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A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is
proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like
monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is
an adjoint operator satisfying the covariant conservation law DμJμ ¼ 0, it satisfies, at the same time, the
Abelian-like conservation law ∂μJμ ¼ 0. The Abelian-like conservation law ∂μJμ ¼ 0 is also gauge-

covariant. There are N2 − 1 conserved magnetic charges in the case of color SUðNÞ. The charge of each
component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the
Abelian conservation law ∂μλμ ¼ 0 and the magnetic charges of the eigenvalues are also quantized à la
Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-
Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jaμ.
Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is
realized. This confinement picture is completely new in comparison with the previously studied monopole
confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian
neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are
done in the framework of lattice field theory by adopting pure SUð2Þ gauge theory for simplicity.
Considering JμðxÞ ¼ kμðxÞ in the continuum formulation, we adopt an Abelian-like definition of a
monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization
condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we
introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the
maximal center gauge (MCG), block-spin transformations of Abelian-like monopoles and extraction of
physically important infrared long monopole loops are adopted. We also employ the tree-level tadpole
improved gauge action of SUð2Þ gluodynamics. With these various improvements, we measure the density

of lattice VNABI: ρðaðβÞ; nÞ ¼ P
μ;sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aðkaμðsnÞÞ2

q
=ð4 ffiffiffi

3
p

Vnb3Þ, where kaμðsnÞ is an n blocked

monopole in the color direction a, n is the number of blocking steps, Vn ¼ V=n4 (b ¼ naðβÞ) is the
lattice volume (spacing) of the blocked lattice. Beautiful and convincing scaling behaviors are seen when
we plot the density ρðaðβÞ; nÞ versus b ¼ naðβÞ. A single universal curve ρðbÞ is found from n ¼ 1 to
n ¼ 12, which suggests that ρðaðβÞ; nÞ is a function of b ¼ naðβÞ alone. The universal curve seems
independent of a gauge fixing procedure used to smooth the lattice vacuum since the scaling is obtained
in all gauges adopted. The scaling, if it exists also for n → ∞, shows that the lattice definition of
VNABI has the continuum limit and the new confinement scenario is realized.

DOI: 10.1103/PhysRevD.97.034501

I. INTRODUCTION

Color confinement in quantum chromodynamics (QCD)
is still an important unsolved problem [1].
As a picture of color confinement, ’t Hooft [2] and

Mandelstam [3] conjectured that the QCD vacuum is a kind
of a magnetic superconducting state caused by condensa-
tion of magnetic monopoles and an effect dual to the
Meissner effect works to confine color charges. However,
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in contrast to SUSY QCD [4] or Georgi-Glashow model
[5,6] with scalar fields, to find color magnetic monopoles
which condense is not straightforward in QCD.
An interesting idea to realize this conjecture is to project

QCD to the Abelian maximal torus group by a partial (but
singular) gauge fixing [7]. In SUð3Þ QCD, the maximal
torus group is Abelian Uð1Þ2. Then color magnetic
monopoles appear as a topological object. Condensation
of the monopoles causes the dual Meissner effect [8–10].
Numerically, an Abelian projection in nonlocal gauges

such as the maximally Abelian (MA) gauge [11–13] has
been found to support the Abelian confinement scenario
beautifully [14–20]. Also the Abelian dominance and the
dual Meissner effect are observed clearly in local unitary
gauges such as F12 and Polyakov (PL) gauges [21].
However, although numerically interesting, the idea of

Abelian projection [7] is theoretically very unsatisfactory.
(1) In nonperturbative QCD, any gauge-fixing is not
necessary at all. There are infinite ways of such a partial
gauge-fixing and whether the ’t Hooft scheme is gauge
independent or not is not known. (2) After an Abelian
projection, only one [in SUð2Þ] or two [in SUð3Þ] gluons
are photon-like with respect to the residual Uð1Þ or Uð1Þ2
symmetry and the other gluons are massive charged matter
fields. Such an asymmetry among gluons is unnatural.
(3) How to construct Abelian monopole operators in a
gauge-independent way in terms of original gluon fields is
not clear at all.
In this paper, we propose a new theoretical scheme for

color confinement based on the dual Meissner effect which
is free from the above problems. The idea was first
expressed by one of the authors (T.S.) in Ref. [22].
Then to check if the above scheme is realized in nature,

we study the proposal in the framework of the non-Abelian
lattice gauge theory. For simplicity we adopt pure SUð2Þ
lattice gauge theory. First considering JμðxÞ ¼ kμðxÞ in the
continuum, we define VNABI on lattice as an Abelian-like
monopole following DeGrand-Toussaint [23]. Then as a
most important point to be clarified, we are going to study if
the lattice VNABI has the non-trivial continuum limit,
namely if the scaling of the density exists.
The lattice monopoles exist as a closed loop due to the

current conservation law. As shown later explicitly, monop-
ole closed loops are contaminated by lattice artifacts. Hence
it is absolutely necessary to introduce various techniques
avoiding such large lattice artifacts in order to analyze
especially such a quantity as the monopole density, since all
lattice artifacts contribute positively to the density. We
introduce various techniques of smoothing the thermalized
vacuum. Smooth gauge fixings such as the maximal center
gauge (MCG) [24,25], block-spin transformations of
Abelian-like monopoles, and extraction of physically
important infrared long monopoles are taken into account.
We also employ the tree-level tadpole improved gauge
action.

II. A NEW CONFINEMENT SCHEME
BASED ON VNABI

A. Equivalence of Jμ and kμ
First of all, we prove that the Jacobi identities of

covariant derivatives lead us to conclusion that violation
of the non-Abelian Bianchi identities (VNABI) Jμ is
nothing but an Abelian-like monopole kμ defined by
violation of the Abelian-like Bianchi identities without
gauge-fixing. Define a covariant derivative operator
Dμ ¼ ∂μ − igAμ. The Jacobi identities are expressed as

ϵμνρσ½Dν; ½Dρ; Dσ�� ¼ 0: ð1Þ

By direct calculations, one gets

½Dρ; Dσ� ¼ ½∂ρ − igAρ; ∂σ − igAσ�
¼ −igð∂ρAσ − ∂σAρ − ig½Aρ; Aσ�Þ þ ½∂ρ; ∂σ�
¼ −igGρσ þ ½∂ρ; ∂σ�;

where the second commutator term of the partial derivative
operators can not be discarded, since gauge fields may
contain a line singularity. Actually, it is the origin of the
violation of the non-Abelian Bianchi identities (VNABI) as
shown in the following. The non-Abelian Bianchi identities
and the Abelian-like Bianchi identities are, respectively:
DνG�

μν ¼ 0 and ∂νf�μν ¼ 0. The relation ½Dν; Gρσ� ¼ DνGρσ

and the Jacobi identities (1) lead us to

DνG�
μν ¼

1

2
ϵμνρσDνGρσ

¼ −
i
2g

ϵμνρσ½Dν; ½∂ρ; ∂σ��

¼ 1

2
ϵμνρσ½∂ρ; ∂σ�Aν

¼ ∂νf�μν; ð2Þ

where fμν is defined as fμν ¼ ∂μAν − ∂νAμ ¼ ð∂μAa
ν−

∂νAa
μÞσa=2. Namely Eq. (2) shows that the violation of

the non-Abelian Bianchi identities is equivalent to that of
the Abelian-like Bianchi identities.
Denote the violation of the non-Abelian Bianchi iden-

tities as Jμ:

Jμ ¼
1

2
Jaμσa ¼ DνG�

μν: ð3Þ

Equation (3) is gauge covariant and therefore a nonzero Jμ
is a gauge-invariant property. An Abelian-like monopole kμ
without any gauge-fixing is defined as the violation of the
Abelian-like Bianchi identities:
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kμ ¼
1

2
kaμσa ¼ ∂νf�μν ¼

1

2
ϵμνρσ∂νfρσ: ð4Þ

Equation (2) shows that

Jμ ¼ kμ: ð5Þ

Several comments are in order.
(1) Equation (5) can be considered as a special case of

the important relation derived by Bonati et al. [26] in
the framework of an Abelian projection to a simple
case without any Abelian projection. Actually it is
possible to prove directly without the help of the
Jacobi identities

Jaμ − kaμ ¼ TrσaDνG�
μν − ∂νf�aμν

¼ −igTrσa½Aν; G�
μν�

− igϵμνρσTrσa½∂νAρ; Aσ�
¼ 0:

(2) VNABI Jμ transforms as an adjoint operator, so that
does the Abelian-like monopole current kμ. This can
be proved also directly. Consider a regular gauge
transformation

A0
μ ¼ VAμV† −

i
g
∂μVV†:

Then

k0μ ¼ ϵμνρσ∂ν∂ρA0
σ

¼ ϵμνρσ∂ν∂ρ

�
VAμV† −

i
g
∂μVV†

�

¼ Vðϵμνρσ∂ν∂ρAσÞV†

¼ VkμV†: ð6Þ

(3) The above equivalence shows VNABI is essentially
Abelian-like. It was already argued that singularities
of gauge fields corresponding to VNABI must be
Abelian [27], although the reasoning is different.

(4) The covariant conservation law DμJμ ¼ 0 is proved
as follows [26]:

DμJμ ¼ DμDνG�
νμ ¼

ig
2
½Gνμ; G�

νμ�

¼ ig
4
ϵνμρσ½Gνμ; Gρσ� ¼ 0; ð7Þ

where

∂μ∂νG�
μν ¼ 0 ð8Þ

is used. The Abelian-like monopole satisfies the
Abelian-like conservation law

∂μkμ ¼ ∂μ∂νf�μν ¼ 0 ð9Þ

due to the antisymmetric property of the Abelian-
like field strength [28]. Hence VNABI satisfies also
the same Abelian-like conservation law

∂μJμ ¼ 0: ð10Þ

Both Eqs. (7) and (10) are compatible, since the
difference between both quantities

½Aμ; Jμ� ¼
1

2
ϵμνρσ½Aμ; ∂νfρσ�

¼ ϵμνρσ½Aμ; ∂ν∂ρAσ�

¼ −
1

2
ϵμνρσ∂ν∂μ½Aρ; Aσ�

¼ i
g
ð∂μ∂νG�

μν − ∂μ∂νf�μνÞ

¼ 0;

where (8) and (9) are used. Hence the Abelian-like
conservation relation (10) is also gauge-covariant.

(5) The Abelian-like conservation relation (10) gives us
three conserved magnetic charges in the case of
color SUð2Þ and N2 − 1 charges in the case of color
SUðNÞ. But these are kinematical relations coming
from the derivative with respect to the divergence of
an antisymmetric tensor [28]. The number of con-
served charges is different from that of the Abelian
projection scenario [7], where only N − 1 conserved
charges exist in the case of color SUðNÞ.

B. Dirac quantization condition

Next we show that the magnetic charges derived from
k4 ¼ J4 satisfy the Dirac quantization condition with
respect to magnetic and electric charges. Consider a
space-time pointOwhere the Bianchi identities are violated
and a three-dimensional sphere V of a large radius r from
O. Since k4 ¼ J4 is given by the total derivative, the
behavior of the gauge field at the surface of the sphere is
relevant. When r → ∞, the non-Abelian field strength
should vanish since otherwise the action diverges. Then
the magnetic charge could be evaluated by a gauge field
described by a pure gauge Aμ ¼ Ω∂μΩ†=ig, where Ω is a
gauge transformation matrix satisfying Ω½∂μ; ∂ν�Ω† ¼ 0 at
r → ∞. Then the magnetic charge gdm in a color direction is
evaluated as follows:
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gdm ¼
Z
V
d3xkd4 ¼

Z
d3x

1

2
ϵ4νρσ∂νð∂ρAd

σ − ∂σAd
ρÞ

¼
Z
V
d3x

1

2ig
ϵijk∂iTrσdð∂jΩ∂kΩ† − ∂kΩ∂jΩ† þ Ω½∂j; ∂k�Ω†Þ

¼
Z
V
d3x

1

2g
ϵijkfϵabc∂iðϕ̂a∂jϕ̂

b∂kϕ̂
c þ ∂iTrσdΩ½∂j; ∂k�Ω†Þg

¼
Z
∂V

d2S
1

2g
ϵijkϵ

abcϕ̂a∂jϕ̂
b∂kϕ̂

c; ð11Þ

whereΩ½∂j; ∂k�Ω† ¼ 0 on the surface at r → ∞ is used and
ϕ̂ is a Higgs-like field defined as

ϕ̂ ¼ ϕ̂iσi

¼ ΩσdΩ†:

ϕ̂2 ¼ 1 is shown easily. Since the field ϕ̂ is a single-valued
function, Eq. (11) is given by the wrapping number n
characterizing the homotopy class of the mapping between
the spheres described by ϕ̂2 ¼ ðϕ̂1Þ2 þ ðϕ̂2Þ2 þ ðϕ̂3Þ2 ¼ 1

and ∂V ¼ S2: π2ðS2Þ ¼ Z. Namely

gdmg ¼ 4πn: ð12Þ

This is just the Dirac quantization condition. Note that the
minimal color electric charge in any color direction is g=2.
Hence the kinematical conservation law is also topological.

What happens in the case of color SUð3Þ? Then it is easy
to prove that the three SUð2Þ subspaces (isospin, U-spin,
V-spin) play the role in the above mapping and all eight
magnetic charges are quantized similarly à la Dirac. In
SUð3Þ, a gauge field for r → ∞ becomes Aμ ¼ Ω∂μΩ†=ig,
where now Ω is a 3 × 3 gauge transformation matrix of
SUð3Þ. Then for example, consider a magnetic charge in
the λ1 direction, where λa is the Gell-Mann matrix. Then
define a Higgs-like field ϕ̂ as

ϕ̂ ¼ ϕ̂iλi ð13Þ

¼ Ωλ1Ω†: ð14Þ

The magnetic charge g1m in the λ1 color direction is
evaluated as follows:

g1m ¼
Z
V
d3xk14 ¼

Z
d3x

1

2
ϵ4νρσ∂νð∂ρA1

σ − ∂σA1
ρÞ

¼
Z
V
d3x

1

2ig
ϵijk∂iTrλ1ð∂jΩ∂kΩ† − ∂kΩ∂jΩ† þΩ½∂j; ∂k�Ω†Þ

¼
Z
V
d3x

1

2g
ϵijkfϵabc∂iðϕ̂a∂jϕ̂

b∂kϕ̂
c þ ∂iTrλ1Ω½∂j; ∂k�Ω†Þg

¼
Z
∂V

d2S
1

2g
ϵijkϵ

abcϕ̂a∂jϕ̂
b∂kϕ̂

c: ð15Þ

Now one sees from (14)

ϕ̂2 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA: ð16Þ

The condition (16) gives us

ðϕ̂1Þ2 þ ðϕ̂2Þ2 þ ðϕ̂3Þ2 ¼ 1;

ϕ̂4 ¼ ϕ̂5 ¼ ϕ̂6 ¼ ϕ̂7 ¼ ϕ̂8 ¼ 0:

Namely the subspace composed of ðϕ̂1; ϕ̂2; ϕ̂3Þ is a sphere
S2 and the mapping is just like that in the case of color
SUð2Þ. Hence g1m satisfies the Dirac quantization condition

g1mg ¼ 4πn: ð17Þ

The same condition holds good for all other magnetic
charges.

C. Proposal of the vacuum in the confinement phase

Now we propose a new mechanism of color confinement
in which VNABI Jμ play an important role in the vacuum.
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Since VNABI transforms as an adjoint operator, it can be
diagonalized by a unitary matrix VdðxÞ as follows:

VdðxÞJμðxÞV†
dðxÞ ¼ λμðxÞ

σ3
2
;

where λμðxÞ is the eigenvalue of JμðxÞ and is then color
invariant but magnetically charged. Note that VdðxÞ does
not depend on μ due to the Coleman-Mandula theorem
[29,30]. Then one gets

ΦðxÞ≡ V†
dðxÞσ3VdðxÞ ð18Þ

JμðxÞ ¼
1

2
λμðxÞΦðxÞ; ð19Þ

X
a

ðJaμðxÞÞ2 ¼
X
a

ðkaμðxÞÞ2 ¼ ðλμðxÞÞ2: ð20Þ

Namely the color electrically charged part and the mag-
netically charged part are separated out. From (19) and
(10), one gets

∂μJμðxÞ ¼
1

2
ð∂μλμðxÞΦðxÞ þ λμðxÞ∂μΦðxÞÞ ¼ 0: ð21Þ

Since ΦðxÞ2 ¼ 1,

∂μλμðxÞ ¼ −λμðxÞΦðxÞ∂μΦðxÞ ¼ 0:

Hence the eigenvalue λμ itself satisfies the Abelian con-
servation rule.
Furthermore, when use is made of (6), it is possible to

prove that

1

2
ϵμνρσ∂νf0μνðxÞ ¼ λμðxÞ

σ3
2
; ð22Þ

where

f0μνðxÞ ¼ ∂μA0
νðxÞ − ∂νA0

μðxÞ
A0
μ ¼ VdAμV

†
d −

i
g
∂μVdV

†
d;

≡ A0a
μ σ

a

2
:

Namely,

1

2
ϵμνρσ∂νf

01;2
ρσ ðxÞðxÞ ¼ 0 ð23Þ

1

2
ϵμνρσ∂νf03ρσðxÞðxÞ ¼ λμðxÞ: ð24Þ

The singularity appears only in the diagonal component of
the gauge field A0

μ.

If one considers for large r

A0
μ → Ω∂μΩ†=ig;

ϕ̂ ¼ ϕ̂iσi ¼ Ωσ3Ω†;

one can easily see from (24) and (11) that the magnetic
charge from the eigenvalue λμ also satisfies the Dirac
quantization condition (12).
It is very interesting to see that f03μνðxÞ is actually the

gauge invariant ’tHooft tensor [5]:

f03μνðxÞ ¼ TrΦðxÞGμνðxÞ þ
i
2g

TrΦðxÞDμΦðxÞDνΦðxÞ;

in which the field ΦðxÞ (18) plays a role of the scalar Higgs
field in Ref. [5]. To be noted is that the field ΦðxÞ (18) is
determined uniquely by VNABI itself in the gluodynamics
without any Higgs field. In this sense, our scheme can be
regarded as a special Abelian projection scenario with the
partial gauge-fixing condition where JμðxÞ are diagonal-
ized. The condensation of the gauge-invariant magnetic
currents λμ does not give rise to a spontaneous breaking of
the color electric symmetry. Condensation of the color
invariant magnetic currents λμ may be a key mechanism of
the physical confining vacuum.
The main difference between our new scheme and

previous Abelian projection schemes is that in the former
there exist N2 − 1 conserved magnetic currents squeezing
N2 − 1 color electric fields and color (not charge) confine-
ment is shown explicitly, whereas in the latter, there exists
only N − 1 conserved currents giving charge confinement.
In our scheme, the N2 − 1 conserved magnatic currents are
degenerate in the vacuum to N − 1 color-invariant currents
corresponding to the eigenvalues. To show the difference of
this scheme from the previous ’tHooft Abelian projection
with some partial gauge-fixing, we show Table I in which
typical different points are written.
Let us make a comment here on the relation derived by

Bonati et al.[26]:

kABμ ðxÞ ¼ TrfJμðxÞΦABðxÞg; ð25Þ

where kABμ ðxÞ is an Abelian monopole, ΦABðxÞ ¼
V†
ABðxÞσ3VABðxÞ and VABðxÞ is a partial gauge-fixing

matrix in some Abelian projection like the MA gauge.
Making use of Eq. (19), we get

kABμ ðxÞ ¼ λμðxÞ ~Φ3ðxÞ; ð26Þ

where

~ΦðxÞ ¼ VABðxÞV†
dðxÞσ3V†

ABðxÞVdðxÞ ¼ ~ΦaðxÞσa:

The relation (25) is important, since existence of an Abelian
monopole in any Abelian projection scheme is guaranteed
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by that of VNABI Jμ in the continuum limit. Hence if in
any special gauge such as MA gauge, Abelian monopoles
remain non-vanishing in the continuum as suggested by
many numerical data [14–20], VNABI also remain non-
vanishing in the continuum.

III. LATTICE NUMERICAL STUDY
OF THE CONTINUUM LIMIT

A. Definition of VNABI on lattice

Let us try to define VNABI on lattice. In the previous
section, VNABI JμðxÞ is shown to be equivalent in the
continuum limit to the violation of the Abelian-like Bianchi
identities JμðxÞ ¼ kμðxÞ.
On lattice, we have to define a quantity which leads us to

the above VNABI in the continuum limit. There are two
possible definitions which lead us to the above VNABI in
the naive continuum limit. One is a quantity keeping the
adjoint transformation property under the lattice SUð2Þ
gauge transformation VðsÞ:

Uðs; μÞ0 ¼ VðsÞUðs; μÞV†ðsþ μÞ:

Here Uðs; μÞ is a lattice gauge link field. Such a quantity
was proposed in Ref. [34]:

JμðsÞ≡ 1

2
ðUðs; νÞUμνðsþ νÞU†ðs; νÞ −UμνðsÞÞ;

UμνðsÞ≡Uðs; μÞUðsþ μ; νÞU†ðsþ ν; μÞU†ðs; νÞ

where UμνðsÞ is a plaquette variable corresponding to the
non-Abelian field strength. This transforms as an adjoint
operator:

J0μðsÞ ¼ VðsÞJμðsÞV†ðsÞ ð27Þ

and satisfies the covariant conservation law

X
μ

DL
μJμðsÞ ¼

X
μ

ðUðsþ μ; μÞJμðsÞU†ðs; μÞ − JμðsÞÞ

¼ 0:

However it does not satisfy the Abelian conservation law:

X
μ

ðJμðsÞ − Jμðs − μÞÞ ¼ 0: ð28Þ

Moreover it does not have a property corresponding to
the Dirac quantization condition satisfied by the continuum
VNABI. The last point is very unsatisfactory, since the
topological property as a monopole is essential.
Hence we adopt here the second possibility which can

reflect partially the topological property satisfied by
VNABI. That is, we define VNABI on lattice as the
Abelian-like monopole [32,33] following DeGrand and
Toussaint [23]. First we define Abelian link and plaquette
variables:

θaμðsÞ ¼ arctanðUa
μðsÞ=U0

μðsÞÞ ðjθaμðsÞj < πÞ ð29Þ

θaμνðsÞ≡ ∂μθ
a
νðsÞ − ∂νθ

a
μðsÞ; ð30Þ

where ∂νð∂ 0
νÞ is a forward (backward) difference. Then the

plaquette variable can be decomposed as follows:

θaμνðsÞ ¼ θ̄aμνðsÞ þ 2πnaμνðsÞ ðjθ̄aμνj < πÞ; ð31Þ

where naμνðsÞ is an integer corresponding to the number of
the Dirac string. Then VNABI as Abelian monopoles is
defined by

kaμðsÞ ¼ −ð1=2Þϵμαβγ∂αθ̄
a
βγðsþ μ̂Þ

¼ ð1=2Þϵμαβγ∂αnaβγðsþ μ̂Þ

JμðsÞ≡ 1

2
kaμðsÞσa: ð32Þ

This definition (32) of VNABI satisfies the Abelian
conservation condition (28) and takes an integer value
which corresponds to the magnetic charge obeying the
Dirac quantization condition. The eigenvalue λμ is defined
from (20) as

TABLE I. Comparison between the ’tHooft Abelian projection studies and the present work in SUð2Þ QCD. ϕ̂0 ¼ V†
pσ3Vp, where Vp

is a partial gauge-fixing matrix of an Abelian projection. ðuc; dcÞ is a color-doublet quark pair. MA means maximally Abelian.

The ’tHooft Abelian projection scheme
This work and Refs. [32,33]Previous works [11–21] Reference [26]

Origin of kμ A singular gauge transformation kμ ¼ TrJμϕ̂
0 kaμ ¼ Jaμ

No. of conserved kμ 1 3
Role of Aa

μ One photon A3
μ with k3μ þ 2 massive A�

μ Three gluons Aa
μ with kaμ

Flux squeezing One electric field Eμ Three electric fields Ea
μ

Number of physical mesons 2 Abelian neutrals, ūcuc and d̄cdc 1 color singlet ūcuc þ d̄cdc
Expected confining vacuum Condensation of Abelian monopoles Condensation of color-invariant λμ
Privileged gauge choice A singular gauge MA gauge No need of gauge-fixing

SUZUKI, ISHIGURO, and BORNYAKOV PHYS. REV. D 97, 034501 (2018)

034501-6



ðλμðsÞÞ2 ¼
X
a

ðkaμðsÞÞ2: ð33Þ

However it does not satisfy the transformation property
(27) on the lattice. We will demonstrate that this property is
recovered in the continuum limit by showing the gauge
invariance of the monopole density or the squared monop-
ole density (33) in the scaling limit.

B. Simulation details

1. Tadpole improved gauge action

First of all, we adopt the tree level improved action of the
form [35] for simplicity in SUð2Þ gluodynamics:

S ¼ β
X
pl

Spl −
β

20u20

X
rt

Srt ð34Þ

where Spl and Srt denote plaquette and 1 × 2 rectangular
loop terms in the action,

Spl;rt ¼
1

2
Trð1 −Upl;rtÞ; ð35Þ

the parameter u0 is the input tadpole improvement factor
taken here equal to the fourth root of the average plaquette
P ¼ h1

2
trUpli. In our simulations we have not included

one-loop corrections to the coefficients, for the sake of
simplicity.
The lattices adopted are 484 for β ¼ 3.0–3.9 and 244

for β ¼ 3.0–3.7. The latter was taken mainly for studying
finite-size effects. The simulations with the action (34)
have been performed with parameters given in Table V in
Appendix A following similarly the method as adopted
in Ref. [36].

2. The non-Abelian string tension

In order to fix the physical lattice scale we need to
compute one physical dimensionful observable the value of
which is known. For this purpose we choose the string
tension σ. The string tension for the action (34) was
computed long ago in [36,37] but we improve this
measurement according to present standards. We use the
hypercubic blocking (HYP) invented by the authors of
Refs. [38–41] to reduce the statistical errors. After one step
of HYP, APE smearing [42] were applied to the spacelike
links. The spatial smearing is made, as usually, in order to
variationally improve the overlap with a mesonic flux tube
state. The results of the measured string tensions are listed
also in Table V in Appendix A.

3. Introduction of smooth gauge-fixings

Monopole loops in the thermalized vacuum produced in
the above improved action (34) still contain large amount of

lattice artifacts. Hence we here adopt a gauge-fixing
technique smoothing the vacuum, although any gauge-
fixing is not necessary in principle in the continuum
limit [43]:
(1) Maximal center gauge (MCG).

The first gauge is the maximal center gauge
[24,25] which is usually discussed in the framework
of the center vortex idea. We adopt the so-called
direct maximal center gauge which requires maxi-
mization of the quantity

R ¼
X
s;μ

ðTrUðs; μÞÞ2 ð36Þ

with respect to local gauge transformations. The
condition (36) fixes the gauge up to Zð2Þ gauge
transformation and can be considered as the Landau
gauge for the adjoint representation. In our simu-
lations, we choose simulated annealing algorithm as
the gauge-fixing method which is known to be
powerful for finding the global maximum. For
details, see Ref. [44].

(2) Direct Laplacian center gauge (DLCG).
The second is the Laplacian center gauge [45]

which is also discussed in connection to center
vortex idea. Here we adopt the so-called direct
Laplacian center gauge. First, we require maximi-
zation of the quantity

RM ¼
X
s;μ

Tr½MTðsÞUAðs; μÞMðs; μÞ� ð37Þ

where UAðs; μÞ denotes the adjoint representation of
Uðs; μÞ and Mðs; μÞ is a real-valued 3 × 3 matrix in
SUð2Þ gauge theory which satisfies the constraint

1

V

X
s

X
j

MT
ijðsÞMjkðsÞ ¼ δik ð38Þ

with V lattice volume. Matrix fieldMðsÞwhich leads
to a global maximum of RM is composed of the three
lowest eigenfunctions of a lattice Laplacian operator.
Second, to determine the corresponding gauge trans-
formation, we construct SOð3Þ matrix-valued field
which is the closest to MðsÞ and satisfies the
corresponding Laplacian condition by local gauge
transformation. Finally, the SOð3Þ matrix-valued
field is mapped to an SU(2) matrix-valued field
which is used to the gauge transformation for the
original lattice gauge field in fundamental represen-
tation. After that, DLCG maximizes the quantity
(36) with respect to solving a lattice Laplacian
equation.

(3) Maximal Abelian Wilson loop gauge (AWL).
Another example of a smooth gauge is introduced.

It is the maximal Abelian Wilson loop gauge (AWL)
in which
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R ¼
X
s;μ≠ν

X
a

ðcosðθaμνðsÞÞ ð39Þ

is maximized. Here θaμνðsÞ have been introduced in
Eq. (31). Since cosðθaμνðsÞÞ are 1 × 1AbelianWilson
loops, the gauge is called as the maximal Abelian
Wilson loop gauge (AWL). A similar gauge was
proposed in [46], although only one-color compo-
nent was considered then in comparison with
the maximal Abelian gauge (MAG). Note that even
1 × 1 small Abelian Wilson loop is enhanced when
a smooth gauge condition such as the MA gauge
is adopted. The details are presented in the
Appendix B.

(iv) Maximal Abelian and Uð1Þ Landau gauge (MAU1).
The fourth is the combination of the maximal

Abelian gauge (MAG) and the Uð1Þ Landau gauge
[12,13]. Namely we first perform the maximal
Abelian gauge fixing and then with respect to the
remaining Uð1Þ symmetry the Landau gauge fixing
is done. This case breaks the global SUð2Þ color
symmetry contrary to the previous three cases
(MCG, DLCG, and AWL) but nevertheless we
consider this case since the vacuum is smoothed
fairly well. MAG is the gauge which maximizes

R ¼
X
s;μ̂

Trðσ3Uðs; μÞσ3U†ðs; μÞÞ ð40Þ

with respect to local gauge transformations. Then
there remains Uð1Þ symmetry to which the Landau
gauge fixing is applied, i.e.,

P
s;μ cos θ

3
μðsÞ is maxi-

mized [47].

4. Extraction of infrared monopole loops

An additional improvement is obtained when we extract
important long monopole clusters only from total monop-
ole loop distribution. Let us see a typical example of
monopole loop distributions in each gauge in comparison
with that without any gauge fixing starting from a ther-
malized vacuum at β ¼ 3.6 on 244 lattice. They are shown
in Table II. One can find almost all monopole loops are
connected and total loop lengths are very large when no
gauge fixing (NGF) is applied as shown in the NGF case.
On the other hand, monopole loop lengths become much
shorter in all smooth gauges discussed here. Also it is found
that only one or few loops are long enough and others are
very short as observed similarly in old papers in MAG. The
long monopole clusters are called as infrared monopoles
and they are the key ingredient giving confinement as
shown in the old papers [48]. It is important that in addition
to MAU1, all other three MCG, DLCG and AWL cases also
have similar behaviors. Since small separate monopole
loops can be regarded as lattice artifacts, we extract only
infrared monopoles alone. Although there observed only

one infrared monopole loop in almost all cases, there are
some vacua (especially for large beta) having two or three
separate long loops which can be seen as infrared one, since
they have much longer length than other shorter ones. We
here define as infrared monopoles as all loops having loop

TABLE II. A typical example of monopole loop distributions
[Loop length (L) vs Loop number (No.)] for various gauges in
one thermalized vacuum on 244 lattice at β ¼ 3.6 in the tadpole
improved action. Here I and L denote the color component and
the loop length of the monopole loop, respectively.

NGF I ¼ 1 MCG I ¼ 1 DLCG I ¼ 1
L No L No L No

4 154 4 166 4 164
6 20 6 64 6 66
8 7 8 30 8 28
10 2 10 13 10 15
14 1 12 11 12 10
16 1 14 4 14 3
407824 1 16 5 16 6

18 1 18 2
22 2 20 1
24 2 22 1
28 1 24 2
30 1 26 3
32 1 30 1
34 2 36 1
36 1 44 1
44 1 48 1
46 1 54 1
48 1 58 1
58 1 124 1

124 1 1106 1
2254 1 1448 1

AWL I ¼ 1 MAU1 I ¼ 1 MAU1 I ¼ 3
L No L No L No

4 142 4 73 4 190
6 66 6 32 6 80
8 36 8 13 8 22
10 8 10 11 10 15
12 7 12 6 12 2
14 3 14 3 14 3
16 3 16 2 16 1
18 1 18 3 18 3
20 1 20 2 20 3
22 3 22 1 24 1
26 3 30 2 36 1
28 1 34 2 42 1
30 2 58 1 60 1
32 1 148 1 66 1
34 1 5188 1 146 1
40 1 318 1
46 1 722 1
58 1
120 1
308 1
1866 1
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lengths longer than 10% of the longest one. The cutoff
value is not so critical. Actually the definition of infrared
loops itself has an ambiguity, since even in the longest loop,
we can not separate out some short artifact loops attached
accidentally to the real infrared long loop. But such an
ambiguity gives us numerically only small effects as seen
from the studies of different cutoff values.

5. Block-spin transformation

Block-spin transformation and the renormalization-
group method is known as the powerful tool to study
the continuum limit. We introduce the block-spin trans-
formation with respect to Abelian-like monopoles. The idea
was first introduced by Ivanenko et al. [49] and applied in
obtaining an infrared effective monopole action in
Ref. [50]. The n blocked monopole has a total magnetic
charge inside the n3 cube and is defined on a blocked
reduced lattice with the spacing b ¼ na, a being the
spacing of the original lattice. The respective magnetic
currents are defined as

kðnÞμ ðsnÞ ¼
1

2
ϵμνρσ∂νn

ðnÞ
ρσ ðsn þ μ̂Þ

¼
Xn−1
i;j;l¼0

kμðnsn

þ ðn − 1Þμ̂þ iν̂þ jρ̂þ lσ̂Þ;

nðnÞρσ ðsnÞ ¼
Xn−1
i;j¼0

nρσðnsn þ iρ̂þ jσ̂Þ; ð41Þ

where sn is a site number on the reduced lattice. For
example,

kð2Þμ ðs2Þ ¼
X1
i;j;l¼0

kμð2s2 þ μ̂þ iν̂þ jρ̂þ lσ̂Þ;

kð4Þμ ðs4Þ ¼
X3
i;j;l¼0

kμð4s4 þ 3μ̂þ iν̂þ jρ̂þ lσ̂Þ

¼
X1
i;j;l¼0

kð2Þμ ð2s4 þ μ̂þ iν̂þ jρ̂þ lσ̂Þ:

These equations show that the relation between kð4Þμ ðs4Þ and
kð2Þμ ðs2Þ is similar to that between kð2Þμ ðs2Þ and kμðsÞ and
hence one can see the above Eq. (41) corresponds to the
usual block-spin transformation. After the block-spin trans-
formation, the number of short lattice artifact loops
decreases while loops having larger magnetic charges
appear. We show an example of the loop length and loop
number distribution of the four step (n ¼ 4) blocked
monopoles in Table III with respect to the same original
vacuum as in Table II. For reference, we show the relation
between the spacing of the blocked lattice and β in Fig. 1.

In Fig. 1 and in what follows we present spacings a and b in
units of 1=

ffiffiffi
σ

p
.

C. Numerical results

Now let us show the simulation results with respect to
VNABI (Abelian-like monopole) densities. Since monop-
oles are three-dimensional objects, the density is defined as
follows:

ρ ¼
P

μ;sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aðkaμðsnÞÞ2

q
4

ffiffiffi
3

p
Vnb3

; ð42Þ

where Vn ¼ V=n4 is the 4 dimensional volume of the
reduced lattice, b ¼ naðβÞ is the spacing of the reduced
lattice after n-step block-spin transformation. sn is the site

FIG. 1. b ¼ naðβÞ in unit of 1=
ffiffiffi
σ

p
versus β.

TABLE III. The n ¼ 4 blocked monopole loop distribution
[Loop length (L) vs Loop number (No.)] in various gauges on 64

reduced lattice volume at β ¼ 3.6 in the same vacuum used in
Table II.

NGF I ¼ 1 MCG I ¼ 1 DLCG I ¼ 1
L No L No L No

9266 1 4 5 4 8
6 1 6 2

10 1 406 1
340 1

AWL I ¼ 1 MAU1 I ¼ 1 MAU1 I ¼ 3
L No L No L No

4 5 4 12 4 8
6 1 6 1 6 3
14 1 10 1 8 2
352 1 24 1 16 1

26 1 276 1
270 1
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on the reduced lattice and the superscript a denotes a color
component. Note that

P
aðkaμÞ2 is gauge-invariant in the

continuum limit. Although the global color invariance is
exact except in MAU1 gauge, the average of the density of
each color component of jkaμj is not equal to the average of
the above ρ, since two or three colored monopoles can run
on the same dual links. In general, the density ρ is a
function of two variables β and n.

1. Scaling

For the purpose of studying the continuum limit, it is
usual to analyze scaling behaviors. First of all, let us show
the data of MCG case in Fig. 2. In this figure and in what
follows we present the monopole density ρ in units of σ1.5.
When the scaling exists for both the string tension and the
monopole density, we expect ρ → const as aðβÞ → 0 and
V → ∞, since aðβÞ is measured in unit of the string tension.

In the case of total monopole density such a behavior is not
seen yet. When infrared monopoles alone and blocked
monopoles are considered, the behavior becomes flatter as
seen from Fig. 2. But still this scaling is not conclusive. We
need to study larger β regions on larger lattice volumes.
These features are very much similar in other smooth
gauges as AWL, DLCG, and MAU1 and so their data are
not shown here.

2. Scaling under the block-spin transformations

It is very interesting to see that more beautiful and clear
scaling behaviors are observed when we plot ρðaðβÞ; nÞ
versus b ¼ naðβÞ. As one can see from the figures shown
below for various smooth gauges considered in this work,
one can see a universal function ρðbÞ for β ¼ 3.0–3.9
(β ¼ 3.0–3.7) and n ¼ 1, 2, 3, 4, 6, 8, 12 (n ¼ 1, 2, 3, 4, 6)
on 484 (244) lattice. Namely ρðaðβÞ; nÞ is a function of
b ¼ naðβÞ alone. Thus we observe clear indication of the
continuum (aðβÞ → 0) limit for the lattice VNABI studied
in this work.

3. MCG case

First we show the case of MCG gauge-fixed vacua in
details. As can be seen from Fig. 9, data for ρðaðβÞ; nÞ can
be expressed by a function of one argument b ¼ naðβÞ
alone. There is a very beautiful scaling behavior for the
range of β ¼ 3.0–3.9 and n ¼ 1, 2, 3, 4, 6, 8, 12. When we
are restricted to long infrared monopoles alone, the density
becomes substantially reduced for small b < 0.5 region.
But the scaling also can be seen except for small b region as
shown in Fig. 3. The violation of scaling for small b region
is mainly due to the ambiguity of extracting infrared
monopoles. When we restrict ourselves to the data for
b ≥ 0.5, the scaling function ρðbÞ is obtained using the χ2

fit to a simple function as shown in Fig. 4:

ρðbÞ ¼ expða1 þ a2bþ a3b2Þ;
a1 ¼ 0.5302ð141Þ; a2 ¼ −1.4756ð158Þ;
a3 ¼ 0.1304ð35Þ: ð43Þ

But the fit is not good enough, since χ2=Ndof ¼ 12.56 for
Ndof ¼ 44. Here we show the function (43) only for the
purpose of illustration, since we have not found a simple
but better fit.
To see in more details, let us consider the data points at

b ¼ 0.5, 1.0, 1.5, 2.0 for each n. Especially the data at
b ¼ 1.0 can be fixed from the data at 5 different values of β
from 3.0 ≤ β ≤ 3.9 as seen from Fig. 1 and Table IV. One
can see the scaling behavior also clearly from the density
plot for different n at b ¼ 1.0, 1.5, 2.0 as shown in Fig. 5.
However a scaling violation is seen at b ¼ 0.5 [51].

FIG. 2. The VNABI (Abelian-like monopoles) density versus
aðβÞ in MCG on 484. Top: total density; bottom: infrared density.
n3 in the legend means n-step blocked monopoles.
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4. AWL case

Very similar behaviors are seen in the AWL gauge case.
Again beautiful scaling behaviors for the range of β ¼
3.0 ∼ 3.9 and n ¼ 1, 2, 3, 4, 6, 8, 12 are seen in Fig. 6. But
in the case of infrared monopoles shown in Fig. 6, a scaling
violation is observed for small b region.

5. DLCG case

Since the DLCG gauge-fixing needs much time for
larger lattice, we evaluate monopole density only on 244

lattice. As seen from Fig. 7, a scaling behavior is found,
although small deviations exist for small b region.

6. MAU1 case

Now we discuss the case of MAU1 gauge. In this gauge,
the global isospin symmetry is broken. Hence let us first
evaluate the monopole density in each color direction.
Namely

ρa ¼
P

μ;sn jkaμðsnÞÞj
4Vnb3

: ð44Þ

As expected we find ρ1 ∼ ρ2 ≠ ρ3, so that we show ρ2 and
ρ3. The results are shown in Fig. 8. Here the scaling is seen

FIG. 3. The VNABI (Abelian-like monopoles) density versus
b ¼ naðβÞ in MCG on 484. Top: total density; bottom: infrared
density.

FIG. 4. The fit of the infrared VNABI (Abelian-like monop-
oles) density data in MCG on 484 lattice to Eq. (43).

FIG. 5. The VNABI (Abelian-like monopole) density at
b ¼ 0.5, 1.0, 1.5, 2.0 for different n in MCG on 484. The data
used are derived by a linear interpolation of two nearest data
below and above for the corresponding b and n. As an example,
see the original data at b ¼ 1.0 in Table IV.

TABLE IV. IF monopole density ρIF around b ¼ 1.0 for each
blocking steps n in MCG case on 484.

n β b ¼ naðβÞ db ρIF error

3 3.0 1.1184 0.0012 3.94E-01 1.42E-03
3 3.1 0.9465 0.0024 4.82E-01 4.06E-03
4 3.2 1.052 0.0016 3.99E-01 1.40E-02
4 3.3 0.866 0.0008 5.32E-01 2.37E-03
6 3.4 1.092 0.0012 3.93E-01 2.80E-03
6 3.5 0.9318 0.0024 4.64E-01 7.44E-03
8 3.6 1.0712 0.0072 3.77E-01 9.20E-03
8 3.7 0.9064 0.0008 4.75E-01 3.78E-03
12 3.8 1.1412 0.0012 3.70E-01 4.43E-03
12 3.9 0.9948 0.0024 4.56E-01 8.36E-03
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clearly with respect to the off-diagonal k2 currents, but the
violation is seen for the diagonal k3 currents especially at
small b region. Similar behaviors are found when we are
restricted to infrared monopoles.
However when we evaluate the monopole density (42),

we can observe similar beautiful scaling behaviors as in
MCG and AWL cases. They are shown in Fig. 9.

D. Gauge dependence

Since
P

aðkaμÞ2 should be gauge-invariant according to
our derivation in Sec. II, we compare the data in different
smooth gauges. Look at Fig. 10, which show the compari-
son of the data in four gauges (MCG, AWL, DLCG and
MAU1). One can see that data obtained in these four
different gauges are in good agreement with each other
providing strong indication of gauge independence. This is
the main result of this work. Note that in MAU1 gauge, the
global color invariance is broken and usually off-diagonal
color components of gauge fields are said to have large
lattice artifacts. However here we performed additional U1
Landau gauge-fixing with respect to the remaining Uð1Þ
symmetry after MA fixing, which seems to make the vacua

FIG. 6. The VNABI (Abelian-like monopoles) density versus
b ¼ naðβÞ in AWL on 484. Top: total density; bottom: infrared
density.

FIG. 7. The VNABI (Abelian-like monopoles) density versus
b ¼ naðβÞ in DLCG on 244.

FIG. 8. The VNABI (Abelian-like monopoles) density versus
b ¼ naðβÞ for k2 and k3 components in MAU1 on 484. Top: total
density; bottom: infrared density.
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smooth enough as those in MCG gauge case. The fact that
the scaling functions ρðbÞ obtained in MCG gauge can
reproduce other three smooth-gauge data seems to show
that it is near to the smallest density corresponding to the
continuum limit without large lattice artifact effects. In
other non-smooth gauges such as NGF, ρ does not satisfy
the scaling and actually becomes much larger. This is due to
our inability to suppress lattice artifacts in the nonsmooth
gauges or without gauge-fixing.

E. Volume dependence in MCG case

The volume dependence is also studied when the two
data on 484 and 244 lattices in MCG are plotted for
the same β region ð3.0 ≤ β ≤ 3.6Þ and the blocking steps
ð1 ≤ n ≤ 6Þ as shown in Fig. 11. We found sizable finite
volume effects for β ¼ 3.7 only (not shown in the figure)
when lattice size for L ¼ 24 becomes La < 2.7=

ffiffiffi
σ

p
.

Volume dependence for ð3.0 ≤ β ≤ 3.6Þ is very small as
seen from Fig. 11.

F. Gauge action dependence

Let us in short check how the gauge action adopted here
improves the density ρ behavior by comparing the data in

FIG. 9. The VNABI (Abelian-like monopoles) density (42)
versus b ¼ naðβÞ in MAU1 on 484. Top: total density; bottom:
infrared density.

FIG. 10. Comparison of the VNABI (Abelian-like monopoles)
densities versus b ¼ naðβÞ in MCG, AWL, DLCG and MAU1
cases. DLCG data only are on 244 lattice. Here ρðbÞ is a scaling
function (43) determined from the Chi-Square fit to the IF
monopole density data in MCG. Top: total density; bottom:
infrared density.

FIG. 11. Volume dependence of VNABI (Abelian-like monop-
ole) density in the case of MCG in 484 and 244 tadpole improved
gauge action. The data for 3.0 ≤ β ≤ 3.6 and 1 ≤ n ≤ 6 alone are
plotted for comparison.
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the tadpole improved action with those in the simple
Wilson gauge action. It is shown in Fig. 12. The density
in the Wilson action is higher especially for b ≤ 1.0 and so
considerable improvement is obtained with the choice of
the tadpole improved gauge action.

IV. CONCLUSIONS

In conclusion, we have proposed a new color confine-
ment scheme which is summarized as follows:
(1) VNABI is equal to the Abelian-like monopole

coming from the violation of the Abelian-like
Bianchi identities.

(2) VNABI satisfies the Abelian-like conservation law
as well as the covariant one. Hence there are N2 − 1
conserved magnetic charges in the case of color
SUðNÞ.

(3) All magnetic charges are quantized à la Dirac.
(4) VNABI can be defined on lattice as lattice Abelian-

like monopoles. Previous numerical results [32,33]
suggest that the dual Meissner effect due to con-
densation of VNABI must be the color confinement
mechanism of QCD. The role of Abelian monopoles
is played by VNABI. This must be a new scheme for
color confinement in QCD.

(5) Condensation of the color invariant magnetic
currents λμ which are the eigenvalue of VNABI
Jμ may be a key mechanism of the physical con-
fining vacuum.

Then to check if the new confinement scenario is correct
in the continuum limit, densities of VNABI defined on
lattice were studied extensively in this work. Since VNABI
is equivalent to Abelian-like monopoles in the continuum,
VNABI on lattice is defined as lattice Abelian-like monop-
oles following DeGrand-Toussaint [23]. This definition

even on lattice keeps partially the topological property of
VNABI satisfied in the continuum.
In the thermalized vacuum, there are plenty of lattice

artifact monopoles which contribute equally to the density,
so that we have adopted various improvement techniques
reducing the lattice artifacts. One of them is to adopt the
tadpole improved gauge action. The second is to introduce
various gauges smoothing the vacuum, although gauge-
fixing is not necessary at all in the continuum. We have
considered here four smooth gauges, MCG, DLCG, AWL,
and MAU1. The third is to perform a blockspin renorm-
alization group study.
With these improvement techniques, we have been able

to get very beautiful results. First of all, in MCG, AWL
and MAU1 gauges, clear scaling behaviors are observed up
to the 12-step blockspin transformations for β ¼ 3.0–3.9.
Namely the density ρðaðβÞ; nÞ is a function of b ¼ naðβÞ
alone, i.e. ρðbÞ. If such scaling behaviors are seen for
n → ∞, the obtained curve depending on b ¼ naðβÞ alone
corresponds to the continuum limit aðβÞ → 0. It is just the
renormalized trajectory. The second beautiful result is the
gauge independence of the measured densities at least with
respect to MCG, AWL, and MAU1 smooth gauges on 484

and DLCG on 244 adopted here. The gauge independence
is the property expected in the continuum limit, since the
observed quantity ρ in (42) is gauge invariant in the
continuum.
These beautiful results suggest that the lattice VNABI

adopted here has the continuum limit and hence the new
confinement scenario can be studied on lattice with the use
of the lattice VNABI.
Let us note that monopole dominance and the dual

Meissner effect due to VNABI as Abelian monopoles were
shown partially without any smooth gauge fixing with the
use of random gauge transformations in Refs. [32,33],
although scaling behaviors were not studied enough. More
extensive studies of these effects and derivation of infrared
effective VNABI action using block-spin transformation in
these smooth gauges discussed here and its application to
analytical studies of nonperturbative quantities will appear
in the near future.
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APPENDIX A: TADPOLE IMPROVED ACTION

The parameter u0 has been iterated over a series of
Monte Carlo runs in order to match the fourth root of the
average plaquette P. The values of u0 are shown in Table V.

FIG. 12. Gauge action dependence of VNABI (Abelian-
like monopole) densities in the case of DLCG in 244 tadpole
improved and Wilson gauge actions, The data for 3.3 ≤ β ≤ 3.7
and 1 ≤ n ≤ 6 alone are plotted.
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APPENDIX B: THE MAXIMAL ABELIAN
WILSON LOOP GAUGE

In the maximal Abelian Wilson loop gauge (AWL),

R ¼
X
s;μ≠ν

X
a

ðcosðθaμνðsÞÞ ðB1Þ

is maximized. Here θaμνðsÞ is defined in Eq. (30).
Since the gauge transformation property of the Abelian

link fields is not simple, to do the gauge-fixing efficiently is
not easy. Hence we adopt a gauge fixing iteration method of
a minimal gauge transformation starting from the already-
known smooth gauge configurations such as those in the
maximal center gauge (MCG) or the direct Laplacian center
gauge (DLCG) where the quantity R in (B1) is known to be
already large.
At the site s, the minimal gauge transformation is

written as

U0ðs; μÞ ¼ eiα⃗ðsÞ·σ⃗Uðs; μÞ
¼ ð1þ iα⃗ðsÞ · σ⃗ÞUðs; μÞ þOððα⃗Þ2Þ:

Hence in case of the minimal gauge transformation,
we get

U0
0ðs; μÞ ¼ U0ðs; μÞ − α⃗ðsÞ · U⃗ðs; μÞ

U⃗0ðs; μÞ ¼ U⃗ðs; μÞ þU0ðs; μÞα⃗ðsÞ − α⃗ × U⃗ðs; μÞ:

Then an Abelian link field (29) is transformed as

θ0aμ ðsÞ ¼ θaμðsÞ þ δaμðsÞ;
δaμðsÞ ¼ αaðsÞ

þ 1

ðU0ðs; μÞÞ2 þ ðUaðs; μÞÞ2

×

�
Uaðs; μÞ

X
b≠a

αbðsÞUbðs; μÞ

− ϵabcU0ðs; μÞUcðs; μÞ
�
:

The function R is changed as follows:

R0 ¼
X

a;μ≠ν;s
cosðθa0μνðsÞÞ

¼
X

a;μ≠ν;s
cosðθaμνðsÞ þ δaμðsÞ − δaνðsÞÞ

¼ R −
X

a;μ≠ν;s
ðδaμðsÞ − δaνðsÞÞ sinðθaμνðsÞÞ

¼ R −
X
b

αbðsÞAbðsÞ

AbðsÞ ¼ 2
X
a≠b

X
μ≠ν

ðUbðs; μÞ − ϵbcaUcðs; μÞÞ

×
U0ðs; μÞ sinðθaμνðsÞÞ

U0ðs; μÞÞ2 þ ðUaðs; μÞÞ2 :

Hence if we choose

αbðsÞ ¼ −cAbðsÞ ðc > 0Þ;
we get

R0 ¼ Rþ c
X
b

ðAbðsÞÞ2 ≥ R:

The maximum value of R is 3.0. Actually R in MCG
gauge for β ¼ 3.3 is around 2.508. When the parameter c is
taken as small as 0.005, R becomes R ∼ 2.512 after four
iterations and then tends to decrease. It is the vacuum
adopted as the AWL vacuum. If we start from the
thermalized vacuum without any smooth gauge-fixing,
the large value of R is not obtained with this minimal
gauge transformation method.

TABLE V. Details of the simulations with improved action.

βimp L Nconf u0 hPi1=4
ffiffiffiffiffiffiffiffi
σa2

p

3.0 24 100 0.89485 0.89510(3) 0.372(3)
3.0 48 50 0.89485 0.89478(1) 0.3728(4)
3.1 24 100 0.90069 0.90097(4) 0.311(2)
3.1 48 50 0.90069 0.900688(1) 0.3155(8)
3.2 24 100 0.90578 0.90601(3) 0.261(4)
3.2 48 50 0.90578 0.905762(1) 0.2630(4)
3.3 24 100 0.910151 0.910152(2) 0.220(2)
3.3 48 50 0.910151 0.910150(1) 0.2165(2)
3.4 24 100 0.91402 0.914021(1) 0.1822(5)
3.4 48 50 0.91402 0.914017(1) 0.1822(1)
3.5 24 100 0.917475 0.917480(1) 0.1555(6)
3.5 48 50 0.917475 0.917478(1) 0.1546(3)
3.6 24 100 0.920616 0.920616(1) 0.1306(3)
3.6 48 50 0.920616 0.920615(1) 0.1308(1)
3.7 24 100 0.92349 0.917484(2) 0.1124(3)
3.7 48 50 0.92349 0.923484(1) 0.1122(1)
3.8 48 50 0.926120 0.926126(1) 0.0951(1)
3.9 48 50 0.928548 0.928573(1) 0.0829(2)
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