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Abstract: The successful observation of M87 supermassive black hole by the Black Hole
Event Horizon Telescope(EHT) provides a very good opportunity to study the theory of
gravity. In this work, we obtain the exact solution for the short hair black hole (BH) in the
rotation situation, and calculate in detail how hairs affect the BH shadow. For the exact
solution part, using the Newman-Janis algorithm, we generalize the spherically symmetric
short-hair black hole metric to the rotation case (space-time lie element (2.25)). For the
BH shadow part, we study two hairy BH models. In model 1, the properties of scalar hair
are determined by the parameters α0 and L (We re-obtained the results in reference [48] for
the convenience of discussion in this work). In model 2, the scalar hair of the BH is short
hair. In this model, the shape of the BH shadow is determined by scalar charge Qm and k.
The main results are as follows: (1) In the case of rotational short-hair BH, the value range
of parameter k is k > 1 (2.25), the range of short-hair charge value Qm is greatly reduced
due to the introduction of the BH spin a. When 0 6 Qm 6 2

3×4
1
3 , the rotational short-hair

BH has two event horizons at this time. When Qm > 2
3 × 4

1
3 , the rotational short-hair

BH has three unequal event horizons, so the space-time structure of the BH is significantly
different from that of Kerr BH. (2) For model 1, the effect of scalar hair on the BH shadows
corresponds to that of ε > 0 in reference [38, 48], but the specific changes of the shadows
in model 1 are different. This is because the BH hair in reference [38] is considered as a
perturbation to the BH, while the space-time metric of model 1 is accurate and does not
have perturbation property. For model 2, that is, the change of the BH shadow caused
by short hairs, the main change trend is consistent with that of ε < 0 in reference [38].
Because of the special structure of the short-hair BH, the specific changes of BH shadows
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are different. (3) the variation of Rs and δs with L and α0 is not a monotone function in
model 1, but in model 2, it is. These results show that scalar hairs (model 1) have different
effects on Kerr BH shadows than short hairs (model 2), so it is possible to distinguish the
types and properties of these hairs if they are detected by EHT observations. (4) as for the
effects of the hairs on energy emissivity, the main results in model 1 [48], different energy
emissivity curves have intersection phenomenon, while in model 2 (short-hair BH), there is
no similar intersection phenomenon. In general, various BH hairs have different effects on
the shadows, such as non-monotonic properties and intersection phenomena mentioned in
this work. Using these characteristics, it is possible to test the no-hair theorem in future
EHT observations, so as to have a deeper understanding of the quantum effect of BHs. In
future work, we will use numerical simulations to study the effects of various hairs on BHs
and their observed properties.
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1 Introduction

In general relativity (GR), black hole is an exact solution to Einstein’s field equation,
such as the common Schwarzschild black hole(e.g. see [1, 2]), which describes the vacuum
gravitational field near a point mass, while for spherically symmetric internal solutions,
which show various forms of solutions due to different equations of state. In the 1960s,
Kerr generalized the Schwarzschild black hole to the rotational situation through precise
mathematical calculation [1, 3]. Kerr solution is extremely important to the study of black
hole physics, and the physical object described by it is real in the universe. The introduction
of the spin of the black hole leads to many new properties of the solution(e.g. see [1, 4,
5]). For example, Kerr black hole has an ergosphere, which makes it have a negative
energy orbit, the negative energy orbits are orbits with negative angular momentum in
the ergosphere of the black hole, and their rotation direction is opposite to that of the
black hole; the introduction of spin parameter results in two event horizons for Kerr black
hole. When the spin approaches 1, Kerr black hole will become an extreme black hole,
which is very important for the study of the quantum effect of the black hole. In classical
general relativity, the solution of Einstein’s field equation describes only the curvature of
space-time and does not include any quantum effects.

The existence of Schwarzschild and Kerr black holes is believed to be due to the
possibility of forming black holes through gravitational collapse during late stellar evolution
(e.g. see [6]) (EHT’s observations of black holes will be described later). Black holes
form through gravitational collapse, which has been extensively discussed in detail(e.g.
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see [1, 7]), and physicists have found it interesting that the final result of spherically
symmetric gravitational collapse is described by the mass of the system, that is, the mass
of the system completely determines all the properties of spherically symmetric space-time
in a vacuum. If this is generalized to Kerr black hole and Kerr-Newman black hole, then
the space-time after gravitational collapse will be completely determined by mass, spin and
charge of the black hole, and has nothing to do with the properties of the precursor star
and the process of gravitational collapse, which is the so-called no-hair theorem [8–19].
The no-hair theorem is one of the main characteristics of classical black holes. Due to
the extreme nature of the black hole event horizon, quantum effects near the horizon have
to be considered [20–26]. However, considering the non-trivial matter field in the black
hole space-time, the black hole no-hair theorem may be violated. There are many types
of black hole hairs, among which the scalar hairs are the main ones. Due to the influence
of scalar hairs on black holes, the space-time metric of black holes changes. For example,
J.Ovalle et al. studied black hole solutions with scalar hairs using gravitational decoupling
approach [27]. In their work, scalar hairs can be reflected by mode parameters α0 and
L. These spherically symmetric black holes with scalar hairs have been extended to the
rotational case by E.Contreras et al., using gravitational decoupling method, and their
basic physical properties have been calculated in detail [28]. In addition, some black hole
solutions with hairs have also been obtained analytically (e.g., [29–31]). These approximate
and exact solutions provide good conditions for physicists to understand the quantum
effects of black holes.

In recent years, scientists have made a series of breakthroughs in the observation of
black holes, the most important of which are the observation of gravitational waves and
the measurement of the shadow of M87 supermassive black hole [32–34]. In fact, the
gravitational wave signal generated by the merger of black holes is enough to indicate the
existence of black holes, but this is an indirect way. A more straightforward approach is to
measure the black hole shadow. In April 2019, the EHT research group published the first
image of the shadow of M87 black hole [33], which provided the possibility for physicists to
study the physical properties of the strong gravitational field. Using the observation data
of EHT, scientists have conducted extensive and in-depth research on black hole physics,
general relativity, etc. (e.g.,([35, 36])). Recently, the accuracy of EHT measurement has
been further improved, and it is very possible to further test the basic properties of black
holes, such as magnetic field [37].

Some progress has been made in testing the no-hair theorem by using the observation
of the black hole shadow. Mohsen Khodadi et al. studied the effect of hair on black hole
shadow by using the rotational black hole with hair [38, 39, 48]. Because the metric of
the black hole with hair they used only takes into account conventional correction to Kerr
black hole, the calculations, while complete, are difficult to relate the details of specific
quantum hair, such as scalar hair [20–26]. Therefore, we need to calculate the shadow
shape corresponding to the black hole with the detailed scalar hairs. In reference [38], the
authors made a few calculations on this, but did not show more details about this. In our
work, we will perform detailed calculations of the shadow of the hairy black hole; using the
metric of different scalar hairy black holes, we discuss how these scalar hairs change the
properties of black hole shadows.
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The logical structure of this article is as follows. In section 2, we introduce the basic
properties of the solutions of the black holes with scalar hairs and derive the rotational
case of the metric of black holes with short hairs. In section 3, the geodesic equation of
photon in rotational black hole is derived and its analytical solution is obtained. In section
4, we calculate the effect of scalar hairs on the geometric properties of black hole shadows.
In section 5, we calculate how scalar hairs affect the rate of energy emission. The sixth
section is the summary and discussion of the whole paper.

2 No-hair theorem and black hole space-time

2.1 Model 1: hairy black hole

In classical general relativity, black holes carry no charge other than mass, charge and spin,
which is known in black hole physics as no-hair theorem [8–19]. However, it is possible
that the interaction of black hole space-time with matter introduces other charges, such as
internal norm symmetries and certain fields, which could make it possible for black holes to
carry hairs. When these corresponding physical effects are introduced into the space-time
of black hole, i.e., to make black hole hairy, the presence of these hairs will change the space-
time background of black hole, thus bringing the quantum effects of black hole into the
classical space-time geometry. Using extended gravitational decoupling (EGD) approach,
J.Ovalle et al. obtained a spherically symmetric space-time metric with hair [27], because
in the EGD approach, there is no certain matter field, which makes the hairy black holes
obtained by them have great generality. In EGD, the corresponding Einstein field equation
can be expressed as follows:

Rµν −
1
2Rgµν = 8πT̃µν , (2.1)

where Rµν is Ricci curvature tensor, R is Ricci curvature scalar, gµν is the space-time
metric, T̃µν is the total energy-momentum tensor, and can be written as

T̃µν = Tµν + θµν (2.2)

where Tµν is the energy-momentum tensor in GR, θµν is the energy-momentum tensor
caused by new fields or new gravitational branch (these matter fields represent
any phenomenologically possible form of matter-energy, such as dark energy or
dark matter) [28]. According to general relativity, Gµν = Rµν − 1

2Rgµν needs to satisfy
the Bianchi identity, namely 5µT̃

µν = 0. When θµν = 0, i.e., without considering hairs, it
can be proved that the solution of field equation (2.1) degenerates into Schwarzschild black
hole solution. By proper treatment of the tensor θµν , the spherically symmetric solution
of Einstein field equation can be obtained [27]

ds2 = −f(r)dt2 + 1
g(r)dr

2 + r2dΩ2 (2.3)

where dΩ2 = dθ2 + sin2 θdφ2, f(r) and g(r) are the metric coefficients, and the expressions
in this case are

f(r) = g(r) = 1− 2M
r

+ α0 exp
(
− r

M − α0L
2

)
(2.4)
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Here, α0 describes the deformation parameters due to the consideration of hairs, so
the size of α0 represents the physical meaning related to the strength of hairs. L is a
constant with the dimension of distance. In this work, we limit the values of α0 and L as
follows [27, 28]:

0 ≤ α0 ≤ 1 (2.5)
0 ≤ L ≤ 2 (2.6)

By adjusting the parameters α0 and L, we can analyse how hairs change the properties
of the space-time metric of black holes. Meanwhile, the space-time metric provides a basis
for testing the no-hair theorem of black holes from an astronomical perspective.

Using gravitational decoupling approach, E.Contreras et al. generalized the spherically
symmetric black hole solution to the rotational case [28]. The space-time metric of the black
hole with hair was obtained

ds2 = −
[
1− 2rm(r)

ρ2

]
dt2 − 4arm(r) sin2 θ

ρ2 dtdφ+ ρ2

∆ dr2 + ρ2dθ2 + Σ sin2 θ

ρ2 dφ2 (2.7)

where, the expressions of related symbols are

ρ2 = r2 + a2 cos2 θ (2.8)

∆ = r2 − 2rm̃(r) + a2 = r2
[
1 + α0 exp

(
− r

M − α0L
2

)]
− 2Mr + a2 (2.9)

Σ = (r2 + a2)2 − a2∆ sin2 θ (2.10)

f(r) = g(r) = 1− 2m̃(r)
r

(2.11)

In these expressions, a is the spin of the black hole, and other parameters have the
same physical meaning as in the spherically symmetric case. Since rotational black holes
are real in the universe, it is more feasible to test the no-hair theorem of black holes using
observational data such as EHT and gravitational waves.

In addition, to generalize the rotational hairy black hole to the charged case [27], we
only need to replace the metric coefficient in the spherically symmetric case by

f(r) = g(r) = 1− 2M
r

+ Q2

r2 −
α0
r

(
M − α0L

2

)
exp

(
− r

M − α0L
2

)
(2.12)

where Q is the charge carried by the black hole. The form of Kerr-Newman black hole
with hairs is similar to (2.7) ∼ (2.11).

2.2 Model 2: short hair black hole

When considering the coupling of gravity with some anisotropic fluids in general relativity,
the black hole solution with hair can be obtained. These anisotropic fluids satisfy the
following conditions, that is, in some conditions, the gravity will produce de Sitter and
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Reissner-Nordstron (RN) black holes, and in other conditions, the solution of the black
hole with hair can be obtained [31], whose linear element expression is

f(r) = g(r) = 1− 2M
r

+ Q2k
m

r2k , (2.13)

Qm is the strength parameter of the hair. When k = 1, the space-time metric degrades
into an RN black hole; when k > 1, the space-time metric is a short-hair black hole, and
Qm is the charged value of the short hair. In this work, we discuss the case of k = 3

2 in order
to understand the properties of short-hair black hole. For the black hole corresponding to
the metric (2.13), its energy density and pressure are respectively

ρ = Q2k
m (2k − 1)
8πr2k+2 , (2.14)

p = Q2k
m (2k − 1)k
8πr2k+2 . (2.15)

As discussed in the original literature, the black hole solution satisfies three classical
conditions, namely the weak energy condition (WEC), the energy density decays faster
than r−4, and T = Tabg

ab 6 0. Therefore, this black hole does not violate the no-short-hair
theorem.

Next, based on the metric of spherically symmetric short-hair black hole, we derive
the solution of rotating short-hair black hole using Newman-Janis (NJ) method. In short,
the NJ method is to generalize spherically symmetric space-time to rotational space-time
by complex transformation. The key is to simplify Einstein field equation into a second-
order partial differential equations. If there is an analytic solution to this equations, the
rotation form of the corresponding space-time metric can be obtained. The content of the
NJ method can be referred to the relevant literature (e.g., [40–42]). Follow the idea of this
method, we will show the key derivation.

Since the Schwarzschild coordinate system is used in the space-time form (2.3), if
the space-time considered is a black hole, there is coordinate singularity in this kind of
coordinate system. Therefore, in the NJ algorithm, this coordinate system needs to be
transformed to the advanced null coordinates (ANC) (u, r, θ, ϕ), and the coordinate trans-
formation is

du = dt− dr

f(r)g(r) = dt− dr(
1− 2M

r
+ Q2k

m

r2k

)2 , (2.16)

In ANC, we can choose the advanced null basis vector (eµ, nµ,mµ, m̄µ) to expand the
space-time metric, that is, the inverse form of the space-time metric is expressed as a linear
combination of the basis vector, namely gµν = −eµnν − eνnµ + mµm̄ν + mνm̄µ. For the
metric (2.3) considered here, its basis vector in ANC is

Lµ = δµr ,

nµ = δµµ −
1
2

(
1− 2M

r
+ Q2k

m

r2k

)2

,

mµ = 1√
2r
δµθ + i√

2r sin θ
δµφ , m̄µ = 1√

2r
δµθ −

i√
2r sin θ

δµφ .

(2.17)
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To generalize spherically symmetric space-time to the rotation case, we can perform
the following operations in ANC. In complex space, the coordinate (u, r) is rotated by
an angle of θ, that is, u → u − ia cos θ, r → r + ia cos θ; where a is a constant, which
can also be interpreted as the spin of the space-time, and θ is the rotation angle. At
this time, the spherical symmetry metric coefficients f(r) → F (r, θ, a), g(r) → G(r, θ, a)
and h(r) → ψ(r, θ, a). h(r) is the coefficient of dΩ2 in the metric (2.3), and here h(r) =
r2. Through these operations, the basis vectors in ANC become functions expressed by
F (r, θ, a), G(r, θ, a) and ψ(r, θ, a). After calculation, it is found that the components of the
inverse metric gµν are as follows:

guu = a2 sin2 θ

ψ
, gθθ = 1

ψ
, gur = gru =

√
G

F
− a2 sin θ

ψ
,

gφψ = 1
ψ sin2 θ

, guφ = gφu = a

ψ
, grφ = gφr = a

ψ
, grr = G+ a sin2 θ

ψ
.

(2.18)
By processing these inverse metric, we can get the covariance metric tensor, and thus

obtain the expression of its line element as

ds2 = −Fdu2 + 2

√
F

G
dudr + 2a sin2 θ

√F

G
+ F

 dudφ− 2a sin2 θ

√
F

G
drdφ

+ ψdθ2 − sin2 θ

−ψ + a2 sin2 θ

2

√
F

G
+ F

 dφ2

(2.19)

Next, using coordinate transformation, the space-time metric can be transformed from
the Eddington-Finkelstin coordinates (EFC) to the Boyer-Lindquist coordinate (BLC)(???),
and the final result is

ds2 = − ψ
ρ2

(
1− 2f̄

ρ2

)
dt2 + ψ

∆dr2 − 4af̄ψ sin2 θ

ρ4 dtdφ+ ψdθ2 + ψΣ sin2 θ

ρ4 dφ2 (2.20)

Here, the relationship of the related symbols is

k(r) = h(r)
√
f(r)
g(r) = r2, ρ2 = k(r) + a2 cos2 θ,

f̄ = 1
2k(r)− 1

2h(r)f(r),

∆(r) = r2f(r) + a2, Σ =
(
k(r) + a2

)2
− a2∆(r) sin2 θ.

(2.21)

In this way, we get the general form of the metric of the rotational space-time in the
NJ method. However, there is an unknown function ψ in the metric expression, which
needs to be solved by Einstein field equation. Since the space-time metric at this time
satisfies rotation symmetry, the component of the Einstein tensor Grθ = 0. Meanwhile,
the metric (2.20) should also satisfy Einstein field equation [41, 42]. Through a series of
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calculations, the equation of the gravitational field can be simplified into the following
equations (

k(r)+a2y2
)2
(

3∂ψ
∂r

∂ψ

∂y2−2ψ ∂2ψ

∂r∂y2

)
= 3a2∂k

∂r
ψ2

(2.22)

ψ

((
∂k

∂r

)2
+k

(
2− ∂

2k

∂r2

)
−a2y2

(
2+ ∂2k

∂r2

))
+
(
k+a2y2

)(
4y2 ∂ψ

∂y2−
∂k

∂r

∂ψ

∂r

)
= 0 (2.23)

For the short-hair black hole considered in this section, f(r) = g(r) = 1 − 2M
r +

Q2k
m

r2k , h(r) = r2, we can obtain k(r) = h(r)
√

f(r)
g(r) = r2. Substituting k(r) into equa-

tions (2.22) and (2.23), by solving the equations, we can get

ψ(r, θ, a) = r2 + a2 cos2 θ, (2.24)

So far, we have the expressions for all the unknown functions, thereby obtaining the
rotation form of the short-hair black hole, which is

ds2 =−
(

1− r
2−r2f(r)

ρ2

)
dt2+ ρ2

∆ dr2− 2asin2 θ
(
r2−r2f(r)

)
ρ2 dtdφ+ρ2dθ2+ Σsin2 θ

ρ2 dφ2

=−

1−
2Mr− Q2k

m

r2k−2

ρ2

dt2+ ρ2

∆ dr2−
2asin2 θ

(
2Mr− Q2k

m

r2k−2

)
ρ2 dtdφ+ρ2dθ2+ Σsin2 θ

ρ2 dφ2.

(2.25)

Where ρ2 = r2 + a2 cos2 θ, Σ = (r2 + a2)2 − a2∆(r) sin2 θ, ∆ = r2 − 2Mr+ Q2k
m

r2k−2 + a2.
If we consider a no-hair black hole, that is, Qm = 0, then the metric (2.25) degrades to a
Kerr black hole, and a can be interpreted as the black hole spin. When Qm 6= 0 and k > 1,
it is a short-hair black hole in rotation situation.

When k = 3
2 , ∆ = r2 − 2Mr + Q3

m
r + a2 = 0 will determine the structure of the black

hole event horizon. By adjusting the range of values of M , Qm and a, the number of the
black hole event horizon may be 1, 2 or 3. This is caused by the introduction of the short
hair. Then we analyse the specific properties of each case. From ∆ = 0, it can be found
that the event horizon of the black hole should satisfy the following equation

r3 − 2Mr2 + a2r +Q3
m = 0 (2.26)

The discriminant of the root is

∆ =
(
a2

3 −
4M2

9

)3

+
(
Q3
m

2 − 8M3

27 + Ma2

3

)2

(2.27)

When ∆ > 0, equation (2.26) has only one real root, so the black hole has only one
event horizon, the radius of which is

r = 2M
3 + 3

√
8M3

27 − Q3
m

2 − Ma2

3 +
√

∆ + 3

√
8M3

27 − Q3
m

2 − Ma2

3 −
√

∆ (2.28)
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When ∆ = 0, equation (2.26) has three real roots, at least two of which are equal, so
the event horizons of the black hole are

r1 = 2M
3 − 2 3

√
Q3
m

2 − 8M3

27 + Ma2

3 (2.29)

r2 = r3 = 2M
3 + 3

√
Q3
m

2 − 8M3

27 + Ma2

3 (2.30)

When ∆ < 0, equation (2.26) has three unequal real roots, that is, the black hole has
three different event horizons, and their values are

r1 = 2M
3 + 2

√
4M2

9 − a2

3 cos

1
3 arccos


(

8M3

27 − Ma2

3 − Q3
m

2

)√
4
9M

2 − 1
3a

2

(1
3a

2 − 4
9M

2
)2



(2.31)

r2 = 2M
3 + 2

√
4M2

9 − a2

3 cos

1
3 arccos


(

8M3

27 − Ma2

3 − Q3
m

2

)√
4
9M

2 − 1
3a

2

(1
3a

2 − 4
9M

2
)2

+ 2
3π


(2.32)

r3 = 2M
3 + 2

√
4M2

9 − a2

3 cos

1
3 arccos


(

8M3

27 − Ma2

3 − Q3
m

2

)√
4
9M

2 − 1
3a

2

(1
3a

2 − 4
9M

2
)2

+ 4
3π


(2.33)

Through calculations, we find that the structure of the event horizon of the short-
hair black hole is particularly complicated. ∆ determines the number of black hole event
horizons. Here, the mass of the black hole is taken as the unit, i.e., M = 1. When the
black hole spin 0 6 a 6 1, the critical value condition of Qm derived from ∆ = 0 is

Q3
m = 2

(
4
9 −

a2

3

) 3
2

+ 16
27 −

2
3a

2 (2.34)

When ∆ > 0, i.e., Q3
m < 2(4

9 −
a2

3 )
3
2 + 16

27 −
2a2

3 , only Qm < 0 can meet this situation,
which indicates that the short-hair black hole has no event horizon, so it is not the case we
consider. When ∆ = 0, the value range of Qm is 0 6 Qm 6 2

3 ×4
1
3 . When ∆ < 0, the value

range is Qm > 2
3 × 4

1
3 . In general, when 0 6 Qm 6 2

3 × 4
1
3 , the short-hair black hole has

three event horizons, two of which are equal. From a physical point of view, there are only
two event horizons, which are modifications of Kerr black hole. When Qm > 2

3 × 4
1
3 , the

short-hair black hole has three different event horizons, which indicates that the appearance
of the short-hair makes the black hole appear a new event horizon, and essentially changes
the structure of the black hole event horizon.
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As we all know, AdS-Kerr black hole has three event horizons (r+, r−, rΛ). The radius
of the event horizon generated by the introduction of cosmological constant Λ is very large,
namely rΛ � r+, while the radius of the event horizon generated by the short hair is close
to r+. Since the physical effects of r+ are relatively easy to measure, the corresponding
effects caused by the short hair are also relatively easy to detect, which makes the third
event horizon of the short-hair black hole interesting.

3 Geodesic equations of photons and analytic solution

Next, we derive the geodesic equations of photons based on the rotational space-time
metrics (2.7) and (2.25), and obtain the analytical solution. We will use the Hamilton-
Jacobi equation to calculate. In this method, Carter et al. introduced a new integral
constant and obtained analytical solutions of the geodesic equations by using variable
separation approach [43, 44]. Now, let’s introduce the main process. For a rotational black
hole, the Hamilton-Jacobi equation for the test particle is of the following form

∂S

∂σ
= −1

2g
µν ∂S

∂xµ
∂S

∂xν
, (3.1)

where S is the Jacobi action and σ is the affine parameter of a geodesic. In order to
be able to separate variables from geodesic equations, the action S should have the form

S = 1
2m

2σ − Et+ Lφ+ Sr(r) + Sθ(θ). (3.2)

m is the mass of the test particle, and for photons, m = 0. E and L are the two
initial integrals of the motion equation, corresponding to energy and angular momentum
respectively. Sr(r) and Sθ(θ) are radial and angular functions respectively. Due to the in-
troduction of these conserved quantities and unknown functions, the geodesic equations can
be simplified to four component equations. These results can be achieved in the following
ways. By substituting the action (3.2) into the Hamilton-Jacobi equation, equation (3.1)
can be reduced to such equations

ρ2 dt

dσ
= r2 + a2

∆(r)
(
E(r2 + a2)− aL

)
− a

(
aE sin2 θ − L

)
,

ρ2 dr

dσ
=
√
R, ρ2 dθ

dσ
=
√
H,

ρ2 dφ

dσ
= a

∆
(
E(r2 + a2)− aL

)
−
(
aE − L

sin2 θ

)
,

(3.3)

Since unknown functions Sr(r) and Sθ(θ) are set in the action S, we need to introduce
functions R and H, whose relationship with other initial integrals is

R =
(
E(r2 + a2)− aL

)2
−∆

(
m2r2 + (aE − L)2 +K

)
(3.4)

H = K −
(
L2

sin2 θ
− a2E2

)
cos2 θ (3.5)
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Where K is the constant introduced by Carter et al., which is later called Carter
constant. By introducing Carter constant, we can separate variables from the motion
equation, and (3.3) ∼ (3.5) are complete geodesic equations. In this work, we calculate the
motion of the test particle on the equatorial plane of the black hole, so θ = π

2 . In addition,
in the process of calculating the black hole shadow, the test particle is generally considered
as photon, whose static mass is 0. The motion of photons near black holes is very complex
and is discussed in detail in the relevant classical textbooks. The most obvious feature
is that at a certain radius close to the event horizon of the black hole, the motion of the
photon in this critical radius is very different from that outside. There is no stable motion
orbit of the photon within this critical radius, but there is a stable motion orbit outside this
radius. The critical orbit should satisfy R = 0 and dR

dr = 0. In order to better introduce
the coordinates of the shape of the black hole shadow, we first introduce the parameter
pair (ξ, η), so that L,K,E can be expressed. By substituting R and considering ξ = L

E

and η = K
E2 , ξ and η can be reduced to the following form.

For Hairy black hole

ξ = 1
a

[(
2α0 −

α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)
+2− 2M

r

]−1{(
r2 + a2

) [(
2α0 −

α0r

M − α0L
2

)

× exp
(

−r
M − α0L

2

)
+ 2− 2M

r

]
− 4

[
a2 + r2

(
1 + α0 exp

(
−r

M − α0L
2

))
− 2Mr

]}
(3.6)

η = 1
a2

[(
2α0 −

α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)
+ 2− 2M

r

]−1{
16Ma2 − 8a2α0r

2

M − α0L
2

× exp
(

−r
M − α0L

2

)
− r3

[
2− 6M

r
+
(

2α0 + α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)]2


(3.7)

For short-hair black hole

ξ =

(
r2 + a2) [2− 2M

r
+ 2Q2k

m (1− k)
r2k

]
− 4

[
r2 − 2Mr + Q2k

m

r2k−2 + a2
]

a

[
2− 2M

r
+ 2Q2k

m (1− k)
r2k

] (3.8)

η =
16a2

(
M − kQ2k

m

r2k−1

)
− 4r3

[
1− 3M

r
+ Q2k

m (k + 1)
r2k

]2

a2

[
2− 2M

r
+ 2Q2k

m (1− k)
r2k

] . (3.9)

4 The no-hair theorem and the shape of black hole shadows

4.1 The shape of black hole shadows

Once the geodesic of the photon is known, we can calculate the motion of the photon as
measured by an observer anywhere. In general, we assume that the earth is infinitely far
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away from the black hole and the observer is a mass point, which makes the calculation
very convenient. In the calculation of black hole shadows, physicists introduce the celestial
coordinate system, which is a two-dimensional coordinate system [45], and its relationship
with the BL coordinates of the black hole is

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
(4.1)

β = lim
r0→∞

(
r2

0
dθ

dr

)
(4.2)

where θ0 is the angle between the line from the earth to the black hole and the axis of
rotation of the black hole, and r0 is the distance between the earth and the black hole. In a
celestial coordinate system, photons emitted from the vicinity of the black hole correspond
to the coordinates (α, β) one by one, so that the geometry of the black hole shadow to
be understood by pushing back the edge of the geodesic motion of the photon by (α, β).
Through calculation, we get the expressions of α and β.

For Hairy black hole

α = − ξ

sin θ |θ=
π
2
= −ξ

= −1
a

[(
2α0−

α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)
+2− 2M

r

]−1{(
r2 + a2

) [(
2α0 −

α0r

M − α0L
2

)

× exp
(

−r
M − α0L

2

)
+ 2− 2M

r

]
− 4

[
a2 + r2

(
1 + α0 exp

(
−r

M − α0L
2

))
− 2Mr

]}
(4.3)

β = ±
√
η + a2 cos2 θ − ξ2 cot2 θ |θ=π

2
= ±√η

= ± 1
a2

[(
2α0 −

α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)
+ 2− 2M

r

]−1{
16Ma2 − 8a2α0r

2

M − α0L
2

× exp
(

−r
M − α0L

2

)
− r3

[
2− 6M

r
+
(

2α0 + α0r

M − α0L
2

)
exp

(
−r

M − α0L
2

)]2


(4.4)

For short-hair black hole

α = −ξ = −

(
r2 + a2) [2− 2M

r
+ 2Q2k

m (1− k)
r2k

]
− 4

[
r2 − 2Mr + Q2k

m

r2k−2 + a2
]

a

[
2− 2M

r
+ 2Q2k

m (1− k)
r2k

] (4.5)

β = ±√η = ±
16a2

(
M − kQ2k

m

r2k−1

)
− 4r3

[
1− 3M

r
+ Q2k

m (k + 1)
r2k

]2

a2

[
2− 2M

r
+ 2Q2k

m (1− k)
r2k

] (4.6)
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Figure 1. The shadow shape of hairy black hole under different model parameters (Model 1) [48].
From left to right represents the process of increasing the spin of the black hole, which is a =
0, 0.5, 0.9, 0.99 respectively. From top to bottom represents the process of increasing deformation
parameter, which is α0 = 0.1, 0.5, 0.9 respectively. Curves of various colors correspond to different
L values.

Using expressions (4.3) ∼ (4.6), the shape of the black hole shadow can be calculated,
so as to make clear the influence of the hairs on the shape of black hole shadow, as shown
in figures 1, 2, and 3. The main results are as follows.

We obtain the shadow shapes of two kinds of black holes with hairs. In model 1
(corresponding to figures 1 and 2) [48], the values of parameters α0 and L have a significant
influence on the shadow shapes (mainly referring to the size of the shadow boundary
here). When the parameter α0, which represents the intensity of the scalar hair, increases
gradually from 0, the boundary of the black hole shadow will shrink continuously. When
α0 increases to a certain critical value, the black hole shadow changes in reverse. On the
other hand, the boundary of the black hole shadow will always increase with the increase
of the characteristic length L. Therefore, the change of α0 and L to the black hole shadow
is complicated. In Model 2 (corresponding to figure 3), when k = 1.5, namely the short
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Figure 2. The shadow shape of hairy black hole under different model parameters (Model 1) [48].
From left to right represents the process of increasing the spin of the black hole, which is a =
0, 0.5, 0.9, 0.99 respectively. From top to bottom represents the process of increasing parameter L,
which is L = 0.01, 1, 2 respectively. Curves of various colors correspond to different α0 values.

hair case, if the black hole spin a = 0, the shape of the shadow boundary of the black
hole is a standard circle. It can be found that when the charge Qm of the short hair keeps
increasing, the shadow boundary of the black hole will decrease monotonically, but its
shape is all circle. As the black hole spin a increases, the shape of the black hole shadow
is distorted. We find that the change of the hairy black hole in model 1 to the shadow
is basically consistent with the case ε > 0 in reference [38], but the specific changes are
different. The change of the short-hair black hole in model 2 to the shadow corresponds to
the case ε < 0 in reference [38].

If the effects of various hairs carried by black holes on the metric of black holes are
known, it is possible to test them by means of EHT observations. However, the parameter
values of the real hairy black hole are smaller than those discussed by us (since the shape
of the black hole is mainly contributed by the mass, and the quantum effect should not
contribute much to it), which requires us to further improve the resolution of EHT before
we can test the no-hair theorem of the black hole.
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Figure 3. The shadow shape of short-hair black hole under different model parameters (Model 2).
From left to right is the process of increasing the black hole spin a. Curves of various colors
correspond to different values of intensity parameter Qm. Here k = 1.5.

4.2 The scale and distortion characteristics of shadows

From the previous analysis, we can see that the boundary shape of the black hole shadow
is a circle only when a = 0. When the black hole spin a 6= 0, the boundary of the black
hole shadow will be distorted in different degrees, which makes it necessary to introduce
new parameters to accurately describe the shape of the black hole shadow. Generally
speaking, scientists introduce the following two parameters to describe the shadow shape.
The first parameter is the shadow radius Rs, which describes the scale of the shadow shape
of the black hole. The second parameter is the degree of distortion of the shadow (δs),
which describes how far the boundary of the black hole shadow deviates from the circle.
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Figure 4. The radius (left) and distortion (right) of the black hole shadow vary with parameter
L (Model 1) [48]. From top to bottom, they correspond to different deformation parameters α0 =
0, 0.5, 1 respectively. The curves of various colors correspond to different black hole spins a.

According to previous discussions, its definition is as follows:

Rs = (αt − αr)2 + β2
t

2|αr − αt|
, (4.7)

δs = ds
Rs

= |αp − α̃p|
Rs

. (4.8)

The physical meanings of αp and α̃p are shown in reference [45]. When the black
hole spin a = 0 (i.e. in the case of a spherically symmetric black hole), αp = α̃p, at this
time, the black hole shadow is not distorted. When extreme black holes are considered
(i.e. a → 1), αp − α̃p is at its maximum at this point. Through numerical calculation,
we find the following results: (1) for model 1 [48], when Kerr black hole is considered,
namely α0 = 0 (no-hair black hole), the change of the scale parameter L hardly affects the
value of Rs. When α0 = 0.5 (i.e. black hole carries scalar or quantum hairs), Rs increases
slowly with the increase of parameter L. When α0 = 0.8, that is, more scalar or quantum
hairs are considered, Rs rises rapidly and then changes gently with L (see the left part of
figure 4). When L = 0, Rs decreases with the increase of α0. When L = 1, Rs decreases
first and then increases with the increase of α0. As L increases further, the size of Rs
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Figure 5. The radius (left) and distortion (right) of the black hole shadow vary with deformation
parameter α0 = 0 (Model 1) [48]. From top to bottom, they correspond to different parameters
L = 0, 1, 2 respectively. The curves of various colors correspond to different black hole spins a.
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Figure 6. The radius (left) and distortion (right) of the black hole shadow vary with the intensity
parameter Qm (Model 2). The curves of various colors correspond to different black hole spins a.
Here k = 1.5.
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varies with α0 to show some interesting phenomenon (see the left part of figure 5). (2) For
model 1 [48], when Kerr black hole (i.e. no-hair black hole) is considered, the distortion
parameter δs is a constant function of the scale parameter L. When scalar or quantum hair
black holes are considered, i.e. α0 6= 0, δs(L) is a decreasing function and decays rapidly at
the beginning, while δs changes slowly when L is very large (see the right part of figure 4).
In the case that L is constant, δs(α0) is an increasing function when L = 0, and the first
half is an increasing function and the second half is a decreasing function when L = 1.
Its variation becomes more singular at larger spins of the black hole and L (see the right
part of figure 5). (3) For model 2, i.e., the short-hair black hole, Rs(Qm) is a monotone
decreasing function, Rs(a), δs(Qm) and δs(a) are all increasing functions (see figure 6).
Since Rs and δs vary significantly with scalar, quantum or short hairs, it is more likely to
be tested in EHT observations.

5 The rate of energy emission

When particles or photons pass near a black hole, they are likely to be absorbed by the
black hole, so the effect is similar to that of a black body. If the black hole is regarded
as a black body, the size of the black hole shadow will be proportional to the high-energy
absorption cross section of the particle. In addition, the theoretical calculation of the high-
energy absorption cross section (σeim) of black holes shows that σeim is very close to a
constant, which brings great convenience to our calculation. For a spherically symmetric
black hole with hairs (scalar, quantum or short hair), the geometric absorption cross section
σeim is approximately equal to the photon sphere of the black hole space-time, i.e., σeim ≈
πR2

s [46, 47]. The shape of the black hole shadow is approximately a circle except for the
near extreme black hole, so the formula σeim ≈ πR2

s is approximately applicable. Knowing
the results of σeim, we can well define the rate of energy emission of a rotational black
hole as

d2E(ω)
dωdt

= 2π2ω3σeim

e
ω
T − 1

. (5.1)

Here, ω is the frequency of the particle and T is the Hawking temperature correspond-
ing to the event horizon of the black hole with hairs, whose mathematical form is directly
determined by the metric coefficients of the black hole (T = lim

θ→0,r→r+

1
2π√grr

∂
√
gtt
∂r ). Us-

ing Python for numerical calculation, we get the relationship between the rate of energy
emission and frequency ω, and then get the following results.

Firstly, it can be seen from the energy emissivity formula (5.1) that its form is very close
to Planck black-body radiation formula, so its main numerical results (see figures 7, 8, 9,
10, 11) are close to the black-body radiation curve [48]. However, there are some differences,
σeim is different at various Hawking temperatures.

Secondly, in model 1, for the case of α0 with a constant value (α0 = 0.8), with the
increase of parameter L, the overall trend of its energy emissivity increases, however, a more
complicated situation appears on the right side of the emissivity peak, that is, the emissivity
curves corresponding to different L values intersect. The intersection of energy emissivity
curves may reveal a new physical process. We take figure 7 as an example for analysis.
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Figure 7. The energy emissivity changes with the particle frequency under different model parame-
ters (Model 1) [48]. Curves of various colors correspond to different L values, where the deformation
parameter α0 = 0.8.
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Figure 8. The energy emissivity changes with the particle frequency under different model param-
eters (Model 1) [48]. Curves of various colors correspond to different deformation parameters α0,
where parameter L = 0.5.
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Figure 9. The energy emissivity changes with the particle frequency under different model param-
eters (Model 1) [48]. Curves of various colors correspond to different deformation parameters α0,
where parameter L = 1.
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Figure 10. The energy emissivity changes with the particle frequency under different model
parameters (Model 1) [48]. Curves of various colors correspond to different deformation parameters
α0, where parameter L = 1.5.
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Figure 11. The energy emissivity changes with the particle frequency under different model
parameters (Model 2). Curves of various colors correspond to different values of intensity parameters
Qm. Here k = 1.5.

When α0 = 0.8, the existence of the intersections indicates that the change of the energy
emissivity with parameter L is not monotonic. As the spin of the black hole increases, the
position of the intersection shifts to the right (i.e. the greater the particle frequency ω). In
figure 9, when parameter L = 1, the energy emissivity curves corresponding to different α0
also show the phenomenon of intersections. We find that with the increase of the spin of
the black hole, the position of the intersection moves to the left (that is, the direction in
which the particle frequency decreases). The intersection phenomenon of energy emissivity
curves is the characteristic of model 1. For model 2, namely the case of the black hole with
short hairs, figure 11 shows the results of numerical calculation, including: (1) the energy
emissivity decreases with the increase of short-hair parameter Qm, different from model
1, the energy emissivity curves corresponding to these different Qm values do not exist
intersection phenomenon; (2) due to the close relationship between short-hair parameter
Qm and the black hole spin a, the value of Qm is greatly limited.

Finally, comparing model 1 and model 2, the main difference of energy emissivity is
whether there is intersection phenomenon, which provides a new possibility for EHT to
measure the black hole hairs. That is, whether a black hole has a normal or short hair
should show up in EHT measurements.

6 Summary

In this work, we obtain the exact solution (space-time linear element (2.25)) of the short-
hair black hole in the rotation case. Combined with the space-time metric of the black hole
with hairs (soft or quantum hairs), we calculate the influence of short and soft hairs (or
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quantum hairs) on the black hole shadows in detail, and analyse the physical significance
of these results. Specifically, our main results are as follows:

(1) Using the NJ method, we generalize the spherically symmetric short-hair black hole
metric to the rotation case (space-time linear element (2.25)). In the case of spher-
ically symmetric short-hair black hole, the value range of parameter k is k > 1.
For the rotational short-hair black hole (2.25), the range of short-hair charge value
Qm is greatly reduced due to the introduction of the black hole spin a. When
0 6 Qm 6 2

3 × 4
1
3 , the rotational short-hair black hole has three event horizons,

two of which are equal, so from physical observation, the black hole has only two
event horizons at this time. When Qm > 2

3 × 4
1
3 , the rotational short-hair black hole

has three unequal event horizons, so the space-time structure of the black hole is
significantly different from that of Kerr black hole. In the space-time metric (2.25),
the value range of k is k > 1. If the value of k is larger, some interesting phenomena
will occur in the rotational short-hair black hole. We take k = 5

2 as an example for
rough analysis. When k = 5

2 , the roots of equations (2.13) and (2.25) will be very
complex; as long as the values of Qm and a are appropriate, short-hair black holes
may have more event horizons. Then, what is the special physical meaning of the
short-hair black holes with multiple event horizons (especially more than 3)? We
look forward to studying this issue in future work.

(2) We calculate the shadow shapes for two kinds of black holes with hairs in detail,
and further study the scale, distortion properties and energy emissivity of black hole
shadows. First of all, for model 1, the effect of scalar hair on the black hole shadows
corresponds to that of ε > 0 in reference [38], but the specific changes of the shadows
in model 1 are different [48]. This is because the black hole hair in reference [38] is
considered as a perturbation to the black hole, while the space-time metric of model 1
is accurate and does not have perturbation property. For model 2, that is, the change
of the black hole shadow caused by short hairs, the main change trend is consistent
with that of ε < 0 in reference [38]. Because of the special structure of the short-hair
black hole, the specific changes of black hole shadows are different. Secondly, the
variation of Rs and δs with L and α0 is not a monotone function in model 1, but in
model 2, it is. These results show that scalar hairs (model 1) have different effects on
Kerr black hole shadows than short hairs (model 2), so it is possible to distinguish
the types and properties of these hairs if they are detected by EHT observations.
Finally, as for the effects of the hairs on energy emissivity, the main results in model
1, different energy emissivity curves have intersection phenomenon, while in model 2
(short-hair black hole), there is no similar intersection phenomenon.

In general, various black hole hairs have different effects on the shadows, such as non-
monotonic properties and intersection phenomena mentioned in this paper. Using these
characteristics, it is possible to test the no-hair theorem in future EHT observations, so as
to have a deeper understanding of the quantum effect of black holes. In future work, we
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will use numerical simulations to study the effects of various hairs on black holes and their
observed properties.
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