0 ≫ B2

0, E
2
0, E0B0 (see, e.g., Ref. [34] for the values of B2

0=ε0 in the event-by-event simulation of
relativistic heavy ion collisions), we can further simplify the integration in xðτÞ and zðτÞ in the linear order in E2

0=ε0 as

xðτÞ ¼ e−σðτ−τ0Þ −
a1
τ0

e−στ
�
τ0E1−2c2s ð−στ0Þ − τ

�
τ

τ0

�
−1þ2c2s

E1−2c2s ð−στÞ
�
þOða2i ; aiE2

0=ε0Þ;

zðτÞ ¼ 1þ σ
E2
0

ε0
e2στ0

�
τ0E1−c2s ð2στ0Þ − τ

�
τ

τ0

�
c2s−1

E1−c2s ð2στÞ
�
þ a3

τ0
eστ0

�
τ0E2−3c2s ðστ0Þ − τ

�
τ0
τ

�
2−3c2s

E2−3c2s ðστÞ
�

þOða2i ; aiE2
0=ε0Þ: ð50Þ

Then we obtain the solutions for EðτÞ, n5ðτÞ and εðτÞ in the linear order in ℏ and E2
0=ε0,

EðτÞ ¼ E0

�
τ0
τ

��
e−σðτ−τ0Þ − a1e−στ

�
E1−2c2s ð−στ0Þ −

�
τ

τ0

�
2c2s

E1−2c2s ð−στÞ
��

;

n5ðτÞ ¼ n5;0

�
τ0
τ

�
f1þ a2eστ0 ½E1ðστ0Þ − E1ðστÞ�g;

εðτÞ ¼ ϵ0

�
τ0
τ

�
1þc2s

�
1þ σ

E2
0

ε0
e2στ0

�
τ0E1−c2s ð2στ0Þ − τ

�
τ

τ0

�
c2s−1

E1−c2s ð2στ0Þ
�

þ a3
τ0

eστ0
�
τ0E2−3c2s ðστ0Þ − τ

�
τ0
τ

�
2−3c2s

E2−3c2s ðστÞ
��

: ð51Þ
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In the leading order, we see EðτÞ ∼ τ0
τ xðτÞ ∼ 1

τ e
−στ, i.e., the

electric field decays in the conducting medium [69]. In the
leading order, yðτÞ ∼ 1 means n5 ∼

τ0
τ . We also see that

when c2s ¼ 1=3, the analytic solutions of EðτÞ and n5ðτÞ
have the same form as in Eq. (38) in the previous
subsection.
In Figs. 3–5, we plot the normalized E=E0 × ðτ=τ0Þ,

n5=n5;0 × ðτ=τ0Þ and ε=ε0 × ðτ=τ0Þ1þc2s as functions of the
proper time τ. We choose the τ0 ¼ 0.6 fm=c, the speed of
sound c2s ¼ 1=3 and E2

0=ε0 ¼ 0.1. The solid lines in those
figures are the numerical results from Eqs. (46), while the
dashed lines are from approximate analytic solutions (51).
We see that the approximation works very well for small ai.
In Fig. 3, we find E=E0 is almost independent of a2 and

a3, as expected in Eq. (51). The E=E0 decays rapidly as a1
or σ grows. Similar to the cases in Sec. IVA, E=E0 can be
negative at the late proper time. Such a behavior may come
from the competition between the anomalous conservation
equation ∂μj

μ
5 ¼ −CE · B and Maxwell’s equations.

In Fig. 4, the numerical results show that n5 is almost
independent of a1 and a3 in small ai cases as expected in
Eq. (51). The n5 decays slowly as a2 increases and the
decay behavior of n5 is also not sensitive to variation of σ.

In Fig. 5, we find that the time evolution of εðτÞ seems to
be insensitive to a1 and a2. Because E2

0=ε0 ≪ 1, the
contribution from the second term in Eq. (51) which is
proportional to σE2

0=ε0 is negligible. Interestingly, the
energy density decays slower as a3 grows. As shown in
Fig. 5, for a large value of a3, e.g., a3 ¼ 3.0, the energy
density even increases at early time. That is because the
fluid gains the energy from the EM fields; i.e., the a3 term
in Eq. (51) dominates. Similar behavior is also found in the
ideal MHD with a background magnetic field [54,55].
We make some remarks here. From analytic solutions

(38) and (51), we conclude that the CME and chiral
anomaly as quantum corrections play a role to the time
evolution of the electric field EðτÞ, the chiral charge
density n5ðτÞ and the energy density εðτÞ. With an initial
magnetic field parallel to the electric field (with χ ¼ 1)
and all ai (i ¼ 1, 2, 3) being positive, EðτÞ=n5ðτÞ decay
faster/slower than the cases without CME. If the initial
magnetic field is antiparallel to the electric field (with
χ ¼ −1) and all ai are negative, EðτÞ=n5ðτÞ decay slower/
faster than the cases without CME. This behavior is
consistent with the anomalous conservation equation
∂μj

μ
5¼−CEμBμ¼CχEðτÞBðτÞ combined with Maxwell’s

FIG. 3. The normalized electric field E=E0 × ðτ=τ0Þ as functions of the proper time τ. We have chosen τ0 ¼ 0.6 fm=c, c2s ¼ 1=3 and
E2
0=ε0 ¼ 0.1. The solid lines are obtained by solving Eq. (46) numerically and the dashed lines are from the approximate analytic

solution (51). In the first row, we fix σ=τ0 ¼ 0.1, a2 ¼ �0.2, a3 ¼ �0.10 and change the values of a1. In the second row, we fix
σ=τ0 ¼ 0.1, a1 ¼ �0.5 and change the values of a2. In the last row, we fix ða1; a2Þ ¼ �ð0.05; 0.02Þ and change the values of σ=τ0.
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equations. For example, if χ¼þ1, we have ∂τðn5τÞ¼
CτχEðτÞBðτÞ> 0, implying that n5ðτÞ decays slower than
the case C ¼ 0. From Eq. (23), we have ∂τ½Eτ expðστÞ� ¼
−τχξBðτÞ < 0; i.e., EðτÞ decays faster than the case C ¼ 0.
Such a behavior is due to the chiral charge density being
converted from the magnetic helicity. For χ ¼ −1, the
magnetic helicity is converted from the chiral charge
density so the behavior is opposite. The numerical results
in Figs. 1–5 are consistent with the above observation.
So far, we have only discussed the time evolution of EM

fields and thermodynamic quantities in the presence of
CME and chiral anomaly. From our results, it is hard to
see how these effects will affect the final states in the
relativistic heavy ion collisions since the modifications
from these quantum effects are not significant. It implies
that the contributions from these quantum effects to the
quantities in the experiments, which have already been
fitted well from the ordinary hydrodynamic simulations,
such as elliptic flow v2, might be negligible. However, on
the other hand, these quantum effects might contribute to
the quantities related to CME or charge separation, e.g.,
asymmetric azimuthal charged particle correlations [36,37].
Confirming that requires the systematic numerical studies
with the suitable initial conditions and EoS. For the

discussion related to the heavy ion experiments, we refer
to two studies in Refs. [75,76], of which the magnetic fields
are considered as background fields.

C. Discussions

In Secs. IVA and IV B, we have obtained the approxi-
mate analytic solutions in two types of EoS. From Eq. (30),
the proper time behavior of the magnetic field seems to be
the same as the case without CME and finite conductivity,
i.e., in an ideal MHD [54–56]. It seems to be counterin-
tuitive and inconsistent with Maxwell’s equations. Our
explanation is as follows. The Eμ and Bμ defined in the
four vector form of EM fields in Eq. (5) are the fields in
the comoving frame of the fluid. The BðτÞ in Eq. (30) is the
length of the magnetic field three vector B. The corrections
from CME and finite conductivity to EM field can be
shown after we transfer EM fields from co-moving frame to
the laboratory frame.
From Eq. (4), we observe that the EM field strength

tensor Fμν as well as the energy-momentum tensor Tμν and
fluid velocity uμ is measured in the laboratory frame.
According to the standard definitions of EM fields through
the field strength tensor Fμν, i.e.,

FIG. 4. The normalized chiral charge density n5=n5;0 × ðτ=τ0Þ as functions of the proper time τ. We have chosen τ0 ¼ 0.6 fm=c,
c2s ¼ 1=3 and E2

0=ε0 ¼ 0.1. The solid lines are obtained by solving Eq. (46) numerically and the dashed lines are from the approximate
analytic solution (51). In the first row, we fix σ=τ0 ¼ 0.1, a2 ¼ �0.2, a3 ¼ �0.10 and change the values of a1. In the second row, we fix
σ=τ0 ¼ 0.1, a1 ¼ �0.5 and change the values of a2.
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Ei
L ¼ Fi0; Bi

L ¼ −
1

2
ϵijkFjk;

we can get the EM fields in the lab frame

EL ¼ ðγvzBðτÞ; χγEðτÞ; 0Þ;
BL ¼ ð−γvzχEðτÞ; γBðτÞ; 0Þ; ð52Þ

where in this subsection, we use the lower index L for the
EM fields in the laboratory frame and EðτÞ and BðτÞ are the
functions solved in previous Sec. IV. We find that in the lab
frame Bx

L and Ey
L depend on the finite conductivity σ and

CME coefficient ξ through EðτÞ.
Next, we check the self-consistence of Maxwell’s

equations. We prove that the CME and finite conducting
current do not generate the EM fields in the z direction, i.e.,
Ez

L and Bz
L are always vanishing. From

∇ ×EL ¼ −∂tBL; ð53Þ

we observe that with Eq. (52) the ∂tB
z
L ¼ 0 and ∂yE

z
L ¼

−∂tBx
Lþ∂zE

y
L ¼ 0 are automatically satisfied. With the

solution (30), we can also obtain that ∂xE
z
L¼∂tB

y
Lþ∂zEx

L¼0.

Similarly from

∇ ·EL ¼ ne; ∇ ·BL ¼ 0; ð54Þ
and Eq. (52), we can also obtain that ∂zE

z
L ¼ −∂xEx

L −
∂yE

y
L ¼ 0 with ne ¼ 0, and ∂zB

z
L ¼ −∂xBx

L − ∂yB
y
L ¼ 0.

We focus on the last equation,

∇ ×BL ¼ je þ ∂tEL: ð55Þ
Different from the charge current in a static conductor, the
charge current je of a relativistic fluid includes two parts.
The part parallel to the fluid velocity uμ reads

je;k ¼ σEL;k þ ξBL;k; ð56Þ
and the other part perpendicular to the fluid velocity is
given by

je;⊥ ¼ σγðEL þ v × BLÞ⊥ þ ξγðBL − v ×ELÞ⊥; ð57Þ

with v being the three vector of fluid velocity, i.e.,
uμ ¼ γð1; vÞ. In our case, since the fluid moves along
the z direction, the charge current is given by

je ¼ ½γðEy
L þ vzBx

LÞ þ ξγðBy
L − vzEx

LÞ�ey: ð58Þ

FIG. 5. The normalized energy density ε=ε0 × ðτ=τ0Þ1þc2s as functions of the proper time τ. We have chosen τ0 ¼ 0.6 fm=c, c2s ¼ 1=3
and E2

0=ε0 ¼ 0.1. The solid lines are obtained by solving Eq. (46) numerically and the dashed lines are from the approximate analytic
solution (51). In the first row, we fix σ=τ0 ¼ 0.1, a2 ¼ �0.2, a3 ¼ �0.10 and change the values of a1. In the second row, we fix
σ=τ0 ¼ 0.1, a1 ¼ �0.5 and change the values of a2.

ANOMALOUS MAGNETOHYDRODYNAMICS WITH … PHYS. REV. D 99, 114029 (2019)

114029-11



With Eq. (52), we find that ∂yB
z
L ¼ ∂tEx

L þ ∂zB
y
L ¼ 0 and

∂tE
z
L ¼ 0. The space derivative of magnetic field in the z

direction is

∂xB
z
L ¼ ∂zBx

L−σγðEy
LþvzBx

LÞ−ξγðBy
L−vzEx

LÞ−∂tE
y
L;

ð59Þ

where the left-handed side of the above equation is equal to
the right-handed side of Eq. (23). Thus, inserting our
solutions in Eqs. (38) and (51) yields ∂xB

z
L ¼ 0.

Since both time and space derivatives of Ez
L and Bz

L
vanish and initial Ez

L or Bz
L are chosen to be vanishing, we

can conclude that in our setup the CME and conducting
current will not generate EM fields in the z direction in the
lab frame. Whereas only the space-time derivatives of EM
fields in the transverse direction, e.g., Bx

L and Ey
L, are

nonvanishing. This is quite different from the case of static
media, in which the CME current can induce a circular
magnetic field [61].
Thirdly, we discuss the Bjorken fluid velocity. Usually,

we can consider the right-handed side of Eq. (26) as the
covariant form of Lorentz force acting on the fluid. In the
lab frame, we can rewrite it as

Fνλjeλ ¼ ðje;0EL; je ×BLÞ: ð60Þ

Since we have chosen the μe ¼ 0, the electric field will not
accelerate the fluid, i.e., the zeroth component je;0EL ¼ 0.
The other component je × BL is the Lorentz force driving
by the magnetic field, where je is given by Eqs. (56) and
(57). In our case, the EM fields with Lorentz force je ×BL
are analogous to the so-called force-free fields (e.g., also
see the discussion in the classical electrodynamics [62,63]
and recent studies in Refs. [77,78]). Through Eqs. (19) and
(25), we have already shown that the EM fields in our setup
will not modify the fluid velocity.
At last, we check the consistence of (anomalous) current

conservation equations. Since Eqs. (38) and (51) are the
solutions of anomalous current equation ∂μj

μ
5 ¼ −CE · B,

the anomalous current equation should be satisfied.
Because EM fields are independent of x, y, the charge
current conservation equation reduces to ∂μj

μ
e ¼ ∂tje;0 þ

∇ · je ¼ ∂zje;z, with je;z ¼ je;k ¼ σEL;z þ ξBL;z ¼ 0. We
can conclude that the (anomalous) current conservation
equations are satisfied.
Before we end this section, we make some remarks here.

We have computed the EM fields in the lab frame and
found that our solutions satisfy Maxwell’s equations. In our
setup, the CME and electric conducting current do not
generate the EM fileds in the z direction in lab frame. It is
quite different from the case in static media. We have also
shown that the Lorentz force does not accelerate the fluid.

At last, we have checked the self-consistence of (anoma-
lous) current conservation equations.

V. SUMMARY AND CONCLUSIONS

We have solved MHD equations with longitudinal boost
invariance and transverse EM fields in the presence of the
CME and finite electric conductivity. The MHD equations
involve the energy momentum, the electric charge and
chiral charge (anomalous) conservation equations coupled
with Maxwell’s equations. We consider two types of EoS
corresponding to the large chiral chemical potential and the
high temperature cases, respectively. For further simplifi-
cation, we assume that the fluid is electric charge neutral,
i.e., we set the electric charge density ne and electric charge
chemical potential μe vanish.
We assume the Bjorken form of the fluid velocity in the

longitudinal direction. To keep the fluid velocity unchanged,
we obtain the four-vector form of the electric and magnetic
field, which are orthogonal to the fluid velocity. To solve the
MHDequations,we treat the termswith the anomaly constant
which is proportional to the Planck constant ℏ as perturba-
tions. This is equivalent to an expansion in ℏ. Then we apply
the nonconserved charge method to obtain the approximate
analytic solutions. The comparison of the analytic solutions
with the exact numerical results shows good agreement.
Finally we compute the EM field in three-vector form in

the lab frame and show the contributions from the electric
conductivity and the CME. According to Maxwell’s equa-
tions, in our setup, the CME and electrically conducting
current only modify the EM fields in the transverse
direction in the lab frame. The electric and magnetic field
in the z direction does not grow with time and space. The
Lorentz force only changes the time evolution of thermo-
dynamic quantities and does not accelerate the fluid.
Our results can provide a future test of complete

numerical simulations of the MHD with the CME. Since
the polarization of chiral fermions in the strong magnetic
field is different from the ordinary magnetization which is
called the chiral Barnett effect [79], the current method can
be applied to study the magnetization effect in the future.
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