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The recent discovery of the doubly charmed tetraquark Tcc (ū d̄ cc) provides a stringent constraint on its
binding energy relative to its lowest decay threshold. We use a fully convergent spatial wave function and
perform a simultaneous global fit to both the meson and baryon spectra. Our analysis shows that a Yukawa
type hyperfine potential leads to a slight bound state for Tcc with ðI; SÞ ¼ ð0; 1Þ below its lowest threshold,
in agreement with recent experimental findings. We also find that Tcc is highly likely to be in a compact
configuration.
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I. INTRODUCTION

There is a renewed excitement in hadron physics over the
observations of numerous exotic hadron candidates [1–5].
Of particular interest is the recently observed flavor exotic
Tcc state, which is an explicit four quark state. Tcc was first
predicted in Refs. [6,7] based on the strong color-spin
attraction of ū d̄ quark pair that can bind the tetraquark
configuration. Many quark model calculations for Tcc
followed [8–30], which unfortunately varied on the pre-
dicted masses and even on whether the mass lies above or
below the lowest threshold. Therefore, the recent observa-
tion of Tcc [1] provides a good opportunity where all the
models can be tested in a hitherto untested multiquark
configuration, thereby leading us to identify the correct
model to describe the low energy confinement phenomena
of quantum chromodynamcis (QCD).
Accurate model calculations are a crucial requirement

for fully testing a quark model and refining our under-
standing of the underlying physics that governs the
behavior of quarks and the strong force. However, these
calculations required to accurately model the behavior of
quarks in such a system are extremely difficult. To perform
such an exact calculation, one has to introduce a complete
set of spatial wave functions, which necessarily contain all
possible internal states. Also, a simultaneous global fit to
both the meson and baryon spectra should be performed
in the model calculations. However, only a few works

satisfy these requirements among the works mentioned
above [6–30]. Furthermore, no work could correctly predict
both the mass and binding energy of Tcc simultaneously.
For example, in our latest publication [30], we successfully
predicted the mass of Tcc using a Gaussian type hyperfine
potential, whereas the binding energy was obtained to be
higher than the experimental measurement by 13 MeV.
The hyperfine potential strongly affects the binding

energy of the multiquark configuration, with the strong
color-spin attraction coming from the ū d̄ quark pair. We
thus analyze the effect of a Yukawa type hyperfine potential
on the binding energy in comparison with the Gaussian
type hyperfine potential. Our analysis suggests that a
Yukawa type hyperfine potential is necessary to accurately
reproduce the experimentally observed slight binding of
Tcc, rather than a Gaussian type.
On the other hand, the heavy quark component of Tcc is

made up of open charm quarks, while that of Xð3872Þ is
composed of hidden charm quarks. The fact that there
have been no satisfactory explanations for the internal
structure of the X(3872) in the two decades since its
experimental discovery sharply illustrates the lack of
understanding of quark interactions in the quark model,
as well as the complexity of tetraquark structures. In this
paper, we propose the possibility of a compact and bound
structure for Tcc, based on a deep comprehension of the
interaction of the ū d̄ pair. This may provide a clue to
solving the burning issue of the Xð3872Þ with another
residual strong force and lead to a more in-depth theo-
retical approach to multiquark structures beyond the
tetraquark.
Among the researches for the Tcc, there are chiral quark

models based on color-flavor interaction. However, those
model studies predicted bindings that are too strong in the
Tcc channel [11,13,15,17,18,26]. Thus, any modification
should start from the gluon exchange quark models.
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II. MODEL DESCRIPTION

In our nonrelativisitc quark model, we solve the
Schrödinger equation with the Hamiltonian given as follows.

H ¼
X4
i¼1

�
mi þ

p2
i

2mi

�
−
3

4

X4
i<j

λci
2

λcj
2
ðVC

ij þ VCS
ij Þ; ð1Þ

where mi is the quark mass for the ith quark and λci =2 is the
SU(3) color operator. The confinement potential VC

ij is
identical to that used in previous studies [15,17,30], given
as follows.

VC
ij ¼ −

κ

rij
þ rij

a20
−D; ð2Þ

However, for the hyperfine potential VCS
ij , we introduce a

Yukawa type potential given by

VCS
ij ¼ ℏ2c2κ0

mimjc4
e−rij=r0ij

ðr0ijÞrij
σi · σj; ð3Þ

where σi is the SU(2) spin operator and rij ≡ jri − rjj is the
relative distance between the i and j quarks. In addition,
κ0 and r0ij depend on the masses of quark pair as given in
Ref. [30]:

r0ij ¼ 1=

�
αþ β

mimj

mi þmj

�
; ð4Þ

κ0 ¼ κ0

�
1þ γ

mimj

mi þmj

�
: ð5Þ

Our Yukawa type potential in Eq. (3) satisfies the contact
term δðrijÞ in the heavy quark limit as rij approaches zero.
The model parameters in the Hamiltonian in Eq. (1) are
determined by fitting them to a total of 33 ground state
hadron masses listed in Tables I and II. Further, we obtain an
optimized set of model parameters in such a way that χ2

value of the Pearson’s chi-squared test formula should be
minimized. The model parameters selected for this study are
as follows.

κ ¼ 97.7 MeV fm; a0 ¼ 0.0327338 ðMeV−1 fmÞ1=2;
D ¼ 959 MeV;

mu ¼ 315 MeV; ms ¼ 610 MeV;

mc ¼ 1895 MeV; mb ¼ 5274 MeV;

α ¼ 1.1349 fm−1; β ¼ 0.0011554 ðMeV fmÞ−1;
γ ¼ 0.001370 MeV−1; κ0 ¼ 213.244 MeV: ð6Þ

We utilize the same methods as in Ref. [30] to construct
the wave function and calculate the masses of tetraquarks
as well as those of mesons and baryons. To solve the
Hamiltonian, we set the Jacobi coordinates for the tetra-
quark configuration in the center of mass frame as follows.

TABLE I. This table shows the masses of mesons obtained
(Column 3) from the model calculation in this work with the
fitting parameters set given in Eq. (6). Column 4 shows the
variational parameter a.

Particle
Experimental
value (MeV)

Mass
(MeV)

Variational
parameter (fm−2)

D 1864.8 1865.0 a ¼ 6.8
D� 2007.0 2009.4 a ¼ 5.1
ηc 2983.6 3008.2 a ¼ 22.4
J=Ψ 3096.9 3131.2 a ¼ 17.0
Ds 1968.3 1967.0 a ¼ 11.0
D�

s 2112.1 2103.5 a ¼ 5.1
K 493.68 497.17 a ¼ 7.2
K� 891.66 872.74 a ¼ 3.6
B 5279.3 5276.3 a ¼ 6.5
B� 5325.2 5331.8 a ¼ 5.8
ηb 9398.0 9368.6 a ¼ 78.9
ϒ 9460.3 9485.0 a ¼ 61.6
Bs 5366.8 5345.6 a ¼ 11.5
B�
s 5415.4 5404.8 a ¼ 10.1

Bc 6275.6 6276.2 a ¼ 32.7
B�
c � � � 6361.8 a ¼ 26.9

TABLE II. Same as Table I but for baryons. In column 4, a1 and
a2 are the variational parameters.

Particle
Experimental
value (MeV)

Mass
(MeV)

Variational
parameters (fm−2)

Λ 1115.7 1105.1 a1 ¼ 4.0, a2 ¼ 3.2
Λc 2286.5 2268.3 a1 ¼ 4.2, a2 ¼ 3.8
Ξcc 3621.4 3623.8 a1 ¼ 10.2, a2 ¼ 4.1
Λb 5619.4 5600.8 a1 ¼ 4.3, a2 ¼ 4.2
Σc 2452.9 2448.2 a1 ¼ 2.6, a2 ¼ 5.1
Σ�
c 2517.5 2530.6 a1 ¼ 2.3, a2 ¼ 4.4

Σb 5811.3 5817.3 a1 ¼ 2.5, a2 ¼ 5.4
Σ�
b 5832.1 5849.4 a1 ¼ 2.4, a2 ¼ 5.1

Σ 1192.6 1193.6 a1 ¼ 2.7, a2 ¼ 4.5
Σ� 1383.7 1400.8 a1 ¼ 2.0, a2 ¼ 3.0
Ξ 1314.9 1314.3 a1 ¼ 4.1, a2 ¼ 4.1
Ξ� 1531.8 1530.4 a1 ¼ 3.8, a2 ¼ 2.5
Ξc 2467.8 2465.4 a1 ¼ 4.6, a2 ¼ 5.4
Ξ�
c 2645.9 2642.8 a1 ¼ 2.9, a2 ¼ 5.7

Ξb 5787.8 5785.7 a1 ¼ 4.7, a2 ¼ 6.3
Ξ�
b 5945.5 5950.2 a1 ¼ 3.1, a2 ¼ 6.9

p 938.27 941.58 a1 ¼ 2.6, a2 ¼ 2.6
Δ 1232 1262.8 a1 ¼ 1.7, a2 ¼ 1.7
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(i) Coordinate set 1

x1 ¼
1ffiffiffi
2

p ðr1 − r2Þ; x2 ¼
1ffiffiffi
2

p ðr3 − r4Þ;

x3 ¼
1

μ

�
m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

�
; ð7Þ

(ii) Coordinate set 2

y1 ¼
1ffiffiffi
2

p ðr1 − r3Þ; y2 ¼
1ffiffiffi
2

p ðr4 − r2Þ;

y3 ¼
1

μ

�
m1r1 þm2r3
m1 þm2

−
m3r2 þm4r4
m3 þm4

�
; ð8Þ

(iii) Coordinate set 3

z1 ¼
1ffiffiffi
2

p ðr1 − r4Þ; z2 ¼
1ffiffiffi
2

p ðr2 − r3Þ;

z3 ¼
1

μ

�
m1r1 þm2r4
m1 þm2

−
m3r2 þm4r3
m3 þm4

�
; ð9Þ

where

μ ¼
�

m2
1 þm2

2

ðm1 þm2Þ2
þ m2

3 þm2
4

ðm3 þm4Þ2
�
1=2

;

and

mu ¼ md;

m1 ¼ m2 ¼ mu; m3 ¼ m4 ¼ mc for ū d̄ cc;

m1 ¼ m2 ¼ mu; m3 ¼ m4 ¼ mb for ū d̄ bb;

m1 ¼ m2 ¼ mu; m3 ¼ mc;m4 ¼ mb for ū d̄ cb:

For the tetraquark configuration with the isospin I ¼ 0,
which is in the S-wave state, the wave function of the
Hamiltonian is constructed by combining the spatial wave
function with the color-spin basis, satisfying the symmetry
properties imposed by the Pauli principle. The detailed
description for the color-spin part of the wave function are
given in Sec. III of Ref. [30]. We construct the spatial wave
function of the tetraquark through the three independent
harmonic oscillator bases corresponding to each Jacobi
coordinate. In particular, the spatial wave function is
characterized by the quanta Q, which can be defined by

the internal quantum numbers corresponding to each Jacobi
coordinate as in our previous work [30].

Q ¼ 2n1 þ 2n2 þ 2n3 þ l1 þ l2 þ l3: ð10Þ

We use a complete set of harmonic oscillator bases up to the
5th quanta (Q ¼ 8) to the spatial part of wave functions.
The following are a few examples of spatial bases in the
S-wave state, denoted as ψ spatial

½n1;n2;n3;l1;l2;l3�, which belong to

each quanta.

ψ spatial
½0;0;0;0;0;0� ¼

�
2

π

�9
4

a
3
4

1a
3
4

2a
3
4

3 exp½−a1x2
1 − a2x2

2 − a3x2
3�;

ψ spatial
½0;0;0;1;1;0� ¼ −

4ffiffiffi
3

p
�
2

π

�9
4

a
5
4

1a
5
4

2a
3
4

3x1 · x2 exp½−a1x2
1 − a2x2

2 − a3x2
3�;

ψ spatial
½0;0;0;2;2;0� ¼ −

8

3
ffiffiffi
5

p
�
2

π

�9
4

a
7
4

1a
7
4

2a
3
4

3

h
x2
1x

2
2 − 3ðx1 · x2Þ2

i
exp½−a1x2

1 − a2x2
2 − a3x2

3�;

ψ spatial
½0;0;0;1;2;3� ¼

32

15
ffiffiffiffiffi
21

p
�
2

π

�9
4

a
5
4

1a
7
4

2a
9
4

3

h
6x2

3ðx1 · x2Þðx2 · x3Þ þ 3ðx1 · x3Þðx2
2x

2
3 − 5ðx2 · x3Þ2Þ

i
exp½−a1x2

1 − a2x2
2 − a3x2

3�;

ψ spatial
½0;0;0;2;2;4� ¼

32
ffiffiffi
2

p

105
ffiffiffi
3

p
�
2

π

�9
4

a
7
4

1a
7
4

2a
11
4

3

h
x2
1x

2
2x

4
3 þ 2x4

3ðx1 · x2Þ2 − 20x2
3ðx1 · x2Þðx1 · x3Þðx2 · x3Þ þ 35ðx1 · x3Þ2ðx2 · x3Þ2

− 5ðx2
2x

2
3ðx1 · x3Þ2 þ x2

1x
2
3ðx2 · x3Þ2Þ

i
exp½−a1x2

1 − a2x2
2 − a3x2

3�: ð11Þ
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The parameters a1, a2, and a3 appearing in Eq. (11) are
determined through the variational method in such a way
that it gives a minimum to the diagonalized Hamiltonian
matrix elements in terms of all the spatial wave functions up
to the 5th quanta of bases. The variational parameters for
the masses of mesons and baryons listed in Tables I and II
are also determined in this way. This makes it all the more
possible that the tetraquark configurations should have an
exact solution to the Hamiltonian.

III. NUMERICAL RESULTS

The results of our calculations for Tccðū d̄ ccÞ,
Tcbðū d̄ cbÞ, and Tbbðū d̄ bbÞ using our Yukawa type hyper-
fine potential are presented in Table III. Comparing the
present results for Tcc with those from our previous pub-
lication [30] where used a Gaussian type hyperfine potential,
we find that both models reproduce the mass well. However,
our previous calculation predicted an unbound Tcc state,
while our current model indicates that it lies slightly below
the threshold consistent with the experimental observations.
This suggests that the Yukawa type hyperfine potential
used in our current calculation may better capture the strong
interaction dynamics of the Tcc configuration. Further
research is necessary to fully understand the implications
of our findings. Our present model using a Yukawa type
hyperfine potential also shows significantly stronger binding
energies for Tcc and Tcb than the model with a Gaussian type
hyperfine potential presented in Ref. [30].
The discovery of Tcc is of great significance since it

allows for testing the validity of quark models. In this
regard, we compare our present results with those from
Refs. [15,17,30] in Table III. The results from those quark
models were also calculated with a complete set of spatial
wave functions, but obtained using different forms of
Gaussian or Yukawa type of hyperfine potential.
Specifically, Ref. [30] used a Gaussian type hyperfine
potential, while Refs. [15,17], including our present work,
used a Yukawa type of hyperfine potential.
Comparing the results in this work with those from

Refs. [15,17,30] in Table III, the bound Tcc ground state is
found only in our present work and Refs. [15,17] where the
hyperfine potential is of the Yukawa type. Therefore, one

can reach a conclusion that a Yukawa type hyperfine
potential is necessary to accurately describe the short range
interactions within the tetraquark system. The difference in
the binding energy between Refs. [15,17] and our present
work consists largely in the difference in the detailed form
of the hyperfine potentials used in each model.
To investigate the effect of the forms of hyperfine

potential on the binding energy and size of the Tcc
configuration, we compare the contributions from the
Yukawa and Gaussian types of potentials.

A. Detailed analysis of hyperfine potential

In the Tcc configuration, an important contribution to the
binding comes from the hyperfine potential, which can be
isolated as follows.

BHyp ≡HHyp
Tetraquark −HHyp

Meson1 −HHyp
Meson2; ð12Þ

where HHyp
Tetraquark ≡

P
4
i<j V

CSði; jÞ and HHyp
Meson’s are the

hyperfine part of the Hamiltonian calculated with the
corresponding total wave functions for the tetraquark
and the mesons, respectively.
We first analyze the contribution from the hyperfine

potential of the D or D� meson. Figure 1 compares the
spatial functional form of the Yukawa and Gaussian type
potentials, which indicates that the Yukawa type potential is
stronger than the Gaussian type in the vicinity of the origin.
However, as shown in Table IV, the contributions from the
hyperfine potential for the threshold are the opposite of
what one might expect. This is due to two factors. First, for
both types of potential, the peak of the probability density
of theDmeson is at around 0.3 fm, as shown in Fig. 2. The
probability density of the D� shows almost the same as that
of the D and the peak is at around 0.35 fm. Furthermore,
the peak value of the Gaussian type is higher than that of
the Yukawa type. Second, in this region, the spatial func-
tional form of the Gaussian type for the ūc pair is stronger
than that of the Yukawa type, as shown in Fig. 1.
Besides, Fig. 3 shows that the size of the D or D� meson

is inversely proportional to the constituent quark masses. If
the constituent quark masses in the Gaussian type are fitted
to be lower than those used in Ref. [30], this leads to a

TABLE III. Masses and binding energies (BT) of the tetraquark states. BT is defined as the difference between the tetraquark mass and
the sum of the masses of the lowest threshold mesons in the model calculations: BT ≡MTetraquark −Mmeson 1 −Mmeson 2. The mass and
binding energy of Tccðū d̄ ccÞ reported by LHCb [1] are 3875 MeVand −0.273 MeV, respectively. The masses and binding energies BT

are given in MeV. The values in the parentheses are the variational parameters (in fm−2), which give the ground state energies.

Present work Refs. [15,17] Ref. [30]

Type IðJPÞ Thresholds Mass BT Mass BT Mass BT

ū d̄ bb 0ð1þÞ BB� 10464(3.7, 19.6, 3.6) −144 10507 −144 10517(3.9, 25.0, 3.8) −145
ū d̄ cc 0ð1þÞ DD� 3872(2.4, 4.0, 4.4) −2 3899 −7 3873(2.6, 4.6, 4.6) þ13

ū d̄ cb 0ð1þÞ DB� 7179(2.7, 6.3, 4.8) −18 � � � � � � 7212(3.1, 8.0, 5.0) −3
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larger size for the D or D� meson in the Gaussian type. For
a proper analysis, we scale the horizontal axis with the
same rate of mass change for each constituent quark. It is
also possible to understand a similar behavior of Tcc
through the dependence of the relative size of Tcc on the
constituent quark masses, as shown in Fig. 3.

We now analyze the contributions from the hyperfine
potential for each quark pair in Tcc given in Table IV. For
the ū d̄ pair in Tcc, Fig. 2 shows that the peak of the
probability density for both types of potential is located at
around 0.45 fm. For the ūc and cc pairs, the peaks are
slightly shifted from that of the ū d̄ pair toward the origin:

70

FIG. 1. Spatial forms of hyperfine potentials for the ū d̄, ūc, and
cc quark pairs. The red and blue lines represent that of the
hyperfine potential used in this work and in Ref. [30], respec-
tively. The Yukawa type is stronger in all range for the ū d̄ pair,
while the Gaussian type is slightly stronger in the range of around
0.25–0.6 fm for the ūc pair and around 0.15–0.5 fm for the
cc pair.

FIG. 2. The radial distribution of the probability density of the
D,D� mesons, and the ū d̄ pair in the Tcc state. The ū d̄ pair in the
bottom panel is obtained in terms of the most dominant color
3ū d̄ ⊗ 3̄cc state. The red and blue lines represent the distribution
obtained from the hyperfine potential used in this work and in
Ref. [30], respectively.
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the peak for the ūc pair (cc pair) is at around 0.35 fm
(0.3 fm). For the same reason as in the case of D or D�, the
contribution from the Gaussian type potential is found to be
stronger than that of the Yukawa type for the ūc and cc
pairs as shown in Table IV. However, for the ū d̄ pair,
the strength of the Yukawa type hyperfine potential is
above that of the Gaussian type in all ranges. Thus, for the
ū d̄ pair, we find that the relative contribution from the
Gaussian and Yukawa types is opposite to those of the other
pairs as shown in Table IV. Furthermore, the attraction
from each type of hyperfine potential mainly comes from
the ū d̄ pair. Therefore, we find that the binding energy in
Eq. (12) obtained from the Yukawa type potential is
relatively attractive as shown in Table IV. These suggest
that the ū d̄ pair plays a crucial role in the hyperfine
interaction in Tcc.
To get a better understanding of the size of Tcc, we

examine the probability density. In Fig. 2, we find that the
peak for the ū d̄ pair of the Gaussian type is higher and closer
to the origin than that of the Yukawa type. This trend is also
observed for the ūc and cc pairs. Therefore, all relative sizes
of the quark pairs in Tcc for the Gaussian type are smaller
than those for the Yukawa type, as shown in Table IV.

In order to discuss the compactness of the tetraquark
states, we calculate the ratio ΔR between the root mean
square (RMS) radii for the tetaquark and its threshold using
the following formula defined as Eqs. (9) and (10) of
Ref. [17]:

ΔR ¼ RMS4q
RMSMeson1 þ RMSMeson2

; ð13Þ

where RMS4qðMesonÞ is the RMS radius for four-(two-)
quark systems. In particular, the RMS radius of the
tetraquark is defined as follows.

RMS4q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

4
i¼1 mihðri − RCMÞ2iP

4
i¼1mi

s
; ð14Þ

where mi is the mass of the ith quark and RCM is the center
of mass. As shown in Fig. 2, the mesons calculated using
the Gaussian type hyperfine potential have smaller sizes
compared to those calculated using the Yukawa type
potential. This tendency is also reflected in the RMS radii
of the threshold mesons presented in Table V and in the
relative lengths of each quark pair for the tetraquark.
Subsequently, we calculate the RMS radii of tetraquarks
using the parameter set determined for each type of
hyperfine potential. We then find that the difference of the
RMS radius in the tetraquarks between the two types of
potential becomes larger compared to the difference in the
threshold mesons. Consequently, the RMS ratios ΔR
obtained by the Gaussian type potential are smaller
compared to those of the Yukawa type potential.
On the other hand, according to the discussion in

Ref. [17], a RMS ratio smaller than 1 would represent a
compact configuration when the state is bound. The RMS
ratios for the Yukawa type in Table V indicates that Tbb and
Tcb are in compact configurations. Moreover, we infer that
Tcc is also highly likely to be in a compact configuration.
Also, it would be interesting to compare our RMS radii

with that of tetraquark structure composed of udud flavors
in a color 3 state in Ref. [31]. In that study, this tetraquark
structure is considered as a part of d0 dibaryon in a diquark-
tetraquark cluster model. The results of Ref. [31] shows that

TABLE IV. Hyperfine potentials VCS (in MeV) and relative
length l (in fm). For Tcc configuration, we label the position of
each quark as ūð1Þd̄ð2Þcð3Þcð4Þ. The values for the quark pairs of
(1, 4), (2, 3), and (2, 4) are the same as those of the (1, 3) pair due
to symmetry. The subscripts Y and G represent the results
obtained using the hyperfine potential in Eq. (3) and the Gaussian
potential from Ref. [30], respectively. The values of BHyp are
calculated by Eq. (12).

Tcc Threshold

Type (1, 2) (1, 3) (3, 4) Total D D� Total BHyp

VCS
Y −112 −16.8 5.0 −175 −120 32.5 −88 −87

lY 0.87 0.71 0.64 0.55 0.61
VCS
G −109 −17.4 5.3 −173 −127 34.1 −93 −80

lG 0.83 0.67 0.61 0.52 0.59

FIG. 3. Left panel shows the change in size of theDmeson with
increasing constituent quark masses using spatial bases up to the
5th quanta. Right panel shows the same for the ū d̄ and cc pairs in
Tcc, but using up to the 3rd quanta. The horizontal axis represents
the sum of masses of the u and c quarks. The Gaussian type of
hyperfine potential from Ref. [30] is used to obtain the figure.

TABLE V. RMS radii in fm unit for the TQQ0 states and
corresponding lowest thresholds obtained with the Yukawa type
of hyperfine potential in this work. The values in the parentheses
represent the RMS radii obtained with the Gaussian type potential
from Ref. [30]. The RMS radii and ratio ΔR are calculated using
Eq. (14).

Type Tetraquark Threshold ΔR

Tbb 0.209(0.198) 0.289(0.283) 0.723(0.700)
Tcb 0.294(0.271) 0.360(0.352) 0.817(0.770)
Tcc 0.400(0.382) 0.448(0.438) 0.893(0.872)
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the RMS radius varies depending on the radial form of the
confinement potential. Specifically, for the colored udud
tetraquark, the size lies between 0.74 fm and 1.15 fm,
demonstrating a considerable difference from our results
for the tetraquarks consisting of two light antiquarks and
two heavy quarks, as shown in Table V. Since the RMS
radii in our model would also change as discussed in
Ref. [31], it is worth investigating the effect of the radial
form of confinement potential on the tetraquark structures
in our study.

B. Principal differences between Tcc and Tbb

One of the most interesting findings is that the confine-
ment potential of the ū d̄ pair with I ¼ 0 and cc (or bb) pair
significantly contributes to the binding energy of the
tetraquark. In particular, investigating the matrix element
of −λci λcj is important because it affects the strength of the
confinement potential. For both the light and heavy quark
(Q) pairs, the value with respect to the most dominant color
state, 3ū d̄ ⊗ 3̄QQ, is 8

3
. Thus, as shown in VC

ij in Eq. (2), the
linearizing potential gives repulsion while the Coulomb
potential gives attraction in the confinement for both pairs.
For the light quark pair, the dominant part of the

confinement potential comes from the linearizing potential
in both Tcc and Tbb because their sizes are comparable to
those of hadrons. However, the confinement potential in
Tbb is considerably more repulsive than that in Tcc, as
shown in Table VI, though the size of the light quark pair in
Tbb is shorter than that of Tcc.
For the heavy quark pair, the dominant part still comes

from the linearizing potential for the Tcc despite the small
size of the cc pair. In contrast, for Tbb, it comes from the
Coulomb potential because the size of heavy quark pair
in Tbb shrinks much shorter than that in Tcc. Thus, the
confinement potential for Tcc gives small repulsion while it
gives significant attraction for Tbb. In addition to this, there
is also hyperfine attraction for Tbb, which can be evaluated
by Eq. (12) and is comparable to that of Tcc. Therefore, the
ground state of Tbb is deeply bound as shown in Table III.
To understand the confinement contributions in

Table VI, it is necessary to divide the probability distribu-
tion of the ground state in terms of each color state of
the tetraquark as in Fig. 4. The values of −λci λcj in the
confinement are changed by the probability distribution for
the two color states when considering the whole of bases to

calculate the Hamiltonian. In Fig. 4, the contribution from
the color 6̄ū d̄ ⊗ 6QQ state, where the matrix element for
both the light and heavy quark pairs is − 4

3
, is negligible

for Tbb but crucial for Tcc. Apart from the contribution of
3ū d̄ ⊗ 3̄QQ to the values of −λci λcj , the contribution of

6̄ū d̄ ⊗ 6QQ to Tcc is relatively larger than that to Tbb.
Therefore, the confinement potential involving the value of
the matrix element for the ū d̄ pair in Tcc decreases much
compared to that in Tbb.
Finally, we note that the significant contribution of

6̄ū d̄ ⊗ 6QQ to the confinement in Tcc is an essential feature
that only appears when all the wave functions are expanded
by the complete set of harmonic oscillator bases. This effect
does not appear in a simple quark model [22], which
performs calculations using a single spatial basis.

IV. SUMMARY

We introduce the complete set of harmonic oscillator
bases to obtain the exact solutions for the Hamiltonian
of the tetraquarks. With our Yukawa type of hyperfine
potential defined in Eq. (3), we successfully reproduce the
experimental findings for the Tcc as can be found in
Table III. In Sec. III, we compare and analyze our results,
focusing on the difference between the two types of
hyperfine potentials. Specifically, we calculate the radial
distributions of the probability densities for the various
quark pairs of the Tcc and the corresponding threshold
configurations. Our results indicate that the Yukawa type
hyperfine potential gives more attractive contribution to the
Tcc than the Gaussian type, leading to a slightly bound Tcc
state. Moreover, we suggest that Tcc is highly likely to be in
a compact tetraquark structure, based on the ratio of the
RMS radius. Finally, our analysis of the color interaction in
the confinement potential shows that Tbb is much more
deeply bound than Tcc.
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TABLE VI. The confinement VC potential (in MeV) and the
relative lengths l (in fm) for the ū d̄ and cc pairs in TQQ. The
results are obtained using the Yukawa type potential in this work.

Tcc Tbb

Type ū d̄ cc ū d̄ bb

VCðlÞ 120(0.87) 48(0.64) 221(0.71) −95ð0.29Þ
FIG. 4. Left(right) panel shows the probability distribution for
each quanta of spatial wave functions for Tcc and Tbb in terms of
the color 3ū d̄ ⊗ 3̄QQ (6̄ū d̄ ⊗ 6QQ) state.
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