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1 Introduction

The AdS/CFT correspondence in its original form posits a duality between type IIB string
theory on AdS5 × S5 and four-dimensional N = 4 SYM [1]. Recent results however seem to
indicate that low-dimensional theories of gravity are dual to some form of ensemble-average
of quantum-mechanical theories rather than one individual theory. The most studied example
to date is the duality between Jackiw-Teitelboim gravity in two dimensions and a specific
double-scaled matrix integral [2–4]. There is some evidence that a similar relationship might
hold between three-dimensional Einstein gravity and an appropriately defined ensemble
of two-dimensional conformal field theories (CFTs).1 See refs. [9–13] for progress in that
direction. A telltale sign of such averaged dualities is the presence of Euclidean wormhole

1For a recent discussion of the role of ensemble averages in the context of the original AdS/CFT correspon-
dence between N = 4 SYM and the gravitational bulk theory on AdS5, see ref. [5]. Further considerations
of ensemble averages of quantum field theories in various dimensions arising from string theory appear in
refs. [6, 7]. In ref. [8] phenomenological implications of ensemble averages of quantum field theories are
considered.
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geometries in the gravitational path integral. These destroy factorisation of the dual partition
function [14], suggesting an ensemble interpretation. This is in stark contrast to examples
derived from string theory such as the aforementioned original duality. It is an open question
how the bottom-up and top-down approaches are reconciled. See refs. [5, 15–19].

In refs [20, 21] a setting is considered, in which a precise definition can be given to an
ensemble of two-dimensional conformal field theories. Namely, in those works the ensemble
arises from D free massless two-dimensional bosons parametrizing a target space torus TD,
which is referred to as the ensemble of Narain conformal field theories. The moduli space
MT D of this Narain family carries a natural measure in the form of the Zamolodchikov
metric [22]. To determine ensemble-averaged quantities in the Narain ensemble with respect
to this measure — such as the ensemble-averaged partition function [20, 21] — one uses the
Siegel-Weil theorem [23–26], which plays a central role in our work as well. Due to the U(1)
symmetry currents in the family of toroidal conformal field theories, the three-dimensional
dual holographic bulk theory is expected to be enhanced by a gauge symmetry. Indeed, in
refs. [20, 21] a holographic interpretation for the Narain ensemble is proposed in terms of a
U(1)D ×U(1)D Chern-Simons theory summed over three-manifolds. While the Chern-Simons
theory may a priori be defined on any three-manifold, the specific choice of what to include
in such a sum is dictated by the Siegel-Weil formula. Note that it is the described symmetry
enhancement, which offers a method to calculate ensemble averaged quantities in the dual
bulk theory. Thus, the given holographic formulation in the form of the U(1)D × U(1)D

Chern-Simons theory is simpler than Einstein gravity, such that the described holographic
correspondence becomes tractable (at least at a computational level). Various works extend
the holographic correspondence between the Narain ensemble of conformal field theories
and the bulk U(1)D × U(1)D Chern-Simons theories. For additional results on the original
Narain duality see refs. [20, 21], and for various further extensions, see refs. [16, 17, 27–41].
Particularly relevant to our work, in ref. [16] a duality is established between specific families
of ZN orbifolds of Narain conformal field theories and U(1)D ×U(1)D Chern-Simons theories
plus an additional discrete ZN gauge group factor. On the conformal field theory side, the
twisted sectors of the ZN orbifold enter in the ensemble average of the partition function,
whereas on the dual side of the Chern-Simons theory vortex configurations — originating
from the discrete ZN gauge theory factor — account for these additional contributions. While
in ref. [16] the studied ZN orbifolds act uniformly on all torus directions, we focus in this work
on Z2 orbifolds of toroidal conformal field theories whose geometric action on their target
space tori is more general. These more general classes of Z2 orbifold theories fall also into
the ensembles considered in the interesting work [39], which discusses ensembles of theories
resulting from Narain lattices with arbitrary signatures and orbifolds thereof from a more
general but less geometric point of view. For an interesting relationship between orbifolds
of Narain conformal field theories and the constructions of Narain conformal field theories
from quantum codes see the recent developments in refs. [32–34, 37].

We distinguish between two important families of toroidal Z2 orbifold conformal field
theories that are based on factorizable or non-factorizable target space tori.2 These two

2Topologically, any torus of arbitrary dimension factorizes into tori of smaller dimension, e.g., T D ≃top.

T ℓ × T m for D = ℓ + m. However, as a Riemannian manifold it only factorizes in this way when the metric is
block diagonal.
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classes of conformal field theories come with two topologically distinct Z2 orbifold group
actions. We find that the former class of theories is the product family of the ensemble of
Narain conformal field theories studied in refs. [20, 21] and the ensemble of Z2 orbifolds of
the Narain conformal field theories analyzed in ref. [16]. The latter class of theories enlarges
the ensemble of S2 symmetric toroidal orbifold conformal field theories analyzed in ref. [17].
Namely, the moduli space of the ensemble of S2 symmetric orbifold conformal field theories
forms a half-dimensional subspace in the moduli space of non-factorizable Z2 orbifold toroidal
conformal field theories examined here.

In order to calculate the ensemble averages ⟨Z(τ)⟩ of the conformal field theory partition
function in terms of the worldsheet modular parameter τ , it is necessary to first determine
the moduli space for the family of conformal field theories together with a measure. For
the original ensemble of Narain conformal field theories of the target space torus TD of
refs. [20, 21], the moduli space MT D is well-known and realized by the homogeneous space

MT D ≃ O(D,D,Z)
∖
O(D,D,R)

/
O(D,R)×O(D,R) . (1.1)

A measure dµ(m) is obtained from the Zamolodchikov metric of a member m ∈ MT D in
the ensemble of Narain theories. Observing that the moduli dependence of the partition
function ZT D(τ,m) is entirely captured by its proportional Siegel-Narain Theta function
Θ(τ,m), calculating the ensemble average of the partition function amounts to averaging the
Siegel-Narain Theta function Θ(τ,m) [20, 21]. This average is determined by the Siegel-Weil
formula [23–26], which yields

∫
M

T D

dµ(m)Θ(τ,m) =
ED/2(τ)
(Im τ)D/2

for D ≥ 3 . (1.2)

Here ED/2(τ) is the real analytic Eisenstein function, which is a modular function with respect
to the modular parameter τ of the modular group PSL(2,Z).

To describe the ensemble of Z2 orbifolded Narain conformal field theories, we first
determine the moduli spaces MT D/Z2 . While the Z2 orbifold of the Narain theories considered
in ref. [16] are defined for any modulus m of MT D , the generalized class of Z2 orbifolds of this
work cannot be realized for generic moduli m of MT D . That is to say, the relevant moduli
spaces MT D/Z2 are those subspaces of MT D , for which the Z2 orbifold symmetry exists in the
unorbifolded Narain theory. We find that for both the factorizable and the non-factorizable
Z2 orbifold classes, the moduli space MT D/Z2 becomes a product MT ℓ×MT m with D = ℓ+m
for suitable m and ℓ, on which the Zamolodchikov measure dµ factorizes accordingly.

Inspired by the interesting work [30], we express the partition functions of Z2 orbifold
toroidal conformal field theories in terms of sums of products of a broader class of Siegel-
Narain Theta function ΘH(a, b, τ ) to be defined in the main text. This class of Siegel-Narain
Theta functions is indeed required to get a handle on the ensemble averages in particular
for the class of non-factorizable Z2 orbifolds. Building on the results of ref. [30] (see also
ref. [39]), the products of these Siegel-Narain Theta functions respect the product structure
of moduli spaces, such that the ensemble averages of the derived partition functions are
again calculable with the Siegel-Weil formula.
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In the original Narain correspondence the appearance of the real analytic Eisenstein
series ED/2(τ) in the ensemble average of the partition function leads to the proposal of a
three-dimensional holographic dual bulk interpretation of the form [20, 21]

⟨ZT D(τ)⟩ =
∑

3-manifolds

∫
D[A, Ã] e−Sbulk[A,Ã] . (1.3)

The bulk action Sbulk[A, Ã] is realized by an Abelian U(1)D × U(1)D Chern-Simons theory,
where the gauge connections Aa and Ãa, a = 1, . . . , D, arise from the global U(1) currents of
the toroidal conformal field theory at the asymptotic boundary.3 Upon expressing the real
analytic Eisenstein series ED/2(τ) as a suitable sum over PSL(2,Z)-modular orbits, the real
analytic Eisenstein series ED/2(τ) in the ensemble average suggests a sum over three manifolds
in the three-dimensional formulation (1.3) [20, 21]. Namely, real analytic Eisenstein series
ED/2(τ) appear as a sum over inequivalent hyperbolic genus one handle-bodies [42–45]. As
the orbifold constructions amount to the additional gauging of a discrete symmetry present
in the original theory, it suggests that the bulk Chern-Simons theory has additional discrete
gauge group factors [16, 17]. As explained in ref. [16] twist operators of the orbifolded
conformal field theory are implemented as vortices in the three-dimensional bulk theory,
which are line operators implementing non-trivial boundary conditions around contractible
cycles in the bulk manifold [46, 47].

For the ensemble averages of the partition functions of the families of Z2 orbifold toroidal
conformal field theories studied in ref. [16], including the vortex sectors associated to the
additional discrete Z2 gauge group generalizes the Narain holographic correspondence (1.3).
However, the fact that the ensembles of Z2 orbifold conformal field theories studied in this
work constrain the moduli space MT D to a product sub-moduli space MT ℓ ×MT m renders a
three-dimensional dual holographic bulk interpretation more challenging, see also ref. [48]. At
the technical level the three-dimensional bulk theory must now reproduce (sums of) products
of real analytic Eisenstein series that appear in the expressions of the ensemble average of the
conformal field theory partition functions

〈
ZT D/Z2(τ)

〉
. Under the assumption that there is

a holographic dual description we formulate possible implications for the dual bulk theory
that are a consequence of the observed product structure of the moduli spaces.

Outline of results. Let us now outline the rest of the paper and reference the main
results of the following sections.

In section 2 we describe the general logic in constructing Z2 orbifold actions by considering
Z2 orbifold conformal field theories for two-dimensional target space tori T 2. This basic setup
already allows us to introduce the notion of factorizable and non-factorizable Z2 orbifolds
that are the key player of this work. For these two classes of orbifold theories based on target
space torus T 2, we determine their partition functions and study their ensembles. Due to
the low dimensionality of the target space torus T 2, the ensemble average of their partition
functions strictly speaking diverges. However, similarly as in ref. [20], upon considering
regularized ensemble averages, we are able to exhibit already in this simple setup the general

3Note that it is not quite clear in how far the theory can be defined non-perturbatively for various reasons [20].
It might be more appropriate to consider the bulk to be an effective description with a UV-completion given
in terms of a specific member of the ensemble [30].
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structure of ensemble averages for factorizable and non-factorizable Z2 orbifold theories,
which is a helpful guidline in the following sections.

In section 3 we study both the factorizable and the non-factorizable families of Z2 orbifold
conformal field theories with higher dimensional toroidal target spaces, for which the volumes
of their moduli spaces and the ensemble averages of their partition functions are finite. We
find that the moduli spaces for both the factorizable and the non-factorizable classes exhibit
a product structure. We establish that for the class of factorizable Z2 orbifolds the resulting
ensemble average of the partition function factorizes into two contributions. These two factors
correspond to the ensemble averages of the partition functions of the Narain conformal field
theories studied in ref. [20, 21] and of the Z2 orbifold conformal field theories studied in
ref. [16]. The partition function for the non-factorizable Z2 orbifold toroidal conformal field
theories generalizes the result for the S2 ≃ Z2 symmetric orbifolds studied in ref. [17], in
the sense that the moduli space of the non-factorizable Z2 orbifold family embeds into the
moduli space of the family of the S2 symmetric orbifold conformal field theory as a subslice.
Following ref. [30], we express the partition function of the non-factorizable Z2 orbifold theory
in terms of suitable Siegel-Narain Eisenstein series, which allow us to calculate their ensemble
averages with the Siegel-Weil formula. In this way, we arrive at manifest modular invariant
ensemble averages that are given as a sum of products of real analytic Eisenstein series.

In section 4 we make tentative comments about a possible holographic bulk interpretation
of the calculated ensemble averages of the partition functions derived in the previous section.
In particular, we discuss the following two scenarios: on the one hand, the holographic dual
interpretation can be disguised by considering a less suitable ensemble of conformal field
theories in the first place. This scenario is for instance suggested if the moduli space of the
considered ensemble embeds into a larger moduli space. The hallmark of such a scenario is the
presence of additional exactly marginal operators in the ensemble of conformal field theories
that do not parametrize directions tangent to the considered moduli space. On the other hand,
the product structure of the moduli spaces of the conformal field theories in this work could
just be a feature that the three-dimensional bulk theory needs to reproduce. The consequence
of this scenario is that the holographic dual three-dimensional bulk geometries arise from a
pair of three-spaces that are glued together at a common asymptotic toroidal boundary.

Finally, in section 5 we present our conclusions and discuss open questions and further
research directions. Some technical details of our computations are relegated to three
appendices.

2 Orbifold CFTs from two-dimensional tori

In this section we systematically study two-dimensional conformal field theories arising from
Z2 orbifolds of two-dimensional tori T 2. Let T 2 be the two-dimensional torus

T 2 ≃ C/(Z+ uZ) , (2.1)

in terms of the complex structure parameter u in the upper half-plane H, i.e., Im u > 0. The
volume modulus k together with the antisymmetric tensor field B forms the complexified
Kähler modulus t = 1

α′ (B + ik) := b + iκ. Here the dimensionless parameters b and κ

– 5 –
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Figure 1. Factorizable and non-factorizable lattices. On the left, the two fixed point loci of the
reflection along each lattice generator are depicted with solid magenta and dashed cyan lines. On the
right, the symmetry axes along the diagonal lines are depicted with solid orange and dashed green
lines.

parametrize the two-form background B-field and the positive Kähler two-form, respectively,
such that the complexified Kähler parameter t also takes values in the upper half-plane H.
For further details on these conformal field theories and their moduli see, e.g., ref. [49].

The toroidal orbifold Z2 action is generated by an involution ιZ2 : T 2 → T 2, i.e., ι2Z2
= 1,

which induces a Z2 action on the two-form B-field via pullback ι∗Z2
. We do not consider

fixed-point free involutions ιZ2 — referred to as shift orbifolds in ref. [50] — because the
associated free Z2 action simply yields another toroidal CFT of T 2 (with adjusted background
parameters u and t).

Involutions ιZ2 with non-trivial fixed points arise from reflections about points and lines,
which must respectively be symmetry points and symmetry axes of the corresponding torus
T 2. As the lattice point z ∈ Z+ uZ is always a symmetry point of reflection with respect to
the origin in T 2, the associated toroidal Z2 orbifold is well-defined for any choice of moduli
u and t. Such orbifold conformal field theories and their ensembles are studied in detail in
ref. [16], and are therefore not further discussed here.

Reflections along a line of T 2 are what we are interested in. These are only possible if
the line is a symmetry axis of the torus T 2, which imposes constraints on the moduli u and t.
There are two types of symmetry axes of two-dimensional tori. Firstly, we can reflect along
an axis associated to a lattice generator of Z+ uZ, which amounts to a reflection along the
bounding edge of a primitive cell of the torus lattice. For this axis to be a symmetry, the
primitive cell must be a rectangle (see the left panel of figure 1). One may reflect with respect
to either of the two axes, and obtain the two fixed point loci associated with each reflection.

Secondly, we may reflect along an axis associated to a lattice vector that is the sum of, or
the difference between, the two distinct generators of Z+ uZ (see the right panel of figure 1).
This realizes reflections along the two diagonals of the primitive cell spanned by these two
generators. These axes are only a symmetry of the torus if the primitive cell is a rhombus.

The former configurations with a rectangular primitive cell are known as factorizable
tori, whereas the latter configurations are often referred to as non-factorizable tori. These

– 6 –
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two possibilities realize two distinct classes of configurations that are characterized by the
complex structure modulus u, which for the factorizable tori is constrained to be purely
imaginary, i.e., Re(u) = 0, and for the non-factorizable tori is constrained to be a phase,
i.e., |u| = 1.4 Note that the square torus with u = i admits both a factorizable and a
non-factorizable orbifold action.

The involution ιZ2 for the reflections of either factorizable tori or non-factorizable tori
induces a Z2-action on the B-field (via the pull-back ι∗Z2

), which maps b = Re(t) to −b.
Due to the periodicity of the B-field, b ∼ b+ 1, there are two possible invariant choices for
the background value of b, namely b = 0 or b = 1

2 . Hence, with Re(t) = 0 and Re(t) = 1
2

there are two possible classes of background values for the complexified Kähler modulus
t, which admit the discussed Z2 orbifold action. That there are two possibilities for the
Kähler modulus is not a coincidence as mirror symmetry of T 2 maps the factorizable torus in
complex structure moduli space to a configuration with vanishing B-field in the complexified
Kähler moduli space, and the non-factorizable torus in complex structure to a half-integral
B-field in Kähler moduli space, and vice versa.

The family of conformal field theories of the two-dimensional tori T 2 is described by
the moduli space (see for instance ref. [49])

MT 2 = (H/PSL (2,Z2)×H/PSL (2,Z2)) / (Z2 × Z2) . (2.2)

The moduli space MT 2/Z2 of the family of toroidal Z2 orbifold conformal field theories
associated to the involution ιZ2 is the subspace of the moduli space MT 2 , which parametrizes
those two-dimensional tori T 2

(u,t) that admit the involution ιZ2 as a Z2 symmetry, i.e.,

MT 2/Z2 =
{
(u, t) ∈ MT 2

∣∣∣ ∃ ιZ2 on T 2
(u,t)

}
⊂ MT 2 . (2.3)

Here T 2
(u,t) denotes for a given (u, t) ∈ MT 2 the two-dimensional torus with complex structure

u and Kähler structure t.

2.1 Factorizable Z2 orbifold

Let us first consider the class of factorizable Z2 orbifold theories with a vanishing background
B-field. That is to say, the orbifold theory is given in terms of a two-dimensional torus T 2

of a rectangular primitive cell together with the involution ιZ2 that arises from a reflection
along the imaginary axis in the toroidal universal covering space C.5 This family of torodial
Z2 orbifold theories is then parametrized by an imaginary complex structure modulus and
an imaginary complexified Kähler modulus, i.e.,

u = ic , t = iκ , 1 ≤ c < +∞ , 1 ≤ κ < +∞ , (2.4)
4Actually, Re(ũ) = 1

2 also realizes non-factorizable tori because the lattice generators ũ and ũ − 1 form
a rhombus in this case. These two sides of the rhombus are exchanged by a reflection along the imaginary
axis. This alternative description is often used in the literature and it is related to |u| = 1 via the Möbius
transformation u = (ũ − 1)/ũ in complex structure moduli space (see figure 2).

5Reflection along the real axis forms another involution of such a factorizable torus. However, the orbifold
theories arising from either one of these involutions are equivalent because upon rotating and conformally
rescaling the lattice Z + uZ of the two-dimensional torus to the conformally equivalent lattice Z + u−1Z
exchanges these two involutions.

– 7 –
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Figure 2. Complex structure plane. The blue line and the solid red arc correspond, respectively, to
the factorizable and non-factorizable lattice. The dashed red line is mapped to the red arc by the
modular transformation γ = (u− 1)/u (see footnote 4). The two black dots are mapped to each other
under γ.

with the real complex structure parameter c and the real Kähler modulus κ. The moduli
space MT 2/Z2 spelt out in eq. (2.3) therefore becomes

MT 2/Z2 ≃ [1,+∞)2/Z2 ⊂ MT 2 . (2.5)

Here, the remaining Z2 quotient corresponds to the exchange of (c, κ) ↔ (κ, c). The fixed-
point locus of the involution ιZ2 has two disconnected components, namely the two circles
Re(z) = 0 and Re(z) = 1

2 , where z is the complex coordinate of the universal covering
space C of the two-dimensional torus (2.1). Both fixed circles realize the same generator
in the homology group H1(T 2,Z).

The described Z2 orbifold therefore factors as

T 2/Z2 ≃ S1/Z2 × S1 , (2.6)

where the first and second factors on the right hand side are parametrized in terms of the
real and imaginary part of z, respectively. Furthermore, we denote by R1 and R2 the radii of
these two respective circles, which in terms of the parameters (2.4) are given by

2πR1 =
√
α′κ

c
, 2πR2 =

√
α′cκ , (2.7)

where we used the metric

g =
(
(2πR1)2 0

0 (2πR2)2

)
. (2.8)

As a result, the partition function ZT 2
fac/Z2 of the factorizable Z2 orbifold conformal

field theory factorizes accordingly:

ZT 2
fac/Z2(τ ; c, κ) = ZS1/Z2(τ ;R1(c, κ))ZS1(τ ;R2(c, κ)) , (2.9)

– 8 –
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where ZS1 and ZS1/Z2 are the partition functions of the conformal field theories arising from
a free boson on the circle S1 and on the circle orbifold S1/Z2, respectively. These partition
functions are well-known (see e.g., refs. [49, 51]) and are given by

ZS1(τ ;R) = 1
|η(τ)|2

∑
w,m∈Z

e
−2πiτ1wm−πτ2

(
α′
R2 w2+ R2

α′ m2
)
, (2.10)

and
ZS1/Z2(τ ;R) =

1
2ZS1(τ,R) +

(∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣) . (2.11)

Here, τ = τ1 + iτ2 is the complex modular parameter and R is the radius of the target
space circle S1. The Dedekind eta function η(τ) and the Jacobi theta functions θi(τ) are
defined in appendix A.

2.2 Non-factorizable Z2 orbifold

Next we turn to the Z2 orbifolds of non-factorizable two-dimensional tori in the absence of a
background B-field. Recall that such tori can be described with a complex structure modulus
u that is a pure phase, i.e., u = eiϕ with ϕ ∈ R. We consider the Z2 orbifold corresponding
to the involution ιZ2 that reflects the points on the torus along the diagonal of the primitive
cell, which is the line through the origin and the lattice points u+ 1 (cf., the solid orange
diagonal in the right panel of figure 1).6 This family of Z2 orbifold conformal field theories is
parameterized by the complex structure and Kähler moduli of the form

u = eiϕ , t = iκ , ϕ ∈ (0, π2 ] , 1 ≤ κ <∞ , (2.12)

which corresponds to the moduli space

MT 2/Z2 ≃
(
(0, π2 ]× [1,+∞)

)
⊂ MT 2 . (2.13)

Note that for non-factorizable tori the lattice points 1 and u = eiϕ yield two circles S1 of
equal radii R and hence equal circumferences 2πR. Their radii R relate to the real angular
complex structure parameter ϕ and the real Kähler modulus k as

κ = 1
α′ (2πR)

2 sinϕ . (2.14)

Furthermore, these two circles form representatives of the homology classes generating
H1(T 2,Z), which get exchanged by the involution ιZ2 . As a consequence the sum of these two
homology cycles yields an invariant homology class with respect to the involution ιZ2 . This
invariant class can be represented by the diagonal circle of T 2, which is the fixed-point locus
of the involution. We can compute the partition function ZT 2

non-fac/Z2 of the non-factorizable
6The Z2 orbifold theory corresponding to the other involution of the non-factorizable torus — arising from

the reflection along the diagonal through the points 1 and u (cf., the dashed green line in figure 1) — is
equivalent to the Z2 orbifold theory attributed to the involution of the first type. This can explicitly be seen
by noting that the torus associated to the lattice −Z + eiϕZ ≃ eiϕ(Z + ei(π−ϕ)Z) is equivalent to the rotated
lattice Z + ei(π−ϕ)Z. As this particular conformal transformation exchanges the two described involutions, the
associated toroidal Z2 orbifold conformal field theories are equivalent.
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Figure 3. The lattice spanned by the orange and green vectors yields a double cover of the non-
factorizable torus lattice with complex structure modulus u.

Z2 orbifold conformal field theory following several approaches.
Firstly, starting from the conformal field theory of two free bosons with a two-dimensional

torus as their target space characterized by the moduli (2.12), we orbifold this theory with
the above described orbifold action to directly arrive at the partition function ZT 2

non-fac/Z2 .
Secondly, we notice that the non-factorizable torus with moduli (2.12) has a two-fold

cover T̂ 2, which is a factorizable torus. The primitive cell of the non-factorizable torus lattice
is spanned by generators 1 and eiϕ of the lattice Z+ eiϕZ. The primitive cell of the two-fold
cover is spanned by the diagonals of the original torus (see figure 3). One diagonal is the
fixed-point circle spanned by 1 + eiϕ and the other diagonal is spanned by 1− eiϕ. Hence,
we can realize the two-fold cover T̂ 2 ≃ C/(Z+ ûZ) with the complex structure modulus û
and the complexified Kähler moduli t̂ given by

û = 1 + eiϕ

1− eiϕ
= i cot ϕ2 , t̂ = 2iκ . (2.15)

This is done by rescaling one of the lattice generators to 1. Thus, we can arrive at the partition
function ZT 2

non-fac/Z2 by performing a Z2 shift orbifold [50] on the factorizable Z2 orbifold
conformal field theory with the partition function ZT 2

fac/Z2(τ ; cot
ϕ
2 , 2κ) of eq. (2.9).

Thirdly, as indicated in footnote 4 on page 7, the two-dimensional non-factorizable torus
T 2 is equivalent to a two-dimensional torus T̃ 2 ≃ C/(Z + ũZ) with complex structure ũ
and complexified Kähler class t̃ given by

ũ = 1
1− eiϕ

= 1
2 + i

2 cot ϕ2 , t̃ = iκ . (2.16)

In this formulation (shown in figure 4), the Z2 orbifold acts by reflecting along the
imaginary axis of the covering space C of T̃ 2, which maps the toroidal primitive cell spanned
by 1 and ũ to the distinct but equivalent primitive cell spanned by 1 and ũ ± 1.7 The

7The sign in the second generator depends on the sign of Re(ũ).
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2
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ũ = (1
2 ,

1
2 cot

ϕ
2 ) C

Figure 4. The equivalent description of the non factorizable torus lattice Z+ uZ in the right panel of
figure 1, via a complex structure parameter with Re(ũ) = 1

2 , where ũ = (1− u)−1 and ϕ̃ = π/2− ϕ/2.
The brown segments denote the fixed locus that corresponds to the diagonal line u + 1 (the solid
orange line in figure 1).

necessary computational techniques to evaluate orbifold actions with non-invariant primitive
cells are spelled out for instance in ref. [52].

All three approaches yield the same partition function ZT 2
non-fac/Z2(τ ;ϕ, κ) in terms of the

moduli (2.12). The final result of the partition function of the Z2 orbifold toroidal conformal
field theory is the sum of four orbifold sectors

ZT 2
non-fac/Z2(τ ;ϕ, κ) =

1
2

(
Z

(++)
T 2

non-fac/Z2
(τ ;ϕ, κ) + Z

(+−)
T 2

non-fac/Z2
(τ ;ϕ, κ)

)
+ 1

2

(
Z

(−+)
T 2

non-fac/Z2
(τ ;ϕ, κ) + Z

(−−)
T 2

non-fac/Z2
(τ ;ϕ, κ)

)
. (2.17)

These individual summands arise from traces over the Hilbert spaces H+ and H− of untwisted
and Z2-twisted states, respectively, and they are defined as

Z
(±+)
T 2

non-fac/Z2
= trH± e

2πτĤ , Z
(±−)
T 2

non-fac/Z2
= trH± g e

2πτĤ , (2.18)

where Ĥ is the Hamiltonian of the conformal field theory, g is the generator of the Z2 orbifold
group, which acts on the states in the Hilbert spaces H±. Thus, the first line in the
expansion (2.17) projects onto untwisted Z2 invariant states and the second line corresponds
to a sum of twisted Z2 invariant states. For more details on such orbifold constructions see,
e.g., ref. [49]. Summing up all these contributions is conveniently expressed in terms of the
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circle partition function ZS1 (2.10), which takes the form

ZT 2
non-fac/Z2(τ ;ϕ, κ) =

1
4

∣∣∣∣θ2(τ)
η(τ)

∣∣∣∣2 ZS1

(
2τ ; R1√

2

)
ZS1

(
2τ ; R2√

2

)
(2.19)

+ 1
4

∣∣∣∣θ4(τ)
η(τ)

∣∣∣∣2 ZS1

(
τ

2 ;
R1√
2

)
ZS1

(
τ

2 ;
R2√
2

)
+ 1

4

∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 ZS1

(
τ + 1
2 ; R1√

2

)
ZS1

(
τ + 1
2 ; R2√

2

)
− 1

2ZS1(τ ;R1)ZS1

(
τ ; R2

2

)
− 1

2ZS1

(
τ ; R1

2

)
ZS1(τ ;R2)

+ 1
2ZS1

(
2τ ; R1√

2

)
+ 1

2ZS1

(
τ

2 ;
R1√
2

)
+ 1

2ZS1

(
τ + 1
2 ; R1√

2

)
,

where

2πR1 =
√
2α′κ cot ϕ2 , 2πR2 =

√
2α′κ tan ϕ2 . (2.20)

R1 corresponds to the orange segment of figure 3 and R2 to the green segment of the
same figure.8 The first three lines of eq. (2.19) correspond to the summand Z

(++)
T 2

non-fac/Z2
of

the untwisted sector with no insertion of the orbifold generator, and the last line contains
contributions from the untwisted sector with insertion Z

(+−)
T 2

non-fac/Z2
, and the twisted sector

without insertion Z(−+)
T 2

non-fac/Z2
and the twisted sector with insertion Z(−−)

T 2
non-fac/Z2

. Note that in the
last line the moduli dependence is only on R1, i.e. the length of the orbifold fixed point locus.

If for ϕ = 0 the two diagonal radii R1 and R2 become equal (cf., eq. (2.20)), the
two-dimensional target space torus factorizes into two circles both of radius 1√

2R1 = 1√
2R2.

However, the Z2 orbifold acts differently than for the factorizable tori studied in subsection 2.1,
as it exchanges the two equally-sized circles. In the terminology of ref. [17] the conformal
field theory simplifies to the S2 ≃ Z2 orbifold conformal field theory of the product of two
circles. Namely, for 1√

2R1 = 1√
2R2 the partition function (2.19) becomes

ZT 2
non-fac/Z2

(
τ ; 0, 2π

2R2
1

α′

)

= 1
2ZS1

(
τ ; R1√

2

)2
+ 1

2

(
ZS1

(
2τ ; R1√

2

)
+ ZS1

(
τ

2 ;
R1√
2

)
+ ZS1

(
τ + 1
2 ; R1√

2

))
, (2.21)

which is indeed in agreement with the partition function of the S2 symmetric orbifold
conformal field theories studied ref. [17], where the S2 permutes the two equally sized target
space circles S1.

2.3 Two-dimensional toroidal Z2 orbifolds with B-field

For Z2 orbifold theories with a non-vanishing B-field, we distinguish again between factorizable
and non-factorizable two-dimensional tori.

Factorizable orbifold: factorizable two-dimensional tori with a non-vanishing B-field
admit the discussed Z2 orbifold action if their moduli are constrained to

u = ic , t = 1
2 + iκ , 1 ≤ c <∞ ,

1
2 ≤ κ <∞ , (2.22)

8R1 and R2 can be also written as R1√
2 = 2πR

√
(1 + cos ϕ) and R2√

2 = 2πR
√

(1 − cos ϕ) .
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in terms of the real parameter c and the real Kähler modulus κ. This complexified Kähler
modulus t is invariant with respect to the Z2 orbifold action because ι∗Z2

flips the sign of the
B-field B, which for the non-vanishing value b = 1

2 remains invariant due to the periodicity
b ∼ b+ 1. Note that mirror symmetry — which exchanges the complex structure modulus u
and the Kähler modulus t — maps the moduli (2.22) to the mirror dual moduli

ũ = 1
2 + iκ , t̃ = ic , (2.23)

which are the moduli of the description in terms of a non-factorizable torus with vanishing
B-field as given in eq. (2.16). As a result, we readily obtain the partition function Z

b=1/2
T 2

fac/Z2
from the partition function ZT 2

non-fac/Z2 via mirror symmetry. To do so, we map the complex
structure modulus of eq. (2.23) to the unit circle — as in footnote 4. This gives

ũ 7→ ũ = 4κ2 − 1
4κ2 + 1 + i

4κ
4κ2 + 1 . (2.24)

Taking this into account, we get

Z
b=1/2
T 2

fac/Z2
(τ ; c, κ) = ZT 2

non-fac/Z2(τ ; arctan
( 4κ
4κ2 − 1

)
, c) . (2.25)

Non-factorizable orbifold: finally we consider non-factorizable two-dimensional tori with
non-vanishing B-field. In this case, the complex structure modulus u and the complexified
Kähler modulus t are both taken to be phases. However, we have not been able to express
the partition functions in a convenient form as in eq. (2.19), which, as we will see soon in
subsection 2.5, makes the averaging rather straightforward.

2.4 Partition functions and Siegel-Narain theta functions

In order to calculate efficiently the ensemble average of conformal field theories arising from
toroidal target spaces as developed in ref. [30], it is convenient to express the partition
functions in terms of the Siegel-Narain theta functions [24, 30, 53]. Let Ω be a symmetric
2N × 2N matrix of signature (N,N), such that 2Ω has integral entries and even entries on
the diagonal.9 Moreover, let H be a symmetric positive definite real 2N × 2N matrix obeying

HΩ−1H = Ω . (2.26)

Then the Siegel-Narain theta functions in terms of Ω and H are defined as [24, 30, 53]

ΘH,Ω(a, b, τ) =
∑

m∈Z2N

e−2π Im(τ) (m+b)T H(m+b)+2πi Re(τ) (m+b)T Ω(m+b)−4πi Re(τ) aT Ω(m+ 1
2 b) .

(2.27)
with the twist vectors a, b ∈ R2N and the modular parameter τ in the upper half-plane H.
Note that the positive definiteness of the matrix H ensures that the summation over m ∈ Z2N

9In refs. [24, 53], Siegel constructs theta functions for symmetric non-degenerate pairings Ω with arbitary
signature (r, s).
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converges in the definition of the theta function ΘH,Ω. The Siegel-Narain theta functions
of this work are all defined with respect to the pairing

Ω = 1
2

(
0 1N×N

1N×N 0

)
. (2.28)

Hence, for ease of notation we only refer to the positive definite 2N × 2N matrix H in the
expression for the Siegel-Narain theta functions, i.e.,

ΘH(a, b, τ) ≡ ΘH,Ω(a, b, τ) . (2.29)

In terms of the Siegel-Narain theta functions defined in eq. (2.29) the partition function
ZT 2ℓ(τ ;G,B) of the toroidal conformal field theory with the target space torus T 2ℓ becomes
(see, e.g., ref. [49])

ZT 2ℓ(τ ;G,B) = 1
|η(τ)|4ℓ

ΘH(G,B)(0, 0, τ) , (2.30)

with the real positive definite 2ℓ× 2ℓ-matrix H(G,B) (which obeys the relation (2.26))

H(G,B) =
(

α′

2 G
−1 1

2G
−1B

−1
2BG

−1 1
2α′
(
G−BG−1B

)) , (2.31)

with inverse

H−1(G,B) =
( 2

α′
(
G−BG−1B

)
−2BG−1

2G−1B 2α′G−1

)
. (2.32)

In this subsection we consider the contribution to the partition functions of the toroidal
Z2 orbifolds coming from the untwisted sector, and with no insertion of the involution element.
We refer to this contribution as Z(+,+)

T 2
non-fac/Z2

(τ). We express Z(+,+)
T 2

non-fac/Z2
(τ) in terms of the

Siegel-Narain theta functions defined in eq. (2.29). The resulting expressions will in particular
be useful when we compute the average partition function over the moduli space for higher
dimensional target spaces in section 3, following the methods of ref. [30].

For the factorizable ιZ2 involution, the contribution from the untwisted sector with no
insertions to eq. (2.9) is of the form:

Z
(+,+)
T 2

fac/Z2
(τ ; c, κ) = 1

|η(τ)|4
ΘH(g) (0, 0, τ)ΘH(g̃) (0, 0, τ) (2.33)

where g, g̃ are the metrics of the two circles.
For the non-factorizable involution (2.19), we find

Z
(+,+)
T 2

non-fac
(τ ;ϕ, κ) = 1

|η(τ)|4
∑

∆∈{0,1}2

Θh(0,
1
2∆, 2τ) Θh̃

(0, 12∆, 2τ) . (2.34)

In fact, one can show that the above expressions are modular invariant using the properties
of the twisted theta functions under modular transformations. We shall generalize these
formulas in section 3, where we study higher dimensional toroidal target spaces.
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2.5 Ensembles of two-dimensional toroidal Z2 orbifolds

The moduli space MT 2 of the conformal field theory of two free bosons with a two-dimensional
torus T 2 as its target space may be locally parameterized in terms of the complex structure
modulus u and the complexified Kähler modulus t. The two-point correlators of the marginal
operators define the Weil-Petersson metric on the moduli space MT 2 [22], which for the
toroidal conformal field theory is locally a product of two two-dimensional hyperbolic spaces
with the metric (up to a constant pre-factor)

ds2 = du dū
(Im u)2 + dt dt̄

(Im t)2 . (2.35)

This comes from the fact that the moduli space of T 2 compactifications is locally a product
of two copies of the fundamental domain (subset of the upper half plane). One may explicitly
arrive at the above expression (up to normalization) by calculating the Zamolodchikov metric

ds2 = GmpGnq (dGmndGpq + dBmndBpq) (2.36)

and plugging in the metric and the B-field in terms of the complex structure and complexified
Kähler moduli u, t. The moduli spaces MT 2/Z2 of the analyzed Z2 orbifold conformal field
theories are subspaces of MT 2 . The Weil-Petersson metric of the moduli space MT 2/Z2 is
the induced metric from the metric (2.35), because the exactly marginal operators in the
untwisted sector of the orbifold theories have the same two-point correlation functions as
in the unorbifolded theory.

2.5.1 Factorizable Z2 orbifold with vanishing B-field

The parameters of this Z2 orbifold are the two real moduli (c, κ) of eq. (2.4). A fundamental
domain of the moduli (c, κ) reads

(c, κ) ∈ [1,∞)× [1,∞) . (2.37)

The measure of the moduli induced from eq. (2.35) becomes

ds2 =
(dc
c

)2
+
(dκ
κ

)2
. (2.38)

The volume of the moduli space of this Z2 orbifold theory is logarithmically divergent. Note
that for this class of conformal field theories, the ensemble average over the entire moduli space
is divergent as well [20]. Nevertheless, we can still study ensemble averages over measurable
subsets of the moduli space by, for instance, regularizing the integral with cut off Λ ≫ 1 for
large (and small) values of the moduli c and k. Using the partition function (2.9), we arrive at

〈
ZT 2

fac/Z2(τ)
〉

reg
= 1(

VolS1,reg
)2

∫ Λ

1

dc
c

∫ Λ

1

dκ
κ

{
1
2ZS1(τ ;R1(c, κ))ZS1(τ ;R2(c, κ))+ (2.39)

(∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣)ZS1(τ ;R2(c, κ))
}
,
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in terms of the regularized moduli space volume

VolS1,reg :=
∫ Λ

1

dx
x

= logΛ . (2.40)

Defining for the partition function ZS1 in eq. (2.10) the regularized ensemble average by

⟨ZS1(τ)⟩reg = 1
VolS1,reg

∫ Λ

1

dR
R

ZS1(τ ;R) , (2.41)

we express the regularized ensemble average
〈
ZT 2

fac/Z2(τ)
〉

reg
as:

〈
ZT 2

fac/Z2(τ)
〉

reg
= 1

2 ⟨ZS1(τ)⟩2
reg +

(∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣) ⟨ZS1(τ)⟩reg .

The first summand is simply the (regularized) ensemble average of the tensor product of two
circular conformal field theories, whereas the second contribution comes from the circular
fixed-point loci of the Z2 orbifold.

2.5.2 Non-factorizable Z2 orbifold with vanishing B-field

The moduli space of this class of toroidal Z2 orbifold is parametrized by the angular complex
structure modulus ϕ and the real Kähler modulus κ in the range (2.12). From eq. (2.35)
we arrive at the induced moduli space metric

ds2 =
( dϕ
sinϕ

)2
+
(dκ
κ

)2
. (2.42)

The volume of the moduli space exhibits logarithmic divergences as ϕ and κ approach zero
and +∞, respectively. Thus, we define the regularized ensemble average

〈
ZT 2

non-fac/Z2(τ)
〉

reg
= 1
Vreg

∫ π−δ

δ

dϕ
sinϕ

∫ Λ

1
Λ

dκ
κ
ZT 2

non-fac/Z2(τ ;ϕ, κ) . (2.43)

Here the ensemble average is regularized by introducing a small positive angle δ for the
angular variable ϕ and a large value Λ for the Kähler modulus κ. We integrate over a 4-fold
cover of the moduli space (2.12), which is normalized by

Vreg =
∫ π−δ

δ

dϕ
sinϕ

∫ Λ

1
Λ

dκ
κ
. (2.44)

Upon expressing the moduli in terms of R1 and R2 defined in eq. (2.20), we obtain for the
regularized ensemble average
〈
ZT 2

non-fac/Z2(τ)
〉

reg

= 1

4
(
VolS1,reg

)2

∫ Λ1

1
Λ1

dR1
R1

∫ Λ2

1
Λ2

dR2
R2

ZT 2
non-fac/Z2

(
τ ; 2 arctan

(
R2
R1

)
,
2π2

α′ R1R2

)
, (2.45)
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where the large cut-offs Λ1 and Λ2 arise from the transformation the regulators δ and Λ in
eq. (2.43) and the normalization factor is given by Vreg = 8VolS1,reg. Expressed in terms of
the circular ensemble average (2.41), this (regularized) ensemble average becomes〈

ZT 2
non-fac/Z2(τ)

〉
reg

=

= 1
4

(∣∣∣∣θ2(τ)
η(τ)

∣∣∣∣2 ⟨ZS1(2τ)⟩2
reg +

∣∣∣∣θ4(τ)
η(τ)

∣∣∣∣2 〈ZS1(τ2 )
〉2

reg
+
∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2 〈ZS1(τ + 1
2 )

〉2

reg

)

− ⟨ZS1(τ)⟩2
reg +

1
2

(
⟨ZS1(2τ)⟩reg +

〈
ZS1(τ2 )

〉
reg

+
〈
ZS1(τ + 1

2 )
〉

reg

)
. (2.46)

Note that the individual terms assembled in brackets in eq. (2.46) form modular invariant com-
binations with respect to the modular group acting on the worldsheet modular parameter τ .

2.5.3 Z2 orbifold with non-vanishing B-field

Factorizable orbifold: due to the relation (2.25) the (regularized) ensemble average of
the factorizable Z2 orbifold theories with the B-field background Re(t) = 1

2 are identical to
the regularized ensemble averages of the non-factorizable Z2 orbifold theories with vanishing
background B-field. That is to say, upon averaging over the moduli space given in eq. (2.22),
we arrive for the ensemble averages at the mirror correspondence〈

Z
b=1/2
T 2

fac/Z2
(τ)
〉

reg
=
〈
ZT 2

non-fac/Z2(τ)
〉

reg
, (2.47)

where the right-hand side is explicitly given in eq. (2.46).

Non-factorizable orbifold: the moduli space is parametrized in terms of the angular
complex structure variable ϕ and the real Kähler modulus k in the range

ϕ ∈ (0, π2 ] , k ∈ [12 ,+∞) . (2.48)

The partition function for this orbifold cannot be simply obtained by a duality argument.
While this is an interesting case to consider, we do not pursue this further in this work.

3 Orbifold CFTs from D-dimensional tori T D

In order to obtain finite ensemble averages of moduli spaces of finite volume from toroidal
orbifold conformal field theories, it is necessary to consider toroidal target spaces of higher
dimensions as in refs. [20, 21]. Therefore, we now generalize the conformal field theories
analyzed in section 2 to higher dimensional toroidal conformal field theories and orbifolds
thereof. Namely, we now consider D free bosons for D ≥ 6 with periodic boundary conditions
parametrizing the target space torus TD. The Z2 orbifold action is again characterized by
an involution ιZ2 : TD → TD together with the induced action via the pull-back ι∗Z2

acting
on the toroidal metric and the two-form B-field.

In ref. [16] Z2 orbifolds of toroidal conformal field theories and their ensemble averages
are studied for involutions ιZ2 that invert all directions parametrized by the bosons. In this
section we extend this class of Z2 orbifold toroidal conformal field theories and calculate
their ensemble averages.
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3.1 Factorizable toroidal Z2 orbifold CFTs

Our first class of theories arises from factorizable tori TD ≃ T ℓ ×Tm equipped with a product
metric and a block diagonal B-field. Such tori admit a Z2 orbifold action resulting from
the involution ιZ2 , which is defined via the action

ιZ2 : (x, y) 7→ (−x, y) , (3.1)

where (x, y) are the coordinates on the universal covering space Rℓ ×Rm of the torus T ℓ ×Tm.
Moreover, the block-diagonal metric and the block-diagonal B-field are invariant with respect
to the pull-back ι∗Z2

. We denote the toroidal Z2 orbifold resulting from the involution ιZ2 by

TD
fac/Z2 ≃ T ℓ/Z2 × Tm , D = ℓ+m, ℓ,m ≥ 3 . (3.2)

As this class of conformal field theories simply arises from a product of the type of
toroidal Z2 orbifold conformal field theories studied in ref. [16] and a toroidal conformal
field theory with target T 2ℓ considered in ref. [20], the partition function is a product, which
readily generalizes expression (2.9) as

ZT D
fac/Z2

(τ ; l,m) = ZT ℓ/Z2(τ ; l)ZT m(τ ;m)) . (3.3)

The second factor is the partition function of an m-dimensional toroidal conformal field
theory with the moduli m [20, 49] (see appendix A). The first factor reads [16]

ZT ℓ/Z2(τ ; l) =
1
2

(
ZT ℓ(τ ; l) + 2ℓ

[∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣ℓ + ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣ℓ + ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣ℓ
])

. (3.4)

Here ZT ℓ(τ ; l) is the partition function of the unorbifolded ℓ-dimensional toroidal conformal
field theory with moduli l, whereas the remaining terms relate to Z2 orbifold contributions [16].

For the considered toroidal orbifolds (3.2) with their block-diagonal metric and with
their block-diagonal B-field the product structure of the partition function (3.3) not only
prevails for a particular choice of the moduli m and l, but also holds globally over the entire
moduli space MT D

fac/Z2
of the underlying family of conformal field theories, i.e.,

MT D
fac/Z2

= MT ℓ ×MT m . (3.5)

Here MT d denotes the moduli space of conformal field theories of a d-dimensional torus
T d.10 Therefore, the resulting ensemble average of this class of Z2 orbifold conformal field
theories readily becomes〈

ZT D
fac/Z2

(τ)
〉
=
∫
M

T ℓ×M
T m

dµ(l,m)ZT D
fac/Z2

(τ ; l,m)

=
(∫

M
T ℓ

dµ(l)ZT ℓ/Z2(τ ; l)
)(∫

MT m

dµ(m)ZT m(τ ;m))
)

=
〈
ZT ℓ/Z2(τ)

〉〈
ZT m(τ)

〉
,

(3.6)

10As the orbifold action Z2 reflects all directions of the first factor T ℓ, the orbifold action is well-defined for
any point in the moduli space MT ℓ . Therefore, the moduli spaces MT ℓ and MT ℓ/Z2 are identical.
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and factorizes into a product of ensemble averages. Here dµ(l,m) is the measure of the moduli
space MT D

fac/Z2
. It factors into the measures dµ(l) and dµ(m) for the moduli spaces of toroidal

conformal field theories, which (for arbitrary d-dimensional tori) is normalized to

VolT d =
∫
M

T d

dµ(d) = 1 . (3.7)

The ensemble average of a d-dimensional toroidal conformal field theory is calculated as
in ref. [20] and reads

〈
ZT d(τ)

〉
=
∫
M

T d

dµ(d)ZT d(τ ; d) =
Ed/2(τ)

Im(τ) d
2 |η(τ)|2d

, d ≥ 3 . (3.8)

As a result and together with eq. (3.3) the ensemble average of the partition function (3.6)
becomes 〈

ZT D
fac/Z2

(τ)
〉
= 1

2
Eℓ/2(τ)Em/2(τ)

Im(τ) ℓ+m
2 |η(τ)|2(ℓ+m)

+ 2ℓ−1
[∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣ℓ + ∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣ℓ + ∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣ℓ
]

Em/2(τ)
Im(τ)m

2 |η(τ)|2m . (3.9)

Here and in eq. (3.8), Es(τ) denotes the real analytic Eisenstein series

Es(τ) =
1
2
∑

c,d∈Z
(c,d)=1

Im(τ)s

|cτ + d|2s
, (3.10)

where in the summation (c, d) denotes the greatest common divisor of the integers c and
d. The real analytic Eisenstein series Es(τ) is a modular function in τ that is defined
for s ∈ C with Re(s) > 1

2 . For more details on the real Eisenstein series see for instance
refs. [54, 55] and appendix A.

3.2 Non-factorizable toroidal Z2 orbifold CFTs

A systematic classification of all Z2 orbifolds of toroidal conformal field theories is beyond
the scope of this work. Instead we focus on an interesting class of toroidal Z2 orbifolds that
generalizes the factorizable Z2 orbifolds of the pervious subsection.

We construct the non-factorizable toroidal Z2 orbifold from an even dimensional torus
T 2ℓ with ℓ ≥ 3, which we realize in terms of the 2ℓ dimensional lattice Λ2ℓ with lattice
generators sA, A = 1, . . . , 2ℓ, namely

T 2ℓ ≃ R2ℓ/Λ2ℓ , Λ2ℓ = ⟨⟨ s1, . . . , s2ℓ ⟩⟩ . (3.11)

Furthermore, we consider the involution ιZ2 of the torus T 2ℓ, which exchanges the first ℓ
generators with the second ℓ generators of the lattice Λ2ℓ. Explicitly, the involution ιZ2 is
given by the lattice automorphisms

ιZ2 : sA 7→

sA+ℓ for A ≤ ℓ ,
sA−ℓ for A > ℓ .

(3.12)
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In order for the involution ιZ2 to realize a Z2 symmetry on the associated toroidal conformal
field theory, we require that the flat toroidal target space metric G and the background
B-field B are invariant with respect to this geometric Z2 action, i.e.,

ι∗Z2G = G , ι∗Z2B = B . (3.13)

Identifying the lattice generators sA, A = 1, . . . , 2ℓ, with a basis of tangent vectors of T 2ℓ,
the Z2 invariance of the toroidal metric G implies for its symmetric components GAB =
G(sA, sB) = GBA, A,B = 1, . . . , 2ℓ, the relations

Gab = Ga+ℓ,b+ℓ , Ga+ℓ,b = Ga,b+ℓ for a, b = 1, . . . , ℓ . (3.14)

This means that the metric G takes the form

G =
(
G G̃

G̃ G

)
, (3.15)

where G, G̃ are symmetric ℓ × ℓ matrices. For the anti-symmetric components BAB =
B(sA, sB) = −BBA, A,B = 1, . . . , 2ℓ, of the B-field we have similar relations

Bab = Ba+ℓ,b+ℓ , Ba+ℓ,b = Ba,b+ℓ for a, b = 1, . . . , ℓ . (3.16)

This means that the B-field takes the form

B =
(
B B̃

B̃ B

)
, (3.17)

where B, B̃ are ℓ × ℓ skew-symmetric matrices. In the following, we often refer to the
constructed torus T 2ℓ with the metric (3.14) and the B-field (3.16) as the non-factorizable
torus T 2ℓ

non-fac, and we denote the Z2 orbifold associated to the involution ιZ2 of the non-
factorizable torus by T 2ℓ

non-fac/Z2.
For G̃ = 0, B̃ = 0 the torus T 2ℓ factorizes into T ℓ × T ℓ, where each factor comes with

the same metric G and the same B-field B. As the Z2 orbifold exchanges the two tori, the
non-factorizable toroidal Z2 conformal field theory simplifies to the S2 symmetric orbifold
conformal field theory arising from the product of two tori, as studied in ref. [17].

Before we calculate the partition function of the conformal field theory with the orbifold
target T 2ℓ

non-fac/Z2, we construct a 2ℓ-fold cover T̃ 2ℓ of the non-factorizable torus T 2ℓ
non-fac, which

is again a factorizable torus T̃ 2ℓ ≃ T̃ ℓ × T̃ ℓ in the sense that the metric G̃ and the B-field B̃

lifted from the torus T 2ℓ becomes block diagonal. The relevant covering torus T̃ 2ℓ ≃ R2ℓ/Λ̃2ℓ

is described in terms of the sublattice Λ̃2ℓ ⊂ Λ2ℓ of index 2ℓ given by

Λ̃2ℓ = ⟨⟨ e1, . . . , eℓ, f1, . . . , fℓ ⟩⟩ ,
ea = sa − sa+ℓ , fa = sa + sa+ℓ , a = 1, . . . , ℓ .

(3.18)

In terms of these generators the metric G̃ and the B-field B̃ of the torus T̃ 2ℓ become block
diagonal because 0 = G̃(ea, fb) = G̃(fa, eb) for all a, b = 1, . . . , ℓ. Furthermore, the metric
blocks g and g̃ of the two respective factors T̃ ℓ × T̃ ℓ read

g̃ab = G̃(ea, eb) = 2(Gab −Ga,b+ℓ) , gab = G̃(fa, fb) = 2(Gab +Ga,b+ℓ) . (3.19)
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Analogously, we find for the B-field B̃ that 0 = B̃(ea, fb) = B̃(fa, eb) and that the block-
diagonal entries become

b̃ab = B̃(ea, eb) = 2(Bab −Ba,b+ℓ) , bab = B̃(fa, fb) = 2(Bab +Ba,b+ℓ) . (3.20)

In terms of the metric and B-field ℓ× ℓ-blocks g, g̃, b and b̃, we readily express the metric
G and B of the non-factorizable torus T 2ℓ as

G = 1
4

(
g + g̃ g − g̃

g − g̃ g + g̃

)
, B = 1

4

(
b+ b̃ b− b̃

b− b̃ b+ b̃

)
, (3.21)

where the exhibited block structure arises in terms of the basis (3.11). Upon inserting the
specific form (3.21) of the metric G and the B-field B into the matrix H(G,B), a straight-
forward but somewhat tedious calculation reveals that the partition function ZT 2ℓ(τ ;G,B)
can be rewritten as

ZT 2ℓ
non-fac

(τ ;G,B) = 1
|η(τ)|4ℓ

∑
∆∈{0,1}2ℓ

Θh

(
0, 12∆, 2τ

)
Θ

h̃

(
0, 12∆, 2τ

)
. (3.22)

Here the Siegel-Narain theta functions are defined with respect to the ℓ× ℓ positive definite
matrices

h ≡ H

(
g

2 ,
b

2

)
, h̃ ≡ H

(
g̃

2 ,
b̃

2

)
, (3.23)

that are determined via the matrix relation (2.31) in terms of the (rescaled) ℓ× ℓ matrices
g, g̃, b, b̃. The modular parameter of these Siegel-Narain theta functions appearing in eq. (3.22)
is 2τ as opposed to τ in eq. (2.30). As a result the modular invariance of this expression
is not immediately manifest. Note that the partition function ZT 2ℓ

non-fac
(τ ;G,B) as given

in eq. (3.22) is a finite sum of products of two Siegel-Narain theta functions, which only
depend on g, b, and g̃, b̃, respectively. This is a consequence of the fact that the partition
function ZT 2ℓ

non-fac
can alternatively be obtained from a shift orbifold of the 2ℓ-fold covering

torus T̃ ℓ × T̃ ℓ, which is factorizable.
Now we have all the ingredients at hand to spell out the partition function

ZT 2ℓ
non-fac/Z2

of the conformal field theory of the non-factorizable torus orbifolded with respect
to the involution (3.12). The contribution of the untwisted sector Z(+)

T 2ℓ
non-fac/Z2

to the partition
function of the Z2 orbifold conformal field theory is obtained by projecting onto the Z2
invariant states on the Hilbert space, namely

Z
(+)
T 2ℓ

non-fac/Z2
= 1

2
(
trH+ e

2πiτĤ + trH+ g e
2πiτĤ

)
= 1

2

(
Z

(++)
T 2ℓ

non-fac/Z2
+ Z

(+−)
T 2ℓ

non-fac/Z2

)
, (3.24)

where Ĥ is the Hamiltonian of the conformal field theory, H+ the Hilbert space of the
untwisted states, and g the generator of the Z2 orbifold action. The two summands in this
expression are explicitly calculated to be

Z
(++)
T 2ℓ

non-fac/Z2
= ZT 2ℓ

non-fac
(τ ;G,B) , Z

(+−)
T 2ℓ

non-fac/Z2
= ZT ℓ

(
2τ ; g2 ,

b

2

)
. (3.25)
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The twisted sector Z(−)
T 2ℓ

non-fac/Z2
can be determined similarly by projecting onto the Z2 invariant

states in the twisted sector of the Z2 orbifold theory, i.e.,

Z
(−)
T 2ℓ

non-fac/Z2
= 1

2
(
trH− e

2πiτĤ + trH− g e
2πiτĤ

)
= 1

2

(
Z

(−+)
T 2ℓ

non-fac/Z2
+ Z

(−−)
T 2ℓ

non-fac/Z2

)
. (3.26)

Here H− refers to the Hilbert space of the twisted states. However, since the whole partition
function ZT 2ℓ

non-fac/Z2
of the Z2 orbifold conformal field theory must be modular invariant, we

can directly reconstruct the contributions of the twisted sector via modular transformations as
follows. The contribution Z(++)

T 2ℓ
non-fac/Z2

is modular invariant by itself, because it is the partition

function of the conformal field theory that is not orbifolded. The piece Z(+−)
T 2ℓ

non-fac/Z2
is not

modular invariant by itself. Instead an S-transformation maps the contribution Z
(+−)
T 2ℓ

non-fac/Z2

to Z
(−+)
T 2ℓ

non-fac/Z2
and vice versa, because the S-transformation converts the insertion of the

generator g in the trace over the Hilbert space H+ into a twisted boundary condition without
the insertion of g in the trace over the Hilbert space H−. Thus from eq. (3.25) we arrive at

Z
(−+)
T 2ℓ

non-fac/Z2
= ZT ℓ

(
τ

2 ;
g

2 ,
b

2

)
. (3.27)

The last contribution is obtained from Z
(−+)
T 2ℓ

non-fac/Z2
by acting with a T -transformation, and

we find

Z
(−−)
T 2ℓ

non-fac/Z2
= ZT ℓ

(
τ + 1
2 ; g2 ,

b

2

)
. (3.28)

Altogether, the combination Z(+−)
T 2ℓ

non-fac/Z2
+Z(−+)

T 2ℓ
non-fac/Z2

+Z(−−)
T 2ℓ

non-fac/Z2
is indeed modular invariant.

In summary, collecting all the computed individual pieces we find for the whole partition
function the expression

ZT 2ℓ
non-fac/Z2

= 1
2

1
|η(τ)|4ℓ

∑
∆∈{0,1}2ℓ

Θh(0,
1
2∆, 2τ) Θh̃

(
0, 12∆, 2τ

)

+ 1
2

(
ZT ℓ

(
2τ ; g2 ,

b

2

)
+ ZT ℓ

(
τ

2 ;
g

2 ,
b

2

)
+ ZT ℓ

(
τ + 1
2 ; g2 ,

b

2

))
, (3.29)

where both the first and the second line are modular invariant contributions by themselves.
Note that, due to the insertion of the generator of the Z2 orbifold group, the contribution
Z

(+−)
T 2ℓ

non-fac/Z2
to the partition function depends only on the moduli g, b, which are the moduli

of the fixed-point locus of the involution ιZ2 .

3.3 Ensembles of non-factorizable toroidal Z2 orbifold CFTs

To determine the ensemble average of the non-factorizable toroidal Z2 orbifold partition
function ZT 2ℓ

non-fac/Z2
, we first discuss the structure of its moduli space MT 2ℓ

non-fac/Z2
. The metric

on the moduli space MT 2ℓ
non-fac/Z2

is the Zamolodchikov metric restricted to the non-factorizable
tori T 2ℓ that are invariant with respect to the action of the involution ιZ2 .
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The Zamolodchikov metric of the torus T 2ℓ is given by (2.36), which becomes in terms
of the matrix (2.31)

ds2
T 2ℓ = Tr

(
G−1dGG−1dG−G−1dBG−1dB

)
(3.30)

= 1
2 Tr

(
H−1dHH−1dH

)
= −1

2 Tr
(
dHdH−1

)
.

Here the positive definite 2ℓ× 2ℓ matrix H is given in terms of the metric G and the B-field
B according to eq. (2.31). Restricting the Zamolodchikov metric to the non-factorizable
tori T 2ℓ

non-fac, we insert eq. (3.21) and get

ds2
T 2ℓ

non-fac
= Tr

(
g−1dg g−1dg + g−1db g−1db

)
+Tr

(
g̃−1dg̃ g̃−1dg̃ + g̃−1db̃ g̃−1db̃

)
= 1

2 Tr
(
h−1dhh−1dh

)
+ 1

2 Tr
(
h̃−1dh̃ h̃−1dh̃

)
.

(3.31)

Thus the metric factorizes locally over the moduli space of non-factorizable tori T 2ℓ
non-fac into

the two positive definite parts h and h̃.
Let us now analyze the global structure of the moduli space of non-factorizable tori T 2ℓ

non-fac.
To set the stage, we first describe the moduli space MT N of conformal field theories for generic
target space tori TN with the positive definite 2N×2N -matrices H obeying eq. (2.26) [23, 24].
Consider the 2N -dimensional lattice Γ with the even self-dual pairing 2Ω given in eq. (2.28).
The symmetric matrix Ω is a non-degenerate bilinear form of signature (N,N) on the 2N -
dimensional real vector space V = Γ ⊗Z R. Let W+ be a N -dimensional subvector space
of V , such that the restriction Ω|W+ is positive definite. Note that the choice of W+ is
not unique and W+ is called a majorant of Ω. Furthermore, let W− be the N -dimensional
orthogonal complement W− = {x ∈ V |Ω(x,W+) = 0}. Then the vector space V decomposes
into the direct sum

V =W+ ⊕W− . (3.32)

Due to the signature of Ω the restriction Ω|W− is negative definite. From this decomposition
we obtain on V the positive definite symmetric bilinear form

H(u, v) := Ω(u+, v+)− Ω(u−, v−) , (3.33)

with u = u+ + u−, v = v+ + v−, where u+, v+ ∈W+ and u−, v− ∈W−. Note that H obeys
the relation (2.26), which is equivalent to Ω−1H − H−1Ω = 0 and to

(Ω−1 +H−1)(Ω−H) = 0 . (3.34)

Conversely, given a positive symmetric matrix H obeying this matrix relation, the kernel of
the second factor Ω−H defines the subvector space W+ and hence the decomposition (3.32)
associated to the positive definite symmetric pairing H.

The symmetric form Ω with signature (N,N) is invariant with respect to the indefinite
orthogonal group O(N,N,R) acting on the vector space V , namely ΛTΩΛ = Ω for any
Λ ∈ O(N,N,R). However, the transformation on the vector space V 7→ Λ · V acts non-
trivially on the decomposition (3.32), and hence on the space of positive symmetric bilinear
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from H. Conversely, Witt’s theorem ensures that the group O(N,N,R) acts transitively on
the space of positive definite symmetric 2ℓ × 2ℓ bilinear forms H obeying eq. (3.34). The
stabilizer subgroup preserving the decomposition (3.32) is O(N,R) × O(N,R). Therefore,
we find altogether that the moduli space of majorants M(N)

Maj of Ω reads

M(N)
Maj ≃

O(N,N,R)
O(N,R)×O(N,R) . (3.35)

As the moduli space of majorants yields a choice of metric G and B-field B according
to eq. (2.31), it also parametrizes toroidal conformal field theories with target space TN .
However, two majorants that are related by a lattice automorphism O(N,N,Z) of Γ yield
equivalent toroidal conformal field theories. Therefore, we arrive at the well-known result,
see, e.g., ref. [49], that the moduli space MT N is given by

MT N ≃
M(N)

Maj
O(N,N,Z) ≃ O(N,N,Z)

∖
O(N,N,R)

/
O(N,R)×O(N,R) . (3.36)

Now we are ready to discuss the global structure of the moduli space MT 2ℓ
non-fac

of conformal
field theories arising from non-factorizable target space tori T 2ℓ

non-fac. We parametrize the
moduli space MT 2ℓ

non-fac
in terms of majorants that admit the Z2 orbifold action. The involution

ιZ2 acting on the 2ℓ-dimensional lattice Λ2ℓ induces a Z2-action ι̃Z2 on the 4ℓ-dimensional
lattice Γ ≃ Λ2ℓ ⊕ Λ∗

2ℓ. By construction, the involution ι̃Z2 leaves the non-degenerate bilinear
form Ω of signature (2ℓ, 2ℓ) invariant, i.e., ι̃∗Z2

Ω = Ω. Furthermore, the vector space V = Γ⊗ZR
decomposes as V = V (+) ⊕ V (−), where V (±) are the ±1 eigenspaces with respect to the
involution ι̃Z2 . It is straightforward to check that the non-degenerate bilinear form Ω of
signature (2ℓ, 2ℓ) restricts on V (±) to two non-degenerate bilinear forms Ω|V (±) both of
signature (ℓ, ℓ). As a result the majorants compatible with the involution ι̃Z2 split as

V =W
(+)
+ ⊕W

(−)
+ ⊕W

(+)
− ⊕W

(−)
− , (3.37)

where W (+)
± ⊕W

(−)
± = W± and W

(±)
+ ⊕W

(±)
− = V (±). The moduli spaces M(2ℓ)

Maj,Z2
of such

Z2-equivariant majorants is parametrized by transformations that not only preserves the
bilinear form Ω but also its two restrictions Ω|V (±) individually modulo those transformations
that preserve the direct sum decomposition (3.37). Therefore, we arrive at

M(2ℓ)
Maj,Z2

≃ O(ℓ, ℓ,R)×O(ℓ, ℓ,R)
O(ℓ,R)×O(ℓ,R)×O(ℓ,R)×O(ℓ,R) ≃ M(ℓ)

Maj ×M(ℓ)
Maj . (3.38)

As before, in order to describe the moduli space of conformal field theories of non-
factorizable target space tori T 2ℓ

non-fac, we need to further divide by those lattice automorphisms
of Γ that are compatible with the involution ι̃Z2 . These are realized by the discrete group
O(ℓ, ℓ,Z) × O(ℓ, ℓ,Z). Thus, the moduli space of the conformal field theories with non-
factorizable tori T 2ℓ

non-fac as target spaces becomes

MT 2ℓ
non-fac

≃
M(2ℓ)

Maj,Z2

O(ℓ, ℓ,Z)×O(ℓ, ℓ,Z) ≃ O(ℓ, ℓ,Z)×2
∖
O(ℓ, ℓ,R)×2/

O(ℓ,R)×4

≃ MT ℓ ×MT ℓ .

(3.39)
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The two factors MT ℓ of this moduli space are parameterized by the positive definite bilinear
forms h and h̃ explicitly given in eq. (3.23). Note that the arguments of the bilinear forms h
and h̃ in terms of the metric g and the B-field b and the metric g̃ and the B-field b̃ are rescaled
by a factor 1

2 , which reflects the fact that these ℓ× ℓ blocks parametrize the diagonal tori
T̃ ℓ × T̃ ℓ of the non-factorizable torus T 2ℓ

non-fac corresponding to the sublattice Λ̃2ℓ of index 2ℓ.
Let us point out that the presented construction of the moduli space MT 2ℓ

non-fac
does not

cover all possible conformal field theories that can be constructed from Z2 orbifolds associated
to the involution ιZ2 acting on non-factorizable tori T 2ℓ

non-fact/Z2 as defined in eq. (3.12). On
top of the B-field B entering the majorant H in eq. (2.31), which obeys the relations (3.16),
there are additional discrete choices for the B-field that are invariant with respect to a
Z2 symmetry once the discrete transformations O(2ℓ, 2ℓ,Z) are taken into account. In our
treatment, we only consider B-field configurations that are invariant under the involution
ιZ2 without taking into account such discrete transformations.

The family of S2-symmetric orbifold conformal field theory studied in ref. [17] corresponds
to the points in moduli space MT 2ℓ

non-fac
, where the equivalence classes of the majorants h

and h̃ are equal. That is to say, the moduli space MT ℓ×T ℓ/S2 of the S2-symmetric orbifold
conformal field theory is the diagonal submoduli space

MT ℓ×T ℓ/S2 ≃
{
(m, m̃) ∈ MT 2ℓ

non-fac

∣∣∣m = m̃
}
, (3.40)

where m and m̃ are equivalence classes of majorants h and h̃.
The metric (3.30) of the moduli space MT N of a toroidal conformal field theory yields

the measure dmH , which upon integrating over the moduli space (3.36) we normalize as∫
M

T N

dmH = 1 . (3.41)

To calculate the ensemble averages of the partition functions derived in the previous section,
it is necessary to average the Siegel-Narain theta functions ΘH(0, 1

2∆, τ) defined in eq. (2.29)
over the moduli space MT N as〈

ΘH(0, 12∆, x)
〉
=
∫
M

T N

dmH ΘH(0, 12∆, x) . (3.42)

This computation is detailed in refs. [24, 30]. Here we quote the result for N ≥ 3 and
∆ ∈ {0, 1}2N

〈
ΘH(0, 12∆, x)

〉
=



1
2
∑

c,d∈Z
(c,d)=1

1
|c x+ d|N

for 0 = ∆ ∈ {0, 1}2N ,

1
2

∑
c∈Z,d∈2Z
(c,d)=1

(−1) d
2 ∆T Ω∆

|c x+ d|N
for 0 ̸= ∆ ∈ {0, 1}2N .

(3.43)

For the average of these Siegel-Narain theta functions there are three distinct cases. The
tuple ∆ is either zero or non-zero. In the latter case we distinguish between ∆TΩ∆ being
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even or odd. Therefore, we define〈
Θ(0)

H (x)
〉
:= ⟨ΘH(0, 0, x)⟩ ,〈

Θ(+)
H (x)

〉
:=
〈
ΘH(0, 12∆, x)

〉
for ∆TΩ∆ even, ∆ ̸= 0 ,〈

Θ(−)
H (x)

〉
:=
〈
ΘH(0, 12∆, x)

〉
for ∆TΩ∆ odd .

(3.44)

Using eq. (3.43) and the definition for the real analytic Eisenstein series (3.10), we find
for the average 〈

Θ(0)
H (x)

〉
=
EN/2(x)
Im(τ)N

2
. (3.45)

Inserting the identities (C.1) into eq. (3.43) we arrive for the remaining averages at

〈
Θ(+)

H (x)
〉
= 1

2N − 1

EN/2(x
2 )

Im(x
2 )

N
2
−
EN/2(x)
Im(x)N

2

 ,

〈
Θ(−)

H (x)
〉
= 2

2N (2N − 1)
EN/2(x

4 )
Im(x

4 )
N
2
− 2N + 2

2N (2N − 1)
EN/2(x

2 )
Im(x

2 )
N
2
+ 1

2N − 1
EN/2(x)
Im(x)N

2
.

(3.46)

With these averaged Siegel-Narain theta functions at hand, we can now determine the
ensemble average of the partition function ZT 2ℓ

non-fac/Z2
of the Z2 orbifold toroidal conformal

field theories based on non-factorizable tori T 2ℓ
non-fac. We recall that the measure (3.31) and the

moduli space of this ensemble of conformal field theories factorizes, which becomes manifest
once we parametrize the moduli space by the majorants h and h̃ of eq. (3.23). Moreover,
the partition function ZT 2ℓ

non-fac/Z2
(τ ;h, h̃) of eq. (3.29) is a sum of products of terms, whose

factors are Siegel-Narain theta functions that depend on the two respective majorants h and
h̃. Thus, the ensemble average factors over these sums of products as well, and we obtain〈

ZT 2ℓ
non-fac/Z2

(τ)
〉
=
∫
M

T ℓ

dmh

∫
M

T ℓ

dm
h̃
ZT 2ℓ

non-fac/Z2
(τ ;h, h̃)

= 1
2

1
|η(τ)|4ℓ

∑
∆∈{0,1}2ℓ

〈
Θh(0,

1
2∆, 2τ)

〉 〈
Θ

h̃
(0, 12∆, 2τ)

〉

+ 1
2
(
⟨ZT ℓ(2τ ;h)⟩+

〈
ZT ℓ(

τ

2 ;h)
〉
+
〈
ZT ℓ(

τ + 1
2 ;h)

〉)
.

(3.47)

The sum over ∆ ∈ {0, 1}2ℓ splits into the contribution ∆ = 0, (2ℓ − 1)(2ℓ−1 + 1) summands
with ∆ ̸= 0 and ∆TΩ∆ even, and 2ℓ−1(2ℓ − 1) summands with ∆TΩ∆ odd. Thus, inserting
the definitions (3.44) and carrying out the sum over ∆ ∈ {0, 1}2ℓ we arrive at〈

ZT 2ℓ
non-fac/Z2

(τ)
〉
= 1

2
1

|η(τ)|4ℓ

(〈
Θ(0)

H (2τ)
〉2

+(2ℓ − 1)(2ℓ−1 + 1)
〈
Θ(+)

H (2τ)
〉2

+ 2ℓ−1(2ℓ − 1)
〈
Θ(−)

H (2τ)
〉2
)

(3.48)

+ 1
2
(
⟨ZT ℓ(2τ ;h)⟩+

〈
ZT ℓ(

τ

2 ;h)
〉
+
〈
ZT ℓ(

τ + 1
2 ;h)

〉)
. (3.49)
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Finally, we express the determined average in terms of real analytic Eisenstein series
using eqs. (3.46). In order to bring the final result into a manifest modular invariant form,
we apply the identify

Es

(
x+ 1
2

)
= 1 + 22s−1

2s−1 Es(x)− Es(2x)− Es

(
x

2

)
. (3.50)

which is derived from the Fourier decomposition of the real analytic Eisenstein series in terms
of the Hecke eigenmodes with respect to the Hecke operator T2, for details, cf., appendix C.
Putting everything together, we arrive at our main result of this subsection, which is the
manifest modular invariant ensemble average〈

ZT 2ℓ
non-fac/Z2

(τ)
〉

= 1
2 |η(τ)|4ℓ Im(τ)ℓ (2ℓ − 1)

((
Eℓ/2 (2τ)2 + Eℓ/2

(
τ

2

)2
+ Eℓ/2

(
τ + 1
2

)2
)

−
(
1 + 21−ℓ

)
Eℓ/2 (τ)2

)

+ 1
2

 Eℓ/2(2τ)
Im(2τ) ℓ

2 |η(2τ)|2ℓ
+

Eℓ/2

(
τ
2
)

Im( τ
2 )

ℓ
2
∣∣η ( τ

2
)∣∣2ℓ

+
Eℓ/2

(
τ+1

2

)
Im( τ+1

2 ) ℓ
2

∣∣∣η ( τ+1
2

)∣∣∣2ℓ

 . (3.51)

Here the expressions inside the brackets in the first and third lines are modular invariant as
a consequence of the Lemma 2 in appendix C. Using formulas in appendix A and eq. (3.8),
we can also write the averaged partition function as〈
ZT 2ℓ

non-fac/Z2
(τ)
〉

= 1
2ℓ+1 (2ℓ − 1)

(∣∣∣∣θ2(τ)
η(τ)

∣∣∣∣2ℓ

⟨ZT ℓ(2τ)⟩2 +
∣∣∣∣θ4(τ)
η(τ)

∣∣∣∣2ℓ

⟨ZT ℓ

(
τ

2

)
⟩
2
+
∣∣∣∣θ3(τ)
η(τ)

∣∣∣∣2ℓ

⟨ZT ℓ

(
τ + 1
2

)
⟩
2
)

− 1 + 21−ℓ

2 (2ℓ − 1) ⟨ZT ℓ(τ)⟩2 + 1
2

(
⟨ZT ℓ(2τ)⟩2 + ⟨ZT ℓ

(
τ

2

)
⟩
2
+ ⟨ZT ℓ

(
τ + 1
2

)
⟩
2
)
. (3.52)

We observe that this expression for the ensemble average is consistent with the lower-
dimensional regularized ensemble average stated in eq. (2.46).

Finally, notice that the ensemble average over the submoduli space MT ℓ×T ℓ/S2 defined
in eq. (3.40) becomes

〈
ZT 2ℓ

non-fac/Z2
(τ)
〉
= 1

2
1

|η(τ)|4ℓ
⟨Θh(0, 0, τ)Θh(0, 0, τ)⟩

+ 1
2

(
⟨ZT ℓ(2τ ;h)⟩+

〈
ZT ℓ

(
τ

2 ;h
)〉

+
〈
ZT ℓ

(
τ + 1
2 ;h

)〉)
,

(3.53)

which is the ensemble average of the partition function for the product of two equal tori T ℓ

orbifolded by the permutation S2 as calculated in ref. [17].
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4 Dual holographic Chern-Simons theory

In this section we discuss the ensemble averages of conformal field theories of the type
calculated in the previous section from a three-dimensional holographic dual bulk perspective.
In the section 4.1 we analyze ensemble averages of two-dimensional conformal field theories
that arise from products of families of conformal field theories. For such products the ensemble
average factorizes, which raises a conundrum about their dual holographic interpretation. We
discuss possible scenarios for such cases. In section 4.2 we examine the calculated ensemble
averages of the previous section, which exhibit similar phenomena as the ensemble averages
of products of families of two-dimensional conformal field theories.

4.1 Products of conformal field theories

Consider two families of two-dimensional unitary conformal field theories CFTa, a = 1, 2,
which are parametrized by (local) coordinates ma of their moduli spaces Ma. Their partition
functions are defined in the usual manner

Za(τ ;ma) = TrHa

(
qL0(ma)q̄L̄0(ma)

)
, a = 1, 2 , (4.1)

where Ha are the Hilbert spaces of states, L0 and L̄0 are the moduli-dependent holomorphic
and anti-holomorphic degree zero Virasoro generators of the conformal field theories CFTa,
and q = e2πiτ .

We are assuming that both moduli spaces Ma, a = 1, 2, have fixed finite dimension
da = dimMa. This implies that for generic values of ma the conformal field theories CFTa

possess da marginal operators, i.e., da primary fields of conformal dimension (h, h̄) = (1, 1).11

Furthermore, suppose that the moduli spaces Ma have finite volumes

Vol(Ma) =
∫
Ma

dµ(ma) , a = 1, 2 , (4.2)

with respect to the measure dµ(ma) induced from the Zamolodchikov metrics of the conformal
field theories CFTa. Then we can define the ensemble averages

⟨Za(τ)⟩ =
1

Vol(Ma)

∫
Ma

dµ(ma)Za(τ ;ma) , (4.3)

which we assume to be also finite.
Finally, assume that both ensemble averages ⟨Za(τ)⟩, a = 1, 2, enjoy a holographic

interpretation in terms of a three-dimensional bulk action Sa[g, ϕa] on three-dimensional
spaces M3 with a single toroidal boundary component ∂M3 = T 2

τ with complex structure τ .
Due to the conformal symmetry at the boundary T 2

τ , the holographic duality implies further
that the metric approaches three-dimensional (Euclidean) anti-de Sitter space — that is to
say a hyperbolic three-space — at the asymptotic region of the boundary ∂M3 = T 2

τ . The
11The conformal field theory CFTa may have additional primary fields of conformal dimension (h, h̄) = (1, 1)

for some values of ma. These primaries are either exactly marginal operators for non-generic values of ma or
they are not exactly marginal. In the former case it means that a new stratum of families of conformal field
theories is attached to Ma at this non-generic point in moduli space. In the latter case deformations with
respect to such operators are obstructed at higher orders.
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boundary conditions of the remaining fields ϕa|T 2
τ

conform with the spectrum of the ensemble
average of conformal field theories. The described holographic interpretation implies at the
quantitative level that the partition functions of the three-dimensional bulk theory calculate
the ensemble average of the families of conformal field theories, i.e.,

⟨Za(τ)⟩ =
∫

D[g, ϕa] e−Sa[g,ϕa] . (4.4)

Here the r.h.s. is a functional integral over bulk field configurations with specified boundary
conditions, bulk metrics that on the boundary give rise to T 2

τ , which possibly includes sums
over topologies. For example, in refs. [20, 21], the path integral over the metric g localizes
to a sum over hyperbolic geometries M3 with asymptotic boundary conditions ∂M3 = T 2

τ

with complex structure modulus τ . In the context of the ensemble averages of higher
genus partition functions of symmetric product orbifolds considered in ref. [17] smooth bulk
geometries that are not handlebodies become relevant. See also refs. [56, 57]. Now we consider
the product of the two two-dimensional conformal field theories CFT1⊗2 ≡ CFT1 ×CFT2,
which by construction again yields a family of unitary conformal field theories parametrized
by (m1,m2) ∈ M1 × M2. Since the Zamolodchikov metric and hence the moduli space
measure also factorize, the ensemble average of the family of product conformal field theories
is just the product of the averages of its factors, i.e.,

⟨Z1⊗2(τ)⟩ = ⟨Z1(τ)⟩ ⟨Z2(τ)⟩ . (4.5)

From the dual holographic perspective the observed factorization of the partition function
poses a puzzle, as the partition function of a possible holographic dual three-dimensional bulk
theory is also required to factorize. Assuming that a holographic description exists at all, we
discuss in the following scenarios for possible bulk interpretations of such ensemble averages:

• Since the ensemble average ⟨Z1⊗2(τ)⟩ factorizes, a possible interpretation for a three-
dimensional dual description is obtained in terms of the three-dimensional action
S1⊗2 = S1[g1, ϕ1]+S2[g2, ϕ2]. In this setup the two metrics g1 and g2 are distinct on the
two three-spaces M (1)

3 and M
(2)
3 , and both three-spaces M (a)

3 , a = 1, 2, should have a
common asymptotic toroidal boundary T 2

τ = ∂M
(1)
3 = ∂M

(2)
3 — as depicted in figure 5

— on which the two metrics g1 and g2 coincide asymptotically. Then by construction
the holographic correspondence becomes

⟨Z1⊗2(τ)⟩ =
∫

D[g1, g2, ϕ1, ϕ2] e−S1[g1,ϕ1]−S2[g2,ϕ2]

=
∫

D[g1, ϕ1] e−S1[g1,ϕ1]
∫

D[g2, ϕ2] e−S2[g2,ϕ2]

= ⟨Z1(τ)⟩ ⟨Z2(τ)⟩ .

(4.6)

Thus, the holographic dual arises from two distinct three-dimensional bulk theories
that are glued together at a common asymptotic boundary.

• The product conformal field theory CFT1⊗2 could be a (d1 + d2)-dimensional subspace
M1 ×M2 of a higher-dimensional moduli space Mtotal, i.e, M1 ×M2 ⊂ Mtotal with
dimMtotal > d1 + d2. Such a scenario occurs, if the conformal field theory CFT1⊗2
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T 2
τ

M
(2)
3M

(1)
3

Figure 5. Bulk manifolds M (1)
3 ,M

(2)
3 sharing the same boundary.

has in addition to the exactly marginal operators φ(1)
i ⊗ 1, i = 1, . . . , d1, and 1 ⊗ φ

(2)
j ,

j = 1, . . . , d2, further exactly marginal operators. The operators 1 are the identity
operators, and φ(1)

i and φ(2)
j are the marginal operators of conformal weight (h, h̄) = (1, 1)

of the respective conformal field theories CFT1 and CFT2. The additional marginal
operators are of the form ψ(1)⊗ψ(2), where the operators ψ(1) and ψ(2) of the conformal
field theories CFT1 and CFT2 have conformal dimensions (h(1), h̄(1)) and (h(2), h̄(2)),
such that h(1) + h(2) = h̄(1) + h̄(2) = 1. These additional exactly marginal operators
ψ(1) ⊗ ψ(2) parametrize directions in Mtotal that are normal to the product subspace
M1 ×M2.12

Generically, it is not expected that the larger moduli space Mtotal exhibits a product
structure (unless enforced by symmetry). Therefore, the ensemble average of the
partition function Ztotal(τ ;mtotal) of the total family of conformal field theories CFTtotal
does not exhibit the product structure any longer

⟨Ztotal(τ)⟩ =
1

Vol(Mtotal)

∫
Mtotal

dµ(mtotal)Ztotal(τ ;mtotal) , (4.7)

where we assume that the volume of Mtotal is finite and that the integral over the
partition function Mtotal converges.
Since the dimension of the moduli space Mtotal is higher than the subspace M1 ×M2,
the contribution to the ensemble average arising from this subspace has measure zero.
Its contribution is therefore not relevant for the total ensemble average. As a result a
holographic dual formulation for the conformal field theory CFTtotal does not need to
reflect a product structure any longer, and the average ⟨Ztotal(τ)⟩ can possibly arise
from a conventional three-dimensional bulk theory on a three-dimensional space M3
with an asymptotic boundary component T 2

τ .

• Finally, let us remark that even if the product of conformal field theories does not give
rise to additional exactly marginal operators, the products of conformal field theories

12A given two-dimensional product conformal field theory represents a point p ∈ M1 ×M2 ⊂ Mtotal. The
set of exactly marginal operators form a basis of the tangent space TpMtotal at the point p ∈ Mtotal. At
any point p ∈ M1 ×M2 this tangent bundle splits as TpMtotal ≃ Tp(M1 ×M2) ⊕ Np(M1 ×M2), where
the two summands denote the tangent and normal bundle of M1 × M2 relative to the embedding space
Mtotal, respectively. The exactly marginal operators that parametize deformations within the submoduli
space M1 ×M2 reside in the tangent bundle Tp(M1 ×M2), whereas those exactly marginal operators that
parametrize deformations that wander off into the bigger moduli space Mtotal have non-vanishing components
in the normal bundle Np(M1 ×M2).
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could be part of a larger ensemble, in which the product moduli space M1 ×M2 arises
as a connected component. If the connected component has measure zero in this larger
moduli space Mtotal, then the holographic dual description — if it exists at all — should
be given the entire moduli space Mtotal, which does not need to reflect the product
structure (4.5) unless the entire moduli space Mtotal is again a product itself. Such a
scenario is conceivable, if for instance the ensemble Mtotal of conformal field theories
consists of different strata of different dimensions. Furthermore, if the product stratum
M1 ×M2 is of lower dimension than any of the other strata, it does not contribute to
ensemble averages over the entire moduli space. It would be interesting to find explicit
examples of this type.

4.2 Ensemble averages of toroidal Z2 orbifold CFTs

Let us illustrate the general considerations in the previous subsection with a few examples
of families of toroidal conformal field theories and their Z2 orbifolds that are discussed
in this work:

Ensemble average of products of toroidal CFTs: as proposed in refs. [20, 21] the
holographic dual description of the ensemble average (3.8) of the family of two-dimensional
conformal field theories CFTT d with a toroidal target space T d is given in terms of a
U(1)d × U(1)d Chern-Simons theory on three-dimensional hyperbolic handlebodies with a
single toroidal asymptotic boundary component T 2

τ . The bulk gauge one-forms Aa, Ãa,
a = 1, . . . , ℓ, of the gauge group U(1)d × U(1)d obey the holomorphic and anti-holomorphic
boundary conditions [16]

Aa|T 2
τ
= ∂zXa(z, z̄) dz , Ãa|T 2

τ
= ∂z̄Xa(z, z̄) dz̄ , a = 1, . . . , d . (4.8)

Here z are holomorphic coordinates at the boundary T 2
τ and Xa(z, z̄), a = 1, . . . , d, are the

free bosonic fields of the two-dimensional conformal field theory on T 2
τ , which parametrize the

target space torus T d. Note that the fields ∂zXa and ∂z̄Xa are primary fields of conformal
dimension (h, h̄) = (1, 0) and (h, h̄) = (0, 1), respectively. Moreover, there are d2 primaries
∂zXa∂z̄Xb, a, b = 1, . . . , d, of conformal dimension (h, h̄) = (1, 1) that make up for the exactly
marginal operators of the d2-dimensional moduli space MT d .

Now we consider the product family of conformal field theory CFTT ℓ⊗T m of the two
families of toroidal conformal field theories CFTT ℓ and CFTT m with target tori T ℓ and Tm.
The ensemble average over the product moduli space MT ℓ ×MT m yields13

〈
ZT ℓ⊗T m(τ)

〉
=

Eℓ/2(τ)Em/2(τ)
Im(τ) ℓ+m

2 |η(τ)|2(ℓ+m)
= ⟨ZT ℓ(τ)⟩ ⟨ZT m (τ)⟩ . (4.9)

We associate the exactly marginal operators ∂zXa∂z̄Xb ⊗1, a, b = 1, . . . , ℓ and 1⊗ ∂zX̃a∂z̄X̃b,
a, b = 1, . . . ,m, to the (ℓ2 + m2)-dimensional moduli space MT ℓ × MT m of the product
family. Here Xa, a = 1, . . . , ℓ, and X̃a, a = 1, . . . ,m, are the free bosons of the two toroidal
conformal field theories.

13Products of real analytic Eisenstein series from products of Narain conformal field theories or from subloci
associated to such Narain products are also discussed in ref. [48].
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The product family of conformal field theories CFTT ℓ⊗T m has 2ℓm additional exactly
marginal operators, namely

∂zXa ⊗ ∂z̄X̃b , ∂z̄Xa ⊗ ∂zX̃b , a = 1, . . . , ℓ , b = 1, . . . ,m . (4.10)

These additional exactly marginal operators extend the moduli space MT ℓ ×MT m to the
larger moduli space MT D with D = ℓ + m of dimension D2 = ℓ2 + m2 + 2ℓm. Thus,
the product family of conformal field theories CFTT ℓ⊗T m with moduli space MT ℓ ×MT m

naturally embeds into the larger family of toroidal conformal field theories with target space
torus TD and moduli space MT D , which yields the ensemble average (3.8) with the discussed
holographic dual in terms of the bulk U(1)D × U(1)D Chern-Simons gauge theory.

Ensemble average of factorizable toroidal Z2 orbifold CFTs: the ensemble average
of the partition function of the family of factorizable toroidal Z2 orbifold conformal field
theories studied in subsection 3.1 factorizes as established in eq. (3.6) because the moduli
space MT D/Z2 factorizes as MT ℓ × MT m , cf., eq. (3.5).

As opposed to the moduli space of the product conformal field theory CFTT ℓ⊗T m

discussed in the previous paragraph, for generic points (m1,m2) ∈ MT ℓ ×MT m the family
of conformal field theories CFTT ℓ/Z2⊗T m does not have any primary fields with conformal
dimension (h, h̄) = (1, 1) that are of the form ψ(1) ⊗ ψ(2), where ψ(1) and ψ(2) are primaries
of the respective conformal field theory factors. Therefore, the moduli space MT ℓ ×MT m is
not a lower-dimensional slice of a higher-dimensional embedding moduli space.

Hence, the moduli space of the product conformal field theory CFTT ℓ/Z2⊗T m does not
naturally extend to a larger family of conformal field theories. However, the factorized
ensemble average

〈
ZT ℓ/Z2⊗T m(τ)

〉
=
〈
ZT ℓ/Z2(τ)

〉
⟨ZT m(τ)⟩ of the partition function can still

be obtained from the holographic duals of the conformal field theory factors CFTT ℓ/Z2 and
CFTT m along the lines of eq. (4.6). The three-dimensional holographic duals of these two
factors of families of conformal field theories are proposed in refs. [20, 21] and in ref. [16],
respectively.

Ensemble average of non-factorizable toroidal Z2 orbifold CFTs: the moduli space
MT 2ℓ/Z2 for the family of conformal field theories resulting from non-factorizable toroidal
Z2 orbifold conformal field theories studied in subsection 3.3 again factorizes, cf., eq. (3.39).
However, the partition function ZT 2ℓ

non-fac
does not factorize, and hence the ensemble average

is neither of the factorized form. As a consequence, the boundary conditions of the fields
of a prospective holographic dual three-dimensional bulk theory does not decompose into
two sectors that respect the product form of the moduli space MT 2ℓ/Z2 . Nevertheless, the
resulting ensemble average (3.51) becomes a finite sum of products of real analytic Eisenstein
series. It would be interesting to propose a holographic dual, which possibly consists of
non-trivial topological sectors, similarly as the vortex sectors considered in refs. [16, 17]. We
hope to come back to this question in the future.

5 Conclusions and outlook

In this work, we analyze and explicitly construct Z2 orbifolds — and their moduli spaces —
of toroidal conformal field theories arising from topologically distinct classes involutions ιZ2
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of their target space tori. This serves as a new testing ground for examples of ensemble
average holography in the sense of refs. [20, 21]. Using the Siegel-Weil formula for averaging
Siegel-Narain theta functions, we obtain explicit formulas for the averages in terms of sums
of products of real analytic Eisenstein series.

Factorizable toroidal target spaces: the family of factorizable toroidal CFTs with
moduli space MT ℓ × MT m naturally embeds into the larger moduli space MT ℓ+m . Put
differently, the factorizable family of CFTs has additional exactly marginal operators that can
deform the theory away from the product MT ℓ ×MT m . Averaging the partition functions
only over the moduli MT ℓ ×MT m requires a dual holographic description of the product
type as well as discussed around eq. (4.6). However, including deformations with respect to
all exactly marginal operators and considering the larger ensemble MT ℓ+m is well motivated
here, as the original Narain correspondence is obtained [20, 21].

For the family of factorizable Z2 orbifold conformal field theories the moduli space is
again identified with MT ℓ ×MT m . However, at a generic point in moduli space there are
no further exactly marginal operators that canonically extend the factorizable moduli space.
Hence, averaging over the product moduli space is a canonical choice.

For these two cases, we argue in section 4.2 that one can give a holographic interpretation
to the ensemble average of the partition function by considering bulk theories that share a
common boundary as illustrated in figure 5. This notion also appears in ref. [17] and these
arguments resemble the holomorphic factorization considerations that appear in refs. [43, 57].

Non-factorizable toroidal target spaces: the main focus of this work are families
of conformal field theories and their Z2 orbifolds with the toroidal target space that are
non-factorizable. That is to say that starting with a two-dimensional torus target space T 2

which is not a Cartesian product of circles, we define a Z2 action and calculate the partition
function of the Z2 orbifold and the regularized ensemble average. For the low-dimensional
target torus T 2, we find an expression (2.19) for the partition function solely in terms of
partition functions of free bosonic conformal field theories on the circle.

We generalize this construction to higher dimensional target space tori. In order to
determine ensemble averages, we express the partition function in terms of Siegel-Narain
theta functions instead of expressing them in terms of low-dimensional toroidal partition
functions (as for the target space T 2).14 To calculate averages over the moduli space MT 2ℓ

non-fac
associated to this ensemble, we employ the Siegel-Weil formula. We derive a manifest modular-
invariant expression (3.52) for the ensemble average of the paritition function in terms of a
sum of products of averages of toroidal partition functions of lower dimension. For generic
members of conformal field theories in this ensemble all exactly marginal operators describe
deformations of the moduli space MT 2ℓ

non-fac
, and therefore averaging over this moduli space

takes into account all deformations consistent with the Z2 orbifold action in the considered
family of conformal field theories. This moduli space has an interesting connection to the
moduli space MSymN (T ℓ) of family of symmetric product orbifold conformal field theories

14We expect that in principle an interesting formula for the partition function of non-factorizable Z2 orbifolds
in terms of partition functions of lower-dimensional tori can be derived.

– 33 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
0

Sym2
(
T ℓ
)

discussed in ref. [17].15Namely, MSym2(T ℓ) is the subslice of MT 2ℓ
non-fac

, where the
tensor product of two identical toroidal CFTs is orbifolded by S2 ≃ Z2. One can consider
deformations associated to exactly marginal operators that deform this product structure
to the larger moduli space of non-factorizable target space tori T 2ℓ

non-fac discussed in the
present work.

An interesting and possibly non-trivial calculation/construction is to generalize our work
for the non-factorizable target space to non-factorizable SN orbifolds, where SN denotes
the permutation group of N elements. This represents a generalization of the SymN (T ℓ)
orbifolds considered in ref. [17].

We have also discussed in the main text that one can add to our construction discrete
choices of B-field that are invariant under Z2 action only once the discrete duality trans-
formations O(2ℓ, 2ℓ;Z) are taken in to account. It would be nice to see how explicit one
can be with averages of toroidal orbifolds that include these choices and whether these
choices have a bulk meaning.

Holographic interpretation: for the ensemble of factorizable Z2 orbifold toroidal confor-
mal field theories, we propose a possible holographic interpretation in terms of perviously
discussed Chern-Simons theories on bulk manifolds that share a common boundary. It would
be important to quantitively further check such a proposal and to discuss its implications.

Formulating a holographic dual for the non-factorizable case seems even more challenging.
While the moduli space still factors for non-factorizable Z2 orbifold toroidal conformal field
theories, we have not put forward a proposal for a possible dual bulk theory. However, the
derived analytic expression for the ensemble average of the partition function in terms of
products of Eisenstein series suggests that the S2 permutation symmetry might play an
important role in the bulk theory as well. Alternatively, we can view the non-factorizable
toroidal Z2 orbifolds as arising from a shift orbifold (cf., for instance ref. [50]) of the factorizable
toroidal Z2 orbifolds. This perspective might also shed light on a possible holographic bulk
interpretation in the future.

Other orbifolds, discrete torsion and supersymmetry: one can think of generalizing
our construction by considering ZN , N = 3, 4, . . ., or other discrete groups such as Z2 ×Z2 or
ZN × ZM . In particular, the latter cases are interesting because they admit discrete torsion.
On the level of the partition function of orbifolds of conformal field theories, discrete torsion
amounts to assigning suitable group-theoretic phase factors to its various orbifold sectors
such that partition function is modular invariant [49, 58, 59]. A concrete example for an
orbifold conformal field theory with discrete torison is given by orbifold toroidal conformal
field theories of the type [59]

TD × TD × TD

Z2 × Z2
. (5.1)

It would be interesting to study such classes of orbifolds with discrete torsion from the
scope of our current work.

15More generally, ref. [17] studies ensemble averages of symmetric product orbifolds conformal field theories
SymN (T ℓ) with N ≥ 2.
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Another future direction is to add supersymmetry to our setting along the lines of ref. [17],
where the original Narain averaged duality [20, 21] is generalized to include supersymmetry.
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A Theta functions and toroidal partition functions

Some theta function transformations. Here we collect some useful definitions and
relations related to theta functions and the Dedekind eta function. Theta functions with
characteristics α, β are defined as

θ

[
α

β

]
(z|τ) =

∑
n∈Z

exp
(
iπ(n+ α)2τ + 2πi(n+ α)(z + β)

)
. (A.1)

Here τ = τ1 + iτ2 ∈ H is the modular parameter of the genus one Riemann surface that
is defined in the upper half plane H = {x+ iy| y > 0;x, y ∈ R}, and z is a point on this
Riemann surface.

We are particularly interested in the theta functions θ

[
α

β

]
(τ) ≡ θ

[
α

β

]
(0|τ). The

following definitions appear in partition functions in the main text

θ

[
1/2
0

]
(τ) = θ2(τ) , θ

[
0
0

]
(τ) = θ3(τ) , θ

[
0
1/2

]
(τ) = θ4(τ) . (A.2)

Note these theta functions transform under modular transformations as:

θ2(τ + 1) = e
iπ
4 θ2(τ) , θ2

(
−1
τ

)
=

√
−iτθ4(τ)

θ3(τ + 1) = θ4(τ) , θ3

(
−1
τ

)
=

√
−iτθ3(τ)

θ4(τ + 1) = θ3(τ) , θ4

(
−1
τ

)
=

√
−iτθ2(τ)

η(τ + 1) = e
iπ
12 η(τ) , η

(
−1
τ

)
=

√
−iτη(τ)

(A.3)

The Dedekind eta function is defined as

η(τ) = q1/24
∞∏

n=1
(1− qn) , q = e2πiτ . (A.4)
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The following identities are useful:
θ2(τ)
η(τ) = 2η(2τ)2

η(τ)2 ,
θ4(τ)
η(τ) = η(τ/2)2

η(τ)2 ,
θ3(τ)
η(τ) = η((τ + 1)/2)2

eπi/12η(τ)2 (A.5)

Starting with the first identity in eq. (A.5), we can prove the others by modular trans-
formations, namely

θ2(τ)
η(τ) = 2η(2τ)2

η(τ)2
S

−→
θ4(τ)
η(τ) = 2η(−2/τ)2

(−iτ)η(τ)2 = 2(−iτ/2)η(τ/2)2

(−iτ)η(τ)2 = η(τ/2)2

η(τ)2 , (A.6)

θ4(τ)
η(τ) = η(τ/2)2

η(τ)2
T
−→

θ3(τ)
η(τ) = η((τ + 1)/2)2

eπi/12η(τ)2 . (A.7)

Toroidal partition functions and theta functions. Consider a two-dimensional CFT
on a Riemann surface of genus g = 1 and target space a D-dimensional torus TD. The moduli
of this theory are the metric GMN and the anti-symmetric B-field BMN . We sometimes
denote these collectively as

m = {GMN , BMN} . (A.8)

The partition function is

ZT D(τ ;m) = 1
|η(τ)|2D

∑
M,W∈ZD

exp (F (τ ;m)) (A.9)

with

F (τ ;m) = 2πiτ1MAW
A − α′πτ2

(
MAG

ABMB + 1
(α′)2W

AGABW
B−

− 2
α′W

AB B
A MB − 1

(α′)2W
AB B

A BBCW
C

)
. (A.10)

In terms of the theta functions defined in section 2.4 the partition function can be written as

ZT D(τ ;m) = 1
|η(τ)|2D

ΘH(G,B)(0, 0, τ) . (A.11)

Average of theta functions. For the average of Siegel-Narain theta functions (2.29) with
rational characteristic b ∈ Q2D over the moduli space MT D of 2D × 2D matrices H (cf.,
the discussion in section 3.3), one gets [30]

⟨ΘH(0, b, x)⟩ =
∫
M

T D

dmH ΘH(0, b, x) =
∑

(c,d)=1,c≥0

γd·b

|cτ + d|D
e2πidc∗ bµΩµνbν

, (A.12)

where (c, d) denotes the common greatest divisor of the integers c and d and the 2D × 2D-
matrix Ω is given in eq. (2.28). The symbol γv for any v ∈ R2D is defined as

γv =

1 for v ∈ Z2D ,

0 else .
(A.13)

The integer c∗ is part of a Bézout pair (c∗, d∗) obeying c c∗+d d∗ = (c, d) = 1, which exists for
any coprime integers c and d by Bézout’s Lemma. Note that the average (A.12) is well-defined
for any choice of Bézout’s pair (c∗, d∗). For more details on this formula, see ref. [30].

– 36 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
0

B Details on non-factorizable tori

To calculate the partition function, we need the quantity from (A.10), F (τ ;m) evaluated
for the metric and B field above (hence m depends on g, g̃, b, b̃). To do so, first split the
momentum and winding modes M,W into two D-dimensional vectors, like so

MAW
A = (m1, . . . ,mℓ, m̃1, . . . , m̃ℓ)



w1
.
.
.
w̃1
.
.
.
w̃ℓ


= maw

a + m̃aw̃
a (B.1)

and define the quantities

r±,a = ma ± m̃a , la± = wa ± w̃a . (B.2)

These definitions, together with the identities

(
m⊤, m̃⊤

)(A+ Ã A− Ã

A− Ã A+ Ã

)(
m

m̃

)
=
(
m+ m̃

)⊤
A
(
m+ m̃

)
+
(
m− m̃

)⊤
Ã
(
m− m̃

)
(B.3)

(
w⊤, w̃⊤

)(A+ Ã A− Ã

A− Ã A+ Ã

)(
m

m̃

)
=
(
w + w̃

)⊤
A
(
m+ m̃

)
+
(
w − w̃

)⊤
Ã
(
m− m̃

)
(B.4)

where A, Ã are ℓ × ℓ matrices, enable us to write the partition function in a nice form.
Essentially these identities rely on the fact that

(
P−1

)⊤(A+ Ã A− Ã

A− Ã A+ Ã

)
P−1 =

(
A 0
0 Ã

)
, P =

(
1 1
1 −1

)
. (B.5)

We get

F (τ ;m(g, b; g̃, b̃)) = F+(τ ;m(g, b)) + F−(τ ;m(g̃, b̃)) , (B.6)

with

F+(τ ;m) = πiτ1
(
r+,al

a
+
)
− α′πτ2

(
r+,ag

abr+,b +
1

4 (α′)2

(
la+gabl

b
+

)

− 1
α′

(
la+b

b
a r+,b

)
− 1

4 (α′)2

(
la+(b)2

abl
b
+

))
(B.7)

and

F− (τ ;m) = πiτ1
(
r−,al

a
−
)
− α′πτ2

(
r−,ag̃

abr−,b +
1

4 (α′)2

(
la−g̃abl

b
−

)

− 1
α′

(
la−b̃

b
a r−,b

)
− 1

4 (α′)2

(
la−(b̃)2

abl
b
−

))
. (B.8)
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Here, the dependence of the moduli m is on g, b or g̃, b̃. The upshot is that F (τ ;m) splits
into the sum of two quantities, one of which depends only on g, b and the other only on g̃, b̃

(as far as target space moduli are concerned). Note that r±, l± are vectors in Zℓ and take
even or odd values in a correlated way. This means

r± = 2r± + p , l± = 2l± + q (B.9)

are vectors in Zℓ and p, q ∈ {0, 1}ℓ. Plugging (B.9) into (B.7) and (B.8), we obtain (written
in matrix notation)

F+(τ ;m) = 2πi(2τ1)
(
r+ + p

2

)⊤ (
l+ + q

2

)
− α′π(2τ2)2

((
r+ + p

2

)⊤
g−1

(
r+ + p

2

)

+ 1
4 (α′)2

(
l+ + q

2

)⊤
g

(
l+ + q

2

)
− 1
α′

(
l+ + q

2

)⊤
bg−1

(
r+ + p

2

)

− 1
4 (α′)2

(
l+ + q

2

)⊤
bg−1b

(
l+ + q

2

))
(B.10)

and similarly for F− (τ ;m). The partition function can be written as

ZT 2ℓ
non-fac

(τ ;G,B) = 1
|η(τ)|4ℓ

∑
∆∈{0,1}2ℓ

Θh

(
0, 12∆, 2τ

)
Θ

h̃

(
0, 12∆, 2τ

)
. (B.11)

C Real analytic eisenstein series

Real analytic Eisenstein identities. In the calculation of the ensemble average (3.43)
we use for the real analytic Eisenstein series the identities

1
2

∑
c∈Z,d∈2Z
(c,d)=1

1
|c x+ d|N

= 1
2N − 1

EN/2(x
2 )

Im(x
2 )

N
2
−
EN/2(x)
Im(x)N

2

 ,

1
2

∑
c∈Z,d∈2Z
(c,d)=1

(−1) d
2

|c x+ d|N
= 1

2N − 1

 2
2N

EN/2(x
4 )

Im(x
4 )

N
2
− 2N + 2

2N

EN/2(x
2 )

Im(x
2 )

N
2
+
EN/2(x)
Im(x)N

2

 .

(C.1)

where in the sum the symbol (c, d) denotes the greatest common divisor of c and d, i.e, (c, d) = 1
says that c and d are coprime. To show these identities we start with a useful lemma:

Lemma 1. Let α be any positive integer. Then for any integers c and d the following two
conditions are equivalent:

(i) (c, 2αd) = 1, (ii) c odd and (c, d) = 1.

Proof. If c and 2αd are coprime, then both c, 2α and c, d are coprime. Hence, c odd and
(c, d) = 1. Conversely, if c is odd then c, 2α are coprime. As c and d are coprime as well,
altogether c, 2αd must be coprime and hence (c, 2αd) = 1.
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We now show the first real analytic Eisenstein identity (C.1) explicitly, and we start
with the calculation∑

(c,d)=1
d even

|c · x+ d|−N =
∑

(c,2d)=1
|c · x+ 2d|−N = 2−N

∑
(c,d)=1
c odd

∣∣∣∣c · x2 + d

∣∣∣∣−N

= 2−N
∑

(c,d)=1

∣∣∣∣c · x2 + d

∣∣∣∣−N

− 2−N
∑

(c,d)=1
c even

∣∣∣∣c · x2 + d

∣∣∣∣−N

= 2−N
∑

(c,d)=1

∣∣∣∣c · x2 + d

∣∣∣∣−N

− 2−N
∑

(2c,d)=1
|c · x+ d|−N

= 2−N
∑

(c,d)=1

∣∣∣∣c · x2 + d

∣∣∣∣−N

− 2−N
∑

(c,d)=1
d odd

|c · x+ d|−N

= 2−N
∑

(c,d)=1

∣∣∣∣c · x2 + d

∣∣∣∣−N

− 2−N
∑

(c,d)=1
|c · x+ d|−N

+ 2−N
∑

(c,d)=1
d even

|c · x+ d|−N ,

(C.2)

where the summations are manipulated time and again using Lemma 1. Solving in this
expression for ∑(c,d)=1

d even
|c · x+ d|−N yields

∑
(c,d)=1
d even

|c · x+ d|−N = 1
2N − 1

 ∑
(c,d)=1

∣∣∣∣c · x2 + d

∣∣∣∣−N

−
∑

(c,d)=1
|c · x+ d|−N

 . (C.3)

Inserting the definition of the real analytic Eisenstein series (3.10), we arrive at the first
identity (C.1).

For the second identity (C.1) our derivation is similar but a bit more tedious, because
we first split the sum over d into positive and negative contributions. This can be achieved
by introducing an auxiliary summation index d′ for the even integers d, which discriminates
between the positive and negative part by setting d = 4d′ and d = 2(2d′ + 1). After splitting
the sum in this way, we perform a similar calculation as in eq. (C.2) to obtain the second
identity (C.1).

Hecke operators and modularity. The real analytic Eisenstein series Es(x) are eigen-
functions of the Hecke operators. This means

TjEs(x) :=
1√
j

∑
ad=j,d>0
0≤b≤d−1

Es

(
ax+ b

d

)
= σ2s−1(j)

js− 1
2

Es(x) , (C.4)

where σn(x) =
∑

d|x d
n is the sum of positive divisor function. We have

T2Es(x) =
1√
2

(
Es(2x) + Es

(
x

2

)
+ Es

(
x+ 1
2

))
(C.5)

σ2s−1(2) = 1 + 22s−1 . (C.6)
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Let us finally also state a useful lemma, which we use in the main text to identify manifest
modular invariant combinations of real analytic Eisenstein series:

Lemma 2. Let f(x) be a modular invariant function f(x) with respect to the modular group
PSL(2,Z), which acts on the argument x by Möbius transformations. Then the function g(x),
given by

g(x) = f(2x) + f

(
x

2

)
+ f

(
x+ 1
2

)
, (C.7)

is modular invariant.

Proof. The modular group PSL(2,Z) is generated by the standard generators T and S that
map x to x + 1 and x to − 1

x , respectively. For the generator T we calculate g(x + 1) =
f(2x+ 2) + f(x+1

2 ) + f(x+2
2 ) = g(x) because f(2x+ 2) = f(2x) and f(x+2

2 ) = f(x
2 ) by the

modularity of f . For the generator S we find

g

(
−1
x

)
= f

(
−2
x

)
+ f

(
− 1
2x

)
+ f

(
x− 1
2x

)
= f

(
x

2

)
+ f(2x) + f

(
− 2x
x− 1

)
,

where for the second equal sign the modularity of the function f is again used. Furthermore,
by modularity of f , we have for the last term in this equation

f

(
− 2x
x− 1

)
= f

(
− 2
x− 1 − 2

)
= f

(
− 2
x− 1

)
= f

(
x− 1
2

)
= f

(
x+ 1
2

)
,

which demonstrates altogether that g(− 1
x) = g(x). Thus, g(x) is invariant with respect to

both generators T and S, and hence is a modular invariant function.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor.
Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[2] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

[3] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys.
Lett. B 126 (1983) 41 [INSPIRE].

[4] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[5] S. Collier and E. Perlmutter, Harnessing S-duality in N = 4 SYM & supergravity as SL(2,
Z)-averaged strings, JHEP 08 (2022) 195 [arXiv:2201.05093] [INSPIRE].

[6] J.J. Heckman, A.P. Turner and X. Yu, Disorder averaging and its UV discontents, Phys. Rev. D
105 (2022) 086021 [arXiv:2111.06404] [INSPIRE].

[7] F. Baume et al., SymTrees and Multi-Sector QFTs, arXiv:2310.12980 [INSPIRE].

[8] V. Balasubramanian, J.J. Heckman, E. Lipeles and A.P. Turner, Statistical Coupling Constants
from Hidden Sector Entanglement, Phys. Rev. D 103 (2021) 066024 [arXiv:2012.09182]
[INSPIRE].

– 40 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/literature/204694
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/literature/194389
https://arxiv.org/abs/1903.11115
https://inspirehep.net/literature/1726905
https://doi.org/10.1007/JHEP08(2022)195
https://arxiv.org/abs/2201.05093
https://inspirehep.net/literature/2010484
https://doi.org/10.1103/PhysRevD.105.086021
https://doi.org/10.1103/PhysRevD.105.086021
https://arxiv.org/abs/2111.06404
https://inspirehep.net/literature/1967449
https://arxiv.org/abs/2310.12980
https://inspirehep.net/literature/2712726
https://doi.org/10.1103/PhysRevD.103.066024
https://arxiv.org/abs/2012.09182
https://inspirehep.net/literature/1837077


J
H
E
P
0
5
(
2
0
2
4
)
2
4
0

[9] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes, Class.
Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[10] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033
[arXiv:2006.08648] [INSPIRE].

[11] J. Chandra, S. Collier, T. Hartman and A. Maloney, Semiclassical 3D gravity as an average of
large-c CFTs, JHEP 12 (2022) 069 [arXiv:2203.06511] [INSPIRE].

[12] G. Di Ubaldo and E. Perlmutter, AdS3/RMT2 duality, JHEP 12 (2023) 179
[arXiv:2307.03707] [INSPIRE].

[13] A. Belin et al., Approximate CFTs and Random Tensor Models, arXiv:2308.03829 [INSPIRE].

[14] J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024]
[INSPIRE].

[15] L. Eberhardt, Summing over Geometries in String Theory, JHEP 05 (2021) 233
[arXiv:2102.12355] [INSPIRE].

[16] N. Benjamin, C.A. Keller, H. Ooguri and I.G. Zadeh, Narain to Narnia, Commun. Math. Phys.
390 (2022) 425 [arXiv:2103.15826] [INSPIRE].

[17] J. Kames-King, A. Kanargias, B. Knighton and M. Usatyuk, The Lion, the Witch, and the
Wormhole: Ensemble averaging the symmetric product orbifold, arXiv:2306.07321 [INSPIRE].

[18] M. Ashwinkumar, J.M. Leedom and M. Yamazaki, Duality Origami: Emergent Ensemble
Symmetries in Holography and Swampland, arXiv:2305.10224 [INSPIRE].

[19] J.-M. Schlenker and E. Witten, No ensemble averaging below the black hole threshold, JHEP 07
(2022) 143 [arXiv:2202.01372] [INSPIRE].

[20] A. Maloney and E. Witten, Averaging over Narain moduli space, JHEP 10 (2020) 187
[arXiv:2006.04855] [INSPIRE].

[21] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an
averaged holographic duality, JHEP 01 (2021) 130 [arXiv:2006.04839] [INSPIRE].

[22] A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field
Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

[23] C.L. Siegel, Indefinite Quadratische Formen und Funktionentheorie, Math. Ann. 124 (1951) 17.

[24] C.L. Siegel, Lectures on quadratic forms, in Tata Institute of Fundamental Research Lectures on
Mathematics, vol. no. 7, Tata Institute of Fundamental Research, Bombay (1967).

[25] A. Weil, Sur Certaines Groupes d’Opérateurs Unitaire, Acta Math. 111 (1964) 143.

[26] A. Weil, Sur la Formule de Siegel dans la Théorie des Groupes Classique, Acta Math. 113
(1965) 1.

[27] S. Datta et al., Adding flavor to the Narain ensemble, JHEP 05 (2022) 090 [arXiv:2102.12509]
[INSPIRE].

[28] S. Collier and A. Maloney, Wormholes and spectral statistics in the Narain ensemble, JHEP 03
(2022) 004 [arXiv:2106.12760] [INSPIRE].

[29] M. Ashwinkumar et al., Chern-Simons invariants from ensemble averages, JHEP 08 (2021) 044
[arXiv:2104.14710] [INSPIRE].

[30] J. Dong, T. Hartman and Y. Jiang, Averaging over moduli in deformed WZW models, JHEP 09
(2021) 185 [arXiv:2105.12594] [INSPIRE].

– 41 –

https://doi.org/10.1088/1361-6382/ac1082
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/literature/1800440
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://inspirehep.net/literature/1801459
https://doi.org/10.1007/JHEP12(2022)069
https://arxiv.org/abs/2203.06511
https://inspirehep.net/literature/2051114
https://doi.org/10.1007/JHEP12(2023)179
https://arxiv.org/abs/2307.03707
https://inspirehep.net/literature/2675194
https://arxiv.org/abs/2308.03829
https://inspirehep.net/literature/2686362
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://inspirehep.net/literature/642216
https://doi.org/10.1007/JHEP05(2021)233
https://arxiv.org/abs/2102.12355
https://inspirehep.net/literature/1848253
https://doi.org/10.1007/s00220-021-04211-x
https://doi.org/10.1007/s00220-021-04211-x
https://arxiv.org/abs/2103.15826
https://inspirehep.net/literature/1854494
https://arxiv.org/abs/2306.07321
https://inspirehep.net/literature/2668381
https://arxiv.org/abs/2305.10224
https://inspirehep.net/literature/2660563
https://doi.org/10.1007/JHEP07(2022)143
https://doi.org/10.1007/JHEP07(2022)143
https://arxiv.org/abs/2202.01372
https://inspirehep.net/literature/2026876
https://doi.org/10.1007/JHEP10(2020)187
https://arxiv.org/abs/2006.04855
https://inspirehep.net/literature/1800422
https://doi.org/10.1007/JHEP01(2021)130
https://arxiv.org/abs/2006.04839
https://inspirehep.net/literature/1800406
https://inspirehep.net/literature/240292
https://doi.org/10.1007/JHEP05(2022)090
https://arxiv.org/abs/2102.12509
https://inspirehep.net/literature/1848465
https://doi.org/10.1007/JHEP03(2022)004
https://doi.org/10.1007/JHEP03(2022)004
https://arxiv.org/abs/2106.12760
https://inspirehep.net/literature/1870189
https://doi.org/10.1007/JHEP08(2021)044
https://arxiv.org/abs/2104.14710
https://inspirehep.net/literature/1861574
https://doi.org/10.1007/JHEP09(2021)185
https://doi.org/10.1007/JHEP09(2021)185
https://arxiv.org/abs/2105.12594
https://inspirehep.net/literature/1865661


J
H
E
P
0
5
(
2
0
2
4
)
2
4
0

[31] A. Pérez and R. Troncoso, Gravitational dual of averaged free CFT’s over the Narain lattice,
JHEP 11 (2020) 015 [arXiv:2006.08216] [INSPIRE].

[32] A. Dymarsky and A. Shapere, Quantum stabilizer codes, lattices, and CFTs, JHEP 03 (2020)
160 [arXiv:2009.01244] [INSPIRE].

[33] A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories,
JHEP 10 (2021) 197 [arXiv:2012.15830] [INSPIRE].

[34] A. Dymarsky and A. Sharon, Non-rational Narain CFTs from codes over F4, JHEP 11 (2021)
016 [arXiv:2107.02816] [INSPIRE].

[35] V. Meruliya, S. Mukhi and P. Singh, Poincaré Series, 3d Gravity and Averages of Rational CFT,
JHEP 04 (2021) 267 [arXiv:2102.03136] [INSPIRE].

[36] V. Meruliya and S. Mukhi, AdS3 gravity and RCFT ensembles with multiple invariants, JHEP
08 (2021) 098 [arXiv:2104.10178] [INSPIRE].

[37] K. Kawabata, T. Nishioka and T. Okuda, Narain CFTs from quantum codes and their Z2
gauging, arXiv:2308.01579 [INSPIRE].

[38] O. Aharony, A. Dymarsky and A.D. Shapere, Holographic description of Narain CFTs and their
code-based ensembles, arXiv:2310.06012 [INSPIRE].

[39] M. Ashwinkumar, A. Kidambi, J.M. Leedom and M. Yamazaki, Generalized Narain Theories
Decoded: Discussions on Eisenstein series, Characteristics, Orbifolds, Discriminants and
Ensembles in any Dimension, arXiv:2311.00699 [INSPIRE].

[40] A. Barbar, A. Dymarsky and A.D. Shapere, Global Symmetries, Code Ensembles, and Sums
Over Geometries, arXiv:2310.13044 [INSPIRE].

[41] J. Raeymaekers and P. Rossi, Wormholes and surface defects in rational ensemble holography,
JHEP 01 (2024) 104 [arXiv:2312.02276] [INSPIRE].

[42] J.M. Maldacena and A. Strominger, AdS(3) black holes and a stringy exclusion principle, JHEP
12 (1998) 005 [hep-th/9804085] [INSPIRE].

[43] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP
02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[44] J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys. 4 (2010) 103
[arXiv:0712.0573] [INSPIRE].

[45] C.A. Keller and A. Maloney, Poincare Series, 3D Gravity and CFT Spectroscopy, JHEP 02
(2015) 080 [arXiv:1407.6008] [INSPIRE].

[46] L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett.
62 (1989) 1221 [INSPIRE].

[47] J. Preskill and L.M. Krauss, Local Discrete Symmetry and Quantum Mechanical Hair, Nucl.
Phys. B 341 (1990) 50 [INSPIRE].

[48] N. Benjamin et al., Harmonic analysis of 2d CFT partition functions, JHEP 09 (2021) 174
[arXiv:2107.10744] [INSPIRE].

[49] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Heidelberg,
Germany (2013) [DOI:10.1007/978-3-642-29497-6] [INSPIRE].

[50] K. Wendland, Moduli spaces of unitary conformal field theories, PhD thesis, University of Bonn,
Germany (2000) [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP11(2020)015
https://arxiv.org/abs/2006.08216
https://inspirehep.net/literature/1801163
https://doi.org/10.1007/JHEP03(2021)160
https://doi.org/10.1007/JHEP03(2021)160
https://arxiv.org/abs/2009.01244
https://inspirehep.net/literature/1814799
https://doi.org/10.1007/JHEP10(2021)197
https://arxiv.org/abs/2012.15830
https://inspirehep.net/literature/1838943
https://doi.org/10.1007/JHEP11(2021)016
https://doi.org/10.1007/JHEP11(2021)016
https://arxiv.org/abs/2107.02816
https://inspirehep.net/literature/1878444
https://doi.org/10.1007/JHEP04(2021)267
https://arxiv.org/abs/2102.03136
https://inspirehep.net/literature/1845169
https://doi.org/10.1007/JHEP08(2021)098
https://doi.org/10.1007/JHEP08(2021)098
https://arxiv.org/abs/2104.10178
https://inspirehep.net/literature/1859522
https://arxiv.org/abs/2308.01579
https://inspirehep.net/literature/2685070
https://arxiv.org/abs/2310.06012
https://inspirehep.net/literature/2708708
https://arxiv.org/abs/2311.00699
https://inspirehep.net/literature/2716291
https://arxiv.org/abs/2310.13044
https://inspirehep.net/literature/2713069
https://doi.org/10.1007/JHEP01(2024)104
https://arxiv.org/abs/2312.02276
https://inspirehep.net/literature/2730589
https://doi.org/10.1088/1126-6708/1998/12/005
https://doi.org/10.1088/1126-6708/1998/12/005
https://arxiv.org/abs/hep-th/9804085
https://inspirehep.net/literature/469200
https://doi.org/10.1007/JHEP02(2010)029
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/literature/769256
https://doi.org/10.4310/CNTP.2010.v4.n1.a3
https://arxiv.org/abs/0712.0573
https://inspirehep.net/literature/769554
https://doi.org/10.1007/JHEP02(2015)080
https://doi.org/10.1007/JHEP02(2015)080
https://arxiv.org/abs/1407.6008
https://inspirehep.net/literature/1307433
https://doi.org/10.1103/PhysRevLett.62.1221
https://doi.org/10.1103/PhysRevLett.62.1221
https://inspirehep.net/literature/266944
https://doi.org/10.1016/0550-3213(90)90262-C
https://doi.org/10.1016/0550-3213(90)90262-C
https://inspirehep.net/literature/27193
https://doi.org/10.1007/JHEP09(2021)174
https://arxiv.org/abs/2107.10744
https://inspirehep.net/literature/1890443
https://doi.org/10.1007/978-3-642-29497-6
https://inspirehep.net/literature/1217904
https://inspirehep.net/literature/528292


J
H
E
P
0
5
(
2
0
2
4
)
2
4
0

[51] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University
Press (2007) [DOI:10.1017/CBO9780511816079] [INSPIRE].

[52] J. Erler and A. Klemm, Comment on the generation number in orbifold compactifications,
Commun. Math. Phys. 153 (1993) 579 [hep-th/9207111] [INSPIRE].

[53] C.L. Siegel, On the Theory of Indefinite Quadratic Forms, Annals Math. 45 (1944) 577.

[54] D. Zagier, Eisenstein Series and the Riemann Zeta-Function, in G.H. Iwasawa et al.,
Automorphic Forms, Representation Theory and Arithmetic, Springer Berlin Heidelberg (1981),
p. 275–301 [DOI:10.1007/978-3-662-00734-1_10].

[55] A. Terras, Harmonic analysis on symmetric spaces — Euclidean space, the sphere, and the
Poincaré upper half-plane, 2nd ed., Springer, New York (2013).

[56] X. Yin, On Non-handlebody Instantons in 3D Gravity, JHEP 09 (2008) 120 [arXiv:0711.2803]
[INSPIRE].

[57] X. Yin, Partition Functions of Three-Dimensional Pure Gravity, Commun. Num. Theor. Phys. 2
(2008) 285 [arXiv:0710.2129] [INSPIRE].

[58] C. Vafa, Modular Invariance and Discrete Torsion on Orbifolds, Nucl. Phys. B 273 (1986) 592
[INSPIRE].

[59] A. Font, L.E. Ibanez and F. Quevedo, Z(N) X Z(m) Orbifolds and Discrete Torsion, Phys. Lett.
B 217 (1989) 272 [INSPIRE].

– 43 –

https://doi.org/10.1017/CBO9780511816079
https://inspirehep.net/literature/487240
https://doi.org/10.1007/BF02096954
https://arxiv.org/abs/hep-th/9207111
https://inspirehep.net/literature/337379
https://doi.org/10.2307/1969191
https://doi.org/10.1007/978-3-662-00734-1_10
https://doi.org/10.1088/1126-6708/2008/09/120
https://arxiv.org/abs/0711.2803
https://inspirehep.net/literature/767945
https://doi.org/10.4310/CNTP.2008.v2.n2.a1
https://doi.org/10.4310/CNTP.2008.v2.n2.a1
https://arxiv.org/abs/0710.2129
https://inspirehep.net/literature/763859
https://doi.org/10.1016/0550-3213(86)90379-2
https://inspirehep.net/literature/227126
https://doi.org/10.1016/0370-2693(89)90864-2
https://doi.org/10.1016/0370-2693(89)90864-2
https://inspirehep.net/literature/266736

	Introduction
	Orbifold CFTs from two-dimensional tori
	Factorizable Z2 orbifold
	Non-factorizable Z2 orbifold
	Two-dimensional toroidal Z2 orbifolds with B-field
	Partition functions and Siegel-Narain theta functions
	Ensembles of two-dimensional toroidal Z2 orbifolds

	Orbifold CFTs from D-dimensional tori TD
	Factorizable toroidal Z2 orbifold CFTs
	Non-factorizable toroidal Z2 orbifold CFTs
	Ensembles of non-factorizable toroidal Z2 orbifold CFTs

	Dual holographic Chern-Simons theory
	Products of conformal field theories
	Ensemble averages of toroidal Z2 orbifold CFTs

	Conclusions and outlook
	Theta functions and toroidal partition functions
	Details on non-factorizable tori
	Real analytic eisenstein series

