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1 Introduction

1.1 Motivation

The disintegration of a strongly interacting quantum system that is overall in a pure quantum
state into many pieces that no longer interact with each other while continuing to interact
strongly internally is an interesting theoretical problem. It is precisely this situation which
arises in relativistic heavy ion collisions when the quark-gluon plasma that is formed as an
intermediate state breaks up into many hadrons that fly apart and cease to interact among
each other. The purpose of this article is to lay the groundwork for a (highly simplified
and schematic) model that captures the essence of such a multifragmentation process at the
quantum level.1 The results however hold generally for any holographic conformal field theory

1The highly complex initial state |Φi⟩ of a relativistic heavy ion collision has nearly zero entropy. In
the quark-gluon Fock space (parton) basis, this state is characterized by a density matrix with two blocks
describing the two ground state nuclei approaching each other. This bipartite initial state evolves by a unitary
transformation into a highly entangled final state |Φf⟩ characterized by an even more complex density matrix
in the parton basis that no longer has a block structure. Eventually, this final state is projected onto hadron
states by experimental measurements that identify the asymptotic eigenstates of the many-parton system
(hadrons). This happens at a time of order 10−9 s, long after the duration of the nuclear reaction proper
which is of order 10−23 s. The interaction of the hadrons with the detector leads to their decoherence, which is
commonly interpreted as entropy production during the initial collision process, but is more precisely described
as the measurement of the entanglement entropy present in the final hadron state.
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Figure 1. Schematic visualization of the double splitting quench in 1+1D CFT. At time t = 0,
the system is cut at positions x = ±b yielding three distinct spatial regions for times t ≥ 0. Four
qualitatively different types of subsystems can be identified: A1 is located to the right of both cuts,
A2 lies in between the two cuts, A3 is itself split by one cut and A4 includes both cuts.

(CFT). In fact previous holographic calculations for single [1] and double splits [2] qualitatively
reproduce the results for non-holographic CFTs [3] and therefore we optimistically conjecture
that our results hold for non-holographic CFTs as well.

We now turn to the model system that encapsulates such a break-up process. To wit, we
study the sudden splitting of the ground state of a (1+1)-dimensional CFT on the infinite line
into separate non-interacting segments. A more complete analogy to the situation described
above would be obtained by starting from a highly excited pure quantum state on a finite
interval with appropriate boundary conditions and its evolution under the fragmentation of
the finite interval into smaller ones. We leave this more involved study for future work. As a
first step, we here are concerned with the development of an approach that can capture the
fragmentation of the infinite line into an arbitrary number of segments. The main result of this
work is the application of this novel approach to the case of three segments by a double split,
which reproduces earlier results obtained with a different conformal map (which we review) [2].

1.2 Splitting quenches review

Calabrese and Cardy in a series of papers on entanglement entropy in quantum field theory [3–
9] introduced the notion of a joining quench [3], where two Boundary Conformal Field
Theories [BCFTs] living on a half-line are joined at t = 0 to form a boundaryless CFT living
on the full line. Our work is concerned with the inverse process: a CFT living on the full line
is split at t = 0 into two or more BCFTs. This process is known as a splitting quench [1].

This term arises from the fact that just like a typical quantum quench the ground state
of the Hamiltonian is prepared and at t = 0 the Hamiltonian is instantaneously changed.
Here, the only change is that the support of the Hamiltonian is not on the full line but
two half-lines (or various subsets of the line for more than one split). In effect the line is
split into multiple line segments at t = 0. Figure 1 shows schematically the procedure of
splitting for two cuts at spatial positions x = ±b at time t = 0. For t ≥ 0, the Hamiltonian
supports three distinct spatial regions x ∈ [−∞,−b), x ∈ (−b,+b) and x ∈ (+b,+∞]. We
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Figure 2. The world sheet for a splitting quench in imaginary and real time.

maintain conformal symmetry by holding that boundary conditions are chosen such that
the conformal symmetry is broken from SO(2,2) to SO(2,1).2

A natural question to ask is how the entanglement entropy of a given subsystem evolves
as a function of time? Given that the segments were initially in a pure state and cease
to interact after the quench, one should expect non-trivial dynamics of the entanglement
entropy between different subsystems. This calculation can be accomplished in the worldsheet
formalism by evolving in an infinite amount of Euclidean time to project onto the ground
state and then evolving in Lorentzian time after the split. However, Calabrese and Cardy [5]
realized that this process is singular and the joining/splitting operation must be extended an
infinitesimal amount a in Euclidean time,a s depicted in figure 2, to avoid divergences. The
regulator should then be taken to 0 at the end of the calculation, a fact we make frequent
use of in order to calculate in the small a limit.

To get the entanglement entropy as a function of time we need the density matrix
ρ(t) = |0(t)⟩ ⟨0(t)| which can then be analytically continued to find its evolution in Lorentzian
time. The density matrix with this regulator is then as follows (where the a → 0 limit
recovers the standard density matrix)

⟨ψ′′(x′′)|ρ(t)|ψ′(x′)⟩ = Z−1 ⟨ψ′′(x′′)|e−itH−aH |ψ0⟩ ⟨ψ0|e+itH−aH |ψ′(x′)⟩ , (1.1)

which can be represented by the worldsheet shown in the left panel of figure 3.
Now consider a splitting quench where |ψ0⟩ is the ground state of the CFT on a line

(achieved by evolving an infinite amount in Euclidean time) and we time evolve with two
half-lines (as the support of the Hamiltonian changes). Eq. (1.1) is then visualized by the
right part of figure 3. If we consider ⟨ψ′′(x′′)|ρ(0)|ψ′(x′)⟩ we are left with the euclidean plane
with a slit in it. Introducing a complex coordinate z = x+ it we see that the cut extends
over [−ia, ia] and that the junction between ⟨ψ′′| and |ψ′⟩ is on the x axis.

When we want to compute the reduced density matrix we sew the worldsheet together
along the complement of the region under consideration. e.g. (if we wish to compute ρA with
A = [−l, l] then we would sew from [−∞,−l] and [l,∞] leaving a cut along the region A).
It was shown in [4] that using the replica trick to compute this reduced density matrix is

2We will not comment further on this highly constrained choice as it is well known that it only enters
into the holographic entanglement entropy as a constant term which shifts the transition time between the
connected and disconnected geodesics [1, 2].
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Figure 3. Left: the world sheet for (1.1) where |ψ0⟩ is an arbitrary initial state. Right: the world
sheet for the splitting quench.

equivalent to calculating the correlation function of primary operators placed at the endpoints
of A. Later, [10] showed that one can compute this 2-point function of twist operators (the
appropriate primary operators) holographically by considering the length of the geodesic
in the bulk between the two endpoints of subsystem A. Therefore if we want to determine
the entanglement entropy of any subsystem it suffices to consider the path-integral on the
plane with a cut from [−ia, ia], viz.

⟨ψ′′(x′′)|ρA|ψ′(x′)⟩ = Z−1TrB ⟨ψ′′(x′′)|e−aH |0⟩ ⟨0|e−aH |ψ′(x′)⟩ (1.2)
= ⟨0|e−aHΦ(x1 + iτ)Φ(x2 + iτ)e−aH |0⟩ , (1.3)

and then to follow the Holographic Entanglement Entropy (HEE) prescription [10] on the
Euclidean world sheet by calculating the shortest geodesic homologous to the line segment A.

What if we wish to split the line at two points? That is to split our CFT on the line into
two rays and one line segment. A calculation of the entanglement entropy over time has been
carried out in [2], in this technical note we reproduce the result with two additional maps
which allow more easily for generalization to the case of more than two cuts.

It is quite natural to assume that the calculation gets significantly harder as more cuts are
added. When we have two cuts we have two parameters: the size of the cuts and their distance.
It turns out that the space of conformally inequivalent worldsheets only depends on the ratio
of these two parameters, however as we add more cuts the situation gets more complex. The
world sheet under consideration, the complex plane with n cuts, is the Riemann surface of
genus 0 with n cuts. It is a well-known fact3 that the space of conformally equivalent such
surfaces is of real dimension 6n− 12. However, as we will show, since all cuts are of the same
size and the regulator is taken to 0, we are in a specific corner of moduli space where many
things simplify. The same issue does not arise when considering multiple joining quenches
as the splits “intersect” at the point at infinity, meaning the space is simply connected and
the Riemann mapping theorem is sufficient.

3To see this consider that the Schottky double (that is the branched double cover) of the Riemann surface
with n boundaries and genus 0 is the genus g = n − 1 surface. The size of the moduli space of the genus g

surface is of complex dimension 3g − 3 and real dimension 6g − 6.
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1.3 Structure of our manuscript

We present three ways of calculating the entanglement entropy of a world sheet with two
cuts, two of which are novel. First, for the convenience of the reader, we reproduce the
modified theta function map of [2]. Then we introduce the Abel-Jacobi map, which is the
inverse of the modified theta function map of [2], showing that it simplifies calculations
dramatically. Finally, we introduce our full prescription which involves constructing the
holographic dual of the Schottky uniformization of the world sheet with two cuts. We do
this by using an explicit conformal map based on the Schottky-Klein prime function [11]
on the Schottky uniformization domain (n circles cut out of the unit disk, where n is the
number of cuts). All three holographic entanglement entropy calculations give the same
result which provides a check of our prescription.

In appendix A we show that the various forms of the BTZ which appear in our manuscript
are equivalent and are just due to different slicing in the bulk coordinate. In appendix B we
give a review of the explicit calculation of the geodesic in the BTZ black hole.

1.4 Summary of results

Comparison of the numerical calculations of holographic entanglement entropy for four
qualitatively different subsystems using the three different conformal map approaches (figure 7,
figure 8 and figure 10) yields perfect agreement. This confirms the equivalence of the modified
theta function map with the two other approaches presented in this work. We interpret
the worldsheet with cuts as the projection of an appropriate (hyper)elliptic curve onto the
complex plane. This allows us to make use of the theory of Riemann surfaces (see [12–17]
for well-known reviews). We typically take the Schottky double (a branched double cover
over the cuts) in order to deal with the simpler case of compact Riemann surfaces — the
original surface with boundary can be recovered via involution.

The Abel-Jacobi map is a map from a compact Riemann surface to its Jacobian variety
(a variety constructed from the periods of the Riemann surface on its A and B cycles). For
the case of an elliptic curve (the Schottky double of the two slit plane) the Jacobian variety is
also a torus and therefore the map is a conformal transformation from the branched covering
of C to the doubly identified rectangle (see figure 4). We show that this provides the inverse
of the modified theta function presented in [2]. It has the benefit of easily generalizing to
multiple cuts and being simpler to calculate.

Riemann surfaces of genus larger than 1 (equivalently of more than 2 boundaries)
have moduli, parameters of the surface that give coordinates on the space of conformally
inequivalent Riemann surfaces of the same genus (number of boundaries). It is convenient to
have a description of our Riemann surfaces in terms of a fundamental domain that depends
on the moduli. This is known as uniformization. The best known way to uniformize compact
Riemann surfaces is to take the quotient of the upper-half plane with a Fuchsian group (a
subgroup of SL(2,R)). This is known as Fuchsian uniformization and will be familiar to
those who have calculated string amplitudes. Another method is due to Schottky, where one
uniformizes a Riemann surface with a fundamental domain that is g circles cut out of the unit
disk. Then the Schottky double is obtained by mirroring these disks across the unit disk, and
the compact Riemann surface is constructed by identifying the circles with their mirror images

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
5

w

iτ
4

− iτ
4

0

iτ
2

− iτ
2

11
2

η

ρ1
ρ

1 α
1
α

reiθ

Figure 4. 3 representations of the torus from left to right: branched covering of C, doubly periodic
rectangle, identified annulus. Dotted lines signify identification. X’s mark points excluded from the
space (the preimage of the points at infinity on the upper and lower sheet).

(viz. taking the quotient with a subgroup of SL(2,C). See figure 6 for a artist’s depiction).
The holographic dual of the Schottky uniformization of a compact Riemann surface was
worked out in [18]. We make use of new results on conformal mappings [11, 19–22] to find the
inverse of the map from the plane with multiple cuts to its Schottky uniformization. We then
solve for the inverse map numerically. We are able to obtain an explicit expression for this
map in the a→ 0 limit which allows us to find the metric and therefore the geodesic lengths.

This novel prescription — mapping the worldsheet to its Schottky uniformization and
then constructing the holographic dual — is shown here to match earlier methods [2]. The
explicit calculation of entanglement entropy as a function of time for more than two splits
will be explored in a forthcoming paper.

2 The 3 conformal maps

The starting point of our technical approach is a world sheet with two cuts in it. Since our field
theory is conformally invariant, the physics will be invariant under conformal transformations.
The name of the game is to find a conformal mapping to a domain that greatly simplifies
calculation. In the case of one cut, Calabrese and Cardy used the mapping to the upper half
plane [7], and for two cuts Caputa, et al. [2] numerically found the inverse of a truncation of
a modified theta function in order to calculate the geodesics in the BTZ metric.

We will demonstrate two additional options, which allow for straightforward generalization
to more than two cuts (to be explored in detail in a forthcoming paper). We interpret the
world sheet with two slits as the projection of an elliptic curve onto the Riemann sphere and
take the Schottky double to recover the typical ramified double cover presentation as depicted
in the left of figure 4. By understanding the worldsheet in this way we can make use of the
classical theory of (hyper)elliptic curves and more recent advances in conformal mappings
of such domains [11, 19–22]. Rather than numerically finding the inverse of a truncation of
the theta function we use the Abel-Jacobi map which is the natural conformal map from
an elliptic curve to its Jacobian variety (which in the case of a torus/elliptic curve is also
a torus). This is the exact inverse of the map used in [2]. In addition we map the two slit
plane to the annulus (its Schottky uniformization) by numerically solving for the inverse of a

– 6 –
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truncated version of the map from the annulus. This map is based on a special function, the
Schottky-Klein Prime function, and the asymptotics become exact in the limit a → 0.

We chose to use w = x+ it, w̄ coordinates for the complex plane and z as its AdS bulk
coordinate, η = Ξ + iΥ, η̄ for the doubly periodic rectangle with bulk coordinate ζ, and
cylindrical coordinates for the identified annulus r, θ, ξ

2.1 Theta function

Caputa et al. [2] use a modified theta function to conformally map the rectangle with sides
identified to the plane with two cuts. In this section we retrace their method. The inverse
conformal map is given by

w(η) = b

[
K(η) +K

(
η + iτ

2

)
+ 1

]
(2.1)

where the function K is defined as

K(η) = 1
iπ
∂η′θ1(η′, iτ)|η=η′ (2.2)

θ1(η′, iτ) = 2e−πτ/4 sin πη
∞∏

k=1
(1 − e−2πkτ )(1 − e2πiηe−2πkτ )(1 − e−2πiηe−2πkτ ). (2.3)

It maps the complex plane with two cuts at ±b and regulator a described by the complex
coordinate w = x + it bijectively to the rectangle [0, 1] × (−iτ/4, iτ/4) with coordinate η
where the lines Im(η) = ±τ/4 correspond to the two cuts respectively. The lines Re(η) = 0, 1
are identified, thus yielding an annulus geometry of the mapped rectangle. The modular
parameter τ depends on the ratio b/a and in the case b ≫ a takes the form [2]

τ ≈ 2
π

ln 4b
a
. (2.4)

Thus, in the limit a → 0, which we are interested in, we may assume τ → ∞ leading to
major simplifications.

So far this has all been in the Euclidean framework. After Wick rotation the Lorentzian
coordinates w± = x± t and their corresponding annulus coordinates η± are connected via

x− t = b

[
K(η−) +K

(
η− + iτ

2

)
+ 1

]
x+ t = b

[
K̄(η+) + K̄

(
η+ − iτ

2

)
+ 1

]
.

(2.5)

2.2 Abel-Jacobi map

The inverse of the map used by Takayanagi et al. viz. the map from the plane with two
slits to the rectangle with sides identified is the classical Abel-Jacobi map. First we take
the Schottky double of the plane with two slits, that is the double cover where the slits are
branch cuts that connect the two sheets. Then we can fix the canonical homology basis on
said elliptic curve, that is we choose two cycles, an A cycle and a B cycle, in a standard
manner such that any loop on our space can be described by a linear combination of the
two cycles. Taking the integral of the fundamental differential along the A and B cycles

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
5

Figure 5. Schematic visualization of the Schottky doubled world sheet (left) and the conformally
equivalent torus (right) embedded in three dimensions. The red and green lines represent the cuts at
−b and +b respectively. Further, the A- and B cycle are shown as yellow and orange curve respectively.

provides a conformal map to the Jacobian variety associated to the curve. For the torus
this is a holomorphic bijection and therefore we have a conformal mapping. In general a
Riemann surface of genus g maps to a 2g torus.

We interpret our two cuts on the plane as the projection onto C of the elliptic curve
y2 = (x − (b + ia))(x − (b − ia))(x − (−b + ia))(x − (−b − ia)) where the branch cuts are
[−b − ia,−b + ia] and [b − ia, b + ia].

The homology of our space is non-trivial (as it’s topologically a torus) so we fix a
canonical homology basis, choosing a loop around the left cut to be the A cycle and the
loop between the sheets as the B cycle as is standard. This choice of cycles is visualized
on the Schottky double and on the torus in figure 5.

There’s a canonical differential associated to the elliptic curve

ω = dx

y
= dx√

(x2 − (b+ ia)2)(x2 − (b− ia)2)
(2.6)

and we can integrate it over the A and B cycles to get two periods. These periods define a
lattice in the complex plane that gives us a torus when opposite edges are identified.4 The
Abel-Jacobi map is a conformal map from our original elliptic curve (the plane with two slits)
to the Jacobian variety (the torus defined by the lattice). It is defined as a contour integral
from a chosen base point to the point to be mapped of the canonical differential:5

η(w) =
∫ w

w0
ω =

∫ w

w0

dw′√
(w′2 − (b+ ia)2)(w′2 − (b− ia)2)

(2.7)

4Since the Jacobian variety of the elliptic curve and the elliptic curve are both tori they are biholomorphic.
We take pains to distinguish them as in the hyperelliptic case the Jacobian variety is a 2g torus rather than a
genus-g surface.

5This calculation is well-defined and easily computed by Mathematica’s NIntegrate, however two simplifica-
tions are common and make this analytically doable. Typically one scales by the period of the A cycle so the

lattice is defined by 1 and a complex (in our case imaginary) number τ =
∫

B
ω∫

A
ω

. In addition one may take

advantage of the 3 DoF of the conformal symmetry to map the endpoints of the cuts to 0, 1, λ,∞. In this

case one gets that λ = 1 + ( b
a

)2 and τ =
∫

B
ω∫

A
ω

= i
√

λ K(1−λ)
K(1/λ) where K is the elliptic K function. For the choice

a = .05, b = 50 this gives us τ ∼ 5.280.
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Figure 6. An example of the Schottky uniformization of the genus 2 surface from Indra’s Pearls by
Mumford, et al. [23].

The choice of the base point results in a shift of the torus in the complex plane and therefore
we choose ∞ for convenience.

2.3 Schottky uniformization

Since our curves depend on 6n− 12 parameters known as moduli, it is convenient to have a
description of our Riemann surfaces in terms of a fundamental domain that depends on the
moduli. We follow the method due to Schottky in which the fundamental domain consists of
g circles cut out of the unit disk. Then the Schottky double consists of the mirror image of
these disks across the unit disk and the compact Riemann surface is constructed by identifying
the circles with their mirror images (viz. modding out by a subgroup of SL(2,C)). Such a
procedure naturally extends holographically [18] as SL(2,C) naturally extends to an isometry
of H3 (Euclidean AdS3). Hence, the appropriate holographic dual geometry is given by a
quotient of the bulk by the Schottky group.

Here we use the conformal map from the fundamental Schottky domain to the plane
with 2 slits to compute the holographic entanglement entropy. The map is constructed from
the Schottky-Klein prime function in a method due to Crowdy and Marshall (a pedagogical
introduction to which is found here [22]). The Schottky-Klein prime function has a presentation
due to Baker [12]

ω(z;α) = (z − α)
∏

ϑ∈Θ

(z − ϑ(α))(α− ϑ(z))
(α− ϑ(α))(z − ϑ(z)) (2.8)

– 9 –
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where α is the pre-image of the point at infinity and where ϑ are the elements of the Schottky
Group Θ, viz. compositions of the n− 1 Möbius maps that send the circles in the unit disk
to their reflections, excluding the identity map and inverse maps.

The appropriate conformal map is then:

w(r, θ) = 1
10
√

(1 + α−2)(1 + ᾱ−2)ρ

( 1
2ᾱ − 1

ᾱ2∂ᾱ−1 ln(ω(reiθ; ᾱ−1)) + 3
α
− ∂α ln(ω(reiθ;α))

)
(2.9)

Where α is chosen such that the two slits are of the same size giving the original plane with
two cuts. In the a → 0 limit this expression drastically simplifies.6

lim
a→0

w(r,θ) = 1
10
√

(1+α−2)(1+ᾱ−2)ρ

(
−3
2ᾱ + 2

α
+ 1
reiθ−α

+ reiθ

reiθᾱ−1

)
+O(ρ) (2.10)

where the appropriate value is α =
√

ρ
2 :

w(r, θ) ∼
reiθ

(
1 + ρ

2
)

+
√

ρ
2(1 − 3re2iθ)

40
√

ρ
2
(
1 + ρ

2
) (√ρ

2 − reiθ
) (√

ρ
2re

iθ − 1
) (2.11)

3 Holography

Having summarizes the three conformal maps under study, we move to discussing the
holographic duals of the image of our setup under these maps. Our original worldsheet is
a vacuum state so we expect its holographic dual to be empty Euclidean AdS3 with the
Poincaré metric:

ds2 = dwdw̄ + dz2

z2 (3.1)

Where we have set the AdS radius to R = 1 as is standard and the CFT lives on the
boundary of AdS space at z → 0.

It is clear how the domain of the CFT changes under conformal mappings, but what
happens to the bulk space under a conformal map? Bañados [24] showed that the most
general solution to Einstein’s equations with negative cosmological constant (normalized to
−1) in 2+1 dimensions is the following metric,

ds2 = dζ2

ζ2 + L(η)dη2 + L̄(η̄)dη̄2 +
(

2
ζ2 + ζ2

2 L(η)L̄(η̄)
)
dηdη̄, (3.2)

where η = Ξ + iΥ, η̄ = Ξ − iΥ are complex null coordinates of the theory living on the
boundary of AdS, i.e. ζ → 0, and L, L̄ are arbitrary functions of η,η̄. The solution space is
clearly infinite as it depends on the choice of two functions, both L and L̄. Balasubramanian,

6We can take the a → 0 limit as the inner radius of the annulus ρ is a function of a and b and the a → 0
limit corresponds to the ρ → 0 limit. See our forthcoming paper for the asymptotics for the multiple cut case
where we show the infinite product truncates to the generators in the ρ → 0 limit.
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et al. [25] later showed that a good definition for the holomorphic and anti-holomorphic stress
tensors of asymptotically local AdS spacetimes is proportional to this choice of function:

T (η) = −1
16πL(η), T̄ (η̄) = −1

16π L̄(η̄). (3.3)

They further demonstrated that the stress tensor transforms as expected under conformal
transformations:

T (η) → f ′(η)T (f(η)) + c

12{f(η), η} (3.4)

where c is the central charge of the CFT. Due to this, it is useful to consider a given stress
tensor as the Schwarzian derivative of the conformal map from a vacuum solution since this
implies L(η) ∝ {f(η), η} and L̄(η̄) ∝ {f(η̄), η̄}.

It is often more convenient to work in the Poincaré patch of AdS3. The appropriate
coordinate transform from the Poincaré patch into the AdS3 general solution was found
by Roberts in 2012 [26]. If we write the typical Poincaré metric as earlier eq. (3.1) the
appropriate coordinate transform is:

w = f(η) − 2ζ2f ′2f̄ ′′

4|f ′|2 + ζ2|f ′′|2

w̄ = f̄(η̄) − 2ζ2f̄ ′2f ′′

4|f ′|2 + ζ2|f ′′|2

z = 4ζ(f ′f̄ ′)3/2

4|f ′|2 + ζ2|f ′′|2
(3.5)

So we can map our original world sheet for the splitting quench (left panel of figure 4) in
coordinates w, w̄, z to another setup with coordinates η, η̄, ζ.

3.1 Theta function

In this section we reproduce the results of Caputa et al. [2] in which they use the modified
theta function conformal map eq. (2.1), which is a map from the Jacobian variety to the
doubly cut plane. For this modified theta function we have:

lim
a→0

L(w(η)) = −π2

which gives

ds2 = R2

ζ2

2
(

1 − π2ζ2

2

)2

dΞ2 + 2
(

1 + π2ζ2

2

)2

dΥ2 + dζ2

 . (3.6)

Where Ξ and Υ are periodic as shown in the middle section of figure 4, eq. (3.6) is the BTZ
metric,7 and the event horizon occurs at ζ =

√
2

π .
We now proceed with the calculation of HEE of a spatial subsystem in the double splitting

setup which is given by the minimal codimension two surface in the holographic dual which
shares the same boundary as the subsystem [10]. Since the Euclidean holographic dual is

7See appendix A if this is not the form of the BTZ metric you are familiar with.
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conformally equivalent to the BTZ geometry, the computation of HEE consists in finding
the geodesic length connecting the torus coordinates corresponding to the endpoints of the
subsystem. A detailed derivation of the geodesic length connecting two points close to the
BTZ boundary is performed in appendix B and yields

Lγ = 1
2 ln

(( 2
ϵ1ϵ2π2

)2
sin2 (π∆η−) sin2 (π∆η+)

)
(3.7)

where η− and η+ are the analytical continuations of η and η̄ respectively to recover the real
time evolution of the system and ∆η− = η−,1 − η−,2 where 1, 2 refer to the endpoints of
the spatial subsystem x1, x2. ϵ1/2 are the bulk coordinate regulators corresponding to the
torus coordinates η1/2, respectively, and can be related to the UV cutoff ϵ in the original
worldsheet via eq. (3.5):

ϵ1/2 =
√

2
∣∣∣∣∣ dη1/2
dw1/2

∣∣∣∣∣ ϵ (3.8)

Here w describes the complex coordinate on the original worldsheet. Altogether this leads
to the final result for the connected HEE, i.e.,

Scon
A = c

12 ln
[( 1

ϵπ

)4 dw+,1
dη+,1

dw−,1
dη−,1

dw+,2
dη+,2

dw−,2
dη−,2

sin2 (π∆η−) sin2 (π∆η+)
]
. (3.9)

Apart from the connected geodesic there exists another possibility for a minimal path
which does not violate the homology constraint, i.e. a disconnected geodesic. In this case the
path goes from one endpoint of the subsystem to one of the boundary surfaces located at
ℑ(η) = ±τ/4 and from the boundary to the second endpoint. Both parts of the geodesic can
by disconnected and do not even have to be on the same boundary. In this case we have to
introduce a horizon surface, connecting the two boundaries. This produces another term in
the HEE as we will see below. Thus in order to calculate disconnected HEE we have to add
the two minimal geodesics from both endpoints to some point of the boundary. The geodesic
path lengths from some point on the BTZ conformal boundary to the BCFT boundaries
are then given by one half of the geodesic lengths to the corresponding mirror points. The
distance between some point and its mirror image is given by

L± = η− − η+ ± iτ

2 (3.10)

where ± indicates the mirror point w.r.t. the BCFT boundary at ± iτ
4 . The individual

contributions to the HEE are again determined by the geodesic length derived in appendix B.
The final disconnected HEE is then given by the combination of smallest total entropy, i.e.

Sdis
A = min

σ1,σ2=±

[
c

12 ln
( 2
ϵ21π

2 sin2 (πLσ1,1)
)

+ (1 ↔ 2) + 1
2(1 − σ1σ2)SBH

]
+ Sbdy,1 + Sbdy,2

(3.11)

where 1
2(1− σ1σ2) equals 1 when the two geodesic parts connect to different BCFT boundary

surfaces. In that case an additional horizon must be added which yields in return the BTZ
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Figure 7. Numerical calculation of the holographic entanglement entropy growth ∆SA for the sub-
systems A1, A2, A3 and A4 with parameters b = 50, a = 0.05 and Sbdy,1 = Sbdy,2 = 0 using the theta
function. The blue and orange lines are the connected and disconnected entropy growth respectively.

black hole entropy term

SBH = Horizon Length
4G = πτ

4G = c

6πτ, (3.12)

where we used the identification 1
4G = c

6 between the CFT and its gravity dual. In the case
where both geodesic parts connect to the same boundary such a surface is not necessary
and the black hole term is not added. Finally, the holographic entanglement entropy of
subsystem A is given as the minimum of the connected and disconnected HEE. We show
numerical calculations of the entanglement entropy growth ∆SA = SA − S

(0)
A in figure 7,

where S(0)
A = c

3 ln l
ϵ is the well known vacuum entropy for a subsystem of length l in 2d CFT.

These results agree with those first presented in [2].

3.2 Abel-Jacobi map

As the Abel-Jacobi Map is the inverse of the theta function, we find the same holographic
entanglement entropy expressions as in section 3.1 with the derivatives inverted:

Scon
A = c

12 ln

( 1
ϵπ

)4
(
dη+,1
dw+,1

dη−,1
dw−,1

)−1(
dη+,2
dw+,2

dη−,2
dw−,2

)−1

sin2 (π∆η−) sin2 (π∆η+)


(3.13)

Similarly we obtain the disconnected HEE. In figure 8 we depict the connected and
disconnected holographic entanglement entropy computed for the various subsystem se-
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Figure 8. Numerical calculation of the holographic entanglement entropy growth ∆SA for the
subsystems A1, A2, A3 and A4 with parameters b = 50, a = 0.05 and Sbdy,1 = Sbdy,2 = 0 using
the Abel-Jacobi map. The blue and orange lines are the connected and disconnected entropy
growth respectively.

tups using the Abel-Jacobi method. We find perfect agreement for all analyzed sub-
systems, which demonstrates the equivalence between the inverse map method and the
Abel-Jacobi procedure.

When generalizing the map eq. (2.1) to a larger number of cuts, one would have to deal
with generalized theta functions, which are famously cumbersome. The set of canonical
differentials and Abel-Jacobi maps from this approach are just as easily defined on hyperelliptic
curves as they are on elliptic curves.

3.3 Schottky uniformization

We use a slight variation of a procedure developed in [18] to find the holographic dual of
compact Riemann surfaces. Consider a genus g hyperelliptic curve, it can be uniformized by a
Schottky domain, where one sheet is a collection of g circles cut out of the unit disk, and the
Schottky double (other sheet) is the reflection of the interior of the unit disk across the unit
circle. For the case of g = 1 we have an annulus of inner radius ρ < 1 (which is a function of a
and b) and unit outer radius. When doubled the outer radius 1/ρ is identified with the inner
radius (See figure 9). The identification of the inner to outer circle is a Möbius transform and
therefore the group it generates is a subgroup of SL(2,C). We can then quotient H3 space by
this group to obtain our geometry, which is locally Euclidean AdS3 with the genus g surface
as its boundary. For the case of g = 1 this is the familiar BTZ black hole. While there is
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ρ

1
ρ 1

α 1
αr

ξ

θ

identified

Figure 9. The Schottky uniformization of the genus 1 surface. The inner and outer red hemispheres
are identified forming the BTZ blackhole with the annulus as its boundary.

the standard BTZ to thermal AdS transition as shown in [2], as we are only considering the
a → 0 limit we are in the region of moduli space where we only need to consider BTZ.

The Schwarzian derivative of the map from the annulus to the plane with two cuts is
not globally defined due to our mirroring procedure. We make use of the fact that the map
from the identified rectangle to the annulus is √

ρe2πiη (with ρ = e−πτ ). Then the Schwarzian
derivative of the composite map is globally defined:

L(w(r(η), θ(η))) = −π2

which leads to the metric:

ds2

R2 = −π2dη2 − π2dη̄2 + 4 + z4π4

2z2 dηdη̄ + dz2

z2 .

Expressing this in θ and ϕ = ln(r) yields:

ds2 = R2

z2

(
(π2

2 z
2 − 1)2

2π2 dθ2 +
(π2

2 z
2 + 1)2

2π2 dϕ2 + dz2
)

Which we note is the same BTZ metric as eq. (3.6) if we scale both angular coordinates by
2π. The geodesic is then the same as the one calculated in appendix B, and the entanglement
entropy is the same as eq. (3.9).

4 Conclusion

We have introduced a novel formalism for holographic duals of non-simply connected world
sheets. The formalism is to conformally map from the Schottky domain of the world sheet
to the worldsheet using maps derived from the Schottky-Klein prime function [22]. The
extension of the conformal map into the bulk coordinate is computed via the standard
prescription [24–26] and we follow [18, 27, 28] in identifying the extensions into the bulk
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Figure 10. Numerical calculation of the holographic entanglement entropy growth ∆SA for the
subsystems A1, A2, A3 and A4 with parameters b = 50, a = 0.05 and Sbdy,1 = Sbdy,2 = 0 using
Schottky uniformization. The blue and orange lines are the connected and disconnected entropy
growth respectively.

of the circles. This allows us to calculate entanglement entropy as a function of time (first
Euclidean time and after continuation Lorentzian time) and other dynamical observables
with the holographic entanglement entropy formalism.

In this paper we have shown that this formalism applied to the case of a double splitting
quench reproduces earlier results [2]. The use of the Abel-Jacobi map greatly simplifies the
calculations. In a forthcoming paper we will present explicit calculations of the holographic
entanglement entropy for quenches with multiple splits and we hope to apply the formalism
to other instances of non-simply connected worldsheets, such as splitting quenches at finite
temperature and multiple local projection measurements. In addition, we hope to use these
ingredients to build a schematic model of the multifragmentation process in heavy ion
collisions: analyzing the entanglement structure among multiple “hadrons” that split off from
a highly excited, locally thermal pure state of a “quark-gluon plasma.”
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A Different coordinates for the BTZ geometry

We claim the metric in eq. (3.6) is the BTZ metric. Here we show it’s equivalent to the
more standard representation.

ds2 = R2

z2

(1 − π2z2

2

)2

dx2 +
(

1 + π2z2

2

)2

dy2 + dz2


Where x ∈ (0, 1], y ∈ (−τ/2, τ/2) are both periodic and z ∈ [0,∞)

Consider the coordinate transform:

z′ = z

(1 + π2z2

2 )

Where z′ ∈ [0, 1√
2π

].
Note that the conformal boundary is left invariant.
The metric then becomes:

ds2 = R2

z′2

((
1 − 2π2z′2

)
dx2 + dy2 + dz′2

1 − 2π2z′2

)

Which is the form of the metric we use for our geodesic calculations.
Consider an additional coordinate transform z′ = 1√

z′′2+2π2

ds2 = R2(z′′2 + 2π2)
(

z′′2

z′′2 + 2π2dx
2 + dy2 +

(
z′′2 + 2π2

z′′2

)
z′′2dz′′2

(z′′2 + 2π2)3

)

ds2 = R2
(
z′′2dx2 + (z′′2 + 2π2)dy2 + dz′′2

z′′2 + 2π2

)

This looks odd but replacing the periodic coordinates with angles, the radial coordinate
with r, and defining r2

s = 2π2 gives:

ds2 = R2
(

(r2 + r2
s)dt2 + dr2

(r2 + r2
s) + r2dϕ2

)

Which is the most standard presentation of the Euclidean BTZ metric.

B Calculation of the geodesic length

In this section we calculate the geodesic length between two points in BTZ space close
to the boundary z → 0. As explained in appendix A the BTZ metric eq. (3.6) can be
brought into the form

ds2 = 1
z2

[
dz2

1 − α2z2 + (1 − α2z2) dx2 + dy2
]

(B.1)
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by an appropriate coordinate transformation, where α =
√

2π. The length of some path
γ is thus given by

Lγ =
∫
γ

dz
1
z

√
1

1 − α2z2 + (1 − α2z2)(x′)2 + (y′)2︸ ︷︷ ︸
L(z,x′,y′)

(B.2)

Since the geodesic path γA is a stationary point of Lγ , the Euler-Lagrange equations have
to be fulfilled along γA where L(z, x′, y′) is the corresponding Lagrangian. Using the fact
that the Lagrangian is independent of x and y, we obtain

c1 = ∂L
∂x′

, c2 = ∂L
∂y′

. (B.3)

Solving these equations for T and X yields

x′(z) = c1z

(1 − α2z2)
√

1 − (c2
1 + c2

2 + α2)z2 + c2
2α

2z4

y′(z) = c2z√
1 − (c2

1 + c2
2 + α2)z2 + c2

2α
2z4

(B.4)

Because of the symmetry of BTZ space, we assume the geodesic to be symmetric about some
maximum value z∗ for endpoints on the boundary. At this point, the partial derivatives of
z(x, y) w.r.t. x and y are zero by definition which means in return that x′(z∗) → ∞ and
y′(z∗) → ∞. From this we find

c1 = 1
z∗

√
1 − c2

2z
2
∗

√
1 − α2z2

∗ (B.5)

and the derivatives take the form

x′(z) =
( 1
z∗

√
1 − c2

2z
2
∗

√
1 − α2z2

∗

)
z

(1 − α2z2)
√(

1 − z2

z2
∗

)
(1 − c2

2α
2z2

∗z
2)

y′(z) = c2
z

(1 − α2z2)
√(

1 − z2

z2
∗

)
(1 − c2

2α
2z2

∗z
2)

(B.6)

We now calculate the differences ∆T and ∆X of the endpoints on the boundary. Since we
assume the geodesic to be symmetric about z∗, the path from z = ϵ to z = ϵ is just given
by twice the integral from z = ϵ to z = z∗.

∆x = 2
z∗∫
ϵ

dz x′(z) = 2
α

arctanh

αz∗
√

1 − c2
2z

2
∗√

1 − α2z2
∗

 (B.7)

∆y = 2
z∗∫
ϵ

dz y′(z) = 2
α

arctanh(c2αz
2
∗) (B.8)

From eq. (B.8) follows

c2 =
tanh

(
α∆y

2

)
αz2

∗
(B.9)
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which we plug into eq. (B.7) to solve for the maximum value

z∗ =

√
tanh2

(
α∆y

2

)
+ tan2

(
α∆x

2

)
α

√
1 + tan2

(
α∆x

2

) (B.10)

Thus we have determined all constants c1, c2, z∗ and we can now calculate the geodesic
length, where we define β := c2αz∗:

Lγ =
∫
γ

dz
1
z

√
1

1 − α2z2 + (1 − α2z2)(x′)2 + (y′)2

= 1
β


z∗∫

ϵ1

dz
1

z

√(
z2

z2
∗
− 1

) (
z2 − 1

β2

) +
z∗∫

ϵ2

dz
1

z

√(
z2

z2
∗
− 1

) (
z2 − 1

β2

)


= ln

−2z∗
β

√
(z2 − z2

∗)
(
z2 − 1

β2

)
− 2z2

∗
β2 + z2

∗z
2 + z2

β2

z2
(
z2
∗ − 1

β2

)

∣∣∣∣∣
z=z∗

z=ϵ1

+ (ϵ1 ↔ ϵ2)

= − ln(ϵ1) − ln(ϵ2) + ln
(

4z2
∗

1 − β2z2
∗

)
+ O

(
ϵ2
)

= 1
2 ln

(( 4
ϵ1ϵ2α2

)2
sin2

(
α

2 (∆x− i∆y)
)

sin2
(
α

2 (∆x+ i∆y)
))

(B.11)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] T. Shimaji, T. Takayanagi and Z. Wei, Holographic Quantum Circuits from Splitting/Joining
Local Quenches, JHEP 03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

[2] P. Caputa et al., Double Local Quenches in 2D CFTs and Gravitational Force, JHEP 09 (2019)
018 [arXiv:1905.08265] [INSPIRE].

[3] P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a
conformal field theory approach, J. Stat. Mech. 0710 (2007) P10004 [arXiv:0708.3750]
[INSPIRE].

[4] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.
0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[5] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J.
Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

[6] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42
(2009) 504005 [arXiv:0905.4013] [INSPIRE].

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP03(2019)165
https://arxiv.org/abs/1812.01176
https://inspirehep.net/literature/1706807
https://doi.org/10.1007/JHEP09(2019)018
https://doi.org/10.1007/JHEP09(2019)018
https://arxiv.org/abs/1905.08265
https://inspirehep.net/literature/1735818
https://doi.org/10.1088/1742-5468/2007/10/P10004
https://arxiv.org/abs/0708.3750
https://inspirehep.net/literature/1466386
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/literature/650602
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://arxiv.org/abs/cond-mat/0503393
https://inspirehep.net/literature/678669
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/literature/821276


J
H
E
P
0
5
(
2
0
2
4
)
2
0
5

[7] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical
introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].

[8] J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys. B 324
(1989) 581 [INSPIRE].

[9] J. Cardy, Boundary Conformal Field Theory, in Encyclopedia of Mathematical Physics, J.-P.
Françoise et al. eds., Elsevier (2006), p. 333–340 [DOI:10.1016/b0-12-512666-2/00398-9].

[10] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[11] D. Crowdy and J. Marshall, Conformal Mappings between Canonical Multiply Connected
Domains, Comput. Methods Funct. Theory 6 (2006) 59.

[12] H. Baker, Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions,
Cambridge Mathematical Library, Cambridge University Press (1995) [ISBN: 9780521498777].

[13] H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Mathematics, Springer New York
(2012) [DOI:10.1007/978-1-4612-2034-3].

[14] D. Mumford, C. Musili, M. Nori, E. Previato and M. Stillman, Tata Lectures on Theta I,
Progress in Mathematics, Birkhäuser Boston (1983) [ISBN: 9783764335281].

[15] J. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, Springer (1973)
[DOI:10.1007/bfb0060090].

[16] B. Dubrovin, Integrable systems and riemann surfaces lecture notes (preliminary version), (2009).

[17] Y.L. Rodin, The Riemann boundary value problem on closed Riemann surfaces and integrable
systems, Physica D 24 (1987) 1.

[18] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929
[hep-th/0005106] [INSPIRE].

[19] D.G. Crowdy and J.S. Marshall, Computing the Schottky-Klein prime function on the Schottky
double of planar domains, Comput. Methods Funct. Theory 7 (2007) 293.

[20] D. Crowdy, Geometric function theory: a modern view of a classical subject, Nonlinearity 21
(2008) T205.

[21] D. Crowdy, Conformal slit maps in applied mathematics, ANZIAM J. 53 (2012) 171.

[22] D. Crowdy, Solving problems in multiply connected domains, SIAM (2020)
[DOI:10.1137/1.9781611976151].

[23] D. Mumford, C. Series and D. Wright, Indra’s Pearls: The Vision of Felix Klein, Cambridge
University Press (2002) [DOI:10.1017/cbo9781107050051].

[24] M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484 (1999)
147 [hep-th/9901148] [INSPIRE].

[25] V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math.
Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[26] M.M. Roberts, Time evolution of entanglement entropy from a pulse, JHEP 12 (2012) 027
[arXiv:1204.1982] [INSPIRE].

[27] K. Krasnov, Lambda less than 0 quantum gravity in 2 + 1 dimensions. I. Quantum states and
stringy S matrix, Class. Quant. Grav. 19 (2002) 3977 [hep-th/0112164] [INSPIRE].

– 20 –

https://doi.org/10.1142/S021974990600192X
https://arxiv.org/abs/quant-ph/0505193
https://inspirehep.net/literature/683443
https://doi.org/10.1016/0550-3213(89)90521-X
https://doi.org/10.1016/0550-3213(89)90521-X
https://inspirehep.net/literature/25279
https://doi.org/10.1016/b0-12-512666-2/00398-9
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/literature/711505
https://doi.org/10.1007/bf03321118
https://doi.org/10.1007/978-1-4612-2034-3
https://doi.org/10.1007/bfb0060090
https://doi.org/10.1016/0167-2789(87)90065-0
https://doi.org/10.4310/ATMP.2000.v4.n4.a5
https://arxiv.org/abs/hep-th/0005106
https://inspirehep.net/literature/527120
https://doi.org/10.1007/bf03321646
https://doi.org/10.1088/0951-7715/21/10/t04
https://doi.org/10.1088/0951-7715/21/10/t04
https://doi.org/10.21914/anziamj.v53i0.5782
https://doi.org/10.1137/1.9781611976151
https://doi.org/10.1017/cbo9781107050051
https://doi.org/10.1063/1.59661
https://doi.org/10.1063/1.59661
https://arxiv.org/abs/hep-th/9901148
https://inspirehep.net/literature/482527
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/literature/495405
https://doi.org/10.1007/JHEP12(2012)027
https://arxiv.org/abs/1204.1982
https://inspirehep.net/literature/1107879
https://doi.org/10.1088/0264-9381/19/15/308
https://arxiv.org/abs/hep-th/0112164
https://inspirehep.net/literature/568540


J
H
E
P
0
5
(
2
0
2
4
)
2
0
5

[28] K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav. 20 (2003)
2235 [gr-qc/0302073] [INSPIRE].

[29] Z. Nehari, Conformal Mapping, Dover Books on Mathematics, Dover Publications (2012)
[ISBN: 9780486611372].

[30] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [INSPIRE].

[31] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602
[arXiv:1105.5165] [INSPIRE].

[32] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045
[hep-th/0605073] [INSPIRE].

[33] T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR Pairs, Local Projections and
Quantum Teleportation in Holography, JHEP 08 (2016) 077 [arXiv:1604.01772] [INSPIRE].

– 21 –

https://doi.org/10.1088/0264-9381/20/11/319
https://doi.org/10.1088/0264-9381/20/11/319
https://arxiv.org/abs/gr-qc/0302073
https://inspirehep.net/literature/613540
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/literature/925046
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://inspirehep.net/literature/901430
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/literature/716307
https://doi.org/10.1007/JHEP08(2016)077
https://arxiv.org/abs/1604.01772
https://inspirehep.net/literature/1444535

	Introduction
	Motivation
	Splitting quenches review
	Structure of our manuscript
	Summary of results

	The 3 conformal maps
	Theta function
	Abel-Jacobi map
	Schottky uniformization

	Holography
	Theta function
	Abel-Jacobi map
	Schottky uniformization

	Conclusion
	Different coordinates for the BTZ geometry
	Calculation of the geodesic length

