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We report results of a search for dark-matter–nucleon interactions via a dark mediator using optimized
low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and
utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses
ranging from 30 MeV=c2 to 2 GeV=c2. Under the assumption that the dark mediator is a dark photon that
decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such
thermal relic dark-matter model.

DOI: 10.1103/PhysRevLett.131.191002

Introduction.—One particularly important question on
the darkmatter (DM) is how it interacts with standardmodel
(SM) particles beyond the gravitational effect. From the
perspective of particle physics, one popular construction
involves a dark force carrier that mediates the interactions
between DM and SM particles. In the traditional DM direct
search experiments [1–3], a heavy mediator is usually
assumed, leading to a mediator-mass-independent DM-
nucleon cross section. However, when the mediator mass
is comparable to or even smaller than the momentum
transfer in nuclear recoils (NRs), a softer recoil spectrum
is expected, which leads tomediator-mass-dependent search
results [4–7]. The dark mediator can also indirectly interact
with SM particles by mixing with gauge or Higgs bosons. If
it kinetically mixes with the ordinary photon, it is called a
dark photon, which is a well-motivated vector boson arising
from a hidden U(1) gauge symmetry. Dark photons can
provide possible explanations of anomalies ranging from
particle physics to cosmology, e.g., in muon g − 2 [8,9],
the 8Benuclear transitions [10], and the so-called small-scale
problems in galactic astronomy (see Ref. [11] for an over-
view). They have been searched extensively at dedicated
fixed-target experiments [12–17] and at colliders [18]. More
dedicated experiments are planned [19,20].
In this Letter, we report a highly sensitive search for

DM-nucleon interaction mediated by a dark mediator
using optimized low-energy data from the commissioning
run of the PandaX-4T experiment, and use the results to
test a class of dark-photon-mediated DM models.
PandaX-4T is the third generation DM direct detection
experiment of the PandaX project, located at the China
Jinping Underground Laboratory. The central apparatus of
PandaX-4T is a dual-phase xenon time projection chamber
(TPC), which contains 3.7 tonnes of liquid xenon in the
sensitive volume. Particle interaction with xenon nuclei or
electrons in the liquid xenon produces scintillation pho-
tons (S1 signal) and the ionized electrons (S2 signal). Both
signals are detected by the top and bottom arrays of 368
Hamamatsu R11410-23 3-inch photomultiplier tubes
(PMTs). Analog signals from the PMTs are digitized
and then read out in a triggerless scheme [21], using
CAEN V1725B digitizers [22], which is crucial to
enhance the sensitivity to low-energy recoils. More
detailed descriptions of the PandaX-4T experiment can
be found in Ref. [1].

DM-nucleon interaction with a dark mediator.—First,
we consider the physics scenario in which a vector or
scalar force mediator ϕ coherently mediates the interaction
between the DM and nucleon, with the same effective
couplings for the proton and neutron. The differential NR
recoil rate (in the unit of events=day=kg=keV) for elastic
scattering between the DM and xenon nucleus is given
by [23,24]

dR
dENR

¼ σjq2¼0

A2

μ2p

m4
ϕ

ðm2
ϕ þ q2Þ2 F

2ðq2Þ

×
ρ

2mχ

Z
v≥vmin

fðvÞ
v

d3v; ð1Þ

where q2 is the four-momentum-transfer squared, σjq2¼0 is
the DM-nucleon cross section in the limit of zero-momen-
tum transfer, A is the xenon mass number, μp is the DM-
nucleon reduced mass,mϕðmχÞ is the mediator (DM) mass,
Fðq2Þ is the nuclear form factor, ρ is the local DM density,
fðvÞ is the DM velocity distribution relative to the detector,
and vmin is the minimum DM velocity that results in a NR
energy ENR. All input parameters to Eq. (1) were set to the
conventions given in Ref. [25].
Besides the pure NR process, we consider the NR-induced

electron recoil (ER) signals by the Migdal effect [26],
which has been employed by XENON, LZ, LUX, CRESST,
SuperCDMS and CDEX experiments [27–32] to extend the
reach for low-mass DM searches [33]. When a DM particle
scatters with a xenon atom, the nucleus undergoes an abrupt
momentum change with respect to the orbital electrons,
resulting in the excitation or ionization of the atomic electrons
due to the lack of transient movement of the electron cloud.
This effect leads to the possiblegenerationofERsignals in the
keV range that accompany the primaryNR.Therefore, even if
theNRenergy deposition is below the detection threshold, the
ER energy deposition due to the Migdal effect can still be
detected, providing a way to probe low-mass DM particles
that are otherwise not detectable in PandaX. In this Letter,
we only consider the ionization process, as the excitation
probabilities are negligible in the energy region of
interest [26,37]. The differential rate of ionization electron
with energy EER is given by folding the NR spectrum in
Eq. (1) with the transition rate [26],
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wherepion½nl → ðEER − EnlÞ� is the probability for an atomic
electronwith quantum numbers ðn; lÞ and binding energyEnl
to be ionized and receive a kinetic energy of EER − Enl.
It is related to the electron momentum relative to the struck
nucleus, therefore depends on ENR. Similar to Refs. [27,29],
we only take into account the contributions from the ioniza-
tion of M-shell (n ¼ 3) and N-shell (n ¼ 4) electrons. The
binding energies of inner shells (n ¼ 1, 2) are too strong to
contribute significantly. The contribution from xenonvalence
electrons (n ¼ 5) has also been conservatively omitted,
different from the treatment in Ref. [38], as the ambient
atoms in the liquid may lead to large uncertainty in the
ionization energy.We only consider DMmasses up to 2 GeV,
above which the contribution of NR signals becomes com-
parable or dominant.
In this Letter, the DM candidates are selected in two

complementary ways, with and without requiring the
presence of the S1 signal in each event. The former
(denoted as S1-S2 below), has lower background contami-
nation but a higher energy threshold, while the latter
(S2-only) is the opposite.
For the S1-S2 data, we follow the same procedure for the

solar 8B neutrino and low-mass DM search as in Ref. [39],
using the commissioning data with an exposure of
0.48 tonne-year. Each event requires one pair of physically
correlated S1 and S2 signals within the fiducial volume of
the TPC. The S1 signal is required to have 2 or 3 coincident
PMT hits (corresponding to a 1%-acceptance threshold of
0.95 keVNR), and the S2 signal needs to be 65–230
photoelectron (PE) for 2-hit S1 and 65–190 PE for 3-hit
S1. A boosted decision tree (BDT) algorithm-based selec-
tion is applied to suppress the dominated accidental
coincidence background from randomly paired S1 and
S2 signals. After the BDT cut, there is one event left in the
2-hit S1 data (Fig. 1). The total number of background
events, dominated by the accidental background and the 8B
neutrino, is estimated to be 2.9� 1.0. No 3-hit S1 events
survive and the background prediction is 0.4� 0.1 events.
For the S2-only data, we used the same datasets and

procedure as in Ref. [40] that correspond to an effective
exposure of 0.55 tonne-year. The dataset, the background
models, and the conversion response matrix from a given
energy deposition to a distribution of S2 are provided in a
public repository [41]. In total, there are 105 events with
unpaired S2 (with no accompanying S1 greater than 2 PE)
between 60 and 200 PE [40], and the detection energy
threshold is approximately 0.8 keVNR corresponding to a
14% acceptance. The background is mainly composed of
electrons from TPC cathode, microdischarge noises (MD)

from the electrodes, and solar neutrinos. Figure 2 shows the
S2 distribution in data, in comparison with the background
from the background-only best fit.
For the statistical inference of DM signals, the binned

profile likelihood ratio [42,43] is constructed as the test
statistics, including the same treatments for the systematic
uncertainties as in Refs. [39,40]. The left panel of Fig. 3
shows the zero-momentum DM-nucleon cross section
limits for mediator mass of 1 MeV=c2 or 1 GeV=c2, using
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FIG. 1. Selected DM candidate event in the S1-S2 plane after
the BDT cut with the requirement of 2-hit S1. The cyan and violet
lines represent the 95% contour of the signals for a DM mass of
5 GeV=c2 with mediator masses of 1 MeV=c2 and 1 GeV=c2,
respectively.
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FIG. 2. Distribution of selected candidates in S2-only data and
background components. The expected signals in PandaX-4T
with and without the Migdal effect for DM masses of 0.5 and
5 GeV=c2, on top of the total background, are shown in red solid
and blue dashed lines, respectively. In both cases, mϕ is set to be
1 MeV=c2, and zero-momentum-transfer DM-nucleon cross
section of 3 × 10−38 cm2 and 8 × 10−40 cm2 (close to the later
exclusion limits) are assumed, respectively.
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both S1-S2 data and S2-only data for DM masses ranging
from 3 to 10 GeV=c2. As expected, the limits obtained
from S2-only data are more stringent than those from S1-S2
data at smaller DM masses. At 5 GeV=c2, our limits are 1
order of magnitude stronger than the previous results from
PandaX-II experiment. The right panel of Fig. 3 shows the
limits using S2-only data with Migdal effect for DM
masses between 30 MeV=c2 and 2 GeV=c2. The limits
for mϕ ¼ 1 GeV=c2 is within 1% of the presented heavy
mediator limit. Our results represent a significant improve-
ment over other experiments. For example, for DM masses
ranging from 100 to 500 MeV=c2, our limits are 1 to 2
orders of magnitude stronger than those of XENON1T in
the case of a heavy mediator. Note that we have assumed
the so-called constant-W model for the charge yield all the
way to zero energy, to be consistent with our earlier work in
Refs. [40,44], whereas in the XENON1T treatment in
Ref. [27], the charge yield was truncated below 186 eV.
This is partly responsible for our tighter constraint in
this Letter. For the upper limits in this Letter, we have
checked that the Earth attenuation effect [45] is negligible.
For example, considering a scattering cross section of
10−30 cm2, along with mϕ at 0.1 MeV=c2 and mχ at both
0.04 and 2 GeV=c2, the impact on event rates was found to
be 1.6% and 1.9%, respectively.
Constraints to dark-photon-mediated DMmodel.—Next,

we consider the dark mediator as a dark photon, with its
kinetic mixing strength to ordinary photon denoted as ϵγ .
Such a mixing provides an important connection between

DM in the hidden sector and SM particles in the visible
sector [12,50–53] in the early Universe. One typical case is
that the DM abundance is set by its annihilation into the SM
particles, dominated by the process with an s-channel dark
photon mediator [13]. For scalar DM [54], the annihilation
cross section scales as hσvi ∼ ðϵ2γαχαEMm2

χv2=m4
ϕÞ for a

mediator withmϕ ≫ 2mχ and a negligible decaywidth [13].
Here, αEM and αχ are the fine structure constants in the
visible and dark sectors, respectively.
As we can see, the aforementioned cross section depends

on mχ and a dimensionless parameter y ¼ ϵ2γαχðmχ=mϕÞ4
[56]. The observed DM relic abundance requires
hσvi ∼ hσvirelic, which in turn fixes y for a given mχ

(see Fig. 4).
On the other hand, the zero-momentum DM-nucleon

cross section in direct detection experiments is given
by [24]

σjq2¼0 ¼
16παEMαχμ

2
p

m4
ϕ

�
ϵγZ

A

�
2

; ð3Þ

where Z is the proton number of the xenon nuclei.
Therefore, the cross section σjq2¼0 scales with y × μ2p=m4

χ ,
which provides a constraint in y versus mχ .
It is worth noting that for direct detection experiment,

when mϕ ≳ 0.05mχ , the q2 contribution is negligible in
Eq. (1). For mχ < 1 GeV=c2, our results using S2-only
data with the Migdal effect and with mϕ ¼ 1 GeV=c2
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FIG. 3. Left: the 90% CL upper limits on the zero-momentum DM-nucleon cross section for light mediator DM models for mediator
masses 1 MeV=c2 and ≥ 1 GeV=c2. The red lines represent the exclusion limit of this Letter using S1-S2 data. The orange lines and
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(in Fig. 3, right) clearly satisfy this condition. Figure 4
illustrates the resulting upper limit on the parameter y.
Therefore, our results provide a direct test of dark-photon-
mediated DM as the thermal relic, and rule out the
aforementioned scalar DM model in the mass range
between 30 MeV=c2 and 1 GeV=c2. Similarly, recent
constraints on DM-electron cross sections (FDM ¼ 1) from
PandaX-4T [40] can be as well translated into limits on y by
the relation y ¼ σeðm4

χ=16παEMμ2eÞ [58], where μe is the
DM-electron reduced mass, also overlaid on Fig. 4. We
display this limit separately, as it bears no theoretical
uncertainty associated with the Migdal effect. The limit
is even stronger than that from DM-nucleon interaction for
DM masses ranging from 38 to 100 MeV=c2. On the other
hand, dedicated fixed target experiments for dark photon
search (e.g., NA64 [14], LSND [16], E137 [17]) can set
upper limits on y, but usually assuming a particular value of
αχ and a fixed ratio between mϕ and mχ . Future experi-
ments such as LDMX [57] and DarkSHINE [20] are
expected to probe low-mass region that has not yet been
accessible by PandaX.

Summary.—In summary, we present a search for the
interactions between DM particles and nucleons via a dark
mediator in the PandaX-4T experiment. The analysis used
both low-energy S1-S2 and S2-only data from the com-
missioning run. The results from S2-only data with Migdal
effect are further used to constrain the interaction strength
between dark photon and ordinary photon. The result
provides the most stringent constraint for the thermal scalar
DM model, in which the s-channel dark photon decays into
DM pairs in the early Universe, for the DM masses ranging
from 30 MeV=c2 to 1 GeV=c2.
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