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Using only global symmetries of QCD, we set up an effective model of quarks at finite temperature near
the crossover, including all possible terms up to dimension-6. We first treat this in mean field theory. Then
we investigate low-energy fluctuations around it up to one-loop order in fermions below the crossover.
Static correlation functions of pions and the crossover temperature, both measured on the lattice,
completely suffice to fix all parameters of the theory. We examine predictions of this theory, including those
for thermodynamic quantities. The results are encouraging.
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I. INTRODUCTION

Effective field theories (EFTs) are good ways of organ-
izing the computation of low-energy or long-distance
effects in a quantum field theory. QCD at very low
temperature, T, seems to be well described by an EFT
which describes the dynamics of pions [1,2]. At very high
temperature it seems to be possible to understand long-
distance phenomena qualitatively in an effective weak-
coupling expansion [3]. These rely on a separation of scales
T ≫ gT ≫ g2T, where g is the gauge coupling at momen-
tum scale of order T. The EFT at each different momentum
scale is obtained by integrating over momenta larger than
those required at this scale. The separation of scales breaks
down when T is a few hundred MeV, since g ∼ 1 in that
temperature range, and these EFTs also become ineffective.
However, this is precisely the range of temperatures

which is of great physical interest. The finite temperature
crossover from a chiral symmetry broken hadronic state
to a symmetry restored quark-gluon state occurs here. It is
also the range of temperatures which seems to be most
relevant for experiments using heavy-ion collisions.
Some models have been used to explore the physics of
this region and have had moderate success in matching
lattice computations [4,5].
Here we investigate a related model EFTwhich is built to

describe the physics of QCD at finite temperature, around
the crossover temperature Tco. We follow a method which

is often used when there is very limited information about
the system under study [1]. Then one can write an EFT by
guessing what the relevant fields and global symmetries
are, and then writing down all possible terms in the
Lagrangian which are constrained by the relevant global
symmetries. Since we already know the full theory, namely
QCD, it may seem that this process is less than optimal,
since it does not exploit all the knowledge that the theory
contains. The problem in deriving an effective theory from
QCD, however, is that there is no known small parameter
which can be exploited to do this accurately.
The model is written down in Sec. II. The mean field

theory (MFT) is briefly examined in Sec. III. Fluctuations
around the MFT are considered in Sec. IV. The description
of lattice measurements is taken up in Sec. V. The
regularization of integrals is discussed in the Appendix.
These are technical parts of the paper. A nontechnical
discussion is in the concluding Sec. VI; it is possible to read
this section before the rest of the paper.

II. THE EFFECTIVE THEORY MODEL

The global symmetries of QCD which we use to build
an EFT model are the vector (V) and axial (A) flavor
symmetries SUVðNfÞ×SUAðNfÞ, for Nf flavors of quarks.
We will build a model of interacting quark fields designed
to match physics near some finite temperature T0. The
model is organized by mass dimension of operators, using
the intrinsic scale T0 to give dimensions to couplings where
necessary. The fermion fields carry Dirac and flavor
indices. We carry along the SUðNcÞ color index, although
these contribute only overall factors since there are no color
interactions in the model: every fermion bilinear we build is
color blind. We have no a priori argument for this, but
proceed on this assumption to examine phenomena. We use
the notation N ¼ 4NcNf for the dimension of the fermion
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field, choosing Nc ¼ 3 and Nf ¼ 2 in this paper. The
extension to Nf ¼ 3 is interesting and will be examined in
the future.
EuclideanDiracmatrices are chosen to beHermitian,with

γ4 ¼ −iγ0, and γ5 ¼ γ1γ2γ3γ4. The conjugate fermion field
is defined as ψ̄ ¼ ψ†γ4. Since the Lorentz group becomes a
rotation group, its generators are Hermitian, Sμν ¼
−i½γμ; γν�=4. Since we model thermal physics, time and
space components are distinguished. As a result the finite
temperature theory breaks the full O(4) rotational symmetry
to a cylindrical symmetry Oð3Þ × Z2, where O(3) is the
spatial rotational symmetry and Z2 is the Euclidean time
reversal symmetry T [6]. Every O(4) tensor also reduces.
A finite temperature effective field theory then has many
more couplings than a zero temperature theory. In order to
describe the thermodynamics of the original theory, it
suffices to write only CPT (Charge conjugation, Parity,
Time reversal) invariant terms in the EFT. Vector flavor
transformations act on spinors as ψ → expðiτaθa=2Þψ , and
the axial as ψ → expðiτaθaγ5=2Þψ .
We will write the Lagrangian of the EFT without

a vacuum energy term, d0T4
0. There are no terms of

dimension-1 or -2. The dimension-3 operator ψ̄ψ has the
quark pole mass as its coefficient, which we write as
m0 ¼ d3T0. The dimension-4 terms are obtained by using
derivative operators: ψ̄=∂4ψ and ψ̄=∂ψ . Here =∂4 ¼ γ4∂4 and
=∂ ¼ γi∂i. These are invariant under P and T, and also Vand
A. Inserting further Dirac structures in the two bilinears
makes them lose discrete symmetries. The coefficient of the
kinetic term, ψ̄=∂4ψ fixes the normalization of the field
operator, and hence is always set to unity. The coefficient of
the other term, d4, is special to finite temperature.
In a quadratic theory of fermions, the poles

of the inverse propagator would be the solution of

p2
4 þ ðd4Þ2jpj2 þm2

0 ¼ 0. Pole mass, im0, is the term used
for the pole of the temporal correlator averaged over space,
i.e., for jpj ¼ 0. The screening mass is the pole of the static
propagator, i.e., for p4 ¼ 0. So d4 ≠ 1 is just the statement
that screening and pole masses are not equal. A general
limit on d4 comes from the requirement that after Wick
rotation the group velocity of a wave packet should be
less than unity. In a quadratic theory this implies that
0 < d4 < 1. With an UV cutoff, one can have larger values
of d4 without running into problems with causality.
Three terms of mass dimension-5 can be obtained by

using derivatives: ψ̄=∂4=∂4ψ , ψ̄=∂4=∂ψ , and ψ̄=∂=∂ψ . All three
are invariant under C, P, T and V, but not under A. One can
restore A by putting extra Dirac matrices in the bilinears,
but this will destroy some of the discrete spacetime
symmetries. As a result, there are no dimension-5 terms
in the model.
Terms of mass dimension-6 can either be built using

fermionic current-current interactions or using derivatives
in fermion bilinears. Four terms of the second kind are
ψ̄=∂3

4ψ , ψ̄=∂2
4=∂ψ , ψ̄=∂4=∂2ψ , and ψ̄=∂ψ . All three are invariant

under P and T, Vand A. One can use the equation of motion
at dimension-4 to remove =∂4 and reduce all terms to that
involving only spatial derivatives. This term should be
added to the effective theory. However, it affects neither the
MFT nor the fluctuations at the order we examine. So we
do not include it here. Inserting further Dirac structures in
the two bilinears makes them lose the invariance under P, C
or T. The four-Fermi terms are restricted by chiral invari-
ance. We may add terms of higher dimension if required.
The Euclidean EFT model we start with then consists of

all possible terms up to mass dimension-6, invariant under
the global and space-time symmetries of a finite temper-
ature Euclidean theory,

L ¼ d3T0ψ̄ψ þ ψ̄=∂4ψ þ d4ψ̄=∂iψ þ L6; where

L6 ¼ þ d61

T2
0

½ðψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2� þ
d62

T2
0

½ðψ̄τaψÞ2 þ ðψ̄iγ5ψÞ2� þ
d63

T2
0

ðψ̄γ4ψÞ2 þ
d64

T2
0

ðψ̄ iγiψÞ2 þ
d65

T2
0

ðψ̄γ5γ4ψÞ2

þ d66

T2
0

ðψ̄iγ5γiψÞ2 þ
d67

T2
0

½ðψ̄γ4τaψÞ2 þ ðψ̄γ5γ4τaψÞ2� þ
d68

T2
0

½ðψ̄iγiτaψÞ2 þ ðψ̄iγ5γiτaψÞ2�

þ d69

T2
0

½ðψ̄iSi4ψÞ2 þ ðψ̄SijτaψÞ2� þ
d60

T2
0

½ðψ̄ iSi4τaψÞ2 þ ðψ̄SijψÞ2�: ð1Þ

This differs from the Nambu-Jona-Lasinio (NJL) model
[4] in a few ways. First, it is built to model QCD at finite
temperature, hence Lorentz invariance is not used, and a
temperature scale T0 is used to organize the expansion.
Second, it is an EFT, so all terms up to a certain order in
mass dimension are kept, provided they are invariant
under the symmetries of the model. The NJL model
would have all four-Fermi couplings set to zero except

d61. Some of the other couplings have been considered
before [7].
For later use we point out a fact which is well known [8].

Since the dimension-6 terms are specifically written to
preserve both the vector and axial parts of the chiral
symmetry, it is only the mass term which breaks the
symmetry. We have chosen the mass matrix to be diagonal
in flavor, so only the axial part of the chiral symmetry is
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broken by it. As a result, we have the following relation for
the divergence of the axial current:

∂μjaμðxÞ ¼ 2d3T0Pa; where Pa ¼ 1

2
ψ̄γ5τ

aψ : ð2Þ

This is the partially conserved axial current (PCAC)
relation.

III. THE MEAN FIELD THEORY

The fermionic mean field approximation is the operator
identity ψ̄αψβ ¼ δαβhψ̄ψi, where α and β are composite
Dirac-flavor-color indices. Performing the Wick contrac-
tions in various ways in the generic 4-Fermi term then gives

ðψ̄ΓψÞ2 ¼ 2hψ̄ψi½TrΓψ̄Γψ − ψ̄ΓΓψ �
− hψ̄ψi2½ðTrΓÞ2 − TrðΓΓÞ�: ð3Þ

The product of Dirac-flavor matrices in the second term
is the Fierz transformation. Since all the Dirac matrices as
well as the rotation generators are traceless, only Γ ¼ 1

contributes to the first term. Also, since γ2μ ¼ 1 for all
Euclidean Dirac matrices, we find that the second is
proportional to the identity for all currents. Using this
we can reduce the interactions to an effective mass term

L6¼−N
�
T2
0

4λ

�
Σ2þΣψ̄ψ ; whereΣ¼ 2λ

T2
0

hψ̄ψi and

λ¼ðN þ2Þd61−2d62−d63þd64þd65−d66þd69−d60:

ð4Þ

Note that exactly the same result would have been obtained
in the mean field approximation to the NJL model [4]. The
NJL mean field theory is widely explored [9], and we only
need to adapt the results to take into account Lorentz
symmetry breaking. The EFT is

LMFT ¼ −N
�
T2
0

4λ

�
Σ2 þ ψ̄=∂4ψ þ d4ψ̄=∂iψ þmψ̄ψ ; where

m ¼ d3T0 þ Σ ð5Þ

is an effective quark mass. T0 can be chosen as we wish.
There are only three couplings in this model. These have to
be determined from data. Σ must come out of a compu-
tation. We use dimensional regularization (DR) to deal with
this to deal with this theory. Details are given in the
Appendix, which also contains the notation used in the
remainder of the paper.

A. T0 and couplings

Using the methods of the Appendix, we find that the
free energy density in the MFT, using dimensional regu-
larization, is

−Ω ¼ NT2
0Σ2

4λ
þ Nm4

64π2ðd4Þ3
�
log

�
m2

ðd4Þ2M2

�
−
3

2

�

þ NT
2π2ðd4Þ3

Z
∞

0

dpp2 log

�
1þ exp

�
−
E
T

��
; ð6Þ

where M is a scale from dimensional regularization and
E2 ¼ p2 þm2, where p is rescaled in the last term to
include d4, so giving rise to the Jacobian factor 1=ðd4Þ3.
The value of Σmust be that which minimizesΩ for fixed T.
This, and the gap equation, dΩ=dΣ ¼ 0, are very similar
to the usual solutions of the NJL model. Putting the value
of Σ at the minimum back into Eq. (6), one obtains the
free energy density as a function of temperature, Ω0. The
pressure is P ¼ −Ω0.
In the chiral limit and at low temperature, the minimum

is at nonvanishing Σ, whereas at high temperature Σ ¼ 0
is the only solution. The temperature at which the trivial
solution becomes the minimum is the critical temperature,
Tc. By taking the second derivative of Ω with respect to Σ
and requesting that this vanish at Tc, one finds

ðd4Þ3
λ

¼ 1

12

T2
c

T2
0

: ð7Þ

Since we are interested in the region where the system
crosses over from one state to another, we can choose T0 to
be equal to Tc. We will distinguish Tc from the crossover
temperatures Tco obtained away from the chiral limit. In
this case λ ¼ 12ðd4Þ3. Note that this is just a convention for
T0, and not a prediction of Tc. By changing the convention
we would only shift the value of λ=ðd4Þ3, while keeping Tc
unchanged.
Note that there are two more couplings to be determined,

namely d3 and d4. We will have to use two observables in
order to fix these. Note that unlike the combination λ=ðd4Þ3,
these may depend on the renormalization scale M. On
changingM one needs to change couplings in order to keep
the observables unchanged. This is a renormalization group
running for the couplings, although its validity is limited
because M cannot be made arbitrarily large. It may seem
that a freedom to choose the coupling λ to fit a third
observation has gone away. This is not so; the freedom has
been transmuted into a choice of the as yet unspecified
dimensionful quantity T0. A third observation is required to
fix this coupling. Once this is done, everything else is a
prediction.

B. Curvature of the critical line

One may add a chemical potential term to the action in
the form −μψ̄γ4ψ . It turns out then that the critical point in
the chiral limit at μ ¼ 0 develops into a critical line. The
same computation as above, now done at small μ gives an
equation for the critical line,
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TcðμÞ2 þ
3

π2
μ2 ¼ T2

0; ð8Þ

in the chosen convention T0 ¼ Tcð0Þ and quite indepen-
dent of the couplings in the theory. The curvature of the
critical line in the chiral limit is usually given in terms of
the expansion

TcðμÞ ¼ Tcð0Þ −
1

2
κ

μ2

Tcð0Þ
þOðμ3Þ: ð9Þ

Comparing these two equations, we find the parameter free
prediction

κ ¼ 3

π2
: ð10Þ

Estimates of this quantity have been made on the lattice
with quarks which are somewhat heavier than those found
in nature. The results correspond to the range κ ≃
0.01–0.05 [10]. Although the mean field prediction in
the chiral limit is larger, it is not so far away that it cannot
be improved by various corrections.
These include corrections due to fluctuations around

the mean field, or couplings between the condensate and
number density. Interestingly though, there are other
corrections which may be larger. The perturbation to the
action due to a chemical potential breaks CP symmetry by
a dimension-3 term. This hard breaking in the UV could
generate other CP-violating terms in the effective action.
Enumerating and controlling them all is a problem we will
address in the future.

IV. PIONIC FLUCTUATIONS

A. The pion field

In order to examine fluctuations around the mean field
solution of the fermionic model, we use the Hubbard-
Stratanovich trick and introduce a matrix valued field V
with composite Dirac, flavor and color indices to linearize
the action in Eq. (1). The equation of motion for V gives

Vαβ ¼ ψαψ̄β: ð11Þ

Since the dimension-6 terms of the action have been
constructed to be invariant under axial flavor transforma-
tions, simultaneous transformations of V, ψ and ψ̄ leave
even the linearized form invariant.
Fluctuations in the axial direction about the condensate

are therefore captured by local “isospin waves” parame-
trized in the form

ψ → eiπ
aτaγ5=ð2fÞψ and ψ̄ → ψ̄eiπ

aτaγ5=ð2fÞ; ð12Þ

where πa are bosonic fields, and f an emergent constant
of dimension-1. These fields drop out of the dimension-6

terms, and are seen only in the dimension-4 terms. Since
the path integral is now quadratic in the fermion fields, we
integrate them out to one-loop order to get the tree-level
action of the fluctuations up to dimension-4:

Lf ¼ c2T2
0

2
π2 þ 1

2
ð∂4πÞ2 þ

c4

2
ð∇πÞ2 þ c41

8
π4: ð13Þ

The only possible contraction of SU(2) flavor indices for
the quartic term is ðπ2Þ2. A similar theory without the
quartic terms has been previously considered in [11]; in
their notation c2T2

0 ¼ m2 and c4 ¼ u2. The theory seems to
contain four constants, namely f, and the couplings c2, c4

and c41. However, the underlying fermionic theory from
which we derive this has only three couplings. In a later
section we will give the computation of the couplings in
Eq. (13) to one-loop order. As with any EFT, higher
dimensional terms may be systematically added to Lf if
needed.
The contribution of the fluctuations to the free energy

from the tree-level action of Eq. (13) is straightforward,
since it reduces to a computation only in the quadratic
theory. Since this closely parallels the MFT computation,
we write down the result,

Ωπ ¼
3ðc2T2

0Þ2
64π2ðc4Þ3=2

�
log

�
c2T2

0

c4M2

�
−
3

2

�

þ 3T
Z

d3p
ð2πÞ3 log ð1 − e−E=TÞ; ð14Þ

where E2 ¼ c4p2 þ c2T2
0 and M is the scale which arises

from dimensional regularization of the vacuum energy
term. The thermal integral is well known.

B. Current algebra and parameters
of the quadratic action

We first make a few remarks about symmetry relations
using Eq. (13). At small momentum we have

Z
d4xeiq·xhπaðxÞπbð0Þi ¼ δab

c2T2
0 þ q24 þ c4q2

: ð15Þ

In the static limit one obtains

lim
q4→0

Z
d4xeiq·xhπaðxÞπbð0Þi ¼ δab

c4
×

1

q2 þ ðc2T2
0=c

4Þ :

ð16Þ

This implies that the pion screening mass is
Mπ ¼ T0

ffiffiffiffiffiffiffiffiffiffiffi
c2=c4

p
. Use of an effective theory simplifies

the computation of screening masses, a fact that has been
used before [12].
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Using the definition of the axial vector rotation by an
angle θa on quark fields, and the definition of the pion
field, one sees that the transformation acts on the pion
field as

πaðxÞ → πaðxÞ þ fθa: ð17Þ

The axial Noether currents for Lf of Eq. (13) are then

ja4ðxÞ ¼ f∂4π
a þ � � � jai ðxÞ ¼ fc4∂iπ

a þ � � � ; ð18Þ

where the dots represent terms that arise when higher
dimensional terms are kept in Lf. As a result, current
correlators can be written as

hja4ðxÞjb4ðyÞi ¼ f2h∂4π
aðxÞ∂4π

bðyÞi þ � � �
hjai ðxÞjbi ðyÞi ¼ ðfc4Þ2h∂iπ

aðxÞ∂iπ
bðyÞi þ � � � : ð19Þ

The momentum space correlator of the axial charge
density can now be written as

Z
d4xeiq·xhja4ðxÞjb4ð0Þi ¼ f2δabq24hπaðq4;qÞπbð−q4;−qÞi

¼ f2δabq24
c2T2

0 þ q24 þ c4q2
⟶
q4→0

0: ð20Þ

Since the static limit gives a vanishing result, screening
correlators of this component of the current cannot be used
to constrain the parameters of the effective theory.
For the correlator of the spatial part of the current,

we have

Z
d4xeiq·xhjai ðxÞjbi ð0Þi

¼ ðfc4Þ2δabq2hπaðq4;qÞπbð−q4;−qÞi

¼ ðfc4Þ2δabq2

c2T2
0 þ q24 þ c4q2

⟶
q4→0 f2c4δabq2

q2 þM2
π
: ð21Þ

This differs from the pion correlator only in the coefficient.
Since the measurement of a single current correlation
function can give both the coefficient and the screening
mass, we can constrain the model entirely by the meas-
urement of this correlation function.
Given the relations in Eqs. (2) and (18), one easily finds

Z
d4xeiq·xhPaðxÞPbð0Þi

¼
�

f
2m0

�
2

δab
ðq24 þ c4q2Þ2

c2T2
0 þ q24 þ c4q2

⟶
q4→0 f2c4

4m2
0

×
q4δab

q2 þM2
π
:

ð22Þ

So the measurement of the static correlator for Pa can also
be used to find both the screening mass and a combination
of the couplings.
It is useful to convert this to a form which can be directly

implemented on the lattice. As long as the lattice cutoff
is sufficiently larger than T0, one can ignore the lattice
spacing and treat it as a theory in a finite box with periodic
boundary conditions. The screening correlators measured
on the lattice are usually projected on to zero momentum in
all directions except one. Fourier transforming such a
momentum space correlator from Eq. (22) in a box of
size L with periodic boundary conditions gives contribu-
tions from both the poles with equal weight. Performing the
integral then gives the screening correlator for Pa to be

CPðzÞ ¼
f2c4M3

π

4m2
0

e−MπL=2 cosh
�
Mπ

�
L
2
− z

��
: ð23Þ

With the aid of a finite temperature version of the Gell-
Mann-Oakes-Renner relation, which we show later, this
can be put into a form which is directly measurable on the
lattice. The screening correlator for the axial current
polarized in the z-direction takes on the simple form,

CJ3ðzÞ ¼
1

2
f2c4Mπe−MπL=2 cosh

�
Mπ

�
L
2
− z

��
: ð24Þ

This is also measurable on the lattice.

C. Two-point functions

We introduce the transformations, Eq. (12), into the MFT
action, and then expand out the exponential to the lowest
order needed for each of the following computations. The
couplings needed in Eq. (13) can be obtained by computing
the two-point and four-point functions using the processes
shown in Figs. 1 and 2, respectively. These Feynman
diagrams can be evaluated using the quark propagator
obtained from the MFT and pion-quark couplings from the
expansion of the exponential as explained here.
The two-point function can be written in momentum

space as

Sπ ¼
N
8f2

Z
d4q
ð2πÞ4 ~π

aðqμÞ ~πað−qμÞ½−q4q4I44ðqμÞ

− qiqiI iiðqμÞ þ IðqμÞ�; ð25Þ

FIG. 1. Feynman diagram topologies for the two-point function
of pions obtained by integrating out the quarks. Dashed lines
stand for pions, full lines for quarks.
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where the integrals come from the one-loop Feynman
diagrams shown in Fig. 1. The explicit forms of the
integrals are

I44ðqÞ¼
1

4

Z
d4p
ð2πÞ4Tr

�
1

−i=pþm
ðγ5γ4Þ 1

−i=p0 þm
ðγ5γ4Þ

�
;

I iiðqÞ¼
ðd4Þ2
4

Z
d4p
ð2πÞ4Tr

�
1

−i=pþm
ðγ5γiÞ 1

−i=p0 þm
ðγ5γiÞ

�
;

IðqÞ¼m2
0

4

Z
d4p
ð2πÞ4Tr

�
1

−i=pþm
ðiγ5Þ 1

−i=p0 þm
ðiγ5Þ

�

þm0

4

Z
d4p
ð2πÞ4Tr

�
1

−i=pþm

�
; ð26Þ

where p0 ¼ pþ q and the trace is over spinor indices.
Taking the limit qμ → 0 in the integrals allows us to

match Sπ to the effective action in Eq. (13). This identi-
fication then implies the matching conditions:

f2¼−
N
4
I44ð0Þ; c4¼ I iið0Þ

I44ð0Þ
; c2T2

0¼−
4Ið0Þ
I44ð0Þ

: ð27Þ

We write p ¼ ðp4;pÞ and recall that p4 ¼ ð2nþ 1ÞπT.
Using the definition of the sum integral, as before, we have

I44ð0Þ ¼ −T
X∞
n¼−∞

Z
d3p
ð2πÞ3

ðp4Þ2 − ðd4Þ2p2 þm2

ðp2 þm2Þ2 ;

I iið0Þ ¼ −ðd4Þ2T
X∞
n¼−∞

Z
d3p
ð2πÞ3

×
2ðd4Þ2pipi − ðp4Þ2 − ðd4Þ2p2 þm2

ðp2 þm2Þ2 ;

Ið0Þ ¼ −m0ðm0 −mÞT
X∞
n¼−∞

Z
d3p
ð2πÞ3

1

p2 þm2
: ð28Þ

After performing the sums in p4 using the methods of
[13] the integrands can be split into a thermal part and a part
that is independent of T. The thermal parts of the integrals
are exponentially damped for momenta much larger than T,
and hence have no UV divergences. However, they cannot
be exhibited in closed form, and are best evaluated numeri-
cally. We find that the integrals are

I44 ¼
m2

4π2ðd4Þ3 log
�

m
d4M

�
þ
Z

d3p
ð2πÞ3

�
m2

E3ðexpðE=TÞ þ 1Þ −
ðd4Þ2p2 expðE=TÞ

E2TðexpðE=TÞ þ 1Þ2
�
;

I ii ¼
m2

8π2d4

�
2 log

�
m

d4M

�
−
1

3

�
−
Z

d3p
ð2πÞ3

�ðd4Þ4p2ð1 − cos2θÞ
E3ðexpðE=TÞ þ 1Þ −

ððd4Þ4p2cos2θ þ ðd4Þ2m2Þ expðE=TÞ
E2TðexpðE=TÞ þ 1Þ2

�
;

I ¼ m0ðm0 −mÞm2

16π2ðd4Þ3
�
1 − 2 log

�
m

d4M

��
þ
Z

d3p
ð2πÞ3

m0ðm0 −mÞ
EðexpðE=2TÞ þ 1Þ : ð29Þ

The vacuum terms are regulated in DR and M is the MS
scale defined in the Appendix.
It can be shown that c4 vanishes at Tc in the chiral limit.

Since the vacuum part of I ii vanishes form → 0, we obtain

I iið0Þ ¼ −
1

6π2d4

Z
∞

0

dpp2

expðp=TÞ þ 1

×

�
2

p
−

1

Tfexpð−p=TÞ þ 1g
�
: ð30Þ

In terms of the variable y ¼ p=T, the integral can be
written as

I iið0Þ ¼ −
T2

6π2d4
ðI1 − I2Þ; where

I1 ¼ 2

Z
∞

0

dyy
ey þ 1

;

I2 ¼
Z

∞

0

dyy2

ð1þ eyÞð1þ e−yÞ : ð31Þ

Interestingly, both I1 and I2 are equal to π2=6, as a result of
which I iið0Þ vanishes. The cancellation can also be seen in
the following way. I1 has a set of single poles, and I2 has
double poles at exactly the same set of points. Furthermore,
the residues at the poles exactly cancel between the two
integrals. Since I iið0Þ ¼ 0, by Eq. (27) c4 vanishes at Tc in

FIG. 2. Feynman diagram topologies for the four-point function of pions obtained by integrating out the quarks up to one-loop order.
Dashed lines stand for pions, full lines for quarks.
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the chiral limit [11]. Then, from the equation of motion, one
sees that the pion field just becomes a constant non-
propagating field: the pion disappears above the critical
point in the chiral limit. This creates no pathologies for the
one-loop computation. However, in pion loops, thermal
integrals are not UV regulated. This means that near Tc
higher dimensional terms must be added to Eq. (13) in
order to make sense of the pion EFT.
Within the one-loop computation it is possible to ask

how c4 approaches zero near the chiral critical point.
The argument above implies that the thermal part of I ii

varies as m2 ¼ Σ2. However, when Σ is not exactly zero,
the T ¼ 0 part must also be taken into account, and adds a
m2 logm term. At the same time, I44 goes to a constant.
From the gap equation we see that Σ goes to zero at Tc with
a power behavior

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. However, a more careful

examination shows that this is modified by affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
logð1 − T=TcÞ term. If one drops the loga-

rithms, one would see c4 ∝ ð1 − T=TcÞ [11]. The loga-
rithms make this vanish slower, giving a leading
behavior c4 ∝ ð1 − T=TcÞ logð1 − T=TcÞ.

D. Thermal Gell-Mann-Oakes-Renner relation

A useful formal relation is called the Gell-Mann-Oakes-
Renner (GMOR) relation. For small m0 in Eq. (28), we can
neglect the term quadratic in m0, and write

Ið0Þ ¼ 2m0

Z
d4p
ð2πÞ4

m
p2 þm2

; ð32Þ

where the overall factor of 2 on the right comes from the
fact that the 4-d integral is defined by a sum over positive
Matsubara modes, but I is defined by a sum over all
Matsubara modes. Next, using Eq. (27) we obtain

c2T2
0 ¼

N
f2

Ið0Þ ¼ 2m0N
f2

Z
d4p
ð2πÞ4

m
p2 þm2

: ð33Þ

The gap equation in the MFT shows that the integral is
exactly the negative of hψ̄ψi=2. As a result, we obtain the
extension of the GMOR relation to finite temperature,

c2T2
0 ¼ −

Nm0hψ̄ψi
f2

: ð34Þ

The factor of N is conventional; it is often absorbed into
the definition of the condensate. Since all the quantities
appearing here have been defined in terms of the couplings
in the fermion theory, this identity is a statement of self-
consistency at one-loop order. Note that when m0 ¼ 0 the
identity implies c2 ¼ 0.

E. Four-point functions

Symmetry arguments prevent dimension-3 operators
from appearing in the pion effective action of Eq. (13).
Examination of the Feynman diagrams which appear to
one-loop order in the computation of three-point functions
gives the same result. Technically this happens because we
need to take the trace of Dirac structures such as γ5, γ5γμγν
or γ5γμγνγρ, all of which vanish.
The coupling c41 in Eq. (13) is computed from the

Feynman diagrams shown in Fig. 2. Since every vertex in
these diagrams carries a factor ofm0, the leading term in the
chiral limit comes from the last diagram. This is easily
evaluated, and gives

c41¼Nm0

3f4

Z
d4p
ð2πÞ4

m
p2þm2

¼Nm0hψ̄ψi
3f4

¼−
m2

π

3f2
: ð35Þ

We have used the GMOR relation to get the final form. The
evaluation of the other diagrams is straightforward but
tedious.

V. DESCRIBING LATTICE COMPUTATIONS

A. Lattice data set

We make a few remarks about the lattice computations
which we use. A recent work [14] reported two sets of
computations of correlators of the axial current as well as of
the pseudoscalar isoscalar density. One set (called C1 in
[14]) uses a quark mass which gives the crossover temper-
ature Tco ¼ 211� 5 MeV. The other set (D1) has a lighter
quark and gives Tco ¼ 193� 7 MeV. In each scan the
temperature is measured with an accuracy of 2 MeV.
However, in the set D1 the temperature scan below Tco
mostly covers a range of about 10 MeVof the central value
for Tco, and hence is statistically indistinguishable from
Tco. As a result, we are forced to use the set called C1,
which covers a larger temperature range.
Since the EFT is treated in dimensional regularization,

loops give only logarithms of m=M (M is the regularizing
scale). However, a lattice regularization not only has the
corresponding logs of ma (where a is the lattice spacing),
but also powers. In the past decade it was realized that
much faster convergence to continuum results are obtained
by subtracting power corrections [15]. However, subtrac-
tion of power corrections has not yet been performed for
two-point functions. Once lattice computations start doing
this, a matching with the EFT will yield continuum results
when T ≪ 1=a.
Comparing our expression for the axial current correlator

in Eq. (24) with that used in [14], we find that what we call
f

ffiffiffiffiffi
c4

p
is called fπ there. Also, what we call the screening

mass, Mπ ¼ T0

ffiffiffiffiffiffiffiffiffiffiffi
c2=c4

p
, is called mπ there, and the

definition of the chiral condensate there corresponds to
−N hψ̄ψi in our notation. With these translations, the
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results reported in [14] can be used with the expressions we
use. For example, the GMOR relation is the same, since the
factors of

ffiffiffiffiffi
c4

p
cancel. Also, the definition of the quantity

called uf in [14] is what we call u.

B. Fits

Since we do not have access to the covariances of the
lattice computations our treatment of the errors is forcibly
simplistic. We take the errors in Mπ and c4 to be
independent, and make four sets of fits at the extreme
values allowed for each of these. Similarly, we take the
error in Tco to be completely independent of this. Also,
since we require the dimensionless ratio T=Tco, and we
have no access to possible covariances between the
numerator and denominator, we add the errors in quad-
rature. If lattice collaborations make these fits in the future,
then all the covariances of the inputs can be taken into
account.
We remarked earlier that there are three parameters of

the EFT to be fitted. Two of these are the dimensionless
couplings d3 and d4. The third coupling is dimensionally
transmuted to the value of the critical temperature Tc,
which has been chosen to coincide with T0. The inputs
which we use to fix these are the values of Mπ and c4

(called mπ and uf in [14]) at T=Tco ¼ 0.84� 0.02 (cor-
responding to T ¼ 177� 2 MeV) and the value of the
crossover temperature Tco=T0, We define Tco in the EFT to
be the temperature at which the chiral susceptibility peaks.
The results of our fits are shown in Fig. 3. Little can be

said directly from the values of the couplings, except that
they seem to be of order unity. Since d3 → 0 is the chiral
limit, this indicates that the quark mass of the input data set
is rather high. We have checked that the values of d4

obtained in the fit do not violate causality.

The best fit gives Tco=T0 ¼ 1.24� 0.03. Since the
lattice computation has Tco ¼ 211� 5 MeV, this yields
T0 ¼ 170� 6 MeV. This is also the critical temperature in
the chiral limit. The value agrees with the chiral extrap-
olations using the same action reported in [16].

C. Checks and predictions

The EFT becomes useful if the couplings d3, d4 and λ
vary little with temperature. Then the fit shown in Fig. 3
can be used to extract physics at a range of temperatures
near Tco. The first check of whether this can be done is to
examine the temperature dependence of Mπ and c4, while
keeping the fermionic couplings independent of T. This test
is shown in Fig. 4. While the agreement is not perfect, the
trend seen in the lattice computation seems to be reasonably
well reproduced in the EFT. The dependence of the EFT
predictions on the scale M is seen to be small. There is
some jitter in the lattice computations which could perhaps
be removed if one uses larger statistics. Also, since the
lattice spacing changes as T is changed, at such large quark
masses power corrections could modify the temperature
dependence somewhat.
Independent tests of the model are the prediction of the

other low-energy constants: f and c41. Since the model
parameters are now fixed, there is no further freedom in
these predictions. A comparison of our prediction with the
lattice results for f is shown in Fig. 5. The agreement is
pleasant. There are no lattice computations of the four-point
function of pions, so the prediction shown in Fig. 5 cannot
be tested now. The dependence of these quantities on the
scale M is still mild, although a little larger than for Mπ

and c4.
From these checks it seems that the approximation of

neglecting the temperature dependence of the couplings in
the fermion EFTworks fairly well in a range of temperature
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FIG. 3. The 1-σ limits of the lattice results of [14] at T=Tco ¼ 0.84� 0.02 define the input rectangular area in the panel on the left. The
fitted values of the EFT couplings are given in the figure on the right. Traversing the rectangle on the left in the clockwise direction, one
traverses the output rectangles also in the same sense. The fits depend on the values of the regularization scaleM as shown. For eachM
we have shown three rectangles, these are for the central and upper and lower 1-σ values of Tco.
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around Tc. The renormalization scale dependence of
physical results is generally smaller than the uncertainty
due to the errors in the input quantities.
However, the results on c41 shown in Fig. 5 put limits on

the use of Eq. (13) to compute pion loop corrections in
future. Negative c41 means that we are able to treat only
fluctuations of magnitude π < T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=jc41j

p
. In order to do

pion loop integrals one must take into account higher
dimension terms which stabilize the path integral over
pions. We also see that at T ≃ 0.75Tc the coupling c4

begins to approach unity. So it is possible at T ≤ 0.75Tco,
an effective theory tuned at T ¼ 0 may become a quanti-
tatively useful tool.
Subject to this limitation, we can now compute extensive

thermal quantities in the effective theory of fluctuations
given in Eq. (13). This theory is constructed to be valid for
p < T. For thermal quantities whose integrands are domi-
nated by momenta in this region, one should get accurate

predictions. Since thermal integrals have UV cutoffs
expð−Ep=TÞ, we require T <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4T2þc2T2

0

p ≃T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4þc2

p
,

where we have taken T0 ≃ T. However, for very small
quark masses, near the crossover, where both c4 and c2 are
small, the one-loop computation of fluctuations cannot give
thermodynamic quantities accurately. This is connected with
the fact that the pion becomes nonpropagating at the critical
point in the chiral limit.
In the case we are examining, the convergence criterion

is satisfied. Even so, some quantities are predicted more
accurately than others. An examination of the integrals
shows that the energy density, E=T4, or the entropy density
S=T3, are less well controlled than the pressure, P=T4. On
the other hand the chiral susceptibility is better controlled.
Recall also that the pressure is dominated by the lightest
particle, and this must appear in the EFT. Therefore the
pressure can be fairly well described as long as the
technical criteria discussed here are satisfied. However
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FIG. 5. From the fitted values of the fermion couplings, other pionic couplings can be predicted. The model predictions of f=T and c41
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the energy density can get large contributions from massive
modes which are not part of the EFT.
In Fig. 6 we show the pressure computed in the MFTand

to one-loop order using Eq. (14). The rise seen in the one-
loop correction comes from a factor of ðc4Þ−3=2 obtained by
doing the momentum integrals in the thermal pion con-
tribution. Since this is a generic feature of the EFT model,
so must be the increase in pressure as one approaches Tco.

VI. DISCUSSION

In this paper we developed an effective theory for
strongly interacting matter with the modest aim of describ-
ing long-distance physics in a small range of temperatures
around the QCD crossover temperature Tco. This introdu-
ces a scale T0 ≃ Tco for the temperature. Long-distance
physics means momenta less than the temperature.
Since QCD at finite quark mass has a crossover, there is

no sharp change in the nature of the degrees of freedom.
On one side of the crossover, it could be natural and easy to
use hadronic degrees of freedom, just as it is natural and
easy to use quark and gluon degrees of freedom on the other
side. However, the free energy has no singularity, and one
should be able to push either description across the cross-
over, perhaps with some increase in the complexity of
description.
In this spirit, in Sec. II we wrote down the most general

Euclidean effective theory of quarks at finite temperature
including dimension-6 terms which are constrained by the
chiral SUð2Þ × SUð2Þ symmetry of QCD. Although the
action in Eq. (1) is a generalization of the NJL model, it
contains some new features such as the difference between
screening and pole masses. It also includes some extra
couplings which have been considered in the literature from
time to time. An obvious criticism is that we leave out
gluons. We are unable to give a field theoretical justifica-
tion for this. Since the model works well enough, as we

showed quantitatively, one should turn this question around
and ask what this implies for possible derivations of
effective models from QCD.
The mean field theory is examined in Sec. III. The ten

couplings for 4-Fermi operators reduce to one in this limit,
leaving three couplings to be determined. Divergent inte-
grals are treated in dimensional regularization (see the
Appendix). This has a feature which is useful for thermal
physics, namely that it regulates only the integrals which
are divergent, but not the convergent finite temperature
pieces. The gap equation completely fixes one combination
of the couplings, as shown in Eq. (7), and by dimensional
transmutation leaves the transition temperature in the chiral
limit, Tc, as the third quantity to be fixed by data.
There is a critical line in the phase diagram at finite

chemical potential in the chiral limit, whose curvature is
predicted in MFT; see Eq. (10). This is within an order of
magnitude of the same quantity computed on the lattice. We
discussed in Sec. III that a chemical potential for quarks in
the UV theory, namely QCD, gives a hard breaking of CP
symmetry. This means that all operators which break this
symmetry could enter into the EFT. An improved descrip-
tion of the phase diagram is therefore sufficiently compli-
cated that we leave it to the future.
In Sec. IV, we examined low-energy isospin-wave

fluctuations around the MFT. These are organized as
another EFT written in terms of pion fields. All terms up
to dimension-4 are given in Eq. (13). Through the
Noether’s theorem and PCAC we connected the couplings
of the fermion EFT to lattice computations of two-point
functions of currents in QCD. We demonstrated the one-
loop computation of the couplings of this theory. We also
showed that the Gell-Mann-Oakes-Renner (GMOR) rela-
tion remains valid at one-loop order in the EFT.
This model is applied to a description of lattice compu-

tations in Sec. V. All the parameters of the model are
obtained by matching the EFT to lattice computations in
[14] at one value of the temperature; the results are shown
in Fig. 3. The lattice regularization contains power correc-
tions in the quark mass, which should be subtracted in the
future. Although the data available today do not perform
these subtractions, the fits yield reasonable descriptions of
the temperature dependence of the long-distance part of
two-point functions of pions at all temperatures given in
[14]. They also give predictions for as yet unmeasured four-
point functions of pions; see Figs. 4 and 5. The pressure
shows an interesting rapid rise below and close to Tco,
which we have argued is a robust prediction of the model.
The EFT parameters give indications of limits on the

model. One limit comes from the fact that the four-pion
coupling c41 becomes negative at about 0.75Tco, indicating
that higher dimension terms are needed to stabilize pion
loop corrections. At the same time, c4 becomes of order
unity, indicating that an EFT fitted at T ¼ 0 may be an
appropriate computational tool at lower temperatures. Near
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and above Tco, the falling value of c4 indicates that higher
derivative terms in the EFT may become necessary. This
still leaves a window of applicability of the one-loop
corrections to the MFT in terms of a pion EFT. The results
we have shown are in this window.
Some future directions are clear. The pion EFTwe derived

at one-loop is very similar to that used in [11] for
examination of departure from equilibrium. Similar real-
time phenomena may be investigated in the fermion EFT
which we work with. The question of the phase diagram is
another direction, which we have already discussed. A
parametrization of “radial” fluctuations can give us a better
handle on the physics above Tco. The case Nf ¼ 3 will be
interesting. So also will be a complete analysis of the model
at finite chemical potential. One question that we have not
examined at all is of the nonlinear sigma model which
describes fluctuations. This can be interesting.

APPENDIX: REGULARIZATION

The free energy density for the MFTaction in Eq. (5) can
be written as Ω=N ¼ −T2

0Σ2=ð4λÞ − I0ðm; TÞ, where the
integral

I0ðm; TÞ ¼
Z

d4p
ð2πÞ4 logðp

2
4 þ p2 þm2Þ

¼ T
X
n

Z
d3p
ð2πÞ3 log

�
π2ð2nþ 1Þ2 þ E2

p

T2

�
;

ðA1Þ

E2
p ¼ ðd4Þ2p2 þm2, and the sum over Matsubara modes

goes only over positive n. This has a cubic divergence
which needs to be cured. The origin of this divergence will
be important to understand, since we expect no divergences
in the thermodynamics of free fermions.
Using a standard trick [13] we can write

I0ðm;TÞ

¼ T
Z

d3p
ð2πÞ3

X
n

�
log ð1þ π2ð2nþ 1Þ2Þ

þ
Z

E2
p=T2

1

dy
π2ð2nþ 1Þ2 þ y

�

¼ T
Z

d3p
ð2πÞ3

�
σl þ

1

π2

Z
E2
p=T2

1

dy
X
n

1

ð2nþ 1Þ2 þ y=π2

�
;

ðA2Þ

where we have introduced the notation σl for the temper-
ature independent but divergent sum over the logarithmic
terms. We may justify the interchange of the sum and the
integral by putting an arbitrary UV cutoff at all stages until
the cubic divergence in terms of this cutoff is removed and

a finite result is obtained. After the change of variables,
t ¼ ffiffiffi

y
p

, and performing the remaining sum, one gets [13]

I0ðm; TÞ ¼ T
Z

d3p
ð2πÞ3

�
σ0l þ

Ep

2T
þ log ð1þ e−Ep=TÞ

�
;

ðA3Þ

where σ0l absorbs all the factors independent of p and T.
Note that there are now two kinds of cubic divergences: one
is linear in T and comes from the integral over σ0l, the other
is independent of T and comes from the integral over Ep.
The second term is just the zero-point energy of the fields,
called the vacuum energy. The first term, which we may
call the vacuum entropy, gives no contribution to deriva-
tives of logZ ¼ −F=T, and hence cannot give any con-
tribution to thermodynamics, and so may be subtracted out.
A cutoff regularization is easy to implement when it

works, and cures all UV divergences. However, while it
makes the vacuum entropy finite, it does not reduce it to
zero. In view of this, a different regularization may be more
useful. An alternative is to use a scheme which resembles
Pauli-Villars regularization. In the familiar version of this
regularization process one subtracts from a divergent
integral another integral of the same form with m → M
and choosingM ≫ m. However, in this case that would still
leave a linear divergence. We are forced to subtract more
integrals to obtain a regular integral. This removes the
vacuum entropy term. However the vacuum energy has
powers of m=M.
In zero-temperature effective theories, dimensional regu-

larization turns out to be very useful. At finite temperature
one would have to work near D ¼ 3 spatial dimensions,
since we want to regulate after doing the sum over all
Matsubara frequencies. Recall that dimensional regulari-
zation needs a regularization scale M which is used to give
the correct dimension to the integral defined originally with
ϵ ¼ 0. The basic formula we need to use is

Jmn ¼ μ3−D
Z

dDk
ð2πÞD

k2m

ðk2 þ l2Þn

¼ l2mþD−2nμ3−D
ΩD

ð2πÞD
ΓðmþD=2ÞΓðn −m −D=2Þ

2ΓðnÞ ;

ðA4Þ

where ΩD ¼ 2ð2πÞD=2=ΓðD=2Þ is the volume of an unit
sphere in D dimensions. We set D ¼ 3 − 2ϵ.
For the vacuum entropy term, we havem ¼ 0 and n ¼ 0.

The formula above shows that the integral is finite,
and therefore zero due to its invariance under the choice
of l. The vacuum energy term requires m ¼ 0 and
n ¼ −1=2. The formula then gives the following result:
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J0−1=2 ¼
�

l4

32π2

��
−
1

ϵ
þ γ −

3

2
þ log

�
l2

4πμ2

�
þOðϵÞ

�
;

ðA5Þ

where γ is the Euler-Mascheroni constant.
In order to compute the vacuum energy we scale

p → ðd4Þp in Eq. (A3). However, the regularization scale
μ is a scale on p, so it must be scaled in the same way.
Using the definitionM2 ¼ 4πμ2 expð−γÞ, and dropping the
pole in ϵ, we then get the M̄S result,

Ir0ðmÞ ¼
�

m4

64π2ðd4Þ3
��

log

�
m2

ðd4Þ2M2

�
−
3

2

�
: ðA6Þ

Putting everything together, we find

I0ðm; TÞ ¼ Ir0ðmÞ þ T
ðd4Þ3

Z
d3p
ð2πÞ3 ½log ð1þ e−

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
=TÞ�:

ðA7Þ

One can continue the thermal integral to arbitrary dimen-
sion. Since the integral is finite, taking the result to the
limit D → 3 gives no poles in 3 −D, and hence does not
introduce the scale M into the thermal integral. DR is
therefore much more intuitive for the thermal part than

either a cutoff or Pauli-Villars regularization would have
been. One pleasant result of this is that large values of
logðM=mÞ can be easily avoided, in the same way as at
zero temperature. DR has been used before at finite
temperature in [17].
Using Eq. (6), the gap equation, dΩ=dΣ ¼ 0, becomes

Σ ¼ −
2λ

T2
0

�
m3

16ðd4Þ3π2
�
log

�
m2

ðd4Þ2M2

�
− 1

�

−
m

2ðd4Þ3π2
Z

∞

0

dpp2

E
1

expðE=TÞ þ 1

�
: ðA8Þ

In the chiral limit, d3 ¼ 0 and so m ¼ Σ. We can see then
that Σ ¼ 0 is always a solution, and that there are generally
two more real solutions related by sign flips.
Pion loop integrals may also be regularized in DR. We

see that the convergent thermal parts of the integrals will
give results of the form Tnfðc2T0=TÞ, where n is the
engineering dimension of the loop integral. At finite
temperature this introduces a new scale in amplitudes,
which would then modify the power counting of pion loops
and give results different from those in, for example, [1].
This will be interesting at higher loop orders than what we
examine.
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