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We revisit the lo w-ener gy K 

+ N elastic scatterings in the context of the in-medium quark 

condensate with strange quarks. The chiral ward identity connects the in-medium quark 

condensate to the soft limit value of the pseudoscalar correlation function evaluated 

in nuclear matter. The in-medium correlation function of the pseudoscalar fields with 

strangeness describes in-medium kaon propagation and is obtained by kaon–nucleon scat- 
tering amplitudes in the lo w-density appro ximation. We construct the kaon–nucleon scat- 
tering amplitudes in chiral perturbation theory up to the next-to-leading order and add 

some terms of the ne xt-to-ne xt-to-leading or der with the strange quar k mass to improv e 
expansion of the strange quark sector. We also consider the effect of a possible broad res- 
onance state around P lab = 600 MeV/ c for I = 0 reported in the previous study. The low- 
energy constants are determined by existing K 

+ N scattering data. We obtain good repro- 
duction of the K 

+ p scattering amplitude by chiral perturbation theory, while the description 

of the KN amplitude with I = 0 is not so satisfactory due to the lack of lo w-ener gy data. Per- 
forming analytic continuation of the scattering amplitudes obtained by chiral perturbation 

theory to the soft limit, we estimate the in-medium strange quark condensate. 
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1. Introduction 

Chiral symmetry is one of the symmetries of quantum chromodynamics (QCD) of the fun-
damental theory for strong interactions and is broken d ynamically a t low energies as a phase
transition phenomenon. In the vacuum phase transition, the quark condensate 〈 ̄q q 〉 is one of 
the order parameters for the symmetry breaking. In the case of the exact chiral symmetry, the
value of the quark condensate is zero when chiral symmetry is manifest, and after the symmetry
breaking it becomes finite. This is called the dynamical breaking of chiral symmetry (DB χS). In
extreme environments, e.g. high temperature and/or high density, the broken chiral symmetry
is expected to be fully r estor ed. 

In order to confirm how DB χS takes place phenomenolo gicall y, we investigate the partial
restoration of the chiral symmetry in nuclear matter. There the magnitude of the quark con-
densate is expected to decrease as chiral symmetry is r estor ed in nuclear matter. Since the quark
condensate is not directly observable, it is necessary to obtain the information on the quark
condensate through the experimental values of hadrons in nuclei, such as hadron–nucleus scat-
terings and bound states of hadrons in nuclei. Of particular interest is the in-medium property
of the Nambu–Goldstone boson (NG boson) such as the pion. The NG bosons appear to be
associated with DB χS. Hence the properties of the NG bosons should be sensiti v e to the nature
of DB χS. The partial restoration of DB χS has been studied especially for pions in the nucleus,
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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which extracts the in-medium quark condensate 〈 ̄u u + d̄ d〉 for two flavors. From the observa- 
tions of deeply bound pionic atoms [ 1 ] and the lo w-ener gy pion–nucleus elastic scatterings [ 2 ],
the isovector scattering length of the π–nucleus system b 

∗
1 was extracted. Comparing b 

∗
1 and

that in the πN system b 1 based on theoretical considerations [ 3 , 4 ], it is suggested that chiral
symmetry is r estor ed about 30% at normal nuclear density. Theoretically, the restoration of 
chiral symmetry in nuclear matter was predicted by a model-independent low-density theorem 

[ 5 , 6 ]. In this relation, the sign of the experimental σπN 

term or the theoretical c 1 parameter
of chiral perturbation theory determines whether the magnitude of the quark condensate in-
creases or decreases in nuclear matter. Since the σπN 

term extracted from the experimental
data of lo w-ener gy πN scatterings [ 7–12 ] is found to have a positi v e sign, the quark condensate
should decrease in nuclear matter. Similar results are obtained by in-medium chiral perturba-
tion theory [ 13–15 ], which is de v eloped by Refs. [ 16 , 17 ]. 

From the systematic point of view, we study the quark condensate with strange components
in nuclear matter in this paper. As with 〈 ̄u u + d̄ d〉 , a theoretical calculation for the low-density
relation of 〈 ̄u u + s̄ s 〉 is performed based on the correlation function approach de v eloped in
Refs. [ 4 , 14 ]. There the in-medium quark condensate 〈 ̄u u + s̄ s 〉 is written in terms of the kaon–
nucleon scattering amplitude at the soft limit in the linear density approximation. We use chiral
perturbation theory to extrapolate the scattering amplitude to the soft limit. The lo w-ener gy
constants (LECs) in the amplitude are determined from experimental data as well as the σπN 

term. The current approach is a complementary method to the e valuation of the quar k con-
densate by using the Feynman–Hellmann theorem where the quark condensate is obtained by
taking the deri vati v e of the nucleon energy density with respect to the quark mass [ 13 , 16–18 ]. 

We make good use of the K 

+ N scattering in order to determine the LECs. For determining
the LECs, K 

+ N scatterings ar e pr eferab le ov er K 

−N scatterings since in the K̄ N system the
�(1405) resonance appears below the threshold with a narrow decay width, while such a reso-
nance does not exist in the K 

+ N system. The K 

+ N scattering at lo w ener gy has been studied for
a long time [ 19–23 ]. R ecently, R ef. [ 24 ] carried out the construction of the K 

+ N scattering am-
plitude using chiral perturbation theory up to the next-to-leading order, in which some terms
wer e missing. Refer ence [ 25 ] constructed the K 

+ N scattering amplitude using the chiral unitary
approach and discussed the presence of a broad resonance state with I = 0, S = + 1 around
P lab = 600 MeV/ c . For the purpose of determining the LECs, the K 

+ N scatterings need to be
described by chiral perturbation theory. In our calculation, we construct K 

+ N scattering am-
plitudes using the chiral perturbation theory up to the next-to-leading order and some terms
from the ne xt-to-ne xt or der, which includes the strange quar k mass [ 26 ], and determine the
LECs using scattering data. With the determined LECs we estimate the low-density behavior
of the quark condensate with strange quarks in nuclear matter. 

The structure of this paper is as follows. In Section 2 , we deri v e a relation to the in-medium
quark condensate with strange quarks and the KN scattering amplitude based on the correla-
tion function approach [ 4 , 14 , 15 ] and the low-density theorem [ 5 , 6 ]. In Section 3 , we construct
the K 

+ N scattering amplitudes using chiral perturbation theory. In Section 4 , we determine
the LECs so as to reproduce the existing K 

+ N sca ttering da ta. Using the determined LECs,
we discuss the behavior of the in-medium quark condensate with strange quarks. The quark
condensates in hyperon matter and SU(3) flavor symmetric baryonic matter are also discussed.
2/29 



PTEP 2024 , 053D01 Y. Iizawa et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreov er, we e valuate the wav e function renormalization of the in-medium kaon. In Section 5 ,
we summarize the results of this paper. 

2. In-medium quark condensate with strange quarks 
As mentioned in the introduction, the purpose of this paper is to estimate the extended quark
condensate to flavor SU(3). In this section, we describe the quark condensate in the nuclear
medium based on the correlation function approach de v eloped in Refs. [ 4 , 14 , 15 ] and the low-
density theorem [ 5 , 6 ]. In this paper, we assume isospin symmetric nuclear matter. 

2.1. Correlation function approach 

Following Refs. [ 4 , 14 , 15 ], we calculate the di v ergence of the time-ordered product of the axial-
vector current A μ and the pseudoscalar field P given as 

∂ μT 

[
A 

† 
μ( x ) P ( 0) 

] = T 

[
∂ μA 

† 
μ( x ) P ( 0) 

] + δ(x 0 ) 
[ 

A 

† 
0 (x ) , P (0) 

] 

(1) 

where the axial-vector current A μ( x ) and the pseudoscalar field P ( x ) are defined in terms of the
up and strange quark fields as 

A μ(x ) = 

1 √ 

2 

s̄ ( x ) γμγ5 u ( x ) , (2) 

P (x ) = 

√ 

2 i ̄s ( x ) γ5 u ( x ) , (3) 

respecti v ely. The axial-v ector current is one of the Noether currents associated with the SU(3)
chir al tr ansformation and the pseusodcalar field appears in the partially conserved axial current
(PCAC) relation 

∂ μA μ( x ) = 

m + m s 

2 

P ( x ) , (4) 

with explicit chiral symmetry breaking by the quark masses. Here m and m s are the current
quark masses of the light and strange quar ks, respecti v ely, with the isospin symmetry m =
m u = m d . The pseudoscalar field is transformed under the axial transformation generated by
Q 5 ≡

∫ 
d 

3 xA 

† 
0 (x ) as 

[ Q 5 , P (x )] = −iS(x ) , (5) 

where the scalar field S is gi v en by 

S(x ) = ū (x ) u (x ) + s̄ (x ) s (x ) . (6) 

Evaluating Eq. ( 1 ) for the ground state of nuclear matter | 
〉 and introducing the in-medium
correlation functions 

�5 μ(x ; ρ ) = 

〈
T A 

† 
μ( x ) P ( 0) 

〉∗ ≡ 〈 
| T A 

† 
μ( x ) P ( 0) | 
〉 , (7) 

�(x ; ρ ) = 

〈
T P 

† ( x ) P ( 0) 
〉∗ ≡ 〈 
| T P 

† ( x ) P ( 0) | 
〉 , (8) 

we obtain in the momentum space 

−iq 

μ�5 μ(q ) = 

m + m s 

2 

�ab (q ) + 

∫ 

d 

3 xe −i q ·x 
〈 



∣∣∣[ 

A 

† 
0 (x ) , P (0) 

] 

∣∣∣ 
〉 
. (9) 

When we take the soft limit q 

μ → 0 for Eq. ( 9 ), the left-hand side vanishes since we do not have
any zero modes off the chiral limit and the second term of the right-hand side yields the scalar
field S by using Eq. ( 6 ). Finally, we have the in-medium condensate 

〈 ̄u u + s̄ s 〉 ∗ ≡ 〈 
| ̄u u + s̄ s | 
〉 = −i 
m + m s 

�(q = 0 ; ρ ) (10) 

2 

3/29 
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and the in-vacuum condensate 

〈 ̄u u + s̄ s 〉 0 ≡ 〈 0 | ̄u u + s̄ s | 0 〉 = −i 
m + m s 

2 

�(q = 0 ; ρ = 0) . (11) 

2.2. Lo w-density theor em 

In the low-density theorem [ 5 , 6 ], we can expand the in-medium matrix element of an operator
O as 

〈 
|O| 
〉 = 〈 0 |O| 0 〉 + ρ〈 N |O| N 〉 + O (ρn> 1 ) . (12) 

A ppl ying this theorem to �( x ; ρ), we obtain 

�(x ; ρ ) = 〈 0 | P 

† ( x ) P ( 0) | 0 〉 + ρ〈 N| P 

† ( x ) P ( 0) | N〉 + O (ρn> 1 ) . (13) 

The matrix element 〈 N | P 

†( x ) P (0) | N 〉 is written by the isospin-averaged kaon–nucleon scattering
amplitude T KN 

( q ) using the reduction formula [ 27 ] as 

F . T . 〈 N| P 

† ( x ) P ( 0) | N〉 = 

i 

q 

2 − M 

2 
K 

G 

2 
K 

q 

2 − M 

2 
K 

(
−T KN 

( q ) 
2 M N 

)
(14) 

where G K 

is the in-vacuum coupling defined as 〈 0 | P | K 

+ 〉 ≡ G K 

. Finally, with Eqs. ( 10 ), ( 11 ),
( 13 ), and ( 14 ), the quark condensate with strange components is given in terms of the isospin-
averaged kaon–nucleon scattering amplitude T KN 

in the soft limit as 

〈 ̄u u + s̄ s 〉 ∗
〈 ̄u u + s̄ s 〉 0 = 

(
1 + 

ρ

M 

2 
K 

T KN 

(q = 0) 
2 M N 

)
. (15) 

Here, in order to evaluate the condensate, it is necessary to take the soft limit for T KN 

. For this
purpose, T KN 

is constructed using chiral perturbation theory in the next section. 

3. Formulation for KN amplitudes 
3.1. The chiral Lagrangian 

In order to estimate the in-medium quark condensate with strange quarks, 〈 ̄u u + s̄ s 〉 ∗, based on
Eq. ( 15 ), we construct the kaon–nucleon scattering amplitude T KN 

using chiral perturbation
theory. Chiral perturbation theory provides an analytic form of the scattering amplitude as a
function of the energy and momentum. This is favorable for the analytic continuation of the
scattering amplitude to the soft limit. The soft limit q μ = 0 is not on the mass shell. Thus, the
extrapolation to the soft limit has to be performed without taking the on-shell condition. We
determine the lo w-ener gy constants from the observed data of the K 

+ N scattering. 
The leading order of the SU(3) meson–baryon chiral Lagrangian reads 

L 

(1) 
MB 

= Tr 
{
B̄ (i / D − M 0 ) B) 

} − D 

2 

Tr 
{
B̄ γ μγ 5 { u μ, B} } − F 

2 

Tr 
{
B̄ γ μγ 5 [ u μ, B] 

}
, (16) 

where M 0 is the baryon mass at the chiral limit, D and F are lo w-ener gy constants to be de-
termined by experiments, and the baryon and meson fields, B and , are written in the SU(3)
matrix form as 

 = 

⎛ 

⎜ ⎜ ⎝ 

π0 √ 

2 
+ 

η√ 

6 
π+ K 

+ 

π− − π0 √ 

2 
+ 

η√ 

6 
K 

0 

K 

− K̄ 

0 − 2 √ 

6 
η

⎞ 

⎟ ⎟ ⎠ 

, (17) 

B = 

⎛ 

⎜ ⎜ ⎝ 

�0 √ 

2 
+ 

�√ 

6 
�+ p 

�− − �0 √ 

2 
+ 

�√ 

6 
n 

�− �0 − 2 √ 

6 
�

⎞ 

⎟ ⎟ ⎠ 

. (18) 
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Here we use the Coleman–Callan–Wess–Zumino (CCWZ) par ametrization of the chir al field
U as 

U = exp (i 
√ 

2 / f ) (19) 

where f is a normalization of the meson field  and corresponds to the meson decay constant
at tree le v el. The covariant deri vati v e for the baryon field is introduced as 

D μB = ∂ μB + [�μ, B] (20) 

with the mesonic vector current given as 

�μ = 

1 

2 

(ξ † ∂ μξ + ξ∂ μξ † ) 

where ξ 2 = U . The mesonic axial-vector current is introduced as 

u μ = i(ξ † ∂ μξ − ξ∂ μξ † ) . (21) 

The next-to-leading order (NLO) of the chiral Lagrangian is gi v en by 

L 

(2) 
MB 

= b D 

Tr 
{
B̄ { χ+ 

, B} } + b F Tr 
{
B̄ [ χ+ 

, B] 
} + b 0 Tr 

{
B̄ B 

}
Tr { χ+ 

} + d 1 Tr 
(
B̄ { u μ, [ u 

μ, B] } )
+ d 2 Tr 

(
B̄ [ u μ, [ u 

μ, B]] 
) + d 3 Tr 

(
B̄ u μ) Tr (u 

μB 

) + d 4 Tr 
(
B̄ B) Tr (u 

μu μ

)
− g 1 

8 M 

2 
N 

Tr 
(
B̄ { u μ, [ u ν, { D 

μ, D 

ν} B] } ) − g 2 

8 M 

2 
N 

Tr 
(
B̄ [ u μ, [ u ν, { D 

μ, D 

ν} B]] 
)

− g 3 

8 M 

2 
N 

Tr ( B̄ u μ) Tr (u ν, { D 

μ, D 

ν} B) − g 4 

8 M 

2 
N 

Tr ( B̄ { D 

μ, D 

ν} B) Tr (u μu ν ) 

− h 1 

4 

Tr 
(
B̄ [ γ μ, γ ν ] Bu μu ν

) − h 2 

4 

Tr 
(
B̄ [ γ μ, γ ν ] u μ[ u ν, B] 

)

− h 3 

4 

Tr 
(
B̄ [ γ μ, γ ν ] u μ{ u ν, B} ) − h 4 

4 

Tr ( B̄ [ γ μ, γ ν ] u μ) Tr (u νB) + h . c . (22) 

where b i , d i , g i , and h i are the LECs of NLO. The terms that include b i and d i appear in the
typical flavor SU(3) chiral Lagrangian such as in Refs. [ 24 , 28 ], while the terms that include
g i and h i are introduced as the extension of the flavor SU(2) chir al Lagr angian and used in
Ref. [ 25 ]. This Lagrangian is consistent with the most general form of the next-to-leading order
shown in Refs. [ 29 , 30 ]. 

The scalar ( s = s a λa , a = 0, 1, 2…8) and pseudoscalar ( p = p 

a λa , a = 0, 1, 2…8) sources are
contained in χ± as 

χ± = ξχ † ξ ± ξ † χξ † (23) 

through χ defined as 

χ = 2 B 0 (s + ip) , (24) 

where B 0 is a lo w-ener gy constant. The current quark masses are introduced through the exter-
nal scalar field by setting 

s = diag (m, m, m s ) , (25) 

with the isospin-averaged quark mass m and the strange quark mass m s . The lo w-ener gy con-
stant B 0 is fixed with the current quark masses by the kaon mass with the relation M 

2 
K 

=
B 0 (m + m s ) in this work. 

In order to improve extrapolation in the strange quark sector, we introduce some terms of the
ne xt-to-ne xt-to-leading or der (NNLO) of the chir al Lagr angian [ 29 ], which contain the str ange
5/29 
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quark mass m s in χ− as 

L 

(3) 
MB 

= v D 

Tr 
(
B̄ { χ−, γ5 B} ) + v F Tr 

(
B̄ [ χ−, γ5 B ] 

)
+ w 1 Tr 

(
B̄ γμB[ χ−, u 

μ] 
) + w 2 Tr 

(
B̄ [ χ−, u 

μ
]
γμB) 

+ w 3 
[
Tr 

(
B̄ u 

μ
)

Tr 
(
χ−γμB 

) − Tr 
(
B̄ χ−

)
Tr 

(
u 

μγμB 

)]
(26) 

where v i and w i are the LECs. There are other NNLO terms containing deri vati v es instead of 
the quark masses. As discussed in Ref. [ 26 ], ma thema tically the expansions in terms of the quark
mass and the NG meson momentum are independent, although physically they are correlated
through the Gell-Mann–Oakes–Renner r elation. Her e we would take the quark mass expansion
more seriously. 

3.2. Scattering amplitude 

To determine the LECs from the experimental data, we are allowed to take the on-shell condi-
tion on the external particles. In such a case, the T -matrix for kaon and nucleon scattering is
generally written as 

T KN 

(s, t) = ū ( p 4 , s 4 ) 
[

A (s, t) + 

1 

2 

( / p 1 + / p 3 ) B(s, t) 
]

u ( p 2 , s 2 ) , (27) 

where p 1 and p 2 denote the initial K 

+ and nucleon momenta, respecti v el y, w hile p 3 and p 4 stand
for the final kaon and nucleon momenta, u ( p , s ) is a Dirac spinor with 3-momentum p and
spin s , which is normalized by ū ( p , s ) u ( p , s ′ ) = 2 M N 

δss ′ with nucleon mass M N 

, and A ( s , t ) and
B ( s , t ) are two Lorentz-invariant functions of the two independent Mandelstam variables s =
( p 1 + p 2 ) 2 and t = ( p 1 − p 3 ) 2 . 

The K 

+ N scattering amplitudes in the particle basis T K 

+ p→ K 

+ p , T K 

+ n → K 

+ n , and T K 

+ n → K 

0 p are
constructed by those in the isospin basis T 

I ( I = 0, 1) as 

T K 

+ p→ K 

+ p = T 

I=1 , (28) 

T K 

+ n → K 

+ n = 

1 

2 

(
T 

I=1 + T 

I=0 ) , (29) 

T K 

+ n → K 

0 p = 

1 

2 

(
T 

I=1 − T 

I=0 ) . (30) 

Let us take the center-of-mass (c.m.) frame for partial wave decomposition. There we write
the T -matrix in terms of non-spin-flip amplitude f and spin-flip amplitude g as 

T (s, t) = χ † (λ4 ) [ f (W , θ ) − i( σ · ˆ n ) g(W , θ ) ] χ (λ2 ) (31) 

where W and θ are the total energy of the system and the scattering angle between p 1 and p 3 

in the center-of-mass (c.m.) frame, respecti v ely, ˆ n is the normal vector of the scattering plane
defined by 

ˆ n = 

p 3 × p 1 

| p 3 × p 1 | , (32) 

and χ ( λ) is the Pauli spinor of a nucleon with helicity λ. 
From Eqs. ( 27 ) and ( 31 ), we obtain the relation of the Lorentz-invariant amplitudes A , B and

the c.m. amplitudes f, g as 

f (W , θ ) = ( E N 

+ M N 

)( A + ω K 

B) + k 

2 B + 

( E N 

+ M N 

+ ω K 

) B − A 

E N 

+ M N 

k 

2 cos θ, (33) 
6/29 
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g(W , θ ) = − (E N 

+ M N 

+ ω K 

) B − A 

E N 

+ M N 

k 

2 sin θ, (34) 

where E N 

, ω K 

, and k stand for the nucleon energy, kaon energy, and kaon momentum in the
center-of-mass frame, respecti v ely. The amplitudes f and g are decomposed into partial waves
with the Legendre polynomial P � ( x ) as 

f (W , θ ) = 

∞ ∑ 

� =0 

f � (W ) P � ( cos θ ) , (35) 

g(W , θ ) = 

∞ ∑ 

� =0 

g � (W ) sin θ
dP � ( cos θ ) 

d cos θ
. (36) 

We introduce the amplitude of the total angular momentum j = � ± 1 
2 , T � ± as 

f � (W ) = (� + 1) T � + 

(W ) + �T � −(W ) , (37) 

g � (W ) = T � + 

(W ) − T � −(W ) , (38) 

or equivalently 

T � + 

(W ) = 

1 

2 � + 1 

( f � ( W ) + �g � (W )) , (39) 

T � −(W ) = 

1 

2 � + 1 

( f � ( W ) − (� + 1) g � (W )) . (40) 

By taking the average of the initial nucleon spins and the summation of the final nucleon
spins, the differential cross section in the center-of-mass frame is calculated as 

dσ

d

= 

1 

64 π2 s 

(| f ( W , θ ) | 2 + | g( W , θ ) | 2 ) . (41) 

By integrating the differential cross section with respect to the solid angle 
, we obtain the total
cross section as 

σ = 

1 

32 πs 

∫ 

d cos θ
(| f ( W , θ ) | 2 + | g( W , θ ) | 2 ) . (42) 

3.3. K 

+ N scattering amplitude in chiral perturbation theory 

In this section, we construct the tree-le v el amplitude of the K 

+ N elastic scattering using the
chiral perturbation theory. Here we consider the following four terms: 

T 

KN = T WT 

+ T Born + T NLO 

+ T NNLO 

. (43) 

The leading-order contribution contains the amplitudes of the contact Weinberg–Tomozawa
interaction T WT 

and the u -channel Born terms of the hyperons T Born with the KYN Yukawa
interactions gi v en in Eq. ( 16 ). The loop diagrams contribute from the ne xt-to-ne xt-to-leading
order (NNLO). 

The invariant amplitudes for the Weinberg–Tomozawa diagram in the isospin basis are cal-
culated from the leading-order Lagrangian ( 16 ) as 

T 

I=0 
WT 

= 0 , (44a) 

T 

I=1 
WT 

= 

1 

2 F 

2 
K 

ū ( p 4 , s 4 )( / p 1 + / p 3 ) u ( p 2 , s 2 ) , (44b) 

and their corresponding invariant amplitudes read 
7/29 
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A 

I=0 
WT 

= B 

I=0 
WT 

= A 

I=1 
WT 

= 0 , (45a) 

B 

I=1 
WT 

= 

1 

F 

2 
K 

, (45b) 

with the kaon decay constant F K 

. The invariant amplitudes for the u -channel Born terms in the
isospin basis are evaluated as 

T 

I=0 
Born = −3 

4 

(D − F ) 2 

F 

2 
K 

ū ( p 4 , s 4 ) / p 1 γ5 
M � + ( / p 2 − / p 3 ) 

M 

2 
� − (p 2 − p 3 ) 2 − iε

/ p 3 γ5 u ( p 2 , s 2 ) 

+ 

1 

12 

(3 F + D ) 2 

F 

2 
K 

ū ( p 4 , s 4 ) / p 1 γ5 
M � + ( / p 2 − / p 3 ) 

M 

2 
� − (p 2 − p 3 ) 2 − iε

/ p 3 γ5 u ( p 2 , s 2 ) , (46a) 

T 

I=1 
Born = −1 

4 

(D − F ) 2 

F 

2 
K 

ū ( p 4 , s 4 ) / p 1 γ5 
M � + ( / p 2 − / p 3 ) 

M 

2 
� − (p 2 − p 3 ) 2 − iε

/ p 3 γ5 u ( p 2 , s 2 ) 

− 1 

12 

(3 F + D ) 2 

F 

2 
K 

ū ( p 4 , s 4 ) / p 1 γ5 
M � + ( / p 2 − / p 3 ) 

M 

2 
� − (p 2 − p 3 ) 2 − iε

/ p 3 γ5 u ( p 2 , s 2 ) (46b) 

with the � baryon mass M � and the � baryon mass M �. The corresponding invariant ampli-
tudes read 

A 

I=0 
Born = 

3 

4 

( D − F ) 2 

F 

2 
K 

( M N 

+ M � ) 
(
M 

2 
N 

− u 

)
u − M 

2 
�

− 1 

12 

( 3 F + D ) 2 

F 

2 
K 

( M N 

+ M �) 
(
M 

2 
N 

− u 

)
u − M 

2 
�

, 

(47a) 

B 

I=0 
Born = −3 

4 

( D − F ) 2 

F 

2 
K 

u + M 

2 
N 

+ 2 M �M N 

u − M 

2 
�

+ 

1 

12 

( 3 F + D ) 2 

F 

2 
K 

u + M 

2 
N 

+ 2 M �M N 

u − M 

2 
�

, 

(47b) 

A 

I=1 
Born = 

1 

4 

( D − F ) 2 

F 

2 
K 

( M N 

+ M � ) 
(
M 

2 
N 

− u 

)
u − M 

2 
�

+ 

1 

12 

( 3 F + D ) 2 

F 

2 
K 

( M N 

+ M �) 
(
M 

2 
N 

− u 

)
u − M 

2 
�

, 

(47c) 

B 

I=1 
Born = −1 

4 

( D − F ) 2 

F 

2 
K 

u + M 

2 
N 

+ 2 M �M N 

u − M 

2 
�

− 1 

12 

( 3 F + D ) 2 

F 

2 
K 

u + M 

2 
N 

+ 2 M �M N 

u − M 

2 
�

, 

(47d) 

with the Mandelstam variable u = ( p 2 − p 3 ) 2 . We will use the isospin-averaged physical baryon
masses for the calculation. 

The next-to-leading order of the K 

+ N scattering amplitudes for I = 0, 1 is calculated from
Lagrangian ( 22 ) as 

T 

I 
NLO 

= 

[
4 B 0 

F 

2 
K 

( ˆ m + m s ) b 

I + 

2 

F 

2 
K 

(p 1 · p 3 ) d 

I + 

(p 2 · p 1 )(p 2 · p 3 ) + (p 4 · p 1 )(p 4 · p 3 ) 
2 M 

2 
N 

F 

2 
K 

g 

I 
]

× ū ( p 4 , s 4 ) u ( p 2 , s 2 ) − h 

I 

2 F 

2 
K 

p 

μ

1 p 

ν
3 ū ( p 4 , s 4 )[ γμ, γν ] u ( p 2 , s 2 ) , (48) 

where we have introduced the LECs for the NLO in the isospin basis, b 

I , d 

I , g 

I , and h 

I , which
are written in terms of the LECs b i , d i , g i , and h i appearing in Eq. ( 22 ) as 
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b 

I=0 = b 0 − b F , b 

I=1 = b 0 + b D 

, (49a) 

d 

I=0 = 2 d 1 + d 3 − 2 d 4 , d 

I=1 = −2 d 2 − d 3 − 2 d 4 , (49b) 

g 

I=0 = 2 g 1 + g 3 − 2 g 4 , g 

I=1 = −2 g 2 − g 3 − 2 g 4 , (49c) 

h 

I=0 = h 1 + h 2 + h 3 + h 4 , h 

I=1 = h 1 − h 2 − h 3 − h 4 . (49d) 

The corresponding invariant amplitudes to Eq. ( 48 ) read 

A 

I 
NLO 

= 

4 B 0 

F 

2 
K 

(m + m s ) b 

I + 

2 

F 

2 
K 

(p 1 · p 3 ) d 

I 

+ 

( p 2 · p 1 )( p 2 · p 3 ) + (p 4 · p 1 )(p 4 · p 3 ) 
2 M 

2 
N 

F 

2 
K 

g 

I + 

p 1 · (p 2 + p 4 ) 
F 

2 
K 

h 

I (50a) 

B 

I 
NLO 

= −2 M N 

F 

2 
K 

h 

I . (50b) 

The K 

+ N scattering amplitudes obtained by using the NNLO chir al Lagr angian ( 26 ) for I =
0, 1 are gi v en by 

T 

I=0 
NNLO 

= 

3(D − F )(v D 

− v F ) M 

2 
K 

F 

2 
K 

× ū ( p 4 , s 4 ) 
(

γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

/ p 3 γ5 − / p 1 γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

γ5 

)
u ( p 2 , s 2 ) 

− (D + 3 F )(v D 

+ 3 v F ) M 

2 
K 

3 F 

2 
K 

× ū ( p 4 , s 4 ) 
(

γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

/ p 3 γ5 − / p 1 γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

γ5 

)
u ( p 2 , s 2 ) 

− 4(w 1 + w 2 − w 3 ) M 

2 
K 

F 

2 
K 

ū ( p 4 , s 4 )( / p 1 + / p 3 ) u ( p 2 , s 2 ) , (51a) 

T 

I=1 
NNLO 

= 

(D − F )(v D 

− v F ) M 

2 
K 

F 

2 
K 

× ū ( p 4 , s 4 ) 
(

γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

/ p 3 γ5 − / p 1 γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

γ5 

)
u ( p 2 , s 2 ) 

+ 

(D + 3 F )(v D 

+ 3 v F ) M 

2 
K 

3 F 

2 
K 

× ū ( p 4 , s 4 ) 
(

γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

/ p 3 γ5 − / p 1 γ5 
M � + / p 2 − / p 3 

M 

2 
� − (p 2 − p 3 ) 2 

γ5 

)
u ( p 2 , s 2 ) 

− 4(w 1 − w 2 + w 3 ) M 

2 
K 

F 

2 ū ( p 4 , s 4 )( / p 1 + / p 3 ) u ( p 2 , s 2 ) . (51b) 

K 
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These amplitudes are quark mass corrections of the Weinberg–Tomozawa interaction and 

u -channel Born terms. The corresponding invariant amplitudes to Eq. (51) read 

A 

I=0 
NNLO 

= 

6(D − F ) v −M 

2 
K 

F 

2 
K 

(p 1 · p 4 ) + (p 2 · p 3 ) − M 

2 
K 

u − M 

2 
�

− 2(D + 3 F ) v + 

M 

2 
K 

3 F 

2 
K 

(p 1 · p 4 ) + (p 2 · p 3 ) − M 

2 
K 

u − M 

2 
�

(52a) 

B 

I=0 
NNLO 

= −6(D − F ) v −M 

2 
K 

F 

2 
K 

M N 

+ M �

u − M 

2 
�

+ 

2(D + 3 F ) v + 

M 

2 
K 

3 F 

2 
K 

M N 

+ M �

u − M 

2 
�

− 8 M 

2 
K 

w 

I=0 

F 

2 
K 

(52b) 

A 

I=1 
NNLO 

= 

2(D − F ) v −M 

2 
K 

F 

2 
K 

(p 1 · p 4 ) + (p 2 · p 3 ) − M 

2 
K 

u − M 

2 
�

+ 

2(D + 3 F ) v + 

M 

2 
K 

3 F 

2 
K 

(p 1 · p 4 ) + (p 2 · p 3 ) − M 

2 
K 

u − M 

2 
�

(52c) 

B 

I=1 
NNLO 

= −2(D − F ) v −M 

2 
K 

F 

2 
K 

M N 

+ M �

u − M 

2 
�

− 2(D + 3 F ) v + 

M 

2 
K 

3 F 

2 
K 

M N 

+ M �

u − M 

2 
�

− 8 M 

2 
K 

w 

I=1 

F 

2 
K 

, (52d) 

where we have introduced the LECs for the NNLO as 

v − = v D 

− v F , v + 

= v D 

+ 3 v F , (53a) 

w 

I=0 = w 1 − w 2 + w 3 , w 

I=1 = w 1 + w 2 − w 3 . (53b) 

The lo w-ener gy constants v ± in the ne xt-to-ne xt-to-leading or der of the Lagrangian are in-
cluded in both isospin channels. 

A ppl ying the isospin-averaged kaon–nucleon amplitude to Eq. ( 15 ), we obtain the quark con-
densate in terms of the LECs defined in chiral perturbation theory as 

〈 ̄u u + s̄ s 〉 ∗
〈 ̄u u + s̄ s 〉 0 = 

(
1 + 

ρ

2 M N 

M 

2 
K 

3 T 

I=1 (q = 0) + T 

I=0 (q = 0) 
4 

)

= 1 + 

(3 b 

I=1 + b 

I=0 ) 
F 

2 
K 

ρ. (54) 

This extrapolation to the soft limit has been done without imposing the on-shell condition of 
the external particles. The expressions of Eqs. (44), (46), ( 48 ), and (51) have been obtained with-
out taking the on-shell condition. Using this equation, the quark condensate can be estimated
directly from the LECs determined from experiments within the linear density. 

3.4. Coulomb correlation 

For the K 

+ p amplitude, we need to introduce the Coulomb correlation in order to compare
it with the experimental data. Here we follow the prescription done in Refs. [ 24 , 25 ] originally
10/29 
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Table 1. Properties of the broad resonance states in the KN scattering with S = + 1 and I = 0 around 

√ 

s = 

1650 MeV reported by Ref. [ 25 ]. The coupling strengths are obtained from the residue of the scattering 

amplitudes at the resonance positions (K. Aoki, private communication). 

Solution Resonance ( J 

P ) Mass [MeV] Width [MeV] Coupling strength [10 

−3 MeV 

−1 ] 

Solution 1 P 01 ( 1 2 
+ 

) 1617 305 5.26 − 2.62 i 
Solution 2 P 03 ( 3 2 

+ 

) 1678 463 4.64 − 2.62 i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gi v en in Ref. [ 31 ]. The Coulomb amplitude is calculated as 

f C 

= − α

2 kv sin 

2 (θ/ 2) 
exp 

[
−i 

α

v 
ln 

(
sin 

2 θ

2 

)]
(55) 

with the scattering angle θ , the fine structure constant α, and the K 

+ N relati v e v elocity v defined
by 

v = 

k(E K 

+ E p ) 
E K 

E p 
. (56) 

We add the Coulomb amplitude to the strong interaction amplitudes calculated by the chiral
perturbation theory. In addition, we m ultipl y the Coulomb phase shift factor e 2 i� with 

� = 

� ∑ 

n =1 

tan 

−1 α

nv 
, (57) 

for � > 0 ( 0 = 0) to the strong interaction amplitudes. Finally, we have the amplitude with the
Coulomb correlations as 

f K 

+ p = 

∞ ∑ 

� =0 

[
(� + 1) T 

I=1 
� + 

+ �T 

I=1 
� −

]
e 2 i� P � ( cos θ ) − 8 π

√ 

s f C 

, (58) 

g 

K 

+ p = 

∞ ∑ 

� =1 

[
T 

I=1 
� + 

− T 

I=1 
� −

]
e 2 i� sin θ

dP � ( cos θ ) 
d cos θ

. (59) 

3.5. Inc lusion of r esonance state 

A recent work [ 25 ] proposed the presence of a broad resonance state in the KN scattering with S
= + 1 and I = 0 around 

√ 

s = 1650 MeV . In Ref. [ 25 ], the authors paid close attention to a sud-
den increase of the I = 0 total cross section around P lab = 450 MeV/ c seen in the experimental
data [ 32 ]. They constructed the K 

+ N scattering amplitudes using the chiral unitary approach
and the model parameters were determined using observed cross sections of the K 

+ N elastic
scattering up to P lab = 800 MeV/ c . They found the two best solutions for the K 

+ N amplitude
with I = 0: in Solution 1 the P 01 amplitude provides a dominant contribution, while in Solu-
tion 2 both P 01 and P 03 amplitudes contribute to the cross section. The former solution is more
consistent with the Martin partial wave analysis [ 19 ]. Having performed analytic continuation
of the obtained amplitudes into the complex energy plane, they found a resonance state in each
solution. Solution 1 provides a resonance with 1617 MeV mass and 305 MeV width in the P 01 

partial wave, while Solution 2 finds the resonance with 1678 MeV mass and 463 MeV width
in the P 03 partial wave. The resonance parameters are summarized in Table 1 . We will call the
resonance in the former solution P 01 resonance and the latter one P 03 resonance in this paper. 

The resonance energies correspond to P lab ∼ 600 MeV/ c in the K 

+ N scattering. Since these
resonances have a large width, the resonance may contribute to the I = 0 scattering amplitude
11/29 
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Table 2. Values of the physical constants that we use. 

M N 

M K 

M � M � F K 

D F 

938.9 MeV 495.6 MeV 1115.7 MeV 1193.2 MeV 110.0 MeV 0.80 0.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in a wide range of the energy around P lab ∼ 600 MeV/ c . In addition, most of the low-energy
data for the I = 0 cross section are in these energies. As the pole terms associated with reso-
nances cannot be expressed in the perturbati v e e xpansion of energy, we take account of the
resonance contribution explicitly in our amplitudes. The resonance state is introduced to the
I = 0 amplitude by adding the following amplitude to the appropriate partial wave amplitude
T � = 1 ± defined in Eq. ( 40 ): 

T 

Pole = 

g 

2 k 

2 

√ 

s − W + i�/ 2 

, (60) 

where k is the c.m. momentum of the K 

+ N scattering, W and � are the mass and width of the
r esonance state, r especti v ely, and g is the coupling str ength of the r esonance state to the K 

+ N I
= 0 channel. The values of the coupling strengths are obtained as the residue of the scattering
amplitudes at the resonance positions (K. Aoki, private communication). 

4. Results 
In this section, we show the numerical results of our calculations. First of all, we determine the
values of the LECs appearing in the scattering amplitudes from the existing K 

+ N scattering
data. We will see that the scattering amplitude for I = 1 is constrained well by the K 

+ p elastic
sca ttering da ta, while the sca ttering amplitude with I = 0 is poorly determined due to the lack of 
data in particular for low energies and the large ambiguity of the I = 0 total cross section. Once
the LECs are determined, we discuss the behavior of the quark condensate with strange quarks
in the nuclear matter by using Eq. ( 54 ). We also discuss the in-medium quark condensates
in hypothetical hyperonic matter in view of the flavor symmetry. In addition, we show our
calculation of the wave function renormalization of the in-medium kaon. We use the isospin-
averaged hadron masses as summarized in Table 2 . 

4.1. Determining LECs 
We use the values of the lo w-ener gy constants in the leading order of the Lagrangian, D and F ,
gi v en in Ref. [ 33 ], which ar e fix ed by the hyperon semileptonic decays at tree le v el. The e xplicit
values are shown in Table 2 . 

The values of the LECs for the NLO and NNLO, b 

I , d 

I , g 

I , h 

I , w 

I for I = 0, 1 and v ±, gi v en in
Eqs. (49) and (53) are determined by carrying out the χ2 fitting of the K 

+ N amplitude obtained
by chiral perturbation theory to the experimental data. The reduced χ2 function is defined as 

χ2 
d . o . f. = 

1 

N d . o . f. 

n ∑ 

i 

(
y i − f (x i ) 

σi 

)2 

, (61) 

where y i , f( x i ), σ i , and n are the experimental data, the theoretical calculations with the param-
eters, the uncertainties of the data, and the number of data, respecti v ely, and N d . o . f. stands for
the number of degrees of freedom defined as N d . o . f. = n − m with the number of LECs m =
12. In our calculation, we consider partial waves up to the D -wave ( � = 2) in the theoretical
amplitudes. We will check the convergence of the partial wave decomposition. We restrict the
12/29 
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Table 3. Determined lo w-ener gy constants. FIT 1 uses Ref. [ 32 ] as the I = 0 total cross section, while 
FIT 2 employs Ref. [ 38 ]. Neither case introduces the broad resonance into the I = 0 amplitude. FIT 3 

considers the P 01 resonance by adding the resonance contribution, while FIT 4 takes account of the P 03 

resonance. In FIT 3 and FIT 4, Ref. [ 38 ] is used for the I = 0 total cross section. 

LEC Unit FIT 1 FIT 2 FIT 3 FIT 4 

b 

I = 1 [GeV 

−1 ] − 1 .07 ± 0.11 − 1 .10 ± 0.10 − 0 .11 ± 0.12 − 1 .08 ± 0.11 

d 

I = 1 [GeV 

−1 ] − 2 .05 ± 0.20 − 2 .00 ± 0.17 − 0 .19 ± 0.19 − 1 .97 ± 0.17 

g 

I = 1 [GeV 

−1 ] − 0 .82 ± 0.22 − 0 .93 ± 0.18 − 0 .80 ± 0.20 − 1 .01 ± 0.19 

h 

I = 1 [GeV 

−1 ] 3 .67 ± 0.50 4 .07 ± 0.60 0 .91 ± 0.54 4 .21 ± 0.60 

w 

I = 1 [GeV 

−2 ] − 0 .76 ± 0.11 − 1 .00 ± 0.10 − 0 .36 ± 0.10 − 1 .05 ± 0.10 

b 

I = 0 [GeV 

−1 ] − 3 .66 ± 0.30 1 .45 ± 0.40 2 .36 ± 0.48 2 .29 ± 0.40 

d 

I = 0 [GeV 

−1 ] − 9 .21 ± 0.40 − 0 .20 ± 0.40 − 1 .42 ± 0.58 − 0 .63 ± 0.50 

g 

I = 0 [GeV 

−1 ] 1 .46 ± 0.50 6 .10 ± 0.70 8 .27 ± 0.95 8 .07 ± 0.80 

h 

I = 0 [GeV 

−1 ] 16 .29 ± 0.70 − 3 .99 ± 0.80 − 1 .64 ± 0.96 − 4 .91 ± 0.80 

w 

I = 0 [GeV 

−2 ] − 0 .57 ± 0.29 4 .23 ± 0.35 4 .92 ± 0.46 4 .99 ± 0.40 

v − [GeV 

−1 ] 42 .89 ± 1.70 12 .32 ± 1.70 5 .00 ± 0.19 10 .12 ± 1.70 

v + 

[GeV 

−1 ] − 7 .55 ± 0.90 4 .28 ± 0.90 − 3 .63 ± 0.93 4 .74 ± 0.90 

χ2 
d . o . f. 2.41 2.74 2.95 2.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

energy region up to P lab = 800 MeV/ c , where inelastic contributions such as pion production
start to be significant. 

We determine all of the NL O and NNL O LECs sim ultaneousl y by using the experimental
data of the K 

+ p differential cross section between P lab = 145 and 726 MeV/ c [ 34 ], the K 

+ n →
K 

0 p charge exchange differential cross sections between P lab = 434 and 780 MeV/ c [ 35 , 36 ], the I
= 1 total cross section between P lab = 145 and 788 MeV/ c [ 32 , 34 , 37–40 ], and the I = 0 total cross
sections between P lab = 413 and 794 MeV/ c [ 32 ] and between P lab = 366 and 714 MeV/ c [ 38 , 40 ].
Ther e ar e significant differ ences between the I = 0 total cross sections gi v en in Refs. [ 32 , 38 ]. 

In this work, we consider four different fitting procedures for I = 0: FIT 1 uses Ref. [ 32 ]
for the I = 0 total cross section, while FIT 2 employs Ref. [ 38 ]. Neither case introduces the
broad resonance into the I = 0 amplitude. FIT 3 considers the P 01 resonance by adding the
resonance contribution ( 60 ) to the P 01 scattering amplitude, while FIT 4 takes account of the
P 03 resonance. In FIT 3 and FIT 4, we use Ref. [ 38 ] for the I = 0 total cross section, because
the resonance properties were obtained by using Bowen’s results from Ref. [ 38 ] in Ref. [ 25 ]. In
all four fittings, we do not use the differential cross sections of the K 

+ n elastic scattering due to
their large experimental uncertainties. 

The determined LECs for each case are summarized in Table 3 . The table shows that the
values of LECs for I = 1 in FITs 1, 2, and 4 are consistent with each other. We will see that
the second best solution of FIT 3 is also consistent with these fits. This implies that the K 

+ p
experimental data constrain the I = 1 KN amplitude very well. 

In Figs. 1 and 2 , we show our numerical results for the I = 1 total cross section and the
K 

+ p elastic differential cross sections calculated with the determined LECs, respecti v ely, and
compare them with the experimental observations. For the total cross section in Fig. 1 we use
the scattering amplitude calculated only with the strong interaction, while the K 

+ p differential
cross sections in Fig. 2 include the Coulomb correlations formulated in Section 3.4 . In both
figures, four sets of the determined LECs reproduce the experimental observations very well in
13/29 
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Fig. 1. I = 1 K 

+ N total cross sections calculated with the determined LECs gi v en in Tab le 3 in comparison 

with the experimental data [ 32 , 34 , 37–40 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the same manner. It is notable that chiral perturbation theory works well to reproduce the I = 1
KN amplitude in the energy region that we consider. Some deviations among the four fittings
become evident from P lab = 500 MeV/ c in the K 

+ p differential cross section. 
In Figs. 3 and 4 , we show the I = 0 total cross section and the differential cross sections for

the charge exchange process K 

+ n → K 

0 p calculated with the determined LECs for each case,
and we compare them with the experimental data. As stated above, for FIT 1 we use Ref. [ 32 ]
for the data of the I = 0 total cross section, while in FITs 2, 3, and 4 Ref. [ 38 ] is used. Each
fit reproduces the experimental data well. In particular, Fig. 4 shows that these four fits repro-
duce the experimental data well up to P lab = 720 MeV/ c . Ne v ertheless, it should be emphasized
that we find some deviations among the fits in the total cross sections at lo w ener gies belo w
300 MeV/ c . This is because the LECs are not constrained so much in low energies due to the
lack of experimental data. In fact, as seen in Table 3 , the values of LECs for I = 0 are different
in the fits. To fix the lo w-ener gy behavior of the scattering amplitude with I = 0, experimental
data below 300 MeV/ c are extremely important. It is also interesting to mention that the total
cross sections obtained by FIT 2 and FIT 4 are almost the same up to 600 MeV/ c . In these
fits, we use the same experimental data [ 38 ] but FIT 4 includes the P 03 resonance contribution
explicitly. Thus, our finding that FIT 2 and FIT 4 give a consistent result implies that the con-
tribution of the P 03 resonance can be absorbed into the LECs as discussed in Ref. [ 41 ]. This
situation can be understood by the fact that the obtained LECs for FIT 2 and FIT 4 are also
almost equivalent but there is a small deviation in the LECs for I = 0. These differences in the
LECs r epr esent the contribution of the P 03 r esonance. 

In Fig. 5 , we show the partial wave decomposition of the I = 0 total cross sections obtained by
the four fitting procedures. As seen in the figure, each fit provides different contributions of the
partial waves. In FITs 2, 3, and 4 the contribution of the D -wave is negligibly small. This shows
that the partial wave decomposition works well up to the D -wave for these fits. In contrast,
in FIT 1, the D -wave contribution is particularly large at higher momenta. Nevertheless, we
find that the F -wave contribution is negligibly small in FIT 1 as shown in Fig. 5 . This indicates
again that the partial wave decomposition works well up to the F -wave in FIT 1. In FITs 2, 3,
and 4, P -wav es gi v e essential contributions, while the S -wav e contribution is found to be minor
in all the fits, especially at low energies. In FIT 3, the contribution of the P 01 partial wave is
14/29 
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Fig. 2. Calculated differential cross sections of the K 

+ p elastic scattering in comparison with the experi- 
mental data of Ref. [ 34 ]. 
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Fig. 3. I = 0 K 

+ N total cross sections calculated with the determined LECs gi v en in Tab le 3 in comparison 

with the experimental data [ 32 , 38 , 40 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

large, reflecting the explicit introduction of the resonance contribution into the amplitude. The
partial wave decompositions of FITs 2 and 4 are also consistent each other. This tells us again
that FITs 2 and 4 are almost equivalent. 

In Fig. 6 , we show our calculated results and the experimental data for the differential cross
sections of the K 

+ n elastic scattering. Although the K 

+ n elastic scattering data are not used for
the fitting, the K 

+ n elastic cross section should be reproduced according to the isospin symme-
try, which is certainly good for hadronic reactions in these energies, because all of the theoretical
calculations reproduce the cross sections of the K 

+ p elastic and K 

+ n → K 

0 p scatterings. Nev-
ertheless, the experimental data are poorly reproduced at low energies and, in particular, for
higher energies the theoretical predictions are scattered among the fittings. Figure 6 also shows
that the difference between FIT 2 and FIT 4 can be seen at cos θ c.m. = 1 for P lab > 680 MeV/ c ,
wher e the r esonance contribution ma y be significant. This implies that f orward sca ttering da ta
for P lab > 680 MeV/ c may gi v e us important constraints on the wide resonance with S = + 1. 

4.2. Behavior of the in-medium quark condensate with str ang e quarks 
In this section, we discuss the behavior of the in-medium quark condensate with strange quarks
by using Eq. ( 54 ) with the determined LECs in the previous section. It should be noted that
we focus on the qualitati v e behavior of the quark condensate in nuclear matter, because the
condensate ( 54 ) is calculated under the linear density approximation. In addition, to separate
out 〈 ̄s s 〉 ∗ from Eq. ( 54 ) one needs to calculate the in-vacuum condensates taking into account
the SU(3) breaking effect. We also note that, as we have seen in the previous section that the
LECs are not determined well with the existing data, a discussion on the detailed value of the
in-medium quark condensate is not within the scope of this paper. 

As seen in Eq. ( 54 ), the sign of the coefficient of the linear density, 3 b 

I = 1 + b 

I = 0 , determines
whether the condensate increases or decreases in the nuclear matter. The slope parameters ob-
tained in the present calculation are summarized in Table 4 . There the central values of the
determined LECs are used. The table shows that the determined slope parameters are mostly
negati v e, which means that the magnitude of the quark condensate decreases as the density
increases, but their values differ in a wide range. For comparison, we also show the values of 
the slope parameters ev aluated b y the LECs determined in other calculations based on the
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Fig. 4. Calcula ted dif ferential cross sections of K 

+ n → K 

0 p charge exchange scattering in comparison 

with the experimental data of Refs. [ 35 , 36 ]. The data for the momenta at P lab = 640, 720, and 780 MeV/ c 
are taken from Ref. [ 35 ], the others from Ref. [ 36 ]. 

 

 

 

 

 

 

baryon masses. As a theoretical calculation, we use the LECs determined by lattice calculation.
Reference [ 30 ] expressed the octet baryon masses in terms of the LECs by using an O(p 

4 ) chiral
perturbation theory in the extended-on-mass-shell scheme and determined the LECs by fitting
them to lattice QCD calculation with various values of the quark masses. In addition, we also
consider the LECs in more phenomenological determinations. The values of b F and b D 

can be
fixed by the mass splitting of the octet baryons in the leading order of chiral perturbation the-
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Fig. 5. Partial wave contributions of the I = 0 K 

+ N total cross section calculated with the determined 

LECs. 

Table 4. Values of the slope parameter (3 b 

I = 1 + b 

I = 0 ) appearing in Eq. ( 54 ) obtained in the present 
work. The central values of the determined LECs are used. FIT 3 

′ is the second best solution of the fitting 

procedure FIT 3. The values of the slope parameters calculated with the LECs in other calculations, a 

theoretical calculation using lattice data [ 30 ], a phenomenological calculation using the octet baryon 

masses [ 42 , 43 ] together with the σπN 

term (see text), and a global fitting of LECs in chiral perturbation 

theory using πN and KN phase shift analyses [ 45 ], are also shown. These works are referred as Th., Pheno. 
and ChPT, respecti v ely. The values of the relevant LECs for these calculations are ( b 0 , b D 

, b F ) = ( −0.609, 
0.225, −0.404), ( −0.711, 0.060, −0.190) and ( b 

I = 0 , b 

I = 1 ) = (0.136, −0.270), respecti v ely. 

[GeV 

−1 ] FIT 1 FIT 2 FIT 3 FIT 4 FIT 3 

′ Th. Pheno. ChPT 

3 b 

I = 1 + b 

I = 0 −6.87 −1.86 2.02 −0.96 −1.98 −1.36 −2.47 -0.674 

 

 

 

 

 

 

 

ory as gi v en, for instance, in Refs. [ 42 , 43 ], while we fix the v alue of b 0 b y the σπN 

term together
with b F and b D 

using the relation between the LECs of the SU(2) and SU(3) chiral perturbation
theories gi v en in Ref. [ 15 ] as 

2 b 0 + b D 

+ b F = 2 b 0 + b 

I=1 − b 

I=0 = 2 c 1 (62) 

where c 1 is one of the SU(2) LECs and is gi v en by c 1 = −σπN 

/ (4 m 

2 
π ) in the leading order of 

chiral perturbation theory. Its value can be fixed as c 1 = −0.78 GeV 

−1 by using σπN 

= 60 MeV,
as suggested recently in Refs. [ 8–12 ]. This value is also consistent with a recent analysis based
on pionic a tom da ta [ 44 ]. With this value, howe v er, the linear density approximation provides as
much as 50% reduction of the quark condensate in magnitude at the saturation density, while
a smaller value, σπN 

� 45 MeV, is preferable to reproduce 35% reduction in the linear density
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Fig. 6. Calcula ted dif ferential cross sections of K 

+ n elastic scattering in comparison with the experimen- 
tal data of Refs. [ 35 , 36 ]. The data for the momenta at P lab = 640, 720, and 780 MeV/ c are taken from 

Ref. [ 35 ], the others from Ref. [ 36 ]. 

 

 

 

 

 

 

analysis. In any case, it is a good advantage of the present work that the slope parameter is
directly determined by the physical observables without using the value of the σπN 

term. In
addition, we also compare the LECs obtained by a global fitting performed in Ref. [ 45 ]. There
the πN and KN sca ttering amplitudes were calcula ted using chiral perturba tion theory up to
O(p 

3 ) for the πN channel and O(p 

2 ) for the KN channel. (They also performed calculations
with KN amplitudes including one-loop contributions, which are part of O(p 

3 ) ). The LECs
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Fig. 7. Density dependence of the in-medium quark condensate with strange quarks normalized by the 
in-vacuum condensate calculated with the slope parameters gi v en in Table 4 . We use ρ0 = 0.17 fm 

−3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were determined commonly by using πN and KN phase shift analyses. For the KN scattering
they used the SP92 solution [ 22 ] and took the KN phase shifts only at lo w ener gies between
P lab = 25 and 257 MeV/ c . Note tha t our stud y uses direct sca ttering da ta in a much wider range
up to 800 MeV/ c , where the sca ttering da ta are available from P lab = 145 MeV/ c for the K 

+ p
channel and from 434 MeV/ c for the K 

+ n channel. In Table 4 , we show the LECs obtained by
the fitting strategy in Ref. [ 45 ] where they did not consider the constraint on the LECs from the
baryon masses. 

In Fig. 7 , we show the density dependence of the in-medium quark condensate with strange
quarks normalized by the in-vacuum condensate. The calculation is done with Eq. ( 54 ) using
the slope parameters shown in Table 4 . The behavior of the in-medium condensate is highly de-
pendent on the choice of the parameter sets. The quark condensates with FITs 2 and 4 decrease
in magnitude moderately as the density increases and the reduction at the sa tura tion density ρ0 

is found to be about 10–20%. The baryon mass determinations of the LECs also gi v e consistent
results. The quark condensate calculated with FIT 1 decreases significantly and moves out of 
the range of reliability. This implies that the current status of the K 

+ N scattering data may not
be of sufficient quality for the determination of the LECs. 

In contrast to the findings with FITs 1, 2, and 4, the quark condensate calculated with FIT 3
largely increases in magnitude. This behavior might be unnatural in the context of the partial
restoration of DB χS in finite density. For FIT 3, which uses Ref. [ 38 ] for the I = 0 total cross
section and introduces the P 01 broad resonance, we find the second best solution that minimizes
Eq. ( 61 ). This solution is named FIT 3 

′ and its LECs are shown in Table 5 . Comparing the
LECs for I = 1 of FIT 3 

′ with those of the other fits, we find that FIT 3 

′ has LECs closer to
FITs 1, 2, and 4. The results of the calculations of the slope parameter and the in-medium quark
condensate using the LEC of FIT 3 

′ are also shown in Table 4 and Fig. 7 , respecti v el y, w hich
show that the density dependence of the quark condensate for FIT 3 

′ is consistent with FITs 2
and 4. The existence of a mor e r easonable solution with a similar χ2 

d . o . f. value does not imply
that the fitting procedure 3, where we have assumed a P 01 resonance, should be immediately
ruled out. The fact that there is another independent solution to minimize χ2 with a similar
d . o . f. 
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Table 5. Same as FIT 3 in Table 3 but showing LECs for the 
second best solution. 

LEC Unit FIT 3 

′ 

b 

I = 1 [GeV 

−1 ] − 0 .39 ± 0.12 

d 

I = 1 [GeV 

−1 ] − 0 .69 ± 0.18 

g 

I = 1 [GeV 

−1 ] − 1 .07 ± 0.21 

h 

I = 1 [GeV 

−1 ] 2 .07 ± 0.50 

w 

I = 1 [GeV 

−2 ] − 0 .66 ± 0.10 

b 

I = 0 [GeV 

−1 ] − 0 .82 ± 0.50 

d 

I = 0 [GeV 

−1 ] − 1 .95 ± 0.60 

g 

I = 0 [GeV 

−1 ] 1 .03 ± 0.90 

h 

I = 0 [GeV 

−1 ] 3 .91 ± 0.90 

w 

I = 0 [GeV 

−2 ] − 0 .11 ± 0.40 

v − [GeV 

−1 ] 6 .89 ± 0.19 

v + 

[GeV 

−1 ] − 1 .98 ± 0.90 

χ2 
d . o . f. 3.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value may indica te tha t the LECs giving the smallest value of χ2 
d . o . f. can be changed for more

experimental observations in the future, such as the K 

+ d reaction at J-PARC [ 46 ] and the K 

0 p
reaction at the K-Long Facility at Jefferson Laboratory [ 47 ]. 

The choice of the experimental data of the I = 0 total cross sections and the presence or
absence of the resonance state in I = 0 K 

+ N scattering have a significant impact on the de-
termination of the LECs. Ther efor e, we emphasize that, in order to determine the behavior
of the in-medium quark condensate with strange quarks mor e pr ecisely, it is extr emely impor-
tant to determine experimental values accurately and consistently with isospin symmetry at a
wide range of energy, in particular much lower than P lab = 600 MeV/ c , where the effects of the
resonance state are less significant. 

4.3. Quark condensate in SU(3) symmetric baryonic matter 
In the previous section, we have discussed the quark condensate including the strange quark
component in symmetric nuclear matter. This is an SU(3) flavor extension of the quark conden-
sate in nuclear matter. From the flavor symmetry point of view, it is also interesting to consider
the SU(3) flavor extension of the matter. Nuclear matter consists of nucleons without explicit
strange content. In this sense, we discuss an SU(3) quark condensate in the SU(2) symmetric
baryonic matter. It may also be interesting to extend the discussion on the quark condensates
in nuclear matter further to those in hypothetical hyperonic matter in order to discuss them
from the viewpoint of flavor SU(3) symmetry. This kind of analysis might be interesting if one
considers the explicit SU(3) breaking on the quark masses and the hadronic quantities such
as the decay constants and masses. If one traces the SU(3) breaking effects on the in-medium
quark condensate, the nuclear matter itself can also be a source of SU(3) breaking. Note, how-
e v er, that while the quark condensates in nuclear matter can be studied phenomenolo gicall y by
the properties of the Nambu–Goldstone bosons in atomic nuclei as has been done in pionic
atoms and pion–nucleus scattering, the quark condensate in hyperonic matter would be rather
academic due to the absence of hyperon matter in laboratories. 
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Just as symmetric nuclear matter consists of the same number of protons and neutrons, we
define SU(3) symmetric baryonic matter so as to consist of the same number of octet baryons
with J 

p = 1/2 

+ , p , n , �, �+ , �0 , �−, �0 , and �−. We further consider �-hyperonic matter,
containing only the � h yperon; �-h yperonic matter, which has the same number of �+ , �0 ,
and �−; and �-hyperonic matter, which consists of the same numbers of �0 and �−. 

The light quark condensate 〈 ̄u u + d̄ d〉 in nuclear and hyperonic matter can be calculated in the
same way as in Section 2 and is expressed in the linear density approximation by the isospin-
averaged scattering amplitude of the pion and the corresponding baryon in the soft limit as
in Eq. ( 15 ). The pion scattering amplitudes are calcula ted by chiral perturba tion theory and
expressed by LECs. The scattering amplitudes relevant to the current calculation are shown in
Appendix A . Taking the soft limit of the scattering amplitude, we obtain the quark condensate
〈 ̄u u + d̄ d〉 in nuclear and hyperonic matter as 

〈 ̄u u + d̄ d〉 ∗N 

〈 ̄u u + d̄ d〉 0 
= 1 + 

4 b 0 + 2 b D 

+ 2 b F 

F 

2 
π

ρB 

, (63a) 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

= 1 + 

4 b 0 + 

4 
3 b D 

F 

2 
π

ρB 

, (63b) 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

= 1 + 

4 b 0 + 4 b D 

F 

2 
π

ρB 

, (63c) 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

= 1 + 

4 b 0 + 2 b D 

− 2 b F 

F 

2 
π

ρB 

, (63d) 

where ρB 

is the density of the baryon number in each baryonic matter, and we write these
expressions in terms of the original LECs appearing in the Lagrangian in order to make the
SU(3) flavor structure clear. The relations to the LECs b 

I = 1 and b 

I = 0 are gi v en in Eq. ( 49a ).
Similarly, the quark condensate 〈 ̄u u + s̄ s 〉 in hyperonic matter is obtained by the soft limit of 
the isospin-averaged kaon–hyperon scattering amplitude in the linear density approximation 

and expressed by the LECs as 

〈 ̄u u + s̄ s 〉 ∗N 

〈 ̄u u + s̄ s 〉 0 = 1 + 

4 b 0 + 3 b D 

− b F 

F 

2 
K 

ρB 

, (64a) 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 = 1 + 

4 b 0 + 

10 
3 b D 

F 

2 
K 

ρB 

, (64b) 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 = 1 + 

4 b 0 + 2 b D 

F 

2 
K 

ρB 

, (64c) 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 = 1 + 

4 b 0 + 3 b D 

+ b F 

F 

2 
K 

ρB 

. (64d) 

The quark condensates in the SU(3) symmetric baryonic matter are also obtained as: 

〈 ̄u u + d̄ d〉 ∗B 

〈 ̄u u + d̄ d〉 0 
= 

1 

8 

[ 

2 

〈 ̄u u + d̄ d〉 ∗N 

〈 ̄u u + d̄ d〉 0 
+ 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

+ 3 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

+ 2 

〈 ̄u u + d̄ d〉 ∗�
〈 ̄u u + d̄ d〉 0 

] 

= 1 + 

4 b 0 + 

8 
3 b D 

F 

2 
ρB 

, (65) 

π
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Fig. 8. Baryon density dependence of 〈 ̄u u + d̄ d〉 in nuclear matter, hyperonic matter, and the SU(3) sym- 
metric baryonic matter. The LECs of FIT 2 are used and b 0 is fixed by Eq. ( 62 ) with c 1 = −0.78 GeV 

−1 . 
We use F π = 93 MeV and ρ0 = 0.17 fm 

−3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

〈 ̄u u + s̄ s 〉 ∗B 

〈 ̄u u + s̄ s 〉 0 = 

1 

8 

[
2 

〈 ̄u u + s̄ s 〉 ∗N 

〈 ̄u u + s̄ s 〉 0 + 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 + 3 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 + 2 

〈 ̄u u + s̄ s 〉 ∗�
〈 ̄u u + s̄ s 〉 0 

]

= 1 + 

4 b 0 + 

8 
3 b D 

F 

2 
K 

ρB 

. (66) 

The SU(3) quark condensate in the SU(3) symmetric baryonic matter is calculated as 

〈 ̄u u + d̄ d + s̄ s 〉 ∗B 

〈 ̄u u + d̄ d + s̄ s 〉 0 
= 

2 

3 

( 

〈 ̄u u + s̄ s 〉 ∗B 

〈 ̄u u + s̄ s 〉 0 + 

1 

2 

〈 ̄u u + d̄ d〉 ∗B 

〈 ̄u u + d̄ d〉 0 

) 

= 1 + 

4 b 0 + 

8 
3 b D 

F 

2 
ρB 

, (67) 

where we assume flavor symmetry for the in-vacuum condensates 〈 ̄u u 〉 0 = 〈 d̄ d〉 0 = 〈 ̄s s 〉 0 and the
meson decay constants F = F π = F K 

. As one expects, the slope parameters of Eqs. (63), ( 65 ),
and ( 67 ) should be equivalent according to the flavor symmetry because the matter is flavor-
symmetric. 

As we have seen in the previous section, to evaluate the quark condensate 〈 ̄u u + s̄ s 〉 in the
nuclear matter, we just need the two parameters b 

I = 1 and b 

I = 0 , which can be fixed by the
K 

+ N scattering. On the other hand, for other cases we need to know the value of b 0 . Here we
determine it by Eq. ( 62 ) with c 1 = −0.78 GeV 

−1 . In the following we use the LECs b 

I = 1 and
b 

I = 0 determined in FIT 2 as an example. 
Firstly, we plot the behavior of 〈 ̄u u + d̄ d〉 in nuclear matter, hyperon matter, and the SU(3)

symmetric baryonic matter in Fig. 8 . This figure shows the SU(3) flavor symmetry breaking
f or the bary onic matter since the condensate 〈 ̄u u + d̄ d〉 has no strange components but the
hyperonic matter contains strange quar ks. The relati v e amount of up and down quarks in the
hyperonic matter is less than in nuclear matter, so the condensate in the hyperonic matter is
expected to decrease less than that in nuclear matter. Figure 8 shows that the quark condensates
in �-matter and �-matter increase in magnitude, while the quark condensate in �-hyperonic
matter decreases more than that in nuclear matter. On the other hand, the condensate in the
SU(3) symmetric baryonic matter is reduced but not more than that in nuclear matter; this is
an expected behavior. 
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Fig. 9. Same as Fig. 8 , but for 〈 ̄u u + s̄ s 〉 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we plot the density dependence of 〈 ̄u u + s̄ s 〉 in nuclear matter, hyperonic matter, and
the SU(3) symmetric baryonic matter in Fig. 9 . The calculation shows that the quark conden-
sates 〈 ̄u u + s̄ s 〉 in �-hyperonic matter and �-hyperonic matter are reduced compared to the
quark condensate in nuclear matter, but the condensate in �-matter is reduced less than that
in nuclear matter. Thus, since hyperonic matter contains strange quar ks, one e xpects that the
quark condensate with strange components in hyperonic matter would be r educed compar ed to
the quark condensate in nuclear matter, but this is not necessarily the case. On the other hand,
the condensate in the SU(3) symmetric baryonic matter is reduced compared to that in nuclear
matter; this is also an expected behavior. 

4.4. Wave function renormalization of the in-medium kaon 

The wave function renormalization of the NG bosons in the nuclear medium has been investi-
gated as one of the important in-medium modifications of the hadron properties, for instance,
in Refs. [ 3 , 4 , 24 , 48–51 ]. References [ 48 , 49 ] pointed out that the pion wave function renormaliza-
tion in the nuclear medium is responsible for the in-medium change of the pion decay constant.
In Ref. [ 3 ], the wave function renormalization for the in-medium pion was discussed to explain
the missing repulsion of the in-medium πN scattering length. Reference [ 24 ] calculated the wave
function renormalization for the in-medium kaon using the K 

+ N amplitude described by chiral
dynamics and found that the leading-order analysis with the Weinberg–Tomozawa interaction 

suggested 8% enhancement of the wave function normalization factor at normal nuclear den-
sity, and full calculations provided about 2–6% enhancement depending on the kaon momen-
tum. This indica tes tha t the K 

+ N interaction may be enhanced about se v eral percent in nuclear
matter. This is partially consistent with the phenomenological finding of the enhancement of 
the K 

+ N elastic scattering amplitude in the nucleus [ 37 , 52–55 ]. 
Here we update the study of Ref. [ 24 ] by using the K 

+ N scattering amplitudes constructed
using more general terms in chiral perturbation theory and determined by wider fitting proce-
dures. According to Ref. [ 24 ], the wave function renormalization factor Z K 

for the in-medium
kaon is obtained by using the optical potential for a kaon in nuclear matter V opt as 

Z K 

≡ 1 + 

M K 

ω K 

∂V opt 

∂ω 

∗
K 

∣∣∣∣
ω 

∗ = ω K 

, (68) 

K 

24/29 



PTEP 2024 , 053D01 Y. Iizawa et al. 

Fig. 10. Momentum dependence of the absolute value of the wave function renormalization factor Z K 

for the kaon at normal nuclear density. 

Fig. 11. Density dependence of the absolute value of the wave function renormalization factor Z K 

at 
P K 

+ = 488 MeV /c . 

 

 

 

 

 

 

 

 

 

 

 

where ω K 

is the kaon energy. In the linear density approximation the optical potential is gi v en
by the KN scattering amplitude as 

2 M K 

V opt (ω K 

) = 

ρ

2 M N 

T KN 

(ω K 

) . (69) 

We calculate the wave function renormalization for the in-medium kaon using the K 

+ N scat-
tering amplitudes constructed in the previous section. 

The wave function renormalization factor Z K 

at normal nuclear density is shown in Fig. 10
as a function of the momentum of kaon in nuclear matter P K 

+ . We find in the figure that the
momentum dependences of wave function renormalization factors obtained by FITs 1 to 4 are
qualitati v ely consistent with each other and monotonically increase with respect to P K 

+ , while
Z K 

with FIT 3 

′ is almost independent of P K 

+ and gi v es almost 6% enhancement. We show the
linear density dependence of the wave function renormalization factor Z K 

at P K 

+ = 488 MeV /c
in Fig. 11 . The enhancement of the wave function renormalization factors is found to be around
2–5% depending on the fitting procedur es. This r esult is consistent with the previous study. In
the case of the in-medium pion, the wave function renormalization factor is enhanced by 40%
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at normal nuclear density [ 50 ]. Compared to the case of the in-medium pion, our calculation
gi v es a smaller enhancement at normal nuclear density. 

5. Summary 

We hav e inv estiga ted the K 

+ N sca ttering amplitude using chiral perturbation theory in order
to estimate the in-medium quark condensate with strange quarks. The in-medium quark con-
densate is calculated based on the correlation function approach. There the in-medium quark
condensate with strange quarks is given by the correlation function of the pseudoscalar fields
with the kaon quantum number in nuclear matter at the soft limit. In the linear density approx-
imation, the in-medium correlation function is reduced to the product of the KN scattering
amplitude and the nuclear density. We utilize chiral perturbation theory to describe the KN
scattering amplitude. It is good that the amplitude in chiral perturbation theory is described by
an analytic function and can be analytically continued to the soft limit. 

We have determined the lo w-ener gy constants (LECs) of the SU(3) chiral perturbation theory
appearing in the KN scattering amplitude by the existing scattering data. The scattering ampli-
tudes have been calculated up to the next-to-leading order in chiral perturbation theory and in
addition we have also included the strange quark mass-dependent terms of the next-to-next-to- 
leading order in order to improve extrapolation to the strange sector. The LECs appearing here
characterize the interaction between K 

+ and N . We have performed several fitting procedures
for the LECs using the experimental data of the K 

+ p differential cross section, the K 

+ n → K 

0 p
charge exchange differential cross sections, and I = 1 and I = 0 total cross sections. For the ex-
perimental data of the I = 0 total cross section, we tak e tw o choices because two data sets look
inconsistent. In addition, we have further choices to include a broad resonance state with I = 0
around P lab = 600 MeV/ c , which was proposed in Ref. [ 24 ], or not. We have obtained such a
nice amplitude for I = 1 that it reproduces the experimental data below P lab = 800 MeV almost
perfectly. For the I = 0 amplitude, we have used the I = 0 total cross section and the differential
cross section of the K 

+ n → K 

0 p to determine the LECs in the I = 0 amplitude. We have found
tha t the sca ttering da ta for I = 0 are also reproduced well but the LECs are not uniquely deter-
mined and depend on the fitting procedures. In addition it has turned out that the differential
cross section of the K 

+ n elastic scattering are not reproduced e v en though the isospin symmetry
should fix the K 

+ n amplitude from the K 

+ p → K 

+ p and K 

+ n → K 

0 p amplitudes. 
With the determined LECs, we have discussed the behavior of the in-medium quark con-

densate with strange components in the linear density approximation. We have found that the
slope parameter of the linear density is dependent on the fitting procedures. This implies that
the current K 

+ N experiment da ta, especially a t lo w ener gies, do not have enough accuracy to
fix the LECs. Some parameter sets provide consistent results of the slope parameter with other
determinations of the LECs such as those based on the baryon masses in lattice calculations for
various quark masses. We have also calculated the quark condensates, 〈 ̄u u + d̄ d〉 and 〈 ̄u u + s̄ s 〉 ,
in hyperonic matter and the SU(3) symmetric baryonic matter from the viewpoint of flavor
symmetry. Moreov er, we hav e calculated 〈 ̄u u + d̄ d + s̄ s 〉 in the SU(3) symmetric baryonic mat-
ter and obtained a 25% restoration of the chiral symmetry in the case of SU(3) with our fitted
LECs. This result is consistent with the case of the SU(2) condensate in nuclear matter. We have
calculated the wave function renormalization factor using the obtained T -matrix of KN . In any
FITs, the wave function renormalization factor for the in-medium kaon with an intermediate
26/29 
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momentum such as P K 

+ = 488 MeV /c increases as the density increases, but the enhancement
is not as large as that for the in-medium pion. 

In conclusion, thanks to good accuracy and the wide range of the K 

+ p elastic scattering data,
the KN scattering amplitude with I = 1 is well controlled in chiral perturbation theory. With this
success, the correlation function approach with the linear density approximation has w ork ed
well to see qualitati v e features of the in-medium strange quark condensate. Nevertheless, we
emphasize that, in order to determine the behavior of the in-medium quark condensate with
strange quarks more accurately, it is important to determine the K 

+ N scattering amplitudes at
ener gies much lo wer than P lab = 400 MeV/ c , wher e the amplitude may be fr ee from the effect
of the possible resonance state. 
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3 . 

A. Meson–baryon scattering T -matrices for the quark condensates 
In this section, we gi v e a list of meson–baryon scattering T -matrices relevant to the calculation
of in-medium quark condensates. As seen in Eq. ( 15 ), we need the T -matrices of the meson–
baryon scattering in the soft limit. As discussed in Section 3.3 , the terms in the T -matrix relevant
to the quark condensate are the terms involving the LECs b 0 , b D 

, and b F , which appear in the
ne xt-to-leading or der of the chir al Lagr angian ( 22 ). 

For evaluation of the in-medium condensate 〈 ̄u u + d̄ d〉 , we use the T -matrices of the pion–
baryon: 

T π0 p = 

2 B 0 m (4 b 0 + 2 b D 

+ 2 b F ) 
F 

2 
π

× 2 M N 

, (A1a) 

T π0 n = 

2 B 0 m (4 b 0 + 2 b D 

+ 2 b F ) 
F 

2 
π

× 2 M N 

, (A1b) 

T π0 � = 

2 B 0 m 

(
4 b 0 + 

4 
3 b D 

)
F 

2 
π

× 2 M �, (A1c) 

T π0 �+ = 

2 B 0 m (4 b 0 + 4 b D 

) 
F 

2 
π

× 2 M �, (A1d) 

T π0 �− = 

2 B 0 m (4 b 0 + 4 b D 

) 
F 

2 
π

× 2 M �, (A1e) 

T π0 �0 = 

2 B 0 m (4 b 0 + 4 b D 

) 
F 

2 
π

× 2 M �, (A1f) 

T π0 �0 = 

2 B 0 m (4 b 0 + 2 b D 

− 2 b F ) 
F 

2 
π

× 2 M �, (A1g) 

T π0 �− = 

2 B 0 m (4 b 0 + 2 b D 

− 2 b F ) 
F 

2 
π

× 2 M �. (A1h) 

For 〈 ̄u u + s̄ s 〉 , we use the T -matrices of the kaon–baryon: 
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T K 

+ p = 

B 0 (m + m s )(4 b 0 + 4 b D 

) 
F 

2 
K 

× 2 M N 

, (A2a) 

T K 

+ n = 

B 0 (m + m s )(4 b 0 + 2 b D 

− 2 b F ) 
F 

2 
K 

× 2 M N 

, (A2b) 

T K 

+ � = 

B 0 (m + m s ) 
(
4 b 0 + 

10 
3 b D 

)
F 

2 
K 

× 2 M �, (A2c) 

T K 

+ �+ = 

B 0 (m + m s )(4 b 0 + 2 b D 

+ 2 b F ) 
F 

2 
K 

× 2 M �, (A2d) 

T K 

+ �− = 

B 0 (m + m s )(4 b 0 + 2 b D 

− 2 b F ) 
F 

2 
K 

× 2 M �, (A2e) 

T K 

+ �0 = 

B 0 (m + m s )(4 b 0 + 2 b D 

) 
F 

2 
K 

× 2 M �, (A2f) 

T K 

+ �0 = 

B 0 (m + m s )(4 b 0 + 2 b D 

+ 2 b F ) 
F 

2 
K 

× 2 M �, (A2g) 

T K 

+ �− = 

B 0 (m + m s )(4 b 0 + 4 b D 

) 
F 

2 
K 

× 2 M �. (A2h) 
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