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We calculate the holographic complexity of a family of hyperbolic black holes in an Einstein-Maxwell-
dilaton system by applying the complexity ¼ action conjecture. While people previously studied spherical
black holes in the same system, we show that hyperbolic black holes have intriguing features. We confirm
that the complexity expression mainly depends on the spacetime causal structure despite the rich
thermodynamics. The nontrivial neutral limit that exists only for hyperbolic black holes enables us to
analytically obtain the complexity growth rate during phase transitions. We find that the dilaton accelerates
the growth rate of complexity, and the Lloyd bound can be violated. This is in contrast to the spherical case
where the dilation slows the complexity growth rate down, and the Lloyd bound is always satisfied. As a
special case, we study the holographic complexity growth rate of the neutral hairy black holes and find that
the Lloyd bound is always violated.
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I. INTRODUCTION

One of the most exciting observations in theoretical
physics is the deep connection between gravity and
information, which originates from the research of black
hole entropy [1]. After the proposal of AdS=CFT con-
jecture [2,3], this connection is becoming more and more
convincing and rises mountains of research interest. Ryu
and Takayanagi [4] then formulated a proposal that relates
the entanglement entropy in the boundary theory to the
areas of minimal surfaces in the anti-de Sitter (AdS)
spacetime (see [5] for a review). This proposal strongly
suggests that spacetime can be regarded as an emergent
phenomenon related to quantum entanglement. However,
as the research progresses, it is noticed that the black hole
horizon blocks our way to understand spacetime in terms
of entanglement. One evidence is that the minimal
surfaces in the Ryu-Takayanagi proposal are unable to
probe the whole geometry behind the black hole horizon.
Additionally, the volume behind the horizon keeps grow-
ing in late time while the entanglement has already been
saturated [6]. These facts implicitly suggest that entangle-
ment entropy is not enough and bring another quantity
from information theory called quantum complexity into
our sight [7–11]. Briefly speaking, quantum complexity is

usually defined as the least possible number of unitary
transformations needed for constructing a target state from
a given reference state. In chaotic systems, the complexity
will be expected to grow linearly and be sensitive to
perturbations. These properties inspire people to notice
that certain geometry quantities about black holes also
have such behavior and these similarities lead us to the
conjectures of holographic complexity.
There are several different proposals for the holographic

description of complexity. The first is known as the
complexity ¼ volume (CV) conjecture, which identifies
the complexity with the volume V of the maximum
codimension-one surface anchored to the boundary,

CV ¼ maxðVÞ
GNL

; ð1:1Þ

where GN is Newton’s constant and L is the AdS length.
The second proposal is called the complexity ¼ action
(CA) conjecture, which relates the complexity of the
boundary theory to the action evaluated in an exact bulk
region with null boundaries known as the Wheeler-DeWitt
(WDW) patch,

CA ¼ SWDW

π
: ð1:2Þ

Another proposal is called CV2.0, which states that the
holographic complexity can be calculated by the spacetime
volume of the WDW patch,

CSV ¼ VWDW

GNL2
: ð1:3Þ
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Aside from these stated conjectures, recently there has
been a series of works arguing that it is possible to construct
an infinite family of gravitational observables that naturally
include all the conjectures mentioned above [12,13]. All
these different proposals have their own values that deserve
further research. However, in this work, we will only focus
on the CA conjecture and leave the possible generalization
to future works.
In string theory, a scalar field called a dilaton occurs in

the low energy limit and couples to other gauge fields
nontrivially; this coupling may change the spacetime
structure and leave us with intriguing black hole solutions.
As in simpler cases, the Einstein-Maxwell-dilaton (EMD)
systems admit analytic solutions of charged dilaton black
holes [14].1 It can be considered as an extension of the
Einstein-Maxwell theory with an exponential coupling
between the scalar field and the Maxwell field. The EMD
systems admit black brane solutions with hyperscaling
violation and the complexity of these solutions was studied
in [16,17]. Moreover, with a negative cosmological con-
stant, the EMD systems have broad applications in the
AdS=CFT correspondence. See [18] for Einstein-dilaton
systems. In most of the previous works on these black
holes, authors focused on spherical or planar black hole
solutions. The hyperbolic black holes deserve more atten-
tion and further exploration.
We calculate the complexity from a class of EMD

systems belonging to N ¼ 2 supergravity [19]. Special
cases of this system can be embedded in 11-dimensional
supergravity. The action is (2.1) with (2.2) below. The
complexity of the spherical black holes was calculated
in [20]. The hyperbolic counterpart has the following
intriguing features:

(i) This system has a nontrivial neutral limit in which an
Einstein-scalar system is obtained, while the scalar
field is kept nontrivial [21]. Only in the hyperbolic
case can we obtain a neutral hairy black hole.2

(ii) For the Einstein-scalar system, the scalar field
condensates without being sourced. The analytic
solution describing the spontaneous development of
the scalar hair is extremely rare. An application of
this system is to study the phase transition of Rényi
entropies [22].

(iii) Thermodynamics of hyperbolic black holes has
richer properties. While the parameters b and c
must be positive for spherical black holes, they can
be both negative for hyperbolic black holes.

In this work, we investigate the holographic complexity
of the hyperbolic charged dilaton black holes by applying

the CA conjecture. By comparing our result with the
studied spherical case, we find similarities as well as
essential differences between these two results. The main
conclusions are as follows:

(i) The expression of the complexity mainly depends on
the causal structure of the spacetime, despite the rich
thermodynamics of hyperbolic black holes.

(ii) By studying the neutral case, we provide an analytic
example that the complexity growth rate undergoes
phase transitions as we decrease the temperature.

(iii) We find that the dilaton will accelerate the complex-
ity growth instead of slowing it down, which is
opposite to the spherical case.

(iv) The Lloyd bound is violated in certain parameter
space, in contrast to the spherical case in which the
Lloyd bound is always satisfied.

As a special case, we obtain the holographic complexity
growth rate of the neutral hairy black holes as a nontrivial
neutral limit and find that the Lloyd bound is always
violated due to the accelerated effect of the dilaton.
This paper is organized as follows. In Sec. II, we review

the solution of the EMD system. In Sec. III, we calculate
the complexity of the neutral and charged black holes by
CA proposal in Secs. III B and III C, respectively. In
Sec. IV, we summarize our results and compare them with
the spherical and planar solutions, and we discuss the
violation of the Lloyd bound. In Appendix A, we discuss
the number of horizons. In Appendix B, we briefly
calculate the complexity of the planar EMD black hole.
In Appendix C, we give the result for a higher-dimensional
EMD system.

II. THE EMD SYSTEM AND ITS HYPERBOLIC
BLACK HOLE SOLUTION

In this section, we review some basic properties of the
EMD system to prepare for our further calculations.
The action is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−

1

4
e−αϕF2 −

1

2
ð∂ϕÞ2 −VðϕÞ

�
; ð2:1Þ

where F ¼ dA, the bulk spacetime is asymptotically AdS4
with the potential of the dilaton field as

VðϕÞ ¼ −
2

ð1þ α2Þ2L2
½α2ð3α2 − 1Þe−ϕ=α þ 8α2eðα−1=αÞϕ=2

þ ð3 − α2Þeαϕ�; ð2:2Þ

where α is a parameter, and the values of α ¼ 0, 1=
ffiffiffi
3

p
, 1,

and
ffiffiffi
3

p
correspond to special cases of STU supergravity.

This potential was found in [23] and was rediscovered
many times. When ϕ→0, VðϕÞ→−6=L2−ð1=L2Þϕ2þ���,
where the first term is the cosmological constant, and the
second term gives the mass m2L2 ¼ −2.

1The scalar hair considered in this paper is neutral instead of
charged. As for the case with charged scalar hair, see [15].

2The planar black hole as a nontrivial neutral limit in which its
IR geometry is a hyperscaling-violating geometry, while the UV
is asymptotically AdS.
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A solution of the metric gμν, gauge field Aμ, and dilaton
field ϕ is [23]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ UðrÞdΣ2

2;k; ð2:3Þ

A ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r �
1

rþ
−
1

r

�
dt; ð2:4Þ

eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 ; ð2:5Þ

with

f ¼
�
k −

c
r

��
1 −

b
r

�1−α2

1þα2 þ r2

L2

�
1 −

b
r

� 2α2

1þα2 ;

U ¼ r2
�
1 −

b
r

� 2α2

1þα2 : ð2:6Þ

The parameter k can be set to −1, 0, 1 corresponding to
hyperbolic, planar, and spherical cases, respectively. The
horizon of the black hole is determined by fðrþÞ ¼ 0,

c ¼ krþ þ r3þ
L2

�
1 −

b
rþ

�3α2−1
1þα2 : ð2:7Þ

We can see crucial differences between spherical, planar,
and hyperbolic black holes. Notice that charged black holes
have bc ≠ 0.

(i) Spherical black holes (k ¼ 1). We always have
c > rþ > b > 0. This is the case studied in [20].

(ii) Planar black holes (k ¼ 0). The case c ¼ 0 does not
give a black hole; however, it has physical meaning
as the extremal limit of black holes.

(iii) Hyperbolic black holes (k ¼ −1). The parameter
space for black holes is significantly larger. For
charged black holes, we have (i) rþ > b > 0, c > 0;
and (ii) b < 0 < rþ, c < 0. The case c ¼ 0 gives a
hairy neutral hyperbolic black hole.

The temperature and the entropy of the black hole are
given by

T ¼ f0ðrþÞ
4π

; S ¼ V2

4GN
UðrþÞ; ð2:8Þ

where V2 is the area of two-dimensional space dΣ2
2;k. The

mass of this black hole is given by3 [24]

M ¼ V2

8πGN

�
cþ k

1 − α2

1þ α2
b

�
: ð2:9Þ

For k ¼ 1, V2 ¼ 4π; for k ¼ 0 or −1, V2 is divergent. We
can consider the entropy density s≡ S=V2 and energy
density ε≡M=V2. The chemical potential μ and charge
density qe are

μ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r
1

rþ
; qe ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

1þ α2

r
: ð2:10Þ

It is straightforward to verify that the first law of thermo-
dynamics is satisfied (16πGN ¼ 1),

dε ¼ Tdsþ μdqe: ð2:11Þ

In this work, we focus on the hyperbolic black hole
solution ðk ¼ −1Þ. The solution has three other parameters
b, c, and α. The causal structure of this solution, which is
extremely important in the computation of the CA proposal,
depends on the value of these parameters. The parameter α
controls the strength of the coupling of the scalar field to the
gauge field. In the limit α → 0 and α → ∞, the solution
reduces to the Reissner-Nördstrom-AdS (RN-AdS) black
hole and the Schwarzschild-AdS (SAdS) black hole, respec-
tively. Generally, the causal structure is determined by the
solution of the equation fðrÞ ¼ 0. The causal structure of
the spherical case has been introduced in [20]. The hyper-
bolic case is more complicated because the parameter b can
be negative here. In the charged case with b > 0, for
α2 ≥ 1=3, there is only one black hole horizon so that
the causal structure is similar to the SAdS black hole as in
Fig. 1(a). For 0 < α2 < 1=3, an additional horizon appears
and the causal structure will be the type of RN-AdS black
hole as in Fig. 1(b). With b < 0 and c < 0, there will always
be two horizons for any α. Hence, the causal structure will
also be shown by Fig. 1(b), while the singularity is located at
r ¼ 0 instead of r ¼ b.
The solution (2.3)–(2.6) has two neutral limits. When

b ¼ 0, it is obvious that both the gauge field and dilaton
field are eliminated. The solution reduces to the hyperbolic
Schwarzchild-AdS black hole. When c ¼ 0, the dilaton
field is kept, while the gauge field is eliminated. Under this
limit, we obtain neutral hyperbolic black holes with scalar
hair [21]. The metric is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ UðrÞdΣ2

2; ð2:12Þ

where dΣ2
2 ¼ dθ2 þ sinh2 θdφ2 is the hyperbolic 2

space, and
3A rigorous derivation of the boundary stress tensor by

holographic renormalization can be found in Appendix A of [22].
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f ¼ −
�
1 −

b
r

�1−α2

1þα2 þ r2

L2

�
1 −

b
r

� 2α2

1þα2 ;

U ¼ r2
�
1 −

b
r

� 2α2

1þα2 ; eαϕ ¼
�
1 −

b
r

� 2α2

1þα2 : ð2:13Þ

This neutral black hole solution can only be realized in the
hyperbolic case. With positive b, we find that the causal
structure of the neutral solution is the same as the charged
case as Fig. 1. The solution with negative b can be obtained
by the positive case by a transformation b → −b; α → 1=α;
namely, when α2 ≤ 3, the black hole has two horizons, one
horizon when α2 > 3. A comprehensive analysis of the
number of horizons can be found in Appendix A.

III. COMPLEXITY GROWTH FROM
CA CONJECTURE

A. CA conjecture

In this section, we compute the growth rate of the
holographic complexity of the hyperbolic black holes by
the CA conjecture, including both charged and neutral
solutions. We begin with introducing some general ingre-
dients needed for the calculation, which follows the method
developed in [25].
We first consider the case when spacetime has a single

horizon as shown in Fig. 1(a). Before a critical time tc, the
intersection between the WDW patch and the past singu-
larity is a spacelike hypersurface. A useful result is that

the WDW action is time independent before the critical
time [26]. So we only need to study the period after critical
time. After the critical time, the WDW patch will leave the
past singularity and two null boundaries of the WDW patch
will intersect with each other at a point r ¼ rm. We use the
Eddington-Finkelstein coordinates given by

v¼ tþ r�ðrÞ; u¼ t− r�ðrÞ; r�ðrÞ ¼
Z

dr
fðrÞ : ð3:1Þ

At the critical time, we can write the null boundary as
u ¼ u0 in the Eddington-Finkelstein coordinates. Then the
critical time can be shown as

tc
2
− r�ð∞Þ ¼ u0 ¼ −r�ðrmÞ ⇒ tc ¼ 2ðr�ð∞Þ − r�ðrmÞÞ:

ð3:2Þ

Similarly, the null boundary intersection rm satisfies a
relation

t
2
− r�∞ þ r�ðrmÞ ¼ 0; ð3:3Þ

from which we can obtain the implicit time dependence
of rm,

drm
dt

¼ −
fðrmÞ
2

: ð3:4Þ

(a) (b)

FIG. 1. Causal structure of the black holes with b > 0: (a) α2 ≥ 1=3, (b) α2 < 1=3.
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Since the past joint r ¼ rm will be close to the horizon r ¼
rþ over time, taking the limit rm → rþ is equivalent to the
late time limit t → ∞.
When another horizon (inner horizon) appears, the

singularity becomes timelike instead. Therefore, the space-
like surface contributions from the intersection between the
WDW patch and the singularity no longer exist. We have an
additional future joint point named r ¼ r1m and the remain-
ing past joint is now r ¼ r2m as in Fig. 1(b). Similar to the
one horizon case, by applying the Eddington-Finkelstein
coordinates, we have the relation

t
2
þ r�ð∞Þ − r�ðr1mÞ ¼ 0;

t
2
− r�ð∞Þ þ r�ðr2mÞ ¼ 0: ð3:5Þ

And the time dependence is

dr1m
dt

¼ fðr1mÞ
2

;
dr2m
dt

¼ −
fðr2mÞ
2

: ð3:6Þ

The late time limit, likewise, can be equivalently expressed
as r2m → rþ, r1m → r−. In this case, we do not have a critical
time as before, so the shape of the WDW patch is
unchanged all the time.
The full action to be evaluated in CA conjecture is [25]

SWDW ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

−
1

4
e−αϕF2

�
ð3:7Þ

þ 1

8πGN

Z
B
d3x

ffiffiffiffiffiffi
−h

p
K −

1

8πGN

Z
B0
dλd2θ

ffiffiffi
γ

p
κ

ð3:8Þ

þ 1

8πGN

Z
Σ
d2x

ffiffiffi
σ

p
ηþ 1

8πGN

Z
Σ0
d2x

ffiffiffi
σ

p
a ð3:9Þ

þ 1

8πGN

Z
B0
dλd2θ

ffiffiffi
γ

p
Θ log ðlctΘÞ: ð3:10Þ

The line (3.7) is the bulk action terms. The line (3.8) is the
codimension-one boundary contributions. The first term
in (3.8) is Gibbons-Hawking-York (GHY) surface term,
which comes from the spacelike surfaces at singularities as
well as the timelike surfaces at the UV cutoff near the AdS
boundary. The total timelike surface contribution will be
time independent sowe are free to ignore it in the calculation
of time dependence of complexity in any case. The spacelike
surface contributions at singularities are needed when there
is only one horizon for our black holes. With two horizons,
there is no such contribution from Fig. 1(b). So the GHY
boundary term is ignored for the black holes with two

horizons. The second term in (3.8) is the contribution from
the null boundary of the WDW patch. From the discussion
in [25], we can affinely parametrize the generators and κ can
be set to zero. The line (3.9) is the contribution from the
intersection of two boundaries. The first term is called the
Hayward joint term, which represents the joint contribution
that comes from the intersection of surfaces not null. This
term plays no role in our discussion and we only include it
here for the completion of the formula. The second term
of (3.9) is the joint term that comes from the intersection of
WDW null boundaries with other surfaces. Similar to the
boundary term, the total contribution comes from joints at
the singularities and the UV cutoff is ignored because of
their time independence. The only useful term left is the joint
contribution of two null WDW boundaries. The line (3.10) is
a counterterm introduced to protect the reparametrization
invariance on the null boundaries, which has no effects
on the variational principle.4 Based on these discussions, we
can write the action that will be used in the following
calculations:

SWDW ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

−
1

4
e−αϕF2

�
þ 1

8πGN

Z
B
d3x

ffiffiffiffiffiffi
−h

p
K

þ 1

8πGN

Z
rm

d2x
ffiffiffi
σ

p
a

þ 1

8πGN

Z
B0
dλd2θ

ffiffiffi
γ

p
Θ logðlctΘÞ: ð3:11Þ

A useful trick in the calculation is to divide the WDW
patch symmetrically into left and right parts. These two
parts can be further divided into three regions as in Fig. 1. It
is convenient to evaluate the r integral in each part and
finally multiply the result by a factor of 2 to get the full
answer.

B. Complexity growth for neutral hyperbolic black hole

In this section, we will calculate the time dependence of
the holography complexity of the nontrivial neutral hyper-
bolic black hole. The neutral case is slightly simpler than
the charged case so we choose to show the calculation in
more detail first. From now on, we set 16πGN ¼ 1 for
simplicity.
The bulk action is

Sbulk ¼ 2V2

Z
drdt

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð3:12Þ

4In some particular cases like shock wave geometries, this kind
of counterterm is needed to produce the expected results of
complexity.
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where V2 is the area of the hyperbolic space dΣ2
2, and we

include a factor of 2 to account for the left part in Fig. 1(a).
We evaluate the t integral in the Eddington-Finkelstein
coordinates first and then we divide the r integral into three
parts as in Fig. 1(a),

SIWDW ¼ 2V2

Z
rþ

r1m

dr
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�

×

�
t
2
þ r�∞ − r�ðrÞ

�
;

SIIWDW ¼ 2V2

Z
∞

rþ
dr

ffiffiffiffiffiffi
−g

p ðr�∞ − r�ðrÞÞ;

SIIIWDW ¼ 2V2

Z
rþ

r2m

dr
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�

×

�
−
t
2
þ r�∞ − r�ðrÞ

�
: ð3:13Þ

Then we obtain the time derivative on these parts and add
them up,

dSbulk
dt

¼ −
2V2

ð1þ α2Þ r
3−α2

1þα2ðr − bÞ3α
2−1

1þα2 ð−bþ rþ rα2Þ
����r

2
m

r1m

:

ð3:14Þ

When there are two horizons, the points r1m and r2m are future
and past intersections of the WDW null boundaries. When
the geometry has only one horizon, the future meeting point
r1m will be replaced by the location of singularity r ¼ b for
b > 0 or r ¼ 0 for b < 0. These two cases are related by a
simple transformation b → −b, α → 1=α; therefore, we will
only focus on the b > 0 case in the following. From (3.14),
the contribution from the singularity r ¼ b has different
values for α2 ¼ 1=3 and α2 > 1=3,

(
− 1

2
b3 α2 ¼ 1

3
;

0 α2 > 1
3
:

ð3:15Þ

The next term is the GHY surface term. The action is

Ssurf ¼ 4V2

Z
dt

ffiffiffiffiffiffi
−h

p
K

¼ 2V2

ð1þ α2Þ
�
bð3þ α2Þ − 4rð1þ α2Þ

þ 6

�
1 −

b
r

�3α2−1
α2þ1 ðr3ð1þ α2Þ − bÞ

�

×

�
t
2
þ r�∞ − r�ðrÞ

�����
r¼bþϵ

: ð3:16Þ

Here we introduce a regulator surface near the singularity
r ¼ b. Next we take the time derivative

dSsurf
dt

����
r¼bþϵ

¼ V2

ð1þ α2Þ
�
bð1þ 3α2Þ þ 4ϵð1þ α2Þ

− 6

�
ϵ

bþ ϵ

�3α2−1
α2þ1 ðbþ ϵÞ2ðbα2 þ ϵþ α2ϵÞ

�
:

ð3:17Þ

Then we take the limit ϵ → 0,

dSsurf
dt

����
r¼b

¼ V2

ð1þα2Þ
�
bð1þ3α2Þ−6b3α2lim

ϵ→0

�
ϵ

bþϵ

�3α2−1
α2þ1

�
:

ð3:18Þ

We find that the limit in (3.18) depends on the value of α.
For 0 < α2 < 1=3, a divergence appears; however, there is
no such surface contribution because of the appearance of
an additional horizon. For α2 ≥ 1=3, the time derivative of
the surface contribution at the singularity r ¼ b is

dSsurf
dt

����
r¼b

¼
8<
:

3
2
V2ðb − b3Þ α2 ¼ 1

3
;

V2b
�
1þ3α2

1þα2

	
α2 > 1

3
:

ð3:19Þ

The next contribution comes from the joint term. As we
discussed before, the only meaningful contribution to the
time dependence is the intersection between the null
boundaries of the WDW patch. We have the formula [25]

Sjoint ¼ 2

Z
rm

d2x
ffiffiffi
σ

p
a

¼ 2V2

ffiffiffi
σ

p
log

�
−
1

2
k · k̄

�����
r¼rm

; ð3:20Þ

where a, k, k̄ are defined according to [25]; k and k̄ are the
null normal vectors of the boundary given by

k ¼ β∂μðtþ r�Þ;
k̄ ¼ β̄∂μðt − r�Þ: ð3:21Þ

Then the joint contribution is

Sjoint ¼ 2V2r2
�
1 −

b
rm

� 2α2

1þα2 log
�

ββ̄

fðrmÞ
�
: ð3:22Þ

When α2 < 1=3, from Fig. 1(b), there are two joint
contributions at the future and past intersection of the null
boundaries of the WDW patch. So the full contribution is
the sum of these two contributions. Recalling (3.6), we can
obtain the time derivative of the total joint contribution,

YONGAO WANG and JIE REN PHYS. REV. D 108, 046006 (2023)

046006-6



dSjoint
dt

¼ V2

1þα2

�
2r2

�
1−

b
r

�3α2−1
1þα2 ð−bþ rþ rα2Þþbðα2−1Þ

−2
�
1−

b
r

�α2−1
α2þ1ð−bþ rþ rα2ÞfðrÞ log

�
β2

fðrÞ
��r2m

r1m

:

ð3:23Þ

Here we keep fðrÞ implicitly in order to simplify our
equation. When α2 ≥ 1=3, the future joint is replaced by a
spacelike surface. The joint contribution comes only from
the past joint point r ¼ r2m, and thus the time derivative is
the expression above evaluated at r ¼ r2m only.
In the joint term, there are free coefficients β and β̄ that

reflect the ambiguity of complexity that comes from the null
boundary of the WDW patch. To eliminate this ambiguity
and, as [25] proposed, ensure the reparametrization invari-
ance of the null boundary, we can introduce a counterterm
that has no effect on the variational principle [20],

Sct ¼ 2

Z
dλd2θ

ffiffiffi
γ

p
Θ log ðlctΘÞ: ð3:24Þ

With an appropriate choice of affine parameter λ, we can
evaluate the counterterms such that the combined contri-
bution of counterterms and joint term can be independent of
β and β̄. Following [20], a suitable choice is λ ¼ r=β, where
β is exactly the constant that appeared before. The expan-
sion Θ is

Θ ¼ ∂λ log
ffiffiffi
γ

p ¼ β∂rUðrÞ
UðrÞ ¼ 2βð−bþ α2rþ rÞ

ðα2 þ 1Þðr − bÞ : ð3:25Þ

Then we can obtain the time derivative of the counterterm,

dSct
dt

¼ 4V2

1þ α2

�
1 −

b
r

�α2−1
α2þ1ð−bþ rþ rα2ÞfðrÞ

× log

�
2βlctð−bþ α2rþ rÞ
rðα2 þ 1Þðr − bÞ

�����
r¼rm

: ð3:26Þ

As we expected, the constant β is eliminated by adding the
counterterm into our full action.
So far, we have prepared all the ingredients for the late

time growth rate of complexity. First, we calculate the case
of two horizons,

dSWDW

dt
¼ dSbulk

dt
þ dSjoint

dt
þ dSct

dt

¼ V2

"
b

�
α2 − 1

α2 þ 1

�
−
4ð−bþ rþ rα2Þ

1þ α2
fðrÞ

�
1 −

b
r

�−1þα2

1þα2 log

�
UðrÞ

lct
ffiffiffiffiffiffiffiffiffi
fðrÞp

∂rUðrÞ

�#r2m

r1m

≡ dS1
dt

����r
2
m

r1m

: ð3:27Þ

Here we define a quantity dS1=dt, which is simply a
notation for future convenience. In the late time limit, the
joint points r1m and r2m approach the inner horizon r− and
outer horizon rþ, respectively. Additionally, fðrÞ vanishes
in the late time because fðr−Þ ¼ fðrþÞ ¼ 0. So we obtain

lim
t→∞

dSWDW

dt
¼ V2

�
α2 − 1

α2 þ 1

�
b

����rþ
r−

¼ 0: ð3:28Þ

We find that the complexity growth of the neutral hyper-
bolic black holes vanishes in the late time period when
there are two horizons. The same situation also occurs for
the hyperbolic Schwarzchild-AdS black hole when its
horizon radius is smaller than the AdS radius, which
corresponds to a black hole with negative mass. We will
discuss this further in Sec. IV.
As for the one horizon case, we have to add the GHY

surface contribution and the bulk contribution at singularity

based on the result of 0 < α2 < 1=3. Namely, when
α2 ≥ 1=3,

dSWDW

dt

����
α2≥1

3

¼ dSbulk
dt

þ dSsurf
dt

þ dSjoint
dt

þ dSct
dt

¼

8>>><
>>>:

dS1
dt

����
r¼r2m

þ 1
2
V2b3 þ 3

2
V2ðb− b3Þ α2 ¼ 1

3
;

dS1
dt

����
r¼r2m

þV2

�
1þ3α2

1þα2

	
b α2 > 1

3
:

ð3:29Þ

Taking the late time limit gives

lim
t→∞

dSWDW

dt

����
α2≥1

3

¼
8<
:

V2ðb − b3Þ α2 ¼ 1
3
;

V2

�
4bα2

1þα2

	
α2 > 1

3
:

ð3:30Þ
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Recall that the mass is given by

M ¼ −2V2

1 − α2

1þ α2
b:

Finally, the complexity growth rate in late time limit can be
summarized as

lim
t→∞

dSWDW

dt

����
b>0

¼

8>>><
>>>:

0 α2 < 1
3
;

2MþV2ð3b− b3Þ α2 ¼ 1
3
;

2MþV2

�
4b

1þα2

	
α2 > 1

3
:

ð3:31Þ

C. Complexity for charged hyperbolic black hole

In this section, we compute the holographic complexity
of charged hyperbolic black holes. Since many contents are
similar to the neutral calculation in Sec. III B, we will omit
the repeating detail. We begin with the case b > 0. The
bulk term is

Sbulk ¼ 2V2

Z
drdt

ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2−VðϕÞ−1

4
e−αϕF2

�
:

ð3:32Þ

As before, the factor of 2 means we have considered both
sides of the WDW patch. Following the same procedure
previously, we evaluate the t integral and divide the r
integral into three parts. Then we take time derivatives of
each term and add them up,

dSbulk
dt

¼ 2V2

�
q2e
4r

þ ðr − bÞ3α
2−1

1þα2 r
3−α2

1þα2
ð−bþ rþ rα2Þ

1þ α2
−

c
1þ α2

�
r1m

r2m

: ð3:33Þ

Same as the discussion before, when there is only one horizon, the joint point r1m is replaced by the location of singularity
r ¼ b for b > 0. The contribution at singularity r ¼ b is the same as (3.15).
The surface term is evaluated similar to the neutral case. We take the time derivative and the limit ϵ → 0,

dSsurf
dt

����
r¼b

¼ V2

1þ α2

�
ðbþ cÞð1þ 3α2Þ − 6b3α2lim

ϵ→0

�
ϵ

bþ ϵ

�3α2−1
1þα2

�
: ð3:34Þ

Same as before, only when α2 ≥ 1=3 will the surface term contribute,

dSsurf
dt

¼

 3

2
V2ðcþ b − b3Þ; α2 ¼ 1

3
;

V2
1þ3α2

1þα2
ðcþ bÞ; α2 > 1

3
:

ð3:35Þ

The joint term is

dSjoint
dt

¼ V2

ðα2 þ 1Þðr − bÞ
�
ðα2 þ 1Þr

�
c

�
1 −

b
r

�
þ 2r3

�
1 −

b
r

� 4α2

α2þ1

�

þ b

�
−2c

�
1 −

b
r

�
− 2r3

�
1 −

b
r

� 4α2

α2þ1 þ rðα2 − 1Þ
�
1 −

b
r

��

−2r
�
1 −

b
r

� 2α2

α2þ1fðrÞð−bþ rþ rα2Þ log
�

β2

fðrÞ
��r2m

r1m

: ð3:36Þ

For the two horizons case, there are two joint contributions located at r1m and r2m. For the one horizon case, the future joint r1m
will be replaced by the location of singularity b. The counterterm Sct is the same as the neutral case (3.26). So far, we have
all the ingredients to evaluate the full action of the WDW patch.
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For the two horizons case, we obtain

dSWDW

dt

����
α2<1

3

¼ dSbulk
dt

þ dSjoint
dt

þ dSct
dt

¼
�
V2

�
−
q2e
r
−
1 − α2

1þ α2
bþ 3þ α2

1þ α2
c

�
−

2V2

1þ α2

�
1 −

b
r

�α2−1
α2þ1fðrÞð−bþ rþ rα2Þ log

�
β2

fðrÞ
�

þ 4V2

1þ α2

�
1 −

b
r

�α2−1
α2þ1fðrÞð−bþ rþ rα2Þ log

�
2βlctð−bþ α2rþ rÞ
rðα2 þ 1Þðr − bÞ

��r2m
r1m

¼ V2

��
−
q2e
r
−
1 − α2

1þ α2
bþ 3þ α2

1þ α2
c

�
−

4

1þ α2

�
1 −

b
r

�α2−1
α2þ1fðrÞð−bþ rþ rα2Þ log

�
UðrÞ

lct
ffiffiffiffiffiffiffiffiffi
fðrÞp

∂rUðrÞ

��r2m
r1m

≡ dS2
dt

����r
2
m

r1m

: ð3:37Þ

Likewise, the term dS2=dt is a notation for future conven-
ience. In the late time limit,

lim
t→∞

dSWDW

dt
¼ V2

�
−
q2e
r
−
1 − α2

1þ α2
bþ 3þ α2

1þ α2
c

�����rþ
r−

¼ q2eV2

�
1

r−
−

1

rþ

�
: ð3:38Þ

For the one horizon case, we obtain

dSWDW

dt

����
α2≥1

3

¼

8>>><
>>>:

dS2
dt

����
r¼r2m

þ 1
2
V2b3þ 3

2
V2ðcþb−b3Þ α2¼ 1

3
;

dS2
dt

����
r¼r2m

þV2
1þ3α2

1þα2
ðcþbÞ α2> 1

3
:

ð3:39Þ

In the late time limit,

lim
t→∞

dSWDW

dt

����
b>0

¼ lim
t→∞

�
dSbulk
dt

þ dSsurf
dt

þ dSjoint
dt

þ dSct
dt

�

¼
8<
:

V2

�
− q2e

rþ
þ 4cþ b − b3

	
α2 ¼ 1

3
;

V2

�
− q2e

rþ
þ 4α2

1þα2
bþ 4c

	
α2 > 1

3
;

¼
8<
:

2M − V2

�
q2e
rþ
− 3bþ b3

	
α2 ¼ 1

3
;

2M − V2

�
q2e
rþ
− 4

1þα2
b
	

α2 > 1
3
:

ð3:40Þ

In the last equality, we introduce the mass of charged
hyperbolic black hole by setting k ¼ −1 in (2.9),

M ¼ 2V2

�
c −

1 − α2

1þ α2
b

�
: ð3:41Þ

Finally, we collect the results,

lim
t→∞

dSWDW

dt

����
b>0

¼

8>>>>>><
>>>>>>:

V2

h
q2e
�

1
r−
− 1

rþ

	i
; α2 < 1

3
;

2M − V2

�
q2e
rþ
− 3bþ b3

	
; α2 ¼ 1

3
;

2M − V2

�
q2e
rþ
− 4

1þα2
b
	
; α2 > 1

3
:

ð3:42Þ

Remember that we only discussed the case with positive b
above. When b < 0, as Appendix A shows, the black hole
will always have two horizons for any α. So the late time
growth of holographic complexity with negative b for all α is

lim
t→∞

dSWDW

dt

����
b<0

¼ V2

�
q2e

�
1

r−
−

1

rþ

��
: ð3:43Þ

We expect the late time growth rate of the holographic
complexity to be non-negative. When α2 < 1=3 and
α2 > 1=3, it is obvious to show that the results are positive.
When α2 ¼ 1=3, we have

−
q2e
rþ

þ 4cþ b − b3 ¼ 4c

�
1 −

3b
4rþ

�
þ b − b3

> cþ b − b3

¼ −rþ þ r3þ þ b − b3

¼ ðrþ − bÞðr2þ þ brþ þ b2 − 1Þ
> ðrþ − bÞðbþ b2Þ > 0: ð3:44Þ
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In the second line, we use the condition that the horizon
radius must be outside the singularity, namely, rþ > b. By
applying (2.7) with α2 ¼ 1=3 and k ¼ −1, we obtain the
equation c ¼ −rþ þ r3þ. We use this relation to obtain the
third equality. When c > 0, the equation c ¼ −rþ þ r3þ
only has one positive solution with rþ > 1. We apply this
constraint to obtain the last equality. These calculations
ensure that our result is positive as we expect.

IV. CONCLUSION AND DISCUSSION

A. The late time dependence of holographic complexity
for general k

It is intriguing to compare our result with its spherical
counterpart from [20],

lim
t→∞

dSWDW

dt
¼

8>>>>><
>>>>>:

4π
h
q2e
�

1
r−
− 1

rþ

	i
; α2 < 1

3
;

2M− 4π
�
q2e
rþ
þ 3bþ b3

	
; α2 ¼ 1

3
;

2M− 4π
�
q2e
rþ
þ 4

1þα2
b
	
; α2 > 1

3
:

ð4:1Þ

Obviously, there are similarities between these two sol-
utions and the planar solution listed in Appendix B. Note
that b > 0 is required for the spherical and planar black
hole solutions. With positive b, we collect all these
solutions as

lim
t→∞

dSWDW

dt
¼

8>>>>>><
>>>>>>:

V2;k

h
q2e
�

1
r−
− 1

rþ

	i
; α2 < 1

3
;

2M−V2;k

�
q2e
rþ
þ 3kbþ b3

	
; α2 ¼ 1

3
;

2M−V2;k

�
q2e
rþ
þ 4k

1þα2
b
	
; α2 > 1

3
:

ð4:2Þ

With k ¼ −1, 0, 1, this unified result reduces to hyperbolic,
planar, and spherical cases correspondingly. It is interesting
to discuss the neutral limit of these cases. We begin with the
limit b ¼ 0, which is applicable to all different k. In this
limit, we obtain AdS-Schwarzchild black holes with mass
2V2c. When α2 ≥ 1=3, the causal structure is kept under the
limit b ¼ 0 so we can directly set b ¼ 0 in the late time
result (4.2) and we can obtain the expected result 2M. When
α2 < 1=3, the causal structure will change under the limit
b ¼ 0 (from two horizons to one horizon) so we cannot
directly apply this limit in the late time result (4.2). We have
to properly include the contribution at singularity and then
we can obtain the expected result 2M as in [11,26].

Recall that the hyperbolic black hole ðk ¼ −1Þ is special
because b and c can be negative in this case. When b < 0,
c < 0, there are always two horizons for any α and the late
time growth rate of holographic complexity is (3.43). Now
if we take the limit b ¼ 0, we obtain a hyperbolic AdS-
Schwarzchild black hole with negative mass (because
c < 0). Therefore, the resulting black hole will also have
two horizons [26]. This causal structure similarity allows us
to directly set b ¼ 0 in (3.43) and we obtain the expected
vanishing result.
Another neutral limit, c ¼ 0, is only applicable to the

hyperbolic case k ¼ −1, which is also a distinctiveness of
the hyperbolic black holes. When b > 0, since the causal
structure is the same between the charged and the neutral
case (c ¼ 0), we can set c ¼ 0 in (3.42) and the result
agrees with what we obtain in Sec. III B. When b < 0, the
causal structure of the neutral black hole (c ¼ 0) can be
obtained from the b > 0 case by applying the transforma-
tion b → −b, α → 1=α, namely, two horizons when α2 > 3

and one horizon when α2 ≤ 3. Hence we have to properly
include the contribution at singularity instead of directly set
c ¼ 0 in (3.42). The above discussion about neutral limit
emphasizes the essential position of causal structure in the
study of holographic complexity.
An important feature of this neutral hyperbolic black hole

is the existence of phase transition [21]. As a consequence,
the Rényi entropy also experiences a phase transition [22].
Hence, it is natural to expect that the holographic complex-
ity also has a phase transition when the temperature
changes. From (2.8), the temperature depends on the
horizon radius rþ. When α2 ≠ 1=3, we have

T ¼ f0ðrþÞ
4π

¼ 1

4πð1þα2Þ
�
ð3−α2Þr

1þα2

1−3α2þ − ð1−3α2Þr−
1þα2

1−3α2þ

�
:

ð4:3Þ

When α2 ¼ 1=3, we have T ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − b

p
=2π. When α2 ¼ 3,

we have T ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
=2π. When 1=3 < α2 < 3, there is a

minimal temperature above zero,

Tm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − α2Þð3α2 − 1Þ

p
2πð1þ α2Þ ; ð4:4Þ

above which there are two different solutions at a given
temperature. The parameter b can be expressed in terms of
rþ by applying the equation fðrþÞ ¼ 0, which may have
one or two real solutions rþ;�. We have
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b ¼ rþ;� − r
3−α2

1−3α2
þ;�

¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2ðα2 þ 1Þ2T2 þ ð3 − α2Þð1 − 3α2Þ
p

þ 2πðα2 þ 1ÞT
3 − α2

�1−3α2

α2þ1

−
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2ðα2 þ 1Þ2T2 þ ð3 − α2Þð1 − 3α2Þ
p

þ 2πðα2 þ 1ÞT
3 − α2

�3−α2

α2þ1: ð4:5Þ

To study the phase transition between the scalar hairy black
hole and the SAdS black hole, we also need to write the mass
of the SAdS black hole in terms of temperature, which is

M ¼ 2V2c ¼ 4V2

27

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2 þ 3

p
þ 2πT

	
×
�
2πT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2 þ 3

p
− 3þ 4π2T2

	
: ð4:6Þ

When α2 ≤ 1=3 and α2 ≥ 3, the temperature reaches zero at

rþ ¼
�
1− 3α2

3− α2

� 1−3α2

2ð1þα2Þ
; b¼ 2ð1þ α2Þ

3− α2

�
1− 3α2

3− α2

� 1−3α2

2ð1þα2Þ
:

ð4:7Þ

When α2 ≤ 1=3, the scalar hairy black hole has a horizon
at rþ;þ. As for b ¼ 0, the corresponding temperature is
T0 ¼ 1=2π which is the phase transition point between the
SAdS black hole and the hairy hyperbolic black hole. On
the left side of this transition point, the parameter b is
positive. When α2 < 1=3; b > 0, the late time complexity
growth rate of the scalar hairy black hole is zero according
to (3.31). The late time complexity growth rate of the SAdS
black hole is 2M. We notice that the growth rate is
continuous at T0 but its derivative is not. So there is a
first-order phase transition for the late time growth rate.
When α2 ¼ 1=3; b > 0, the late time complexity growth
rate of the scalar hairy black hole is V2ðb − b3Þ according
to (3.31). By expressing b in terms of T, we can also find
that there is also a first-order phase transition. When
α2 ≥ 3, the lower temperature side will correspond to
negative b. This case, as we said before, is similar to the
α2 < 1=3 case under a transformation α → 1=α; b → −b.
When 1=3 < α2 < 3, there is a nonzero minimal temper-

ature Tm at

rþ ¼
�
3α2 − 1

3− α2

� 1−3α2

2ð1þα2Þ
; b ¼ 4ð1− α2Þ

3− α2

�
3α2 − 1

3− α2

� 1−3α2

2ð1þα2Þ
:

ð4:8Þ

When 1=3 < α2 < 1, the stable solution corresponds to the
horizon rþ;þ and b is positive on the lower temperature
side. When b > 0, the late time growth rate of hairy black
holes is 4V2bα2=ð1þ α2Þ and the late time growth rate of

SAdS is 2M. We then have

8πV2 ¼
dð2MÞ
dT

≠
d
dT

�
dSWDW

dt

�

¼ 8πV2

ð3 − α2Þ3α
2−1

α2þ1 ð3α2 − 1Þ2−2α
2

α2þ1

α2 − 1
: ð4:9Þ

So there is a first-order phase transition at T0. When
1 < α2 < 3, the stable solution corresponds to the horizon
rþ;− and b is negative on the lower temperature side. When
b < 0, the late time growth rate of the hairy black hole is
−4V2b=ð1þ α2Þ. Still, by making a transformation α →
1=α; b → −b we will recover the case 1=3 < α2 < 1. So
there is also a first-order phase transition at T0. In
conclusion, we find that the holographic complexity does
experience a first-order phase transition as in Fig. 2.

B. Full time dependence of holographic complexity

1. Charged case (c ≠ 0)

In this section, we discuss the full time dependence of the
complexity and compare our result with the Lloyd bound.
The full time dependence when c ≠ 0 has been shown
in (3.37) and (3.39). Notice that the mass of the hyperbolic
black hole can be negative. Obviously, the Lloyd bound is
always violated when mass is negative. When the mass is
positive, we numerically show the full time dependence of
the holographic complexity growth rate for various param-
eters. From Fig. 3, when α2 < 1=3, b > 0, the Lloyd bound
is violated not only in early time but also in late time for
some parameters. For b < 0, as in the discussion above,
there are also two horizons and the result of the growth rate
of complexity is similar to the case α2 < 1=3, b > 0. From
Fig. 4, we also notice that the bound violation is also
possible in the whole time period.
When α ≥ 1=3, there is only one horizon for positive b,

c. This simpler structure benefits our further analysis of the
parameter space. First, we consider the case α2 ¼ 1=3.
Recall (3.39),

lim
t→∞

dSWDW

dt
¼ V2

�
−
q2e
rþ

þ 4cþ b − b3
�
:

From equation fðrþÞ ¼ 0, we can express c as
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FIG. 3. Full time behavior for different parameters when
α2 ¼ 1=4, b ¼ 0.5. The blue, yellow, green, and red curves
correspond to c ¼ 1.2, c ¼ 0.8, c ¼ 0.55, c ¼ 0.5, respectively.
The purple line represents the ratio 1

2M
dSWDW

dt ¼ 1.
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FIG. 4. Full time behavior for different parameters when
α2 ¼ 1=4; b < 0. The blue curve corresponds to b ¼ −1; c ¼
−0.1. The yellow curve corresponds to b ¼ −1; c ¼ −0.01. The
green curve corresponds to b ¼ −10; c ¼ −0.3. The red curve
corresponds to b ¼ −10; c ¼ −0.4. The purple line represents the
ratio 1

2M
dSWDW

dt ¼ 1.
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FIG. 2. (a) α2 < 1=3 and α2 > 3, (b) 1=3 < α2 < 1, (c) 1 < α2 < 3, (d) α2 ¼ 1=3 and α2 ¼ 3. The blue and red curves correspond to
the holographic complexity of scalar hairy black hole and SAdS black hole, respectively.
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c ¼ −rþ þ r3þ

�
1 −

b
rþ

�3α2−1
1þα2 : ð4:10Þ

Together with the mass formula (3.41), we have

lim
t→∞

1

2M
dSWDW

dt
¼
�
−3b
rþ

þ4
	
ð−rþþ r3þÞþb−b3

4
�
−rþþ r3þ− 1

2
b
	 : ð4:11Þ

Let this equal 1 and solve rþ,

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − b2

3

r
: ð4:12Þ

Remember that the horizon must locate outside the singu-
larity. So when b > 0,

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − b2

3

r
> b ⇒ 0 < b <

ffiffiffi
6

p

2
: ð4:13Þ

From Fig. 5, we can conclude that, for some fixed b in
0 < b <

ffiffiffi
6

p
=2, the Lloyd bound is violated in late time

when b < rþ <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − b2

p
=

ffiffiffi
3

p
. We can express the range

of c as

max ðb3 − b; 0Þ < c <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − b2

3

r �
3 − b2

3

�
: ð4:14Þ

We express the lower bound of c as max ðb3 − b; 0Þ
because we only consider positive b and c. And the term
b3 − b is negative when 0 < b < 1. From Fig. 6, we find
exactly this behavior in the full time dependence. When
α2 > 1=3, although we cannot obtain an explicit condition
for the bound violation, we can still make some progress
based on the explicit result of (4.2). From (3.40), the late
time dependence is given by

lim
t→∞

dSWDW

dt
¼ V2

�
−
q2e
rþ

þ 4cþ 4α2

1þ α2
b

�
: ð4:15Þ

Similarly, we consider the quantity

lim
t→∞

1

2M
dSWDW

dt
¼

�
−4b

ð1þα2Þrþ þ 4
	
cþ 4α2

1þα2
b

4
�
c − 1−α2

1þα2
b
	

¼ c −
c
rþ−α

2

1þα2
b

c − 1−α2
1þα2

b
: ð4:16Þ

Let this equal 1, we obtain c ¼ rþ. From Eq. (4.16), we
conclude the following:

(i) When 0 < b < rþ < c, (4.16) will be greater than 1,
which means that the Lloyd bound is violated with
the corresponding b and c in the late time limit.
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FIG. 5. (a) Shape of (4.10) when α2 ¼ 1=3, b ¼ 1. (b) Shape of (4.11) when α2 ¼ 1=3, b ¼ 1.
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FIG. 6. Full time behavior for different parameters when
α2 ¼ 1=3, b ¼ 1. The curves from top to bottom correspond
to c ¼ 0.7, c ¼ 0.8, c ¼ 1, and c ¼ 5, respectively. The purple
line represents the ratio 1

2M
dSWDW

dt ¼ 1.
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(ii) When 0 < b < c < rþ, (4.16) will be smaller than
1, which means that the Lloyd bound is satisfied
with the corresponding b and c in the late time limit.

(iii) When 0 < c < b < rþ, (4.16) will be greater than 1,
which means that the Lloyd bound is violated with
the corresponding b and c in the late time limit.

For example, we set b ¼ 1, α2 ¼ 1=2. From (4.10), we
can get c ¼ rþ ≈ 1.65. In Fig. 7, we find the full time
dependence supports our analysis before. We find that the
late time value is approached from above, so the Lloyd
bound may be violated in early time even if it is obeyed in
the late time limit. In Fig. 8, we find that when 0 < c < b,
the Lloyd bound is always violated.

2. Neutral case (c = 0)

In the neutral case, the full time dependence has been
shown in (3.27) and (3.29). The late time growth rate is

lim
t→∞

dSWDW

dt

����
b>0

¼

8>>><
>>>:

0 α2 < 1
3
;

2MþV2ð3b− b3Þ α2 ¼ 1
3
;

2MþV2

�
4b

1þα2

	
α2 > 1

3
:

ð4:17Þ

When α2 < 1, b > 0, the mass of the black hole is always
negative. So the Lloyd bound is always violated by the
positive growth rate. When α2 < 1=3, we find that the
growth rate increases in the early time and finally
approaches zero from above, which matches the late time
result. When α2 ≥ 1=3, the full time dependence is similar.
When α2 > 1, the mass is positive but the Lloyd bound is
still violated from (4.17). See Fig. 9.
The violation of the Lloyd bound has been studied in

various models, including hyperscaling-violating geom-
etries [16,17] and Einstein-scalar theories [18]. This
neutral hyperbolic black hole with α2 ≥ 1=3 can be
regarded as another example that supports [18] even
though these two theories have different scalar potentials.
Additionally, the α2 < 1=3 case is interesting because of
the vanishing late time growth rate. The vanishing growth
rate also appears in different contexts, such as RN-AdS
black hole [20], small hyperbolic SAdS black hole [26],
and Jackiw-Teitelboim (JT) gravity [20,27,28]. In the first
two cases, there is no good reason to not accept this
vanishing. However, in JT gravity, this vanishing growth
rate is physically unacceptable because of the conjectured
duality between JT gravity and the Sachdev-Ye-Kitaev
(SYK) model. In the latter, the system is supposed to be
highly chaotic, so the quantum complexity is expected to
grow linearly even after an extremely long time. Back
to our case, an interesting observation is that the boundary
of the hyperbolic spacetime is conformal to a de Sitter
space [29], which implies that the holographic dual theory
is a quantum field theory in de Sitter space. Recently, some
people suggest that the holographic dual of de Sitter space
may be a double-scale limit SYK model [30–34], which
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FIG. 7. Full time behavior for different parameters when
α2 ¼ 1=2, b ¼ 1. The blue, yellow, green, and red curves
correspond to c ¼ 1.2, c ¼ 1.5, c ¼ 1.7, and c ¼ 1.8, respec-
tively. The purple line represents the ratio 1

2M
dSWDW

dt ¼ 1.
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FIG. 8. Full time behavior for different parameters when
α2 ¼ 1=2; b ¼ 1. The blue, yellow, green, and red curves
correspond to c ¼ 0.8, c ¼ 0.6, c ¼ 0.5, and c ¼ 0.4, respec-
tively. The purple line represents the ratio 1

2M
dSWDW

dt ¼ 1.
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FIG. 9. Full time dependence when c ¼ 0, b ¼ 0.5. From top to
bottom, the curves correspond to α2 ¼ 2, α2 ¼ 1=3, α2 ¼ 1=4.
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experiences hyperfast scrambling. The vanishing complex-
ity growth rate seems to be inconsistent with this conjecture.
In our result, we find that the dilaton field can accelerate

the growth rate of holographic complexity for the hyper-
bolic black hole. This accelerated effect leads to the
violation of the Lloyd bound in the late time limit. In
previous work [35,36], authors studied the holographic
complexity of a spherical EMD system with k ¼ 1, α2 ¼ 1.
The late time growth rate is 2M − μQ −D and the dilaton
field contribution D appears to slow down the growth of
complexity. Despite lacking rigorous proof, many argu-
ments have been suggested to explain this effect. In [37],
authors related this slowing effect to the breaking of
conformal symmetry. In [38], it is explained that the dilaton
field actually describes how strongly the open strings
couple to one another. In other words, the coupling constant
is decided by the expectation value of the dilaton field. The
state with many interacting strings will be hard to move to
another state so the complexity rate will be lower. The
accelerated effect found in this article may alert us to
reconsider the effect of dilaton on holographic complexity.
There are still many other topics that deserve further

discussion. An interesting feature of the hyperbolic model is
that the boundary is conformal to a de Sitter spacetime. An
interesting direction is to discuss the complexity of quantum
field theory in de Sitter spacetime and compare it with the
bulk computation in this article. The boundary side may
provide more evidence for a possible explanation for the
abnormal behavior mentioned above. Additionally, we only
apply CA conjecture in this article. It could be interesting to
apply other conjectures such as CV conjecture and CV 2.0
and compare their result to our CA calculation.
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APPENDIX A: NUMBER OF HORIZONS

For the hyperbolic black holes, the number of horizons is
either one or two.
(A) b > 0: the singularity is at r ¼ b. Consider the

function

f1ðrÞ ¼
�
−1 −

c
r

��
1 −

b
r

�1−3α2

1þα2 þ r2

L2
: ðA1Þ

It is obvious that the α2 ¼ 1=3 is special because the
exponent will be zero. We begin our analysis with this
situation. The function f1ðrÞ will be

f1ðrÞ ¼
r2

L2
− 1 −

c
r
: ðA2Þ

The zero of this function is easy to get. With b > 0, c > 0,
this function always has one zero. That is, we will always
have one horizon when α2 ¼ 1=3, b > 0. For the cases
α2 ≠ 1=3, we analyze the function’s behavior near r ¼ b
and r ¼ 0, and then we can have the approximate shape of
the function that gives us information about the number of
zeros of f1ðrÞ, namely, the number of horizons.
The behavior near r ¼ b is

f1ðrÞ →



b2=L2 > 0; α2 < 1=3;

−∞; α2 > 1=3:
ðA3Þ

The behavior near infinity is

f1ðrÞ → ∞: ðA4Þ

The derivative of f1ðrÞ is

f01ðrÞ ¼ 2rþ
�
1 − b

r

	−4α2

1þα2ð−bð2cþ rÞ þ bð2cþ 3rÞα2 þ crð1þ α2ÞÞ
r3ð1þ α2Þ : ðA5Þ

Its behavior near r ¼ b is

f01ðrÞ →

−∞; α2 < 1=3;

∞; α2 > 1=3:
ðA6Þ

The behavior near infinity is

f01ðrÞ → ∞: ðA7Þ

Based on these analyses, we can draw the function f1ðrÞ
approximately as Fig. 10(a).
(B) b < 0: the singularity is at r ¼ 0. Consider the

function

f2ðrÞ ¼
1

r2

�
−1 −

c
r

��
1 −

b
r

�1−3α2

1þα2 þ 1

L2
: ðA8Þ

The behavior near r ¼ 0 is
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f2ðrÞ →
jcj · jbj1−3α

2

1þα2

r
4

1þα2

→ ∞; ðA9Þ

provided c ≠ 0. The behavior near infinity is

f2ðrÞ →
1

L2
> 0: ðA10Þ

The derivative of f2ðrÞ is

f02ðrÞ ¼
�
1 − b

r

	−4α2

1þα2ð−4bcþ brð−3þ α2Þ þ rð3cþ 2rÞð1þ α2ÞÞ
r5ð1þ α2Þ . ðA11Þ

Its behavior near r ¼ 0 is

f02ðrÞ → −∞: ðA12Þ

The behavior near infinity is

f02ðrÞ → 0: ðA13Þ

With this information, we can draw the function f2ðrÞ
approximately as Fig. 10.
In conclusion, for b > 0 and c ≥ 0, the hyperbolic black

holes have two horizons when α2 < 1=3, one horizon when
α2 ≥ 1=3; for b < 0 and c < 0, the hyperbolic black holes
always have two horizons. For b < 0 and c ¼ 0, there is
one horizon when α2 < 3 and two horizons when α2 > 3.

APPENDIX B: COMPLEXITY GROWTH
OF PLANAR EMD BLACK HOLES

This appendix will briefly discuss the holographic
complexity of planar EMD black holes. The charged
version of this black hole is similar to the other two sisters.
But the neutral case (c ¼ 0) is a little more special. Recall
the solution of the metric for the EMD system is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ UðrÞdΣ2

2;k: ðB1Þ

In the planar case, namely, k ¼ 0,

(a) (b)

FIG. 10. (a) Schematic plot of f1ðrÞ for different α when b > 0. (b) Schematic plot of f2ðrÞ for any α when b < 0.
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f ¼ −
c
r

�
1 −

b
r

�1−α2

1þα2 þ r2
�
1 −

b
r

� 2α2

1þα2 ;

U ¼ r2
�
1 −

b
r

� 2α2

1þα2 : ðB2Þ

In the charged case, the causal structure for these solutions
is the same as the discussion before. There will be two
horizons when 0 < α2 < 1=3 and one horizon when
α2 > 1=3. Then we can similarly evaluate the WDWaction

as before. Start with the bulk term,

Sbulk ¼ 2Vk¼0
2

Z
dr

�
R − 2ð∂ϕÞ2 − VðϕÞ − 1

4
e−αϕF2

�

×

�
t
2
þ r�∞ − r�ðrÞ

�
: ðB3Þ

The time derivative,

dSbulk
dt

¼ 2Vk¼0
2

1þ α2

�
c

�
1 −

b
r

�
−
�
1 −

b
r

�3α2−1
1þα2 r2ð−bþ rþ rα2Þ

�r2m
r1m

: ðB4Þ

The surface term at the regular surface near the singularity r ¼ b,

Ssurf jr¼bþϵ ¼
2Vk¼0

2

ð1þ α2Þðbþ ϵÞ
�
cð3ϵðα2 þ 1Þ þ bð3α2 þ 1ÞÞ

− 6ϵ3
�

ϵ

bþ ϵ

�
− 4

α2þ1ðα2ðbþ ϵÞ þ ϵÞ
��

t
2
þ r�∞ − r�ðrÞ

�
: ðB5Þ

The time derivative and limit ϵ → ∞,

dSsurf
dt

¼
8<
:

3
2
ðc − b3Þ α2 ¼ 1

3
;

1þ3α2

1þα2
c α2 > 1

3
:

ðB6Þ

Then comes the joint term,

Sjoint ¼ r2
�
1 −

b
r

� 2α2

1þα2 log

�
1

fðrÞ
�
: ðB7Þ

Still, we make fðrÞ implicitly in order to waive the complex formula. As usual, the time derivative is

dSjoint
dt

¼ Vk¼0
2

�
−
q2e
2r

þ c
1þ α2

þ 2r2
�
r −

b
1þ α2

��
1 −

b
r

�3α2−1
α2þ1

− 2

�
−bþ α2rþ r

1þ α2

�
fðrÞ log

�
1

fðrÞ
��

: ðB8Þ

As it always is, the counterterm Sct is still invariant. At last, we can get the full WDW action growth in late time,

lim
t→∞

dSWDW

dt
¼

8>>>><
>>>>:

Vk¼0
2 q2e

�
1
r−
− 1

rþ

	
α2 < 1

3
;

2M − Vk¼0
2

�
q2e
rþ
þ b3

	
α2 ¼ 1

3
;

2M − Vk¼0
2

q2e
rþ

α2 > 1
3
:

ðB9Þ

In the neutral case, if we take b ¼ 0, then the solutions will reduce to the planar Schwarzchild black holes and its
holographic complexity will simply be 2M. Another neutral limit c ¼ 0 is irregular. In this limit, the horizon and singularity
are both located at r ¼ b. In other words, we are left with a naked singularity instead of a black hole. Some authors calculate
the complexity of this naked singularity, and their result is different from our calculation when α2 ¼ 1=3. This difference
seems interesting and we may come back to it in the future.
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In the neutral limit c ¼ 0, the growth rate of the
complexity is zero except for the α2 ¼ 1=3 case. The
complexity of the neutral limit c ¼ 0 was obtained to be
constant in [39]. The small inconsistency at α2 ¼ 1=3 needs
further investigation.

APPENDIX C: THE HOLOGRAPHIC
COMPLEXITY IN FIVE DIMENSIONS

In this appendix, we briefly show the holographic
complexity of hyperbolic EMD black holes in AdS5.
The action is

S¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R−

1

4
e−αϕF2 −

1

2
ð∂ϕÞ2 −VðϕÞ

�
; ðC1Þ

where F ¼ dA as (2.1). The potential of the dilaton field of
this AdS5 bulk spacetime is

VðϕÞ ¼ −
12

ð4þ 3α2Þ2L2

h
3α2ð3α2 − 2Þe−4ϕ=3α

þ 36α2e
3α2−4
6α ϕ þ 2ð8 − 3α2Þeαϕ

i
: ðC2Þ

As ϕ → 0, VðϕÞ → −12=L2 − ð2=L2Þϕ2 þ � � �, where the
first term is the cosmological constant as in the four-
dimension case. We set L ¼ 1 as before. The solution of the
fields are

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ UðrÞdΣ2

3; ðC3Þ

A¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2c2

4þ3α2

s �
1

r2þ
−
1

r2

�
dt; eαϕ¼

�
1−

b2

r2

� 6α2

4þ3α2

; ðC4Þ

where

fðrÞ¼
�
−1−

c2

r2

��
1−

b2

r2

�4−3α2

4þ3α2 þ r2
�
1−

b2

r2

� 3α2

4þ3α2

; ðC5Þ

gðrÞ ¼ fðrÞ
�
1−

b2

r2

� 3α2

4þ3α2

; UðrÞ ¼ r2
�
1−

b2

r2

� 3α2

4þ3α2

;

ðC6Þ

where b and c are parameters as before. The mass is

M ¼ 3V3

�
c2 −

4 − 3α2

4þ 3α2
b2
�
: ðC7Þ

The chemical potential μ and charge density qe are

μ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2c2

4þ 3α2

s
1

r2þ
; qe ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2c2

4þ 3α2

s
: ðC8Þ

The first law of thermodynamics is satisfied: dε ¼
Tdsþ μdqe.
To calculate the holographic complexity, we have to

analyze the causal structure. When 0 < α < 2=
ffiffiffi
6

p
, there

will be two horizons in our spacetime. Same as before, we
only consider the nonextremal solutions with c2 > b2 > 0.
When α ≥ 2=

ffiffiffi
6

p
, we have only one horizon and a spacelike

singularity at r ¼ b. Since the calculation is similar to the
four-dimension case, we simply list the results as follows:

lim
t→∞

dSWDW

dt
¼

8>>>><
>>>>:

V3μqe
�
r2þ
r2−
− 1

	
; α2 < 2

3
;

2M − V3ðμqe − 4b2 þ 2b4Þ; α2 ¼ 2
3
;

2M − V3

�
μqe − 24

4þ3α2
b2
	
; α2 > 2

3
;

ðC9Þ

Comparing with the four-dimension case (3.42), the struc-
ture of the results is similar. This result may enable us to
obtain the expression in any dimension.
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