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1 Introduction

Quark masses together with the strong coupling are the fundamental parameters of

Quantum Chromodynamics (QCD). Their values at some given scale can be determined

numerically from Lattice QCD (LQCD), as well as analytically from QCD sum rules

(QCDSR) [1]–[3]. Historically, QCDSR were first formulated in the framework of Laplace

transforms [2]–[5]. As precision determinations became necessary, in order to compare

results with those from LQCD, current QCDSR are formulated in the complex squared

energy, s-plane, as first proposed in [6]. In this plane the only singularities in current cor-

relators are along the real positive axis. They correspond to hadronic bound states on this

axis, as well as resonances in the second Riemann sheet.

Cauchy’s theorem applied to current correlators relates QCD information on the circle

to hadronic physics on the real axis in figure 1 (quark-hadron duality). For the deter-

mination of the light-quark masses, mu,d, the appropriate correlator is that involving the

axial-vector current divergences

ψ5(s ≡ −q2) = i

∫
d4x eiqx < 0|T (j5(x) j5(0)) |0 > , (1.1)

where

j5(x) ≡ ∂µAµ(x) = (md +mu) : d(x) i γ5 u(x) : . (1.2)

Cauchy’s theorem for this correlation function becomes

1

2π i

∮
C(|s0|)

dsψ5(s)|QCD P5(s) +

∫ s0

sth

ds
1

π
Imψ5(s)|HAD P5(s) =

∑
i

Ri , (1.3)

where P5(s) is some meromorphic function, and Ri the residues at the pole(s). The purpose

of the function P5(s) is to quench the hadronic resonance contribution to the FESR. For

the case of the pseudoscalar correlator, eq. (1.1), the hadronic spectral function involves

the pion pole followed by at least two radial excitations. While the mass and width of

these resonances is known, this information is hardly enough to reconstruct the hadronic

spectral function. Non-resonant background, inelasticity, resonance interference, etc. are
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Figure 1. Integration contour in the complex s-plane.

realistically impossible to model. For these reasons the kernel P5(s) was introduced in

previous quark-mass determinations [7]–[9] in order to quench the contribution of the reso-

nance region. The choice of P5(s) in the present determination will be an analytic function.

Hence, there will be no residue contribution to the right-hand-side of eq. (1.3).

The contour integral in eq. (1.3) is usually performed in two ways, i.e. fixed order

perturbation theory (FOPT), and contour improved perturbation theory (CIPT). In FOPT

the strong coupling, αs(s), is frozen on the integration contour, and the renormalization

group (RG) is implemented after integration. Conversely, in CIPT the strong coupling is

running and the RG improvement is used before integration. In a variety of applications

either both methods give similar results, or CIPT leads to more accurate predictions. The

latter will turn out to be the case in this determination.

This determination represents a substantial improvement on the previous FESR results

for the up- and down- quark masses, in terms of (i) the analysis of different kernels, (ii)

examining the issue of the convergence of the perturbative QCD expansion, (iii) a different

implementation of the running QCD coupling, (iv) a more careful error analysis, and (v)

the high numerical precision achieved in this calculation.

The previous determination [9] performed the calculation of the quark masses in the

framework of CIPT and restricted the choice of kernel to vanish at the resonance peaks,

eventually preferring the kernel P5(s) = 1 − a0 s − a1 s
2, with a0 = 0.897 GeV−2 and

a1 = −0.1806 GeV−4. In the current determination, different integration kernels are

considered and the calculations are done in the framework of both FOPT and CIPT.

Further, the issue of the convergence of the perturbative QCD expansion and its effect

on the up- and down- quark masses was not addressed in [9], but will be considered in the

present determination.

In the previous determination [9], the strong coupling was expressed in terms of the

QCD scale ΛQCD, as in αs(s) ∝ 1/ ln(s/Λ2
QCD), a procedure that will not be followed here

as it leads to unnecessary larger uncertainties. Instead, the renormalization group equation
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for the strong coupling will be used in order to express the coupling in terms of some well

known value at a given scale, e.g. at the tau-lepton mass scale.

Additionally, the error analysis in [9] did not include the error due the dependence of

the up- and down- quark masses on the value of s0; calculated the uncertainty due to the

gluon condensate by gauging the effect of multiplying the gluon condensate by a factor of

two; and assumed, somewhat arbitrarily, a 30% uncertainty in the hadronic sector. A more

robust error analysis is given in this determination.

As a final remark, the determination we present in this paper employs Mathematica

and represents a significant advancement in achieved numerical precision of FESR deter-

minations of the up- and down- quark masses. Details of this argument are given in the

supplementary resource.

2 Pseudoscalar current correlator in QCD

The pseudoscalar current correlator, eq. (1.1), in QCD is given by

ψ5(q2) = (m̄u + m̄d)
2

{
− q2 Π0(q2) +O(m2

u,d)

− Cq
−q2

(m̄u + m̄d)
〈
q̄ q
〉

+
C4〈O4〉
−q2

+ O
(

1

q4

)}
, (2.1)

where m̄q stands for the running quark mass in the MS-bar renormalization scheme. The

perturbative QCD function, Π0(q2), can be obtained from [10]–[12], whilst the O(α4
s) result

can be found in [13]. To O(α4
s) it is given by

Π0(q2) =
1

16π2

[
− 12 + 6L+ asA1(q2) + a2

sA2(q2) + a3
sA3(q2) + a4

sA4(q2)
]
, (2.2)

where L ≡ ln(−q2/µ2), as ≡ αs(−q2)/π, and the Ai(q
2) are

A1(q2) = −131

2
+ 34L− 6L2 + 24 ζ(3) , (2.3)

A2(q2) =

(
4nF ζ(3)− 65

4
nF − 117 ζ(3) +

10801

24

)
L+

(
11

3
nF − 106

)
L2

+

(
− nF

3
+

19

2

)
L3 + constants , (2.4)

A3(q2) = C1 L− 6

(
4781

18
− 475

8
ζ(3)

)
L2 + 229L3 − 221

16
L4 , (2.5)

C1 =
4748953

864
− π4

6
− 91519

36
ζ(3) +

715

2
ζ(5), (2.6)

and

A4(q2) =

5∑
i=1

Hi L
i , (2.7)

with ζ(n) the Riemann zeta-function, nF = 3 in the light quark sector, and the co-

efficients Hi involving long expressions [13], numerically reducing to H1 = 33532.3,
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H2 = −15230.645111, H3 = 3962.454926, H4 = −534.0520833, and H5 = 24.17187500.

Next, the non-perturbative terms are

Cq =
1

2
+

7

3
as , (2.8)

C4〈O4〉 = −1

8
as
〈
Gµν Gµν

〉 [
1 +

11

2
as

]
. (2.9)

In FOPT one can either use the correlator ψ5(q2), eq. (2.1), or its second derivative.

However, this is not the case in CIPT, where it is far more convenient to use the second

derivative, ψ
′′
5 (q2). The PQCD result for ψ

′′
5 (q2) was obtained in [13], which for three

flavours leads to the simplified (renormalization group improved) expression [3, 9]

ψ′′5(s)|RGI
PQCD = −

m̄2
ud(s)

4π2

1

s

4∑
m=0

Km

(
αs(s)

π

)m
(2.10)

where s ≡ −q2, and

m̄ud(s) ≡
m̄u(s) + m̄d(s)

2
, (2.11)

and the coefficients Km are: K0 = 6, K1 = 22, K2 = 5071/24 − 105 ζ(3), K3 =

5985291/2592− π4/6− 65869 ζ(3)/36, and K4 = 3070.9698.

The leading order non-perturbative terms in ψ
′′
5 (q2) are:

ψ
′′
5 (q2)|〈G2〉 = −1

4
m̄2
ud

1

(q2)3

〈
αs
π
G2

〉(
1 +

11

2
αs(q

2)

)
, (2.12)

ψ
′′
5 (q2)|〈q̄ q〉 =

m̄2
ud

(q2)3
m̄ud

〈
q̄ q
〉 (

1 + O(αs)
)
. (2.13)

Unlike the case of the correlator determining the strange-quark mass, it is safe to ignore

here the quark-condensate contribution [14, 15].

As mentioned in the Introduction, the strong coupling is expressed in terms of a given

scale s = s∗ where its value is known with high precision. Using the renormalization group

equation for as(s) ≡ αs(s)/π one can perform a Taylor expansion at some given reference

scale s = s∗, leading to [16]–[17]

as(s) ≡
αs(s)

π
= as(s

∗) + [as(s
∗)]2 (−β0 η) + [as(s

∗)]3(−β1 η + β2
0 η

2)

+[as(s
∗)]4
(
− β2 η +

5

2
β0 β1 η

2 − β3
0 η

3

)
+[as(s

∗)]5
(
− β3 η +

3

2
β2

1 η
2 + 3β0 β2 η

2 − 13

3
β2

0 β1 η
3 + β4

0 η
4

)
+[as(s

∗)]6
(
−β4 η +

7

2
β0 β1 η

2 +
7

2
β0 β3 η

2 − 35

6
β0 β

2
1 η

3 − 6β2
0 β2 η

3

+
77

12
β3

0 β1 η
4 − β5

0 η
5

)
, (2.14)

where η ≡ ln(s/s∗). The beta function is

β(as) = −a2
s

(
β0 + asβ1 + a2

sβ2 + a3
sβ3 + a4

sβ4

)
, (2.15)
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which is known up to O(α6
s) [18]. Our convention for the coefficients of the β-function for

three flavours is such that β0 = 9/4, β1 = 4, etc.

We use the world average of the strong coupling constant αs(M
2
Z) = 0.1181 ±

0.0011 [19]. This is run to our chosen scale s∗ = M2
τ using RunDec (version 3) to de-

couple over flavour thresholds [20], which yields

αs(s
∗ ≡ M2

τ ) = 0.3205± 0.0183 . (2.16)

Similarly, by solving the renormalization group equation for m̄(s), the quark mass can also

be expressed in terms of its value at some scale s = s∗ [16, 21]

m̄(s) = m̄(s∗)

{
1− a(s∗) γ0 η +

1

2
a2(s∗) η

[
− 2 γ1 + γ0 (β0 + γ0) η

]
−1

6
a3(s∗) η

[
6 γ2 − 3

(
β1 γ0 + 2 (β0 + γ0) γ1

)
η + γ0 (2β2

0 + 3β0 γ0 + γ2
0) η2

]
+

1

24
a4(s∗) η

[
− 24 γ3 + 12(β2 γ0 + 2β1 γ1 + γ2

1 + 3β0 γ2 + 2 γ0 γ2) η

− 4
(

6β2
0 γ1 + 3 γ2

0 (β1 + γ1) + β0 γ0 (5β1 + 9 γ1)
)
η2 + γ0 (6β3

0 + 11β2
0 γ0

+6β0 γ
2
0 + γ3

0) η3
]

+
1

120
a5(s∗) η

[
− 120 γ4 +

1

β0
60
(
− 7β1 β2 γ0 + 4β2

0 γ3 + β0 (7β1 γ0 + β3 γ0

+2β2 γ1 + 3β1 γ2 + 2γ1 γ2 + 2 γ0 γ3)
)
η − 20

(
3β2

1 γ0 + β1 (14β0 + 9 γ0) γ1

+3 (2β0 + γ0)(β2 γ0 + γ2
1 + 2β0 γ2 + γ0 γ2)

)
η2 + 10

(
12β3

0 γ1 + γ3
0(3β1 + 2 γ1)

+β0 γ
2
0 (13β1 + 12 γ1) + β2

0 γ0 (13β1 + 22 γ1)
)
η3 − γ0

(
24β4

0 + 50β3
0 γ0

+35β2
0 γ

2
0 + 10β0 γ

3
0 + γ4

0

)
η4
]

+ O(a6(s∗))

}
, (2.17)

where the γ(as) function is [22]

γ(as) = −as
(
γ0 + asγ1 + a2

sγ2 + a3
sγ3 + a4

sγ4

)
(2.18)

with the convention such that e.g. γ0 = 1, γ1 = 91/24, etc., for three flavours.

3 Hadronic pseudoscalar current correlator

In the hadronic sector, the spectral function of the current correlator ψ5(q2), eq. (1.1),

involves the pion pole followed by the three-pion resonance contribution

1

π
Imψ5|HAD(s) = 2 f2

πM
4
π δ(s−M2

π) +
1

π
Imψ5|RES(s) (3.1)

where fπ = (92.07 ± 1.20) MeV [19], Mπ = (134.9770 ± 0.0005) MeV [19], and the three-

pion resonance contribution is due to the π(1300) followed by the π(1800) [19]. In the

chiral limit the threshold behaviour of the three-pion state, first obtained in [23], is

1

π
Im ψ5(s)|πππ = θ(s)

1

3

M4
π

f2
π

1

28 π4
s . (3.2)
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Beyond the chiral limit the threshold behaviour, first obtained in [24] and later cor-

rected for misprints in [25], is given by

1

π
Im ψ5(s)|πππ = θ

(
s− 9M2

π

) 1

9

M4
π

f2
π

1

28 π4
IPS(s) . (3.3)

where the phase-space integral IPS(s) is

IPS(s) =

∫ (
√
s−Mπ)2

4M2
π

du

√
1− 4M2

π

u
λ1/2(1, u/s,M2

π/s)

{
5 +

1

2

1

(s−M2
π)2

×
[
(s− 3u+ 3M2

π)2 + 3 λ(s, u,M2
π)

(
1− 4M2

π

u

)
+ 20 M4

π

]
+

1

(s−M2
π)

[
3(u−M2

π)− s+ 9M2
π

]}
, (3.4)

where

λ(1, u/s,M2
π/s) ≡

[
1− (

√
u+Mπ)

2

s

] [
1− (

√
u−Mπ)

2

s

]
, (3.5)

λ(s, u,M2
π) ≡

[
s−

(√
u+Mπ

)2] [
s−

(√
u−Mπ

)2]
, (3.6)

which in the chiral limit it reduces to IPS = 3 s.

This threshold expression normalizes the hadronic resonance spectral function, mod-

elled as a combination of Breit-Wigner forms BWi(s)

1

π
Im ψ5(s)|RES = Im ψ5(s)|πππ

[BW1(s) + κ BW2(s)]

(1 + κ)
, (3.7)

where BW1(sth) = BW2(sth) = 1, with

BWi(s) =
(M2

i − sth)2 +M2
i Γ2

i

(s−M2
i )2 +M2

i Γ2
i

(i = 1, 2) , (3.8)

and κ is a free parameter controlling the relative weight of the resonances. The value

κ = 0.1 results in a smaller contribution of the second resonance compared to the first,

and it will be used in the sequel. The widths of these radial excitations of the pion are

affected by large uncertainties [19]. For the first resonance, π (1300) we shall use the

determination from the two-photon process γ γ → π+ π− π0, as it is the most reliable [26].

The width is Γ1 = (260 ± 36) MeV. The second resonance is the π(1800), with a width

Γ2 = (208± 12) MeV [19]. This spectral function is shown in figure 2.

4 QCD sum rules and results

The starting point is the analysis of the convergence of the correlator function’s PQCD

expansion using FOPT. In FOPT, the strong coupling is fixed for a given radius s0 in the

complex s-plane. After the contour integration is performed one finds a series in terms

of αs(s), eq. (4.5), the convergence of which can be analysed. A remark must be made
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Figure 2. Hadronic spectral function in the resonance region, eqs. (3.7)–(3.8) with κ = 0.1, and

involving two radial excitations of the pion, π(1300) and π(1800).

that this is not the case in CIPT where the strong coupling is running, i.e. its value must

be found by solving the relevant renormalization group equation at each point along the

contour. As such, the contour integration in CIPT must be performed numerically and no

symbolic series in terms of αs(s) can be found. Hence, the convergence of PQCD expansion

of the correlator function can not be directly analysed in CIPT. This does not, however,

preclude one from analyzing the convergence of the quark mass in both FOPT and CIPT,

by successively including higher order terms in the perturbative expansion of the correlator

function before integration, which is addressed later in this paper (figure 3).

The quark mass, m̄ud(s0), is determined in FOPT from the FESR, eq. (1.3), as

(m̄u + m̄d)
2 =

δ5(s0)|HAD

δ5(s0)|QCD
, (4.1)

δ5(s0)|HAD =

∫ s0

sth

ds
1

π
Imψ5(s)|HAD P5(s) , (4.2)

δ5(s0)|QCD = − 1

2πi

∮
C(|s0|)

ds ψ̂5(s)|QCD P5(s) , (4.3)

where ψ̂5(s)|QCD stands for the correlator, eq. (2.1), with the overall quark-mass squared

factor removed, and P5(s) is an analytic integration kernel designed to quench the hadronic

contribution to the sum rule. Notice that the dimension, d, of δ5(s0)|HAD is d = 6, while

that of δ5(s0)|QCD is d = 4. Regarding P5(s), several functional forms for the hadronic

quenching integration kernel were considered, with the optimal being

P5(s) = (s− c)(s− s0) , (4.4)

where c = 2.4 GeV−2 lies halfway between the two resonances. Several criteria were used in

choosing the integration kernel eq. (4.4). For instance, the kernel should not bring in higher

– 7 –
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Figure 3. The quark mass m̄ud(2 GeV) plotted by successively including higher order terms in the

perturbative expansion of the correlator function before integration, in both CIPT and FOPT.

dimensional condensates, as their values are poorly known. This constrains substantially

the powers of s. Next, the relative contribution of the second resonance should not exceed

that of the first one. The kernel should quench the hadronic resonance contribution at

s = s0, as well as in the region between the two resonances. The kernel eq. (4.4) also leads

to the most stable result for the quark masses in the wide region s0 ' (1.5− 4.0) GeV2.

Substituting the PQCD result, as given in eqs. (2.1)–(2.2), at a typical scale of s0 =

3.3 GeV2, leads to

[δ5(s0)|PQCD]−1/2 = 2.42 (1 + 2.68αs + 8.63α2
s + 25.77α3

s + 71.63α4
s)
−1/2 , (4.5)

in units of GeV−2, and αs ≡ αs(s0). Using eqs. (2.14)–(2.16) to obtain αs(s0) shows that

all terms beyond the leading order are roughly of the same size

[δ5(s0)|PQCD]−1/2 = 2.42 (1 + 0.85 + 0.86 + 0.82 + 0.72)−1/2 . (4.6)

Since the quark mass actually depends on the square-root of δ5, the relevant power

series expansion is instead

[δ5(s0)|PQCD]−1/2 = 2.42 (1 − 1.34αs − 1.62α2
s − 1.55α3

s − 0.11α4
s) . (4.7)

Substituting in αs(s0) (found from eqs. (2.14)–(2.16)), eqs. (4.7) becomes

[δ5(s0)|PQCD]−1/2 = 2.42 (1 − 0.42 − 0.16 − 0.05 − 0.001) , (4.8)

which shows a much improved convergence. Interestingly, the expansion, eq. (4.7), is an

example of a Padé approximant; in this case a [4/0] approximant. As a consequence of this

we have tried other types of Padé approximants, but this simple one provides the optimal
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expansion in this application. While this Padé improvement is unquestionably a positive

feature, there remain other unwelcome issues with FOPT. These include a large negative

impact on the results for m̄ud from (i) the dependence of the results on the value of s0, (ii)

the estimate of the unknown six-loop contribution, and (iii) the uncertainties in αs when

using Padé approximants. These issues are under much better control in CIPT, which is

described next.

In the framework of CIPT the QCD sum rule is given by [3]

− 1

2πi

∮
C(|s0|)

dsψ
′′
5 (s)|QCD

[
F (s)− F (s0)

]
= 2 f2

πM
4
π P5(M2

π) +
1

π

∫ s0

sth

ds Imψ5(s)|RES P5(s) , (4.9)

where F (s) depends on the explicit form of the kernel P5(s). The function F (s) corre-

sponding to this integration kernel is given by

F (s) =
1

12
s4 − 1

6
(c+ s0) s3 +

1

2
c s0 s

2 +

(
s3

0

6
− 1

2
c s2

0

)
s , (4.10)

and F (s0) becomes

F (s0) =
s3

0

12
(−2 c+ s0) . (4.11)

After substituting eqs. (2.10) in eq. (4.9) the left-hand-side of the FESR, eq. (4.9),

becomes (after renormalization group improvement)

δ5(s0)|RGI
PQCD =

m̄2
ud

16π2

4∑
n=0

Kn
1

2πi

∮
C(|s0|)

ds

s

[
F (s)− F (s0)

]( ᾱs(s)
π

)n
, (4.12)

with the coefficients Kn defined in eq. (2.10). After substituting eqs. (4.10) and (4.11) into

eq. (4.12), there are two types of integrals involved, to be computed numerically,

IaNM (s0) ≡ 1

2πi

∮
ds

s
sN
( ᾱs
π

)M
(4.13)

and

IbM (s0) ≡ 1

2πi

∮
ds

s

( ᾱs
π

)M
, (4.14)

where N and M are positive integers.

Finally, the running of the quark mass must be taken into account. This is achieved

by starting from the RG equation for the mass

dm

m
=
γ(αs)

β(αs)
dαs (4.15)

where γ(αs) and β(αs) were defined in eqs. (2.15), (2.18).

After the change of variables dαs(x) = iβ(αs) dx in eq. (4.15), followed by integration,

eq. (4.15) becomes

m(x) = m(x0) exp
[
i

∫ x

x0

γ[αs(x
′)] dx′

]
, (4.16)
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Figure 4. The quark mass m̄ud(2 GeV) as a function of s0 in CIPT from the FESR, eq. (4.9).

and the running quark mass entering the FESR is given by

m̄ud(x) = m̄ud(s0) exp

[
− i

∫ x

0
dx′

∑
J

γJ

[
as(x

′)
]J]

, (4.17)

such that the FESR determines m̄ud(s0). The initial value of the strong coupling is obtained

from eqs. (2.14)–(2.16).

In the non-perturbative sector we use the value of the gluon condensate in eq. (2.12)

from a recent precision determination [27] (earlier determinations are discussed in detail

in [3]) 〈
αs
π
G2

〉
= (0.037 ± 0.015) GeV4 . (4.18)

In the hadronic sector the spectral function is parametrised as in eqs. (3.7)–(3.8). The

parameter κ can be varied in the wide range κ = 0.1− 0.2, subject to the requirement that

the first resonance should be leading. Such a variation produces only a 1% change in m̄ud.

In calculating m̄ud, the results from FOPT and CIPT are in agreement (see supple-

mentary calculations for more detail). However based on two central criteria - stability and

convergence — CIPT is the preferred framework for determining the m̄ud. The results are

given below.

The result for m̄ud as a function of s0 from the sum rule, eq. (4.9), in CIPT is shown

in figure 4. Potential, in principle unknown [28]–[29], duality violations are expected to be

quenched above s0 ≈ 3.0 GeV2, the region where the result is obtained.

The error bar in figure 4 is the total uncertainty due to the various sources shown

in table 1. These are (i) the uncertainty in the strong coupling, αs, eq. (2.16), (ii) the

uncertainty in the value of the gluon condensate, eq. (4.18), (iii) the range s0 = (1.5 −
4.0) GeV2, (iv) the uncertainty in the resonance widths and the parameter κ in the hadronic

– 10 –



J
H
E
P
0
2
(
2
0
1
9
)
0
5
7

m̄ud(2 GeV) ∆αs ∆〈G2〉 ∆s0 ∆HAD ∆6-loop ∆T

(MeV)

CIPT 3.946 0.207 0.052 0.017 0.084 0.132 0.265

Table 1. Results for the various uncertainties from CIPT, together with the total uncertainty

added in quadrature, ∆T .

spectral function, and (v) the assumption that the unknown PQCD six-loop contribution

is equal to the five-loop one. This leads to

m̄ud|CIPT(2 GeV) = (3.9 ± 0.3) MeV , (4.19)

to compare with the PDG value1 [19] m̄ud|PDG(2 GeV) = (3.5 ± 0.6) MeV, and the FLAG

Collaboration result1 [1] m̄ud|FLAG(2 GeV) = (3.373 ± 0.080) MeV. In order to disentangle

the individual mass values one requires as external input the quark mass ratio mu/md.

Using the recent PDG value1 [19]

mu

md
= 0.48 ± 0.08 , (4.20)

results in

m̄u(2 GeV) = (2.6 ± 0.4) MeV , (4.21)

m̄d(2 GeV) = (5.3 ± 0.4) MeV , (4.22)

to be compared with the PDG values1 [19]: m̄u (2 GeV) = (2.2 ± 0.5) MeV, and

m̄d (2 GeV) = (4.7 ± 0.5) MeV; and with the FLAG Collaboration results1 [1]

m̄u (2 GeV) = (2.16 ± 0.11) MeV, and m̄d (2 GeV) = (4.68 ± 0.16) MeV.
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