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1 Introduction

Consider a high-energy gluon showering as it traverses a QCD medium, such as a quark-
gluon plasma, via splitting processes such as gluon bremsstrahlung g → gg. At high
energy, the formation time for a bremsstrahlung gluon becomes large and encompasses
multiple scatterings with the medium, so that one must take into account the Landau-
Pomeranchuk-Migdal (LPM) effect [1–3, 5–7, 9–11].1 It is possible for two consecutive
splittings in the shower to have overlapping formations times. The corrections to an in-
medium parton shower due to overlapping formation times are formally suppressed by a
power of αs, and it has been of interest for many years to figure out exactly how significant
such corrections are.2

Such corrections were first analyzed in refs. [12–14]3 for the case where one of the two
overlapping splittings is relatively soft (with various other simplifying assumptions we will
review later). Subsequently, the program of refs. [16–21] has been working toward analysis
of the more general case where neither splitting is necessarily soft. However, the analysis
of this more general case has used the large-Nc approximation. The formalism for treating
Nc = 3 is known in principle [22]4 but may be challenging to implement numerically.

We’d like to know whether or not the Nc =∞ overlapping formation-time calculations
in the literature are a reasonable or poor approximation to the physical case of Nc = 3. In
this paper, we investigate that question by calculating 1/N2

c corrections to earlier Nc =∞
results [16, 18] for the effect of overlapping formation times on real double splitting g →
gg → ggg. Our goal is to see whether those corrections, when extrapolated to Nc = 3, are
large, small, or comparable to the purely parametric estimate O(1/N2

c ) ∼ 10%.
In this paper, other than going beyond the Nc = ∞ approximation, we will make

the same sort of simplifying assumptions and approximations as in the earlier work of
refs. [16–21]. We will assume that the medium is static and homogeneous on scales of the
formation time and corresponding formation length. We also make the high-energy multiple
scattering approximation and so take interactions with the medium to be described by the
q̂ approximation.

Before proceeding, we should clarify why the first corrections to Nc =∞ are O(1/N2
c )

instead of O(1/Nc). If one were to think inclusively about double splitting, then the
g → gqq̄ (pair production overlapping bremsstrahlung) rate would be an O(1/Nc) correction
to the purely gluonic g → ggg rate because of the relative number of quark colors vs. gluon
colors. However, though a calculation of g → gqq̄ has not yet appeared in the literature

1For English translations of refs. [1, 2], see ref. [4].
2See, for example, the motivation described in the introduction of ref. [16].
3See ref. [15] for earlier, related work on soft radiative corrections to transverse momentum broadening.
4For earlier work in a similar but slightly different context, see refs. [23, 24].
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without soft approximations, it may be computed using the same Nc =∞ techniques that
were used to compute g → ggg in refs. [16, 18]. So computing g → gqq̄ to leading order in
the large-Nc limit would give no information on the size of corrections to Nc =∞ methods.
Instead, we will focus in this paper exclusively on purely gluonic (overlapping) g → ggg.
In the q̂ approximation, the corrections to Nc = ∞ for the purely gluonic process will
be O(1/N2

c ).5

Outline. In the next section, we first review the interesting, non-trivial color dynam-
ics that take place for finite Nc in calculations of overlapping formation time effects for
g → ggg. We next discuss the Nc → ∞ limit and isolate the 1/Nc and 1/N2

c corrections
to the effective “Hamiltonian” that describes medium-averaged evolution of high-energy
gluons involved in the splitting process. In section 3, we start with what are called “se-
quential diagram” contributions to the g → ggg rate and show how to obtain analytic
integral expressions for the 1/N2

c corrections. The integrals can all be done analytically
except for three time integrals, which later will be performed numerically. Section 4 fills
in details about low-level Nc = ∞ formulas for applying the q̂ approximation to different
color combinations of the high-energy gluons involved in the g → ggg process. Section 5
generalizes the approach for sequential diagrams in section 3 to now also cover what are
called “crossed diagrams”. That completes the analytic work, and we move on to numer-
ically evaluate the size of our 1/N2

c corrections in section 6. We also discuss there the
relation of our work to earlier work in a different context (relaxing the Nc → ∞ limit for
single splitting rates g → gg that have not been integrated over transverse momentum).
Finally, section 7 offers our conclusion.

We should clarify that, for simplicity, we will study 1/N2
c corrections to only the

subset of g → ggg processes that were studied for Nc = ∞ in refs. [16, 18]. This leaves
out, for example, direct g → ggg through a 4-gluon vertex, as opposed to a sequence of
two 3-gluon vertices with overlapping formation times. Such direct 4-gluon processes have
been studied in ref. [25] and found to be numerically small for Nc = ∞. Our study also
leaves out effective 4-gluon vertices that appear in Light Cone Perturbation Theory from
integrating out longitudinally polarized gluons in light-cone gauge. Their contribution even
for Nc = ∞ has not yet been completed. (A calculation of their contribution in large-Nf
QED is included in ref. [20].)

2 Background: color dynamics

2.1 Warm-up: the BDMPS-Z single splitting rate

Throughout this paper, we draw diagrams for contributions to splitting rates using the
conventions of ref. [16], which are adapted from Zakharov’s description of splitting rates [9–
11]. Figure 1(b) gives an example for single-splitting (e.g. g → gg) in the medium.

5In the q̂ approximation, the details of the quark vs. gluonic content of the medium are swept up into the
value of q̂. When making 1/Nc expansions in this paper, we treat q̂ as fixed: we do not expand q̂ in powers
of 1/Nc. Our calculation of overlap effects for g → ggg in the q̂ approximation therefore effectively involves
only gluons. In standard discussions of large Nc for diagrams that involve only gluons, the expansion is an
expansion in powers of 1/N2

c [32].
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Figure 1. (a) A time-ordered contribution to the rate for single splitting, such as g → gg, with
amplitude in blue and conjugate amplitude in red. (b) A single diagram representing this contri-
bution to the rate. In both cases, all lines implicitly interact with the medium. We need not follow
particles after the emission has occurred in both the amplitude and conjugate amplitude because we
will consider only p⊥-integrated rates. (See, for example, section 4.1 of ref. [16] for a more explicit
argument, although applied there to a more complicated diagram.) Nor need we follow them before
the first emission because we approximate the initial particle as on-shell. Only one of the two time
orderings that contribute to the rate is shown above.

(a) (b) (c)

1

3

Figure 2. (a) g → gg but now depicting interactions with the medium. Here, each black line
ending in a cross represents an interaction of a high-energy particle with the gluon field in the
medium. (b) The medium average of those interactions in the case of a weakly-coupled medium.
Here the black lines represent 2-point correlations of the medium interactions, which dominate for a
weakly-coupled medium. (The 2-point correlations can be written in terms of correlations 〈AaµAbν〉
of the background gluon fields present in the medium.) The correlations are drawn as vertical in
this time-ordered diagram because, in the high-energy limit, the correlation lengths in the medium
are parametrically small compared to the length (time) scale of the high-energy splitting process.
[Not shown but also present: short-time 2-point correlations between two medium interactions of
the same high-energy particle.] (c) One correlation between particles 1 and 3 is highlighted.

The high-energy particle lines shown in the figure are implicitly interacting with, and
scattering from, the gluon fields of the medium, as depicted in figure 2(a), and the rate
is implicitly averaged over the randomness of the medium. Such interactions with the
medium change the color of each high-energy particle over time. At first, it may seem
like calculating the rate would require a complicated analysis of the time dependence of
the color of each such particle. Fortunately, this is unnecessary for figure 2(a).6 To get a
flavor for the reason why, consider for a moment the extreme case where the medium itself

6Here and throughout, we will only be considering rates which are fully integrated over the transverse
momenta of the daughter gluons. Otherwise, the color dynamics is more complicated even for g → gg. See,
for example, refs. [23, 24].
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is weakly-coupled. Then (to leading order in the coupling of the medium) the medium-
averaged correlations of interactions with the medium are 2-point correlations, as shown
in figure 2(b). Let’s focus on one of these correlations, such as the green line connecting
particles 1 and 3 in figure 2(c). Let Tan represent color generators Ta (in the appropriate
representation) that act on the color state of particle n. The interaction of particle 1
with the gluonic field of the medium comes with a factor of gTa1. The correlation of a
pair of interactions of particles 1 and 3 with the medium then comes with a factor of
(gTa1)(gTa3) = g2T1 · T3. But this operator is quite trivial because, by color conservation
(after medium averaging),7 the three high-energy particles in figure 1(b) must form a color
singlet, which means T1+T2+T3 = 0. So, T1+T3 = −T2 and thus8

T1 · T3 = 1
2
[
(T1 + T3)2 − T2

1 − T2
3
]

= 1
2(T2

2 − T2
1 − T2

3) = 1
2(C2 − C1 − C3), (2.1)

where Ci is the quadratic Casimir associated with the color representation of particle i.
That means that T1 · T3 reduces to a simple fixed number in this context. (Specifically
T1 ·T3 = −CA/2 = −Nc/2 in the case of g → gg.) Because of (2.1), we do not need to keep
track of the dynamics of the individual colors of the three high-energy particles in order to
calculate the rate for figure 1.

This conclusion can be generalized to strongly-coupled media as well when one de-
scribes medium interactions using the q̂ approximation. See ref. [26] for the argument.

7Without medium averaging, the color neutrality of the 3-particle state would not be conserved over
time. That’s because the interactions in figure 2(a) (via gluon exchange with the medium) may randomly
change the color of just one of the three high-energy particles at a given moment, and exchanging one gluon
with the medium turns a 3-particle color singlet into a 3-particle color octet. After medium averaging,
however, the interactions with the medium must be correlated, such as in figure 2(b), and so color cannot
flow out of the 3-particle system since these correlations are instantaneous on the time scales relevant to
splitting processes. (In perturbative language, the medium-averaged correlator 〈AaµAbν〉 of background gluon
gauge fields vanishes unless a = b.) The situation is analogous to translation invariance of a gas in thermal
equilibrium: any particular configuration of the molecules is not translation invariant, but translation
invariance is recovered after thermal averaging.

8This argument is a simple generalization of an argument from ordinary, non-relativistic quantum me-
chanics. Imagine three non-relativistic particles with spin angular momenta S1, S2, and S3. If the three-
particle system forms a spin singlet |χ〉, then the operator S1 + S2 + S3 applied to |χ〉 gives zero. That
means that (S1 + S3)|χ〉 = −S2|χ〉 and so (since the Sn for different particles commute with each other)
(S1 +S3)2|χ〉 = (S2)2|χ〉. From this, one finds S1 ·S3|χ〉 = 1

2 [(S2)2− (S1)2− (S3)2]|χ〉. So, on the subspace
of spin-singlet states, S1 ·S3 = 1

2

[
s2(s2+1)−s1(s1+1)−s3(s3+1)

]
. Eq. (2.1) is just the generalization of this

argument from the (covering) group SU(2) of rotations to other Lie groups such as SU(3). The sn(sn + 1)
in this footnote are just the quadratic Casimirs Cn of SU(2). As is conventional in quantum mechanics, we
are sloppy about explicitly writing identity operators. In terms of single-particle operators, our S1 above
is really S1 ⊗ 12 ⊗ 13, our S2 is really 11 ⊗ S2 ⊗ 13, etc.; our operator identity (2.1) is only true when the
operator T1 · T3 acts on the subspace of 3-particle color-singlet states; and the Casimirs on the right-hand
side of (2.1) are multiplied by the identity operator for that subspace. To make all color indices explicit,
consider a color-singlet state |χ〉 = cijk|ijk〉 (implicit sum over indices), where (i, j, k) are the appropriate
(e.g. fundamental or adjoint) color indices for particles (1, 2, 3) respectively, and cijk are superposition co-
efficients that yield a color singlet. Then eq. (2.1) says that (TaR1 )ii′ (TaR3 )kk′ci′jk′ = 1

2 (C2 − C1 − C3)cijk,
where the matrices TaRn

are the generators associated with the color representation Rn (e.g. fundamental
or adjoint) of particle n.
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Figure 3. One diagrammatic contribution [16] to the rate for double splitting, such as g → ggg.

2.2 SU(3) color states for overlapping, double splitting

Figure 3 shows an example of a contribution to the rate for overlapping double splitting
such as g → ggg. In the shaded region, the system has four high-energy particles (three
in the amplitude and one in the conjugate amplitude). Again by color conservation, those
four particles together must form a color singlet. Unfortunately, unlike the 3-particle case,
color neutrality T1+T2+T3+T4 = 0 is not enough to uniquely determine combinations like
Ti · Tj which appear in correlations between high-energy particles’ interactions with the
medium. A similar uncertainty arises in more general arguments [26] in the context of the
q̂ approximation.

The source of this ambiguity is that there are many different ways one can make a color
singlet out of four gluons (similar to how there are many ways to make a spin singlet out of
four spin-1 particles in ordinary quantum mechanics). In SU(3), the color representations
of two gluons can be combined as

8⊗ 8 = 1s ⊕ 8a ⊕ 8s ⊕ 10a ⊕ 10a ⊕ 27s, (2.2)

where the subscripts “s” and “a” indicate symmetric vs. anti-symmetric color combinations
of the two gluons. We could make a color singlet out of four gluons by combining the first
two gluons into any color representation R appearing on the right-hand side of (2.2), then
combine the other two gluons into its complex conjugate R̄, and then combine the resulting
R and R̄ into a color singlet. This process is depicted schematically in figure 4(a), labeled
“s-channel”. These s-channel color states form a basis for all 4-gluon color singlet states.
Alternatively, one may instead choose a “t-channel” or “u-channel” basis, as indicated in
the figure.9

In this paper, we find it convenient to work in the u-channel basis because of particle
numbering conventions in earlier papers on overlapping formation times [16, 18]. We will
label the u-basis singlet states as |R〉u. Our initial basis for discussing 4-gluon singlets
is then

|1〉u, |8aa〉u, |8as〉u, |8sa〉u, |8ss〉u, |10〉u, |10〉u, |27〉u. (2.3)

For the case where R = 8, we have to label whether each pair of the four particles formed
the 8 by a symmetric (s) or anti-symmetric (a) combination, as distinguished in (2.2).
As explained in the present context in ref. [22],10 only a 5-dimensional subspace of (2.3)

9For a variety of papers related to these constructions (and discussion of the color generalization of
6j-symbols to relate different channels), see, for example, refs. [22–24, 27–31].

10This 5-dimensional subspace was also discussed earlier in a closely related context by refs. [23, 24].
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R
R R

Figure 4. Three ways to form bases for 4-gluon color singlet states. (The terms s-channel, etc. are
merely evocative here; we are not referring to 2↔2 scattering.)

appears in calculations of overlapping formation times (e.g. figure 3):11

|1〉u, |8aa〉u, |8ss〉u, |10+10〉u, |27〉u, (2.4)

where
|10+10〉u ≡

1√
2
(
|10〉u + |10〉u

)
. (2.5)

Soon, we will discuss how the color singlet state of the four gluons evolves in the
subspace (2.4) as the gluons travel through the medium. But first, we wish to discuss the
generalization from SU(3) to SU(N).

2.3 SU(N) color dynamics for overlapping, double splitting

For the sake of compactness, we will refer to the number of quark colors as N rather than
Nc in the rest of this paper. The generalization of the preceding discussion to N > 3 is
that the tensor product (2.2) of two gluon colors becomes12

A⊗A = 1s ⊕Aa ⊕As ⊕ “10”a ⊕ “10”a ⊕ “27”s ⊕ “0”s , (2.6)

where 1 is the singlet representation, A is the adjoint representation of SU(N), and, for
example, “27” means the SU(N) representation that generalizes the 27-dimensional rep-
resentation of SU(3). The scare quotes just mean that, though we quote the size of the
representation for N = 3, we really mean the corresponding representation of SU(N). Note
that there is one more term in (2.6) than in the original SU(3) product (2.2). This rep-
resentation “0” of SU(N) smoothly decouples and disappears as one approaches N → 3
from above.

For SU(N) with N > 3, there is a 6-dimensional (rather than 5-dimensional) subspace
of color singlet states relevant to calculations of overlapping formation times, which is
spanned by the basis [22, 23]

|1〉u, |Aaa〉u, |Ass〉u, |“10+10”〉u, |“27”〉u, |“0”〉u. (2.7)

This generalizes (2.4).
11The fact that the states in (2.4) are designated as u-channel is irrelevant. The analogous s-channel or

t-channel states would span the same 5-dimensional subspace.
12The SU(N) Young tableaux corresponding to (2.6) and the actual dimensions of the representations

may be found, for example, in eqs. (5.1) and (5.2) of ref. [22].
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In this paper we will quote some results about 4-particle color singlet states from
ref. [22], but we have found it convenient to use slightly different overall sign conventions
for the definitions of the u-channel states (2.7). The details of the relation between our
sign conventions here and those of ref. [22] may be found in appendix A.1.

In Zakharov’s version of the BDMPS-Z calculation of single splitting rates, the prob-
lem is recast as two-dimensional quantum mechanics (in the transverse plane) with an
imaginary-valued “potential energy” V . Ref. [16] extended this picture, in the large-N
limit, to calculations of overlap effects in double splitting, such as the contribution to the
rate represented by figure 3. The 4-gluon potential needed to treat the shaded region of
figure 3 for finite N was worked out in ref. [22] for the q̂ approximation. The resulting
2-dimensional Hamiltonian for the 4-gluon evolution in the shaded region of figure 3 was
found to be13

H = P 2
41

2x4x1(x4+x1)E + P 2
23

2x2x3(x2+x3)E + V (C41,C23) (2.8a)

with potential

V (C41,C23) = − i4 q̂A

{
(x2

4 + 2x4x1Su + x2
1)C2

41 + (x2
2 + 2x2x3Su + x2

3)C2
23

+2
[1

2(x4 − x1)(x2 − x3)(Su − 1)− (x4 + x1)(x2 + x3)T u
]
C41 ·C23

}
.

(2.8b)

Above, symmetries have been used to reduce the 4-gluon quantum mechanics problem
with transverse positions (b1, b2, b3, b4) to an effective 2-particle quantum mechanics prob-
lem [16, 18] written in terms of (C41,C23) with Cij ≡ (bi − bj)/(xi+xj). The Pij are
the canonical momenta conjugate to the Cij , and E is the energy of the initial particle in
the double-splitting process. The xi represent the longitudinal momentum fractions of the
four gluons. The underlined quantities in (2.8) represent 6 × 6 matrices (for N > 3) that
act on the 6-dimensional space of relevant 4-gluon color singlet states. The matrices Su
and T u encode results for the action of Ti · Tj on this space in the u-channel basis (2.7),
encoded as14

T4 · T1 = −CASu , T4 · T2 = CA
[1
2(Su − 1)− T u

]
, T4 · T3 = CA

[1
2(Su − 1) + T u

]
(2.9)

with

Su ≡



1
1
2

1
2

0
− 1
N

1
N


(2.10a)

13See appendix A.1 for details of how the s-channel result of ref. [22] was translated to the u-channel
version in (2.8).

14Because T1+T2+T4+T4 = 0 implies (T4+T1)2 = (T2+T3)2, and because all T2
i = C2

A (since all four
particles are gluons), we have the additional relation that T2 ·T3 = T4 ·T1. Similarly, T3 ·T1 = T4 ·T2 and
T1 · T2 = T4 · T3.

– 7 –
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and

T u ≡



0 1√
N2−1 0 0 0 0

1√
N2−1 0 1

4 0 1
2N

√
N+3
N+1

1
2N

√
N−3
N−1

0 1
4 0 1√

2(N2−4)
0 0

0 0 1√
2(N2−4)

0 τ+ τ−

0 1
2N

√
N+3
N+1 0 τ+ 0 0

0 1
2N

√
N−3
N−1 0 τ− 0 0


, (2.10b)

where

τ± ≡
1

2N

√
(N ∓ 2)(N ± 1)(N ± 3)

2(N ± 2) . (2.11)

In this paper, we will need to solve for the 4-gluon evolution of the Hamiltonian (2.8)
in perturbation theory in 1/N about the N =∞ limit.

2.4 N =∞ limit

In the N →∞ limit, (2.10) becomes

Su →



1
1
2

1
2

0
0

0


, T u →



0
0 1

4
1
4 0

0 1
2
√

2
1

2
√

2
1

2
√

2 0 0
1

2
√

2 0 0


in basis

|1〉u
|Aaa〉u
|Ass〉u
|“10+10”〉u
|“27”〉u
|“0”〉u .

(2.12)
Unlike the case of finite N , the matrices Su and T u commute for N = ∞. It is therefore
possible to find a new basis that simultaneously diagonalizes both matrices:

|1〉 ≡ |1〉u ,

|A+〉 ≡
1√
2
|Aaa〉u + 1√

2
|Ass〉u ,

|A−〉 ≡
1√
2
|Aaa〉u −

1√
2
|Ass〉u ,

|A×〉 ≡ 1√
2
|“27”〉u −

1√
2
|“0”〉u ,

|1×+〉 ≡
1
2 |“27”〉u + 1

2 |“0”〉u + 1√
2
|“10+10”〉u ,

|1×−〉 ≡
1
2 |“27”〉u + 1

2 |“0”〉u −
1√
2
|“10+10”〉u , (2.13)
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in terms of which the N =∞ limits (2.12) become

SN=∞ ≡



1
1
2

1
2

0
0

0


, TN=∞ ≡



0
1
4

−1
4

0
1
2

−1
2


in basis

|1〉
|A+〉
|A−〉
|A×〉
|1×+〉
|1×−〉 .

(2.14)
We will explain our naming convention for the basis states (2.13) shortly. We have dropped
the subscript u on SN=∞ and TN=∞ just to keep our notation from becoming too cluttered.

Because SN=∞ and TN=∞ are both diagonal, the potential (2.8b), and so the Hamil-
tonian, does not mix the states (2.13) for N =∞. Each of these states propagates indepen-
dently for N =∞, with non-matrix potentials given by using the corresponding eigenvalues
from (2.14) in place of the matrices Su and T u in (2.8b). We will only encounter transitions
between these color singlet states when we later investigate the O(1/N) perturbations to
SN=∞ and TN=∞.

The motivation for the names |1〉 and |A±〉 in (2.13) should be clear enough. One may
use the conversion matrices between bases given in appendix A.1 to see that the state |A×〉
defined in terms of u-channel color singlet states is equivalent, in the limit N → ∞, to
the combination

(
|Aaa〉s + |Ass〉s

)
/
√

2 of s-channel basis states. Similarly, the state |1×−〉 is
equivalent to the s-channel basis state |1〉s, and |1×+〉 is equivalent to the t-channel basis
state |1〉t. So we may think of the cross “×” in the notation A× or 1×± as meaning that, for
N =∞, the state involves the representation R = A or R = 1 in a cross-channel different
from our usual u-channel representation.

Later we will also use the definitions (2.13) of basis states when analyzing large but
finite N . In that case the equivalences just discussed (and so the motivation for the
notation) are not exactly correct. So, for N < ∞, one may also interpret the cross × in
the colloquial sense of “crossed out”: a warning that the motivation for the notation is no
longer precise for those states.

2.5 An aside: diagrammatic interpretation of basis states for N =∞

We make a brief detour to present another way to characterize the basis (2.13) for N =
∞. This alternative characterization can offer insight and will be used for some detailed
arguments in section 4.2, but is not strictly necessary for most of our calculation.

Refs. [16, 18] discuss drawing time-ordered diagrams, such as figure 3 and others on the
surface of a cylinder, where time runs along the length of the cylinder. The large-N require-
ment that N =∞ diagrams be “planar” [32] can be translated to say that no lines should
cross on the surface of the cylinder. So, for instance, figure 3 can be drawn on the cylinder
as in figure 5, where we have numbered the lines during the 4-particle part of the evolution
according to the convention of ref. [16], which for this diagram corresponds to identifying
the longitudinal momentum fractions of the gluons as (x1, x2, x3, x4) = (−1, y, 1−x−y, x).
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1

4

3

2

time

Figure 5. Figure 3 drawn on a cylinder. Here, solid lines indicate lines drawn on the front of the
cylinder, and dashed lines indicate lines wrapping around the back.

Correlation lines, such as the black lines drawn in figure 2(b) (and also higher-point corre-
lations), must also be part of the “planar” diagram and so must lie along the surface of the
cylinder without crossing any other lines. As a result, for N =∞, there can only be corre-
lations between high-energy particles that are neighbors of each other as one goes around
the circumference of the cylinder. So, during the 4-gluon phase of the time evolution in fig-
ure 5, the medium interactions of particle 1 can be correlated with those of particles 2 and
4 but not with particle 3. We will indicate this particular sequence as (1234). Any cyclic
permutation, such as (2341), would be an equivalent designation, and so would the reverse
order (4321) or its cyclic permutations. All that matters for discussing the interactions
among the particles in large N is which of the four high-energy gluons are neighbors.

With this notation the color singlet states (2.13) may be identified as (see appendix A.2)

|A+〉 → (1324), |A−〉 → (1234), |A×〉 → (1243),
|1〉 → (41)(23), |1×+〉 → (13)(24), |1×−〉 → (12)(34) (2.15)

when N = ∞. Above, the notation (ij)(kl) means that particles i and j are contracted
into a color singlet and that particles k and l are also contracted into a color singlet.

In terms of the cylinder picture of figure 5, representing states like (ij)(kl) requires
two separate cylinders: one for each singlet pair. This is a useful convention because it
corresponds naturally to the large-N topological principle that diagrams requiring handles
are suppressed. Specifically, as a preview of what we will see later, figure 6 shows one type
of 1/N2 correction to figure 5. As time progresses during the 4-gluon part of the evolution,
there is a 1/N suppressed transition from the (1234) color singlet state to the (12)(34)
color singlet state, and then later another such transition to the (1243) color singlet state.
In our notation (2.13), that’s |A−〉 → |1×−〉 → |A×〉, where each transition will be due to
1/N corrections to the Hamiltonian. Some examples of (2-point15 ) correlations of medium
interactions are shown by the black lines. In the language of large N diagrammatics, the
resulting diagram (interpreted here to include the medium correlations shown) cannot be

15There is no reason to only include 2-point correlations here: they are simply easier to draw. All that
matters is that no lines cross when the diagram and correlations are drawn on the surface.
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time

1

2

4

3

1

2

3

4

1

2

4

3

Figure 6. A topological depiction of the O(1/N2) transition (1234)→ (12)(34)→ (1243) between
N =∞ color singlet states during the 4-gluon phase of evolution of figure 3. The black lines indicate
(2-point) examples of correlations of interactions with the medium, which for N = ∞ are allowed
only between neighbors.

drawn as a planar diagram, which is why it is 1/N2 suppressed. In general, there is a
suppression by 1/N2 for every handle needed to draw a diagram on a surface without
crossing lines [32].16

2.6 1/N and 1/N2 corrections to the potential

We can now work out corrections to the N = ∞ limit by expanding the original Hamil-
tonian (2.8) in powers of 1/N . The dependence on N appears only in the Su and T u
matrices (2.10), which can be expanded in powers of 1/N . But we will want to express
the result in the basis (2.13) of states that decouple in the N = ∞ limit, not the original
basis (2.7) used for presenting Su and T u. After that change of basis,

Su = SN=∞ + δS, T u = TN=∞ + δT + δ2T +O(N−3) (2.16)

with SN=∞ and TN=∞ as in (2.14) and

δS = 1√
2N



0
0

0
0 −1 −1
−1 0 0
−1 0 0


, δT = 1√

2N



0 1 1 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


,

and δ2T = 1
N2



0 0 0 0 0 0
0 0 0 1

2 0 0

0 0 0 1
2 0 0

0 1
2

1
2 0 0 0

0 0 0 0 −5
4 0

0 0 0 0 0 5
4


in basis

|1〉
|A+〉
|A−〉
|A×〉
|1×+〉
|1×−〉 .

(2.17)

16See also Coleman’s excellent “1/N” summer school lecture in ref. [33].
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xxyy xxyyxyxy

x y xyx

+ conjugates

y

+ relevant permutations

Figure 7. The above diagrams contributing to double splitting g → ggg are called the “sequential
diagrams” in ref. [18]. As in refs. [16, 18], the diagrams are individually named (xyx̄ȳ, etc.) by the
time order of the vertices. The relevant permutations referenced above are those permutations of
the daughters x, y, and z ≡ 1− x− y that create distinct diagrams.

3 Sequential diagrams

The sample diagram we have been showing so far is called a crossed diagram [16] because
two lines cross when it is drawn as in figure 3 (as opposed to the drawing in figure 5 of the
same diagram on the cylinder). To study 1/N2 corrections, it will be simpler to start with a
different class of diagrams called sequential diagrams [18], shown in figure 7. However, only
the first diagram xyx̄ȳ (and its complex conjugate and permutations) will generate 1/N2

corrections. That’s because, as discussed earlier, there is no interesting color dynamics for
3-particle propagation, which means that there are no finite-N corrections needed for those
propagators provided one uses the value of q̂ appropriate for the desired value of N . (The
same is true of 2-particle propagators.) Only the xyx̄ȳ diagram in figure 7 has a region
of 4-particle evolution and so non-trivial color dynamics, denoted by the shaded region in
figure 8.

3.1 Set-up and allowed color singlet transitions

We now focus exclusively on the xyx̄ȳ diagram. In figure 8, our numbering of particles
in the region of 4-particle evolution follows the same convention as refs. [16, 18]. This
diagram gives a contribution to the rate for overlapping double splitting g → ggg that is
proportional to17

∫
tx<ty<tx̄<tȳ

∫
By,Bx̄

∇n̄Bȳ〈Bȳ, tȳ|Bx̄, tx̄〉
∣∣∣
Bȳ=0

×∇m̄Cx̄
41
∇nCy

23
〈C x̄

41,C
x̄
23, tx̄|C

y
41,C

y
23, ty〉

∣∣∣
Cx̄

41=0=Cy
23; Cx̄

23=Bx̄; Cy
41=By

×∇mBx〈By, ty|Bx, tx〉
∣∣∣
Bx=0

. (3.1)

17Eq. (3.1) isolates the factors we want to discuss here from the N =∞ expression in eq. (E.1) of ref. [18].
Technically, integrating over all of the times (tx < ty < tx̄ < tȳ) gives probability, not rate. We should
integrate only over time differences, but that detail is unimportant for the present discussion.
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xyxy

x y

1

2

3

4

Figure 8. The canonical “sequential” diagram for which finite-N corrections must be calculated.

Above (tx, ty, tx̄, tȳ) are the times of the four vertices in figure 8 from left (earliest) to
right (latest). The factors 〈By, ty|Bx, tx〉 and 〈Bȳ, tȳ|Bx̄, tx̄〉 represent the propagators
for the 3-particle evolution respectively before and after the shaded region of the figure.
The factor 〈C x̄

41,C
x̄
23, tx̄|C

y
41,C

y
23, ty〉 represents the propagator for the 4-particle evolution

inside of the shaded region. There is a gradient ∇ (corresponding to a factor of transverse
momentum) associated with each splitting vertex. We have not shown here other over-
all factors, including how those gradients are contracted together by helicity-dependent
DGLAP splitting functions.

The only non-trivial corrections to N = ∞ come from the color dynamics of the
4-particle propagator, which we now write as

G(C x̄
41,C

x̄
23, tx̄;Cy

41,C
y
23, ty) ≡ 〈C x̄

41,C
x̄
23, tx̄|C

y
41,C

y
23, ty〉. (3.2)

Our specification of the initial and final 4-particle states in the propagator (3.2) is incom-
plete: we will also need to specify what 4-particle color singlet states we start and end in.
We find it convenient to rewrite (3.2) as

G(~ξ x̄,∆t, λx̄; ~ξ y, 0, λy), (3.3)

where
~ξ ≡

C41

C23

 (3.4)

is a 2-dimensional vector (with elements that are in turn 2-dimensional vectors in the
transverse plane) encoding the transverse position state of the system at a given time;

∆t ≡ tx̄ − ty (3.5)

is the total duration of the 4-particle evolution; and λy and λx̄ label the initial and final
4-particle color singlet states for that evolution.

Ref. [22] explains that those initial and final singlet states are each |Aaa〉u for the
diagram of figure 8.18 A quick, graphical way to understand why is that (i) as far as
color representations are concerned, everything to the left of the shaded region of figure 8

18See section 2.3 of [22]. Because of different labeling of the four particles there (our 1234 here is DBAC
in figure 6 of ref. [22]), what we call u-channel here is what is called s-channel there.
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looks like the u-channel diagram of figure 4(c) with a gluon (R = A) for the internal
line, corresponding to |A〉u; (ii) 3-gluon vertices combine gluons anti-symmetrically via the
group structure constants fabc, therefore specializing to |Aaa〉u; and (iii) there is no color
dynamics for 3-particle evolution, which means that the interactions with the medium in
the actual diagram of figure 8 will not affect the correspondence with the color-contraction
diagram of figure 4(c). A similar argument applies to everything to the right of the shaded
region of figure 8.

In terms of our N = ∞ eigenstates (2.13), the initial and final color-singlet states of
the 4-particle evolution are then

|Aaa〉u = 1√
2
|A+〉+ 1√

2
|A−〉. (3.6)

So, we will be interested in 4-particle Green functions (3.3) where the initial state can be
λy = A+ or A− and the final state can be λx̄ = A+ or A−.

From the texture of the finite-N corrections (2.17) to the Su and T u matrices that
appear in the Hamiltonian (2.8), we can now identify what 4-particle color-singlet tran-
sitions contribute to the 1/N2 correction to the xyx̄ȳ sequential diagram of figure 8. As
just discussed, the sequence of transitions must start and end with A±. The transition
sequences allowed by (2.17) are then

|A−〉
δT−→ |1〉 δT−→ |A−〉, (3.7a)

|A−〉
δT−→ |1×−〉

δT−→ |A−〉, (3.7b)

|A−〉
δT−→ |1〉 δT−→ |A+〉, (3.7c)

|A+〉
δT−→ |1〉 δT−→ |A+〉, (3.7d)

|A+〉
δT−→ |1×+〉

δT−→ |A+〉, (3.7e)

|A+〉
δT−→ |1〉 δT−→ |A−〉. (3.7f)

Note that neither δS nor δ2T contribute to any allowed O(N−2) corrections for this
diagram.

There are no O(N−1) corrections to the diagram: neither δS nor δT produce a direct
|A+〉 → |A−〉 or |A−〉 → |A+〉 transition. This is consistent with the fact that, for purely
gluonic processes, corrections in a large-N analysis should appear in powers of 1/N2 [32].

In passing, we note that the allowed transitions (3.7) can be written in the alternative
language of (2.15) as

(1234) δT−→ (41)(23) δT−→ (1234), (3.8a)

(1234) δT−→ (12)(34) δT−→ (1234), (3.8b)

(1234) δT−→ (41)(23) δT−→ (1324), (3.8c)

(1324) δT−→ (41)(23) δT−→ (1324), (3.8d)

(1324) δT−→ (13)(24) δT−→ (1324), (3.8e)

(1324) δT−→ (41)(23) δT−→ (1234). (3.8f)
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Note that the last three sequences may be obtained from the first three sequences by
exchanging (2↔3) particles 2 and 3. But the only thing differentiating particles 2 and 3 in
the xyx̄ȳ diagram of figure 8 is their longitudinal momentum fractions y and z ≡ 1−x−y.
This means that instead of calculating the contributions of all six sequences (3.8), one
could, if desired, use only the first three sequences but then add (i) that result to (ii) the
same calculation with the value of y changed to 1− x− y.

3.2 1/N perturbation theory for 4-particle propagator

Let GN=∞
λ represent the N =∞ 4-particle propagator for any of the N =∞ color singlet

eigenstates of (2.13), indexed by λ. In perturbation theory in 1/N , then the transitions (3.7)
correspond to O(N−2) corrections to the propagator of the form

δ2Gλ23←λ01(~ξ3,∆t; ~ξ0, 0)

= (−i)2∑
λ12

∫
0<t1<t2<∆t

dt1 dt2

∫
~ξ1,~ξ2

GN=∞
λ23 (~ξ3,∆t; ~ξ2, t2) δV (δT )

λ23←λ12
(~ξ2)

×GN=∞
λ12 (~ξ2, t2; ~ξ1, t1) δV (δT )

λ12←λ01
(~ξ1)GN=∞

λ01 (~ξ1, t1; ~ξ0, t0).

(3.9)

Above, t0 = ty and t3 = tx̄ are the initial and final times of the 4-particle evolution (the
shaded region) in figure 8. The two O(N−1) perturbations to N = ∞ evolution (caused
by δT ) occur at intermediate times t1 and t2, as depicted in figure 9. Each λij designates
an N = ∞ eigenstate from (2.13). As discussed previously, the initial color singlet state
λ01 and the final color singlet state λ23 must be |A+〉 or |A−〉 as in (3.6) and (3.7). δV (δT )

λ←λ′

represents the (λ, λ′) matrix element of the δT contribution to the potential (2.8b). The
non-zero matrix elements are all the same because the non-zero matrix elements of δT
in (2.17) are all the same:

δV (δT )(~ξ) = iq̂A

2
√

2N
(x4 + x1)(x2 + x3)C41 ·C23 . (3.10)

In order to focus on structure over details, and also to allow for later generalizations, we
will find it useful to introduce some short-hand notation for (3.10) and also to distinguish
the earlier-time and later-time insertions of δV in (3.9):

δV
(δT )
λ12←λ01

(~ξ1) = 1
2
~ξ>1 R1 ~ξ1, δV

(δT )
λ23←λ12

(~ξ2) = 1
2
~ξ>2 R2 ~ξ2 (for allowed transitions)

(3.11)
with

R1 = R2 = R(δT ) ≡ − iq̂A

2
√

2N
(x1+x4)2

(
0 1
1 0

)
(3.12)

(where we have used the fact that x1+x2+x3+x4 = 0). Here, R(δT ) is a 2×2 matrix that
mixes the two components (C41,C23) of the vector ~ξ defined by (3.4). It does not do
anything to the transverse position space in which each C lives except to contract the
transverse indices, as in (3.10). If one wants to be explicit, one could think of the matrices
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t0 t1 t2 t3

λ01 λ12 λ23

δV δV

Figure 9. A depiction of the 2nd-order perturbative correction (3.9) in 1/N to 4-particle evolution.
The shading shows regions of 4-particle propagation where N = ∞ propagators are used. The
dashed lines represent insertions of the 1/N correction δV to the potential at intermediate times t1
and t2, which are integrated over.

Ri shown in (3.11) as really being Ri⊗1, where the 2×2 identity matrix acts on transverse
position space. However, in our discussion, we will not speak explicitly about the transverse
space. So, for example, we will refer to ~ξ throughout this paper as a “2-dimensional” (rather
than 4-dimensional) vector, and we will correspondingly refer to the matrices in (3.11) as
the 2×2 matrices (3.12).

We will see that the integration over all intermediate transverse positions in our dia-
gram can be performed analytically in q̂ approximation. That will leave three time integrals
(t1, t2, and ∆t ≡ t3 − t0) to later be performed numerically.

To continue, we need the structure of the N = ∞ 4-particle propagators. In the q̂
approximation, these are 2-dimensional harmonic oscillator propagators for a coupled set
of two oscillators (C41, C23). Adapting the notation of refs. [16, 18], we will refer to the
two complex normal-mode frequencies of this system as Ω(λ)

± and define the 2×2 diagonal
matrix

Ω(λ) ≡

Ω(λ)
+

Ω(λ)
−

 . (3.13)

For our context here, we have introduced the subscript or superscript λ to indicate which
color singlet-state (2.13) we are finding the N = ∞ propagators for. Again adapting the
notation of refs. [16, 18], we will make a matrix a whose columns are the corresponding
normal mode vectors:

a(λ) =

C+
41 C

−
41

C+
23 C

−
23


(λ)

. (3.14)

We will leave for later the details of exactly what Ω± and a are for each N = ∞ color
singlet state λ. For now, we have enough to write out the structure of the harmonic-
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oscillator propagator, which is19

GN=∞
λ (~ξ, t; ~ξ ′, 0) = fλ(t) exp

[
−1

2
~ξ >Aλ(t) ~ξ + ~ξ >Bλ(t) ~ξ ′ − 1

2
~ξ ′>Aλ(t) ~ξ ′

]
, (3.15)

where

Aλ(t) ≡ −i
[
(a>)−1Ω cot(Ωt) a−1]

(λ) , (3.16)

Bλ(t) ≡ −i
[
(a>)−1Ω csc(Ωt) a−1]

(λ) , (3.17)

and the prefactor20

fλ(t) ≡ det
(
Bλ(t)

2π

)
. (3.18)

3.3 Integrating over ~ξ1 and ~ξ2

The integrals over ~ξ1 and ~ξ2 in the expression (3.9) for δ2G are related to Gaussian integrals
and so may be done analytically. We find the results are more compact if we first combine
the two integrals into a single Gaussian integral by defining a 4-dimensional vector

~Ξ ≡

~ξ1

~ξ2

 (3.19)

from the two intermediate position vectors ~ξ1 and ~ξ2. Similarly, define

~z ≡

~ξ0

~ξ3

 (3.20)

to be a 4-dimensional vector composed of the initial and final position vectors ~ξ0 and ~ξ3
for the 4-particle evolution. Then the expression (3.9) for δ2G, together with (3.11) for δV
and (3.15) for GN=∞, can be rewritten in the form

δ2Gλ23←λ01(~ξ3,∆t; ~ξ0, 0) = (−i)2 ∑
allowed
λ12

f(01)f(12)f(23)

∫
0<t1<t2<∆t

dt1 dt2 e
− 1

2 ~z
>A ~z

× ∂

∂j1

∂

∂j2

∫
d4Ξ e−

1
2
~Ξ>U ~Ξe~z

>B ~Ξ
∣∣∣∣
j1=j2=0

, (3.21)

19It is because we are working in the same basis (C41, C23) throughout the 4-particle evolution that the
first and last terms in the exponent of (3.15) have the same matrix Aλ. This is unlike the original N =∞
analysis of diagrams in refs. [16, 18], where it was found more convenient to use a different basis at the two
ends of the propagator.

20For N = ∞, calculations of individual time-ordered diagrams were ultraviolet (UV) divergent (even
for tree-level processes), which was treated with dimensional regularization in ref. [19]. Those divergences,
however, were associated with 4-particle evolution times ∆t → 0 and so with the vacuum limit of the
4-particle propagators G. For vacuum evolution, there is no interesting color dynamics, and it is color
dynamics that our 1/N corrections describe. As a result, there will be no UV divergences in our calculations
of corrections in this paper, which means that we do not need to use dimensional regularization and so may
use the 2-transverse dimensional formula (3.18) for fλ.
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where we define the 4×4 matrices

U ≡

A(01) +A(12) − j1R1 −B(12)

−B(12) A(12) +A(23) − j2R2

 , (3.22a)

A ≡

A(01)

A(23)

 , B ≡

B(01)

B(23)

 . (3.22b)

Above, we use the shorthand notation

A(ij) ≡ Aλij(tj−ti), B(ij) ≡ Bλij(tj−ti), f(ij) ≡ fλij(tj−ti). (3.23)

The parameters j1 and j2 are dummy source term coefficients used to generate the two
factors (3.11) of δV in (3.9) from the Gaussian integral appearing in (3.21). Doing that
Gaussian integral gives21

δ2Gλ23←λ01(~ξ3,∆t; ~ξ0, 0) = (−i)2(2π)4 ∑
allowed
λ12

f(01)f(12)f(23)

∫
0<t1<t2<∆t

dt1 dt2

× ∂

∂j1

∂

∂j2

[
det(U−1)e−

1
2 ~z
>(A−BU−1B)~z

]
j1=j2=0

. (3.24)

3.4 Evaluating the xyx̄ȳ diagram

We could now go through all the additional steps of (3.1) for evaluating the xyx̄ȳ diagram,
which involve taking gradients of the 4-particle propagator, including the initial and final
3-particle propagators, integrating analytically over the intermediate position By and Bx̄,
integrating analytically over the first and last vertex times tx and tȳ, and correctly keeping
track of all the prefactors not shown explicitly in (3.1). Instead, we are going to use a trick
to bypass all of that by realizing that we can adapt the final result of the same steps that
were applied in the original N =∞ calculations of refs. [16, 18]. The trick will be to cast
the 4-particle propagator (3.24) for our 1/N2 correction into the same schematic form as
the 4-particle propagator originally used in N = ∞ calculations. Let’s first discuss the
latter to introduce notation (X,Y, Z) that was used in refs. [16, 18, 19].

In the original N = ∞ analysis of the xyx̄ȳ diagram in ref. [18], there were two color
routings that had to be considered, which in the language of our paper here correspond
to taking the full 4-particle propagator 〈C x̄

41,C
x̄
23, tx̄|C

y
41,C

y
23, ty〉 for this diagram in (3.1)

to be either GN=∞
A+

or GN=∞
A− , corresponding to the two N = ∞ eigenstates that appear

in (3.6). The calculations in ref. [18] focused on the color routing called here A− = (1234),
to which the result for the other color routing could be related by swapping the daughters
y and z ≡ 1− x− y. In evaluating the A− color routing, ref. [18] organized the calculation

21Even though we have written the Gaussian integral as a 4-dimensional integral
∫
d4Ξ · · · , it is secretly an

8-dimensional integral because each of the four components of Ξ is itself a 2-dimensional position vector C in
the transverse plane. For this reason, the Gaussian integral produces an exponential prefactor det(2πU−1) =
(2π)4 det(U−1) [where det is the 4-dimensional determinant] instead of

√
det(2πU−1).
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(following the method of ref. [16]) by writing the exponential piece of the corresponding
harmonic oscillator propagator in the form22

〈C x̄
41,C

x̄
23, tx̄|C

y
41,C

y
23, ty〉 =

f exp

−1
2

Cy
41

Cy
23

>X seq
y Y seq

y

Y seq
y Zseq

y

Cy
41

Cy
23

− 1
2

C x̄
23

C x̄
41

>X seq
x̄ Y seq

x̄

Y seq
x̄ Zseq

x̄

C x̄
23

C x̄
41



+

Cy
41

Cy
23

>
Xseq

yx̄ Y seq
yx̄

Y
seq
yx̄ Zseq

yx̄


C x̄

23

C x̄
41


 , (3.25)

where the Cij-independent prefactor f is unimportant at the moment. The above equation
just gives particular names to the entries of the matrices that in this paper we would call
AA− and BA− : namely23

AA− =

X seq
y Y seq

y

Y seq
y Zseq

y

 = S

X seq
x̄ Y seq

x̄

Y seq
x̄ Zseq

x̄

S, BA− =

Xseq
yx̄ Y seq

yx̄

Y
seq
yx̄ Zseq

yx̄

S, (3.26)

where

S ≡
(

0 1
1 0

)
(3.27)

is a matrix that flips the vectors (C23, C41) appearing in parts of (3.25) to the basis
(C41, C23) that we have used exclusively in this paper. For N = ∞, particular formu-
las for the (X,Y, Z)’s were given in ref. [18], which also figured out how to write the final
answer for the diagram in terms of the (X,Y, Z)’s.

Now compare the old N = ∞ formula above to the contribution of a particular
color singlet transition sequence λ01 → λ12 → λ23 in (3.24) if we leave out the opera-
tion ∂j1∂j2 [· · · ]j1=j2=0. The dependence on the Cij ’s is then completely contained in the
4-vector ~z of (3.20) and so in the exponential factor

e−
1
2 ~z
>(A−BU−1B)~z (3.28)

of (3.24). Comparing this exponential factor with the one in (3.25), we see that it has the
same form, except that the (X,Y, Z)’s for the N =∞ calculation are replaced by alternate
versions, which we’ll call (X̃, Ỹ , Z̃), given by

X̃ seq
y Ỹ seq

y −Ỹ seq
yx̄ −X̃

seq
yx̄

Ỹ seq
y Z̃seq

y −Z̃seq
yx̄ −Ỹ

seq
yx̄

−Ỹ seq
yx̄ −Z̃seq

yx̄ Z̃seq
x̄ Ỹ seq

x̄

−X̃seq
yx̄ −Ỹ

seq
yx̄ Ỹ seq

x̄ X̃ seq
x̄


= A− BU−1B. (3.29)

22Our (3.25) is not shown explicitly in ref. [18]. There the argument, in appendix E.2, proceeds by
analogy with section 5.3 of ref. [16] and skips over this explicit formula. The analogous formula is eq. (5.41)
of ref. [16].

23The relationship between (X , Y, Z)seq
y and (X , Y, Z)seq

x̄ follows from eqs. (E.11)–(E.12) of ref. [18] and
from our (3.33), which shows the relationship between our X here and the X in ref. [18].
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If we calculate A − BU−1B from the formulas (3.22), we can then use (3.29) to read
off the corresponding values of the (X̃, Ỹ , Z̃)’s. We may then use those values in place
of the (X,Y, Z)’s in the final N = ∞ result, except we will also need to replace the
prefactor f in (3.25) by the prefactors in (3.24), and sum over the allowed color singlet
transition sequences. At the very end, we will also then need to restore the overall operation
∂j1∂j2 [· · · ]j1=j2=0 that we strategically ignored in order to relate the different calculations!

Our starting point, the result of ref. [18] for the color routing A− = (1234), is24

[
dΓ
dx dy

]N=∞

xyx̄ȳ
(A−)

= −
∫ ∞

0
d(∆t) C2

Aα
2
sMiM

seq
f

8π2(x1+x4)2E4 fA−

×
{

(β̄Y seq
y Y seq

x̄ + ᾱY
seq
yx̄ Y

seq
yx̄ )Iseq

0 + (ᾱ+ β̄ + 2γ̄)Zseq
yx̄ I

seq
1

+
[
(ᾱ+ γ̄)Y seq

y Y seq
x̄ + (β̄ + γ̄)Y seq

yx̄ Y
seq

yx̄
]
Iseq

2 +

− (ᾱ+ β̄ + γ̄)(Y seq
yx̄ Y

seq
x̄ Iseq

3 + Y seq
y Y seq

yx̄ Iseq
4 )

}
(3.30)

where

Iseq
0 =

[
4π2

XyXx̄ −X2
yx̄

]seq

, Iseq
1 = −

[
2π2

Xyx̄
ln
(
XyXx̄ −X2

yx̄
XyXx̄

)]seq

, (3.31a)

Iseq
2 =

[
I0 −

I1
Xyx̄

]seq

, Iseq
3 =

[
Xyx̄I0
Xx̄

]seq
, Iseq

4 =
[
Xyx̄I0
Xy

]seq

(3.31b)

and25

fλ = (2πi)−2(−x1x2x3x4)(x1+x4)2E2Ω(λ)
+ csc

(
Ω(λ)

+ t
)

Ω(λ)
− csc

(
Ω(λ)
− t

)
. (3.32)

Formulas for (ᾱ, β̄, γ̄), which represent various combinations of helicity-dependent DGLAP
splitting functions, may be found in ref. [18]. The variables Xseq

y and Xseq
x̄ are related to

the variables X seq
y and X seq

x̄ we introduced earlier in (3.25) by

Xseq
y = |Mi|Ωi + X seq

y , (3.33a)
Xseq

x̄ = |M seq
f |Ω

seq
f + X seq

x̄ , (3.33b)

where the additional |M |Ω terms arise from the integration of the 3-particle propagators,
as described in ref. [16]. Finally, the formulas for Mi, Ωi, M seq

f , and Ωseq
f may be found

in ref. [18]. These have to do with the 3-particle evolution (which has no interesting color
dynamics), and they remain the same in our problem.

We now obtain the desired 1/N2 correction to (3.30) by swapping the (X,Y, Z)’s to
(X̃, Ỹ , Z̃)’s and replacing the prefactor f(A−) in (3.30) by the analogous non-exponential

24Specifically, see eq. (2.36) of ref. [18], where the A− color routing of xyx̄ȳ is called xyx̄ȳ2.
25Eq. (3.32) is defined using our conventions in this paper. To obtain it, start by permuting eqs. (5.35)–

(5.36) of ref. [16] to the basis (C41, C23) we use, giving | det a(λ)|−1 = |x1x2x3x4|1/2|x1+x4|E in our con-
ventions here. Then our (3.18) and (3.17) give (3.32).
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factors (and operations) in (3.24):

δ2
[
dΓ
dx dy

]
xyx̄ȳ

= C2
Aα

2
sMiM

seq
f

8π2(x1+x4)2E4

∑
allowed

λ01,λ12,λ23

∫
0<t1<t2<∆t

dt1 dt2 d(∆t) (2π)4f(01)f(12)f(23)

× d

dj1

d

dj2

[
det(U−1)

{
(β̄ỸyỸx̄ + ᾱỸ yx̄Ỹyx̄)Ĩ0 + (ᾱ+ β̄ + 2γ̄)Z̃yx̄Ĩ1

+
[
(ᾱ+ γ̄)ỸyỸx̄ + (β̄ + γ̄)Ỹ yx̄Ỹyx̄

]
Ĩ2+

− (ᾱ+ β̄ + γ̄)(Ỹ yx̄Ỹx̄Ĩ3 + ỸyỸyx̄Ĩ4)
}seq]

j1=j2=0
. (3.34)

We have summed over all color transition sequences in (3.7).
To forestall possible confusion, we should mention that the result (3.34) automatically

includes the product

u〈Aaa|λ23〉〈λ01|Aaa〉u = 1
2 (3.35)

of overlap factors of the initial and final 4-particle color singlet states (3.6) with λ01 = A±
and λ23 = A± respectively. That’s because the same set of factors, in the form of

u〈Aaa|A−〉〈A−|Aaa〉u = 1
2 , (3.36)

were already implicitly included in the N = ∞ result (3.30) for the single color rout-
ing A−.26

3.5 Correction to total sequential diagram rate

To get the 1/N2 correction to the total sequential diagram rate, we need to (i) take 2 Re[· · · ]
of (3.34) in order to include the correction to the conjugate diagram x̄ȳxy, and (ii) add
all permutations of the three final gluons (x, y, z) which generate distinct diagrams. See
figure 10. Correspondingly, the total correction is

δ2
[
∆ dΓ
dx dy

]
seq

= δ2Aseq(x, y) + δ2Aseq(y, z) + δ2Aseq(z, x) (3.37)

with
δ2Aseq(x, y) ≡ 2 Re

{
δ2
[
dΓ
dx dy

]
xyx̄ȳ

}
. (3.38)

(The symbol “∆” on the left side of (3.37) is inessential to our present purpose and is
included for the sake of consistency with the N =∞ discussion of ref. [18].27)

Alternatively, one may use the discussion about y↔z after (3.8) to write

δ2
[
∆ dΓ
dx dy

]
seq

= δ2Aseq(x, y) + δ2Aseq(y, z) + δ2Aseq(z, x)

+ δ2Aseq(y, x) + δ2Aseq(z, y) + δ2Aseq(x, z) (3.39)
26The language of color singlet state overlap factors does not appear in the original N =∞ calculation of

ref. [18]. But (3.36) is equivalent to the 1
2 in the factor 1

2C
2
A discussed immediately after eq. (E.1) of ref. [18].

27See, in particular, section 1.1 of ref. [18]. Because the 1/N2 corrections to sequential diagrams come
only from the xyx̄ȳ diagram (and its conjugate and permutations), that distinction does not matter here.
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yx

z

zy

x

xz

y

2 Re

Figure 10. The sum of diagrams contributing to the total 1/N2 correction to the total sequential
diagram rate. Note that exchanging the daughters y ↔ z in the first diagram does not generate
a additional diagram if all possible color transition possibilities have already been included in the
evaluation of each diagram.

where δ2Aseq(x, y) is also defined by (3.38) except that the sum over allowed color sequences
λ01 → λ12 → λ23 in (3.34) is taken over only the first three sequences of (3.8). The appeal
of the version (3.39) is just that it has a similar form to how N = ∞ results have been
previously presented [18].28

4 Color-representation dependent formulas

In order to use the preceding formulas, we need for each 4-particle color singlet state the
corresponding normal mode frequencies and normal mode vectors for 4-particle evolution,
with the vectors written in the (C41, C23) basis that we have been using throughout. That
is, we need formulas for the Ω(λ)

± and matrix a(λ) of eqs. (3.13) and (3.14). In this section,
we will present this information for all of our N = ∞ eigenstates (1,A+,A−,A×, 1×+, 1×−),
not just the states that appeared in the xyx̄ȳ transitions (3.7), because the other states
will be useful later on in the evaluation of 1/N2 contributions to crossed diagrams.

We will start from the results for the |A+〉 and |1〉 color singlets. The others may be
related to these using permutation symmetries, for which the alternate notation (2.15) for
N =∞ color singlet states will be very useful.

4.1 Basics

4.1.1 |A−〉 = (1234)

This is the canonical color state considered in the earlier, N =∞ papers such as [16, 18].
A convenient summary of the relevant formulas for Ω± and a can be found in eqs. (A.21)–
(A.22) and (A.27)–(A.30) of ref. [21], where our matrix a in the (C41, C23) basis used here
corresponds to the matrix called ay there. We note for later reference that these formulas
all depend on the momentum fractions (x1, x2, x3, x4) = (−1, y, 1 − x − y, x) of the four
gluons. So

Ω(A−) = Ω(A−)(x1, x2, x3, x4) and a(A−) = a(A−)(x1, x2, x3, x4), (4.1)

where Ω(λ) is the matrix defined in (3.13).

28See eq. (3.1) of ref. [18].
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4.1.2 |1〉 = (41)(23)

In this note, the u-channel color singlet state |1〉 refers to the case where the particle pairs
(41) and (23) are each contracted into a singlet. This yields simple normal modes in the
(C41, C23) basis. The 4-particle potential (2.8b) for N =∞ acts on the |1〉 state as

V (C41,C23) = − i4(x4 + x1)2q̂A(C2
41 + C2

23). (4.2)

The normal mode frequencies Ω± and vectors (C41, C23)± are

Ω(1) ≡

Ω(1)
+

Ω(1)
−

 =

√√√√√√− iq̂A
2E

 1
x1

+ 1
x4

1
x2

+ 1
x3

 (4.3)

and

a(1) ≡

C+
41 C

−
41

C+
23 C

−
23


(1)

= 1
E1/2

[x1x4(x1+x4)]−1/2

[x2x3(x2+x3)]−1/2

 . (4.4)

Following refs. [16, 18], the normal modes have been normalized so thatCi
41

Ci
23


>

M′

Cj
41

Cj
23

 = δij , (4.5)

where

M′ =

x4x1(x4+x1)

x2x3(x2+x3)

E (4.6)

is the mass matrix whose inverse appears in the kinetic term of the Hamiltonian (2.8a) for
the basis (C41, C23) that we use here.29

4.2 Permutations

4.2.1 |1×××− 〉 = (12)(34)

By permuting indices 1 ↔ 3 in the result (4.3) for the (41)(23) state, we obtain the
eigenfrequencies for the (43)(21) = (12)(34) = |1×−〉 color singlet state:

Ω(1×−) =

√√√√√√− iq̂A
2E

 1
x3

+ 1
x4

1
x2

+ 1
x1

. (4.7)

The corresponding modes (4.4) for (41)(23) were expressed in the (C41, C23) basis. So, by
making the same permutation 1 ↔ 3 to (4.4), we obtain normal modes for |1×−〉 in the

29See the discussion of eqs. (5.16)–(5.18) of ref. [16]. Here we work in the basis (C41, C23) instead of
(C34, C12), and so the indices 1234 there are relabeled 2341 here.
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(C43, C21) basis:C+
43 C

−
43

C+
21 C

−
21


(|1×−〉)

= 1
E1/2

[x4x3(x4+x3)]−1/2

[x2x1(x2+x1)]−1/2

 . (4.8)

Since Cij = −Cji, we can convert to the (C34, C12) basis (which we’ll see is useful in just
a moment) by negating (4.8) to getC+

34 C
−
34

C+
12 C

−
12


(|1×−〉)

= − 1
E1/2

[x4x3(x4+x3)]−1/2

[x2x1(x2+x1)]−1/2

 . (4.9)

To convert to the (C41, C23) basis used throughout this paper, now use the relation [16]30

C41

C23

 = 1
(x1+x4)

(
−x3 −x2

x4 x1

)C34

C12

 . (4.10)

to get

a(1×−) = − 1
(x1+x4)E1/2

(
−x3 −x2

x4 x1

)[x3x4(x3+x4)]−1/2

[x1x2(x1+x2)]−1/2

 . (4.11)

4.2.2 |1×××+ 〉 = (13)(24)

Similarly, permuting indices 3↔ 4 in (4.3) for the (41)(23) state, we obtain

Ω(1×+) =

√√√√√√− iq̂A
2E

 1
x1

+ 1
x3

1
x2

+ 1
x4

 (4.12)

and C+
31 C

−
31

C+
24 C

−
24


(|1×+〉)

= 1
E1/2

[x1x3(x1+x3)]−1/2

[x2x4(x2+x4)]−1/2

 . (4.13)

Now permute the conversion (4.10) by 1↔4 and then use Cij = −Cji to getC41

C23

 = 1
(x1+x4)

(
x3 −x2

x1 −x4

)C31

C24

 . (4.14)

Applying this transformation to (4.13) then gives the normal modes in the desired basis:

a(1×+) = 1
(x1+x4)E1/2

(
x3 −x2

x1 −x4

)[x1x3(x1+x3)]−1/2

[x2x4(x2+x4)]−1/2

 . (4.15)

30This relation comes from eq. (5.31) on ref. [16].
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xyyx

1

3

x
4

2

y

Figure 11. The canonical “crossed” diagram. Particles in the (shaded) region of 4-particle evolu-
tion are numbered according to the convention of ref. [16].

4.2.3 |A+〉 = (1324)

We can get this from the formulas for |A−〉 = (1234) by similar permutation arguments.
Swapping 2↔ 3,

Ω(A+)(x1, x2, x3, x4) = Ω(A−)(x1, x3, x2, x4) (4.16)

and C+
41 C

−
41

C+
32 C

−
32


(A+)

= a(A−)(x1, x3, x2, x4). (4.17)

Since C32 = −C23, we may rewrite that as

a(A+)(x1, x2, x3, x4) =
(

1
−1

)
a(A−)(x1, x3, x2, x4). (4.18)

4.2.4 |A××× 〉 = (1243)

Similarly, swapping 3↔ 4 in formulas for |A−〉 = (1234) gives

Ω(A×)(x1, x2, x3, x4) = Ω(A−)(x1, x2, x4, x3) (4.19)

and C+
31 C

−
31

C+
24 C

−
24


(A×)

= a(A−)(x1, x2, x4, x3). (4.20)

Then use (4.14) to get

a(A×)(x1, x2, x3, x4) = 1
(x1+x4)

(
x3 −x2

x1 −x4

)
a(A−)(x1, x2, x4, x3). (4.21)

5 Crossed diagrams

We now turn to crossed diagrams for g → ggg. The canonical crossed diagram, to which
all others can be related [16], is the xyȳx̄ diagram shown in figure 11.
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5.1 Allowed color transitions

At the start of the shaded region of 4-particle evolution, the particles combine in the same
way as for the sequential diagram of figure 8, and so the initial 4-particle color singlet state
is the same as before:

|Aaa〉u = 1√
2
|A+〉+ 1√

2
|A−〉 (initial 4-particle state). (5.1)

However, the end of the shaded region is different: it is now gluons 1 and 2 that meet at a
vertex. So, the final state is the s-channel version |Aaa〉s rather than u-channel version (5.1).
In this paper, we find it convenient to always stick to the definition (2.13) of our basis states
(1,A+,A−,A×, 1×+, 1×−), which are defined in terms of u-channel singlet combinations. We
need to figure out how to express our final (s-channel) color singlet state |Aaa〉s in terms
of this basis. The matrix that converts (for any N) between the s-channel and u-channel
versions of the original basis states (2.7) is given by [22, 23, 27] (see appendix A.1)



|1〉s
|Aaa〉s
|Ass〉s

|“10+10”〉s
|“27”〉s
|“0”〉s


= U



|1〉u
|Aaa〉u
|Ass〉u

|“10+10”〉u
|“27”〉u
|“0”〉u


(5.2a)

with

U =



1
N2−1 −

√
1

N2−1

√
1

N2−1 −
√

N2−4
2(N2−1)

N
2(N+1)

√
N+3
N−1

N
2(N−1)

√
N−3
N+1

1
2 −1

2 0 1
2

√
N+3
N+1 −1

2

√
N−3
N−1

N2−12
2(N2−4)

√
2

N2−4
N

2(N+2)

√
N+3
N+1 −

N
2(N−2)

√
N−3
N−1

1
2

√
(N−2)(N+3)
8(N+1)(N+2)

√
(N+2)(N−3)
8(N−1)(N−2)

(symmetric) N2+N+2
4(N+1)(N+2)

1
4

√
N2−9
N2−1

N2−N+2
4(N−1)(N−2)



. (5.2b)

For our present purpose, the only piece of (5.2) that we need is

|Aaa〉s = −
√

1
N2 − 1 |1〉u + 1

2 |Aaa〉u −
1
2 |Ass〉u + 1

2

√
N + 3
N + 1 |“27”〉u −

1
2

√
N − 3
N − 1 |“0”〉u.

(5.3)
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t0 t1 t2 t3

λ01 λ12 λ23

δV δV

Figure 12. The analog of figure 9, now for the xyȳx̄ crossed diagram.

Using (2.13) to convert to the basis states (1,A+,A−,A×, 1×+, 1×−) that we use for our
analysis in this paper, and then expanding in 1/N ,

|Aaa〉s = |A−〉+ |A×〉√
2

+
|1×+〉+ |1×−〉 − 2|1〉

2N − 3|A×〉
2
√

2N2 +O(N−3)

(final 4-particle state). (5.4)

For future reference, note that the overall sign of |Aaa〉s is merely a phase convention
choice for that state. Different choices of this sign convention must lead to compensating
changes of sign in the rule for the diagrammatic vertex at the end of the 4-particle evolution
in figure 11. We will later discuss how to get the overall sign of our answer right without
having to drill down into such details.31

We may now using the initial and final singlet states (5.1) and (5.4), together with the
textures of the perturbations δS, δT and δ2T of (2.17), to list all possible 4-particle color
transition sequences that contribute to 1/N2 corrections to the xyȳx̄ diagram of figure 11.
They are listed in table 1.

5.2 2nd order in δV

We start by examining the first five lines of table 1, which are the cases that involve
two insertions of perturbations δV in the 4-particle evolution. Schematically, these cases
correspond to figure 12, which is the crossed diagram analog of figure 9. The formulas for
these contributions to the crossed diagram xyȳx̄ are basically the same as the formulas we
found in section 3 for the sequential diagram xyx̄ȳ except for some minor modifications.
One modification is simply that we should use the color transitions given by the first five
lines of table 1 instead of the sequential diagram transitions of (3.7). But there are other
changes needed as well.

31We did not have to think about the phase convention in our discussion of sequential diagrams because
the initial and final color singlet states were both the same: |Aaa〉u. So changing sign convention |Aaa〉u →
−|Aaa〉u would have no effect since the sign would appear twice in the calculation of the 4-particle evolution
— once at the start and once at the end.

– 27 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
4

transition equivalent δS, δT , δ2T

factors
color

overlap
φ

|A−〉
δT−→ |1〉 δT−→ |A−〉 (1234)→ (41)(23)→ (1234) 1

2N2
1
2

1
2N2

|A−〉
δT−→ |1×−〉

δT−→ |A−〉 (1234)→ (12)(34)→ (1234) 1
2N2

1
2

1
2N2

|A+〉
δT−→ |1〉 δT−→ |A−〉 (1324)→ (41)(23)→ (1234) 1

2N2
1
2

1
2N2

|A−〉
δT−→ |1×−〉

δS−→ |A×〉 (1234)→ (12)(34)→ (1243) − 1
2N2

1
2 − 1

2N2

|A+〉
δT−→ |1×+〉

δS−→ |A×〉 (1324)→ (13)(24)→ (1243) − 1
2N2

1
2 − 1

2N2

|A−〉
δ2T−−→ |A×〉 (1234)→ (1243) 1

2N2
1
2

1
2N2

|A+〉
δ2T−−→ |A×〉 (1324)→ (1243) 1

2N2
1
2

1
2N2

|A−〉
δT−→ |1〉 (1234)→ (41)(23) 1√

2N − 1√
2N − 1

N2

|A−〉
δT−→ |1×−〉 (1234)→ (12)(34) 1√

2N
1

2
√

2N
1

2N2

|A+〉
δT−→ |1〉 (1324)→ (41)(23) 1√

2N − 1√
2N − 1

N2

|A+〉
δT−→ |1×+〉 (1324)→ (13)(24) 1√

2N
1

2
√

2N
1

2N2

Table 1. Allowed 4-particle color transitions at order 1/N2 for the xyȳx̄ diagram, along with (i)
the associated δT , δS or δ2T factors, and (ii) the product of the initial and final color overlap
factors 〈λi|Aaa〉u and s〈Aaa|λf〉. Also shown is the product φ of (i) and (ii) relative to what it
would be

[
s〈Aaa|A−〉〈A−|Aaa〉u = 1

2
]
in the N = ∞ calculation of the crossed diagram. The

horizontal lines separate groups of processes that have to be handled differently: 2nd order in δV

with two δT transitions; 2nd order in δV with a δT and δS transition; 1st order in δV with a T -
based perturbation. There are no non-zero O(1/N2) contributions at 0th order in δV . [Specifically,
the 1/N2 term in (5.4) for the final state |Aaa〉s does not directly overlap the initial state |Aaa〉u
of (3.6).]

5.2.1 Modification: (X,Y, Z)

The known N =∞ rate for the xyȳx̄ diagram has a form similar to that quoted earlier for
the A− = (1234) color routing of the xyx̄ȳ diagram in (3.30). The xyȳx̄ case is [16]32[

dΓ
dx dy

]
xyȳx̄

= −
∫ ∞

0
d(∆t) C2

Aα
2
sMiMf

8π2(x1+x4)2E4 fA−

×
{

(βYyYȳ + αY yȳYyȳ)I0 + (α+ β + 2γ)ZyȳI1

+
[
(α+ γ)YyYȳ + (β + γ)Y yȳYyȳ

]
I2+

− (α+ β + γ)(Y yȳYȳI3 + YyYyȳI4)
}
. (5.5)

32Unlike N =∞ sequential diagrams, N =∞ crossed diagrams have only a single color routing.
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The (α, β, γ) are different combinations of helicity-dependent DGLAP splitting functions
than those in the sequential case, and their formulas may be found in ref. [16]. The In
here have the same form as the Iseq

n of (3.31) except that the superscript “seq” should
be removed from everything. However, the (X,Y, Z)’s are somewhat different from the
(Xseq, Y seq, Zseq)’s. In the original N =∞ calculation [16], they were defined so that the
exponential factor in the 4-particle propagator was33

exp
[
−1

2

Cy
41

Cy
23

>Xy Yy

Yy Zy

Cy
41

Cy
23

− 1
2

C ȳ
34

C ȳ
12


>Xȳ Yȳ

Yȳ Zȳ


C ȳ

34

C ȳ
12



+

Cy
41

Cy
23

>Xyȳ Yyȳ

Y yȳ Zyȳ


C ȳ

34

C ȳ
12

], (5.6)

where

Xy = |Mi|Ωi + Xy, (5.7a)
Xȳ = |Mf |Ωf + Xȳ (5.7b)

similar to (3.33). Explicit formulas for Mi, Ωi, Mf , Ωf may be found in ref. [16].
The pattern common to the presentations (3.25) and (5.6) of the sequential and crossed

exponentials is that in each vector, the bottom Cv
ij is the one for which lines i and j come

together at the corresponding vertex v of the diagram. It was the use of this convention
that made the N = ∞ rate formulas (3.30) and (5.5) for sequential and crossed diagrams
have similar structure.

Similar to what happened for the sequential diagram, (5.6) for this crossed diagram
just gives particular names to the entries of the matrices that in this paper we would call
AA− and BA− — the identically same matrices that were relevant to the case of sequential
diagrams in (3.26). Here the relations are

AA− =

Xy Yy

Yy Zy

 = S−1>

Xȳ Yȳ

Yȳ Zȳ

S−1, BA− =

Xyȳ Yyȳ

Y yȳ Z̃yȳ

S−1, (5.8a)

where S is the matrix from (4.10) that converts the (C34, C12) basis into the (C41, C23)
basis: C41

C23

 = S

C34

C12

 (5.9a)

with

S ≡ 1
(x1+x4)

(
−x3 −x2

x4 x1

)
. (5.9b)

33See eq. (5.41) of ref. [16], with the caveat that, similar to our previous discussion of the sequential case,
our Xy and Xȳ here do not contain the effects of the initial and final 3-particle evolution and are related to
the Xy and Xȳ of ref. [16] by our eq. (5.7).
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Like we did for the sequential xyx̄ȳ diagram, we now want to put the exponential
factor

e−
1
2 ~z
>(A−BU−1B)~z (5.10)

for the 1/N2 correction into the same form as the exponential factor (5.6) for the known
N = ∞ result. Since (5.10) is exactly the same as before, the only difference is in the
identification of the (X,Y, Z)’s. By comparing (5.8) with the sequential version (3.26),
we can read off the relation of the (X,Y, Z)’s of the crossed diagram with the previously
identified (X,Y, Z)seq of the sequential diagram:34

X̃y Ỹy

Ỹy Z̃y

 =

X̃ seq
y Ỹ seq

y

Ỹ seq
y Z̃seq

y

 ,
X̃ȳ Ỹȳ

Ỹȳ Z̃ȳ

 = S>S

X̃ seq
x̄ Ỹ seq

x̄

Ỹ seq
x̄ Z̃seq

x̄

SS, (5.11a)

X̃yȳ Ỹyȳ

Ỹ yȳ Z̃yȳ

 =

X̃seq
yx̄ Ỹ seq

yx̄

Ỹ
seq
yx̄ Z̃seq

yx̄

SS, (5.11b)

where S is again defined by (3.27). So, to compute (X̃, Ỹ , Z̃)’s for the crossed diagrams,
first compute A−BU−1B as in section 3, then read out the (X̃, Ỹ , Z̃)seq values using (3.29),
and finally convert those values using (5.11) above.

5.2.2 Modification: the matrix R2

The identification of the 2×2 matrices R1 = R2 = R(δT ) back in (3.12) was based on the
fact that only δT transitions (3.7) were relevant for the sequential diagram xyx̄ȳ. The same
is true for the first three rows of table 1, which shows the allowed transition sequences for
the crossed diagram xyȳx̄. We will refer to those first three rows as “δT δT” transition
sequences.

In the next two rows of the table, however, the second transition of each sequence is
instead a δS transition. We will refer to these rows as “δT δS” transition sequences. Su
appears differently than T u in the potential (2.8b), and so its contribution to δV matrix
elements will be different than those of the δT contribution (3.11). The non-zero matrix
elements associated with δS are

δV (δS)(~ξ) = iq̂A

2
√

2N

[
x4x1C

2
41 + x2x3C

2
23 + 1

2(x4 − x1)(x2 − x3)C41 ·C23

]
, (5.12)

which can be written in the form of 1
2
~ξ>R(δS)~ξ with

R(δS) = + iq̂A

2
√

2N

 2x1x4
1
2(x4−x1)(x2−x3)

1
2(x4−x1)(x2−x3) 2x2x3

 . (5.13)

34If one removes all of the tildes, then the relations (5.11) also relate the N =∞ crossed and sequential
formulas for (X,Y, Z), which can be verified from the formulas for (X,Y, Z) in refs. [16, 18], once one
uses (3.33) and (5.7) to isolate what we call the X ’s from the X’s.
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So, the final rule is that we need to use

(R1, R2) =

(R(δT ), R(δT )) for δT δT transitions;
(R(δT ), R(δS)) for δT δS transitions

(5.14)

in the construction (3.22a) of the 4×4 matrix U .

5.2.3 Final result for 2nd order in δV

With the preceding modifications, the final result for the first five rows of table 1 has the
same relation to (5.5) that the sequential result (3.34) did to (3.30):

δ2
[
dΓ
dx dy

](δV )2

xyȳx̄

= C2
Aα

2
sMiMf

8π2(x1+x4)2E4

∑
allowed

λ01,λ12,λ23

∫
0<t1<t2<∆t

dt1 dt2 d(∆t) (2π)4f(01)f(12)f(23)

× d

dj1

d

dj2

[
det(U−1)

{
(βỸyỸȳ + αỸ yȳỸyȳ)Ĩ0 + (α+ β + 2γ)Z̃yȳĨ1

+
[
(α+ γ)ỸyỸȳ + (β + γ)Ỹ yȳỸyȳ

]
Ĩ2+

− (α+ β + γ)(Ỹ yȳỸȳĨ3 + ỸyỸyȳĨ4)
}]

j1=j2=0
. (5.15)

In the context of the sequential xyx̄ȳ diagram, we previously discussed that equality
of initial and final 4-particle color singlet state overlap factors between (i) the calculation
of 1/N2 corrections in (3.35) and (ii) the N = ∞ calculation in (3.36). A similar match-
up occurs for the first five rows of table 1. Specifically, the calculation of those 1/N2

corrections should contain a factor of

s〈Aaa|λ23〉〈λ01|Aaa〉u = 1
2 . (5.16)

But we did not have to explicitly include that factor because our starting point — the
N = ∞ formula (5.5) for the crossed diagram xyx̄ȳ — already implicitly contained an
equal factor of35

s〈Aaa|A−〉〈A−|Aaa〉u = 1
2 . (5.17)

5.3 A single δT or δ2T perturbation

We now turn to the last group of transitions in table 1, where there is only one δT or δ2T

perturbation. Schematically, this corresponds to figure 13. The analog of (3.9) is

δGλ12←λ01(~ξ2,∆t; ~ξ0, 0)

= −i
∫

0<t1<∆t
dt1

∫
~ξ1
GN=∞
λ12 (~ξ2, t2; ~ξ1, t1) δV (δnT )

λ12←λ01
(~ξ1)GN=∞

λ01 (~ξ1, t1; ~ξ0, t0), (5.18)

35Our (5.17) is equivalent to the 1
2 in the result 1

2C
2
A of eq. (4.17) of ref. [16].
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t0 t1 t2

λ01 λ12

δV

Figure 13. Like figure 12 except with only one insertion of δV (or δ2V ) during the 4-particle time
evolution.

where t0 = ty and t2 = tȳ are the initial and final times of the 4-particle evolution. The
analog of (3.21) is then

δGλ12←λ01(~ξ2,∆t; ~ξ0, 0) = −if(01)f(12)

∫
0<t1<∆t

dt1 e
− 1

2
~ξ>0 A(01) ~ξ0− 1

2
~ξ>2 A(12) ~ξ2

× d

dj1

∫
d2ξ1 e

− 1
2
~ξ>1U

~ξ1e
~ξ>1 (B(01)~ξ0+B(12)~ξ2)

∣∣∣∣
j1=0

, (5.19)

where
U ≡ A(01) +A(12) − j1R1. (5.20)

Doing the Gaussian integral over ~ξ1 yields the analog of (3.24):

δGλ12←λ01(~ξ2,∆t; ~ξ0, 0) =

− i(2π)2f(01)f(12)

∫
0<t1<∆t

dt1
d

dj1

[
det(U−1) e−

1
2
~ξ>0 A(01) ~ξ0− 1

2
~ξ>2 A(12) ~ξ2+ 1

2
~J >U−1 ~J

]
j1=0

(5.21a)

with
~J ≡ B(01)~ξ0 +B(12)~ξ2 . (5.21b)

By comparison of the exponential in (5.21) to the N = ∞ exponential in (5.6), and
accounting for the change of basis (5.9), we find that for these processesX̃y Ỹy

Ỹy Z̃y

 = A(01) −B(01)U
−1B(01),

X̃ȳ Ỹȳ

Ỹȳ Z̃ȳ

 = S>(A(12) −B(12)U
−1B(12))S,

(5.22a)X̃yȳ Ỹyȳ

Ỹ yȳ Z̃yȳ

 = B(01)U
−1B(12)S. (5.22b)
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transition equivalent Φ

|A−〉
δ2T−−→ |A×〉 (1234)→ (1243) 1√

2N

|A+〉
δ2T−−→ |A×〉 (1324)→ (1243) 1√

2N

|A−〉
δT−→ |1〉 (1234)→ (14)(23) −2√

2N

|A−〉
δT−→ |1×−〉 (1234)→ (12)(34) 1√

2N

|A+〉
δT−→ |1〉 (1324)→ (14)(23) −2√

2N

|A+〉
δT−→ |1×+〉 (1324)→ (13)(24) 1√

2N

Table 2. The last group of transition sequences from table 1, along with the corresponding factor
Φ appearing in (5.23).

Also, as before, the X ’s are related to the X’s by (5.7). The analog of (5.15) is then

δ2
[
dΓ
dx dy

]δT or δ2T

xyȳx̄

= i
C2

Aα
2
sMiMf

8π2(x1+x4)2E4

∑
allowed
λ01,λ12

Φλ01,λ12

∫
0<t1<∆t

dt1 d(∆t) (2π)2f(01)f(12)

× d

dj1

[
det(U−1)

{
(βỸyỸȳ + αỸ yȳỸyȳ)Ĩ0 + (α+ β + 2γ)Z̃yȳĨ1

+
[
(α+ γ)ỸyỸȳ + (β + γ)Ỹ yȳỸyȳ

]
Ĩ2+

− (α+ β + γ)(Ỹ yȳỸȳĨ3 + ỸyỸyȳĨ4)
}]

j1=0
, (5.23)

where the (X̃, Ỹ , Z̃)’s are now those determined by (5.22) and the Φλ01,λ12 is a normalization
factor we discuss below.

For simplicity, we will take
R1 = R(δT ) (5.24)

in the definition (5.20) of U for all of the single δV processes summarized in table 2.
Because we are using (5.24) for δ2T as well as δT perturbations, this leads to the first of
two normalization issues.

The operation ∂/∂j1[· · · ]j1=0 in (5.23) was constructed to introduce one factor of
1
2
~ξ>1 R1~ξ1 (unexponentiated) into the calculation of the overall result. Based on (2.17), δ2T

matrix elements relevant to the transitions in table 2 all have value 1/2N2. In contrast,
the non-zero matrix elements of δT in (2.17) are all 1/

√
2N . To correct for this difference,

our overall factor Φ in (5.23) will need to contain (among other things) a factor of1, for δT transition;
1√
2N , for δ2T transition.

(5.25)
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Earlier, we explained that our starting point — the N =∞ result — implicitly contains
an initial and final color singlet overlap factor (5.17), which equals the similar overlap
factors s〈Aaa|λ23〉〈λ01|Aaa〉u needed for both δT δT and δT δS transition sequences. From
the “color overlap” column of table 1, however, we see that these overlap factors are different
for some of the other transition sequences. Our overall normalization in (5.23) will need to
account for this difference as well. Putting that correction together with (5.25), the overall
normalization correction we need in (5.23) is

Φλ01,λ12 ≡
s〈Aaa|λ12〉〈λ01|Aaa〉u
s〈Aaa|A−〉〈A−|Aaa〉u

× δT or δ2T matrix element
non-zero δT matrix elements

= 2 s〈Aaa|λ12〉〈λ01|Aaa〉u ×

1, for δT transition;
1√
2N , for δ2T transition.

(5.26)

The values of Φ are shown explicitly in table 2. (They are the same as
√

2Nφ, where φ is
the last column of table 1.)

Note that the 1/N2 behavior of (5.23) comes from two places: one factor of 1/N comes
from the factor R1 = R(δT ) (3.12) produced by the operation ∂/∂j1[· · · ]j1=0, and the other
comes from the values of Φ in table 2.

5.4 Correction to total crossed diagram rate

The 1/N2 correction to the xyȳx̄ diagram corresponds to the sum of the results of (5.15)
and (5.23), each using the formulas for the (X̃, Ỹ , Z̃)’s appropriate to that particular process
[(5.11) or (5.22)] and each summed over the relevant entries of table 1. In order to connect
with previous work, it will be convenient to give the name δ2C to the total ∆t integrand
for the xyȳx̄ diagram:∫ ∞

0
d(∆t) δ2C(x1, x2, x3, x4, α, β, γ,∆t) ≡ δ2

[
dΓ
dx dy

](δV )2

xyȳx̄

+ δ2
[
dΓ
dx dy

]δT or δ2T

xyȳx̄

. (5.27)

To get the 1/N2 correction to the total crossed diagram rate from eq. (5.27) for the xyȳx̄
diagram, we need to follow the same steps as originally used for the N =∞ calculation in
ref. [16]. There, the total rate was organized by first summing over the diagrams represented
by figure 14 to get

δ2A(x, y) ≡
∫ ∞

0
d(∆t) 2 Re

[
δ2B(x, y,∆t) + δ2B(y, x,∆t)

]
(5.28)

with

δ2B(x, y,∆t) ≡ δ2C(−1, y, z, x, α, β, γ,∆t) + δ2C
(
−(1−y),−y, 1−x, x, β, α, γ,∆t

)
+ δ2C

(
−y,−(1−y), x, 1−x, γ, α, β,∆t

)
, (5.29)

where we’ve used the same notation (A,B,C) as ref. [16].36 Finally, we need to sum over
any remaining permutations of the daughters (x, y, z) that lead to distinct diagrams. Just

36See eqs. (8.1)–(8.3) of ref. [16]. But, for the 1/N2 term corrections being considered here, there are no
additional “pole” terms, as previously discussed in footnote 20. For the same reason, it is also unnecessary
to make the vacuum subtraction of eq. (8.4) of ref. [16].
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xyyx

x
y

xyxy

x y

x )y(2 Re

Figure 14. The sum of diagrams that define the quantity A(x, y) in ref. [16].

as in the N =∞ analysis of ref. [16], this gives37

δ2
[
dΓ
dx dy

]
crossed

= δ2A(x, y) + δ2A(z, y) + δ2A(x, z). (5.30)

6 Numerical results

6.1 Main results

To get results for 1/N2 corrections, we numerically integrated over (t1, t2,∆t) or (t1,∆t).
A short discussion of our numerical method is given in appendix B. For comparison, the
N = ∞ results from previous literature only require numerical integration over ∆t.38

Dividing 1/N2 corrections by the corresponding N =∞ result gives the relative size of the
corrections.

The relative size of 1/N2 corrections to crossed and sequential diagrams for overlapping
double splitting g → ggg are shown, respectively, in figures 15 and 16 for N = 3 (QCD).
Our convention in these plots is to let y represent the energy fraction of the lowest-energy
daughter, x represent the next lowest, and then z = 1−x−y represents the highest-energy
daughter. So the plot region has been restricted by these conventions to y < x < 1−x− y.
The 1/N2 corrections to sequential diagrams are very small: less than 1%. The corrections
to crossed diagrams are substantially larger. The largest relative correction occurs at the
apex of the triangular region, (x, y, z) =

(
1
3 ,

1
3 ,

1
3

)
, where the correction is roughly 17%.

We showed the separate crossed and sequential diagram ratios first because there is
a subtlety to discussing relative corrections to the total rate (crossed plus sequential).39

Figure 17 shows a plot of the ratio

total 1/N2 correction
total N =∞ rate (6.1)

for g → ggg, but restricted to y > 0.1. Similar to figure 15, there is a (local) maximum
at the apex of the triangular region, where the 1/N2 correction is roughly 17%. Unlike
figure 15, however, around y ∼ 0.1 the rate has started to grow with decreasing y. As we
will explain, this small-y growth is an artifact of how we have so far chosen to look at the
size of 1/N2 corrections.

37See eq. (8.1) of ref. [16].
38TheN =∞ results for crossed and sequential diagrams were derived in refs. [16, 18, 19], but a convenient

summary of results may be found in appendix A.2 of ref. [21].
39As discussed at the very end of section 1, our “total” here, defined as the sum of crossed and sequential

diagrams, does not quite contain every process that contributes to g → ggg.
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Figure 15. The ratio, for crossed diagrams only, of (i) the 1/N2 correction to (ii) the N = ∞
result for the differential rate dΓ/dx dy for (the crossed diagram contribution to) overlapping double
splitting g → ggg. We have used N = 3 in this plot, but one may multiply the results by (3/N)2

to restore the N dependence of the 1/N2 correction. Very tiny wiggles in the contour lines are an
artifact of interpolation from a discrete set of numerical data points. We have left out y < 0.01 just
to simplify the numerical effort that went into making this plot. The ratio goes to zero as y → 0,
as one may see from the later discussion of figure 19 for a particular value of x.

Instead of showing the ratio (6.1), figure 18 shows, for a particular value of x, the small-
y behavior of (i) the N =∞ result for the total rate vs. (ii) the sum of the N =∞ result
and the 1/N2 correction. We’ve taken x = 0.37, which corresponds to the blue dashed line
in figure 17.40 At small y, both the N = ∞ results and the total 1/N2 correction blow
up41 as 1/y3/2, and so we have followed the convention of ref. [18] and instead plotted

π2xy3/2
[
∆ dΓ
dx dy

]
total

(6.2)

in figure 18. The extremely tiny values of y plotted in the figure are unlikely to ever be
relevant to any real-world physics because, at the very least, one needs yE � T for our
high-energy approximations.42 Nonetheless, this figure is useful to understand the behavior
of our formulas. The important feature is that the total N = ∞ result crosses zero at
y ∼ 0.01 (for this value of x). This is possible because ∆Γ/dx dy does not represent a rate;
it represents the correction to a rate due to overlapping formation times (see section 1.1

40There is nothing special about the specific choice x = 0.37.
41For a hand-waving qualitative explanation, see section 1.4 of ref. [18].
42There’s additionally the issue that, for small enough y, one would need to implement resummation of

soft radiation.
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Figure 16. Like figure 15 except now for sequential diagrams instead of crossed diagrams.
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total 1/N2 correction
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Figure 17. Like figures 15 and 16 except now for the total g → ggg rate. The behavior for y<0.1
(the gray shaded region) is discussed in the main text.
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of ref. [18] for explanation),43 and a correction may be positive or negative. Where the
N =∞ result vanishes, the relative size (6.1) of the 1/N2 correction to that N =∞ result
will blow up to infinity, by definition. From figure 18, however, one sees that there is very
little difference between the N = ∞ curve and the corrected curve for y < 0.1. In any
case, in applications to energy loss and in-medium shower development, the 1/y3/2 small-y
behavior of overlapping double splitting g → ggg is canceled [21] by similar behavior of
virtual corrections to single splitting g → gg, leaving behind double-log divergences [12–14]
that are independent of N . So the small-y behavior of figure 18, and in particular the 1/N2

corrections to the small-y behavior, are not of much physical interest.44 Furthermore, the
original motivation for the large-N approximation in this problem was as a tool to be able
to study overlapping hard splittings (y ∼ x ∼ 1).

In principle, the best way to investigate the size of 1/N2 corrections would be to quote
the relative size of their effect on an (infrared-safe) characteristic of in-medium shower
development. Since we do not have everything needed for that (such as 1/N2 corrections
for virtual diagrams), we interpret figure 18 to mean that a reasonable proxy is the largest
relative size of the 1/N2 corrections to dΓ/dx dy for y values that are not small — namely,
the roughly 17% correction at the apex of figure 17.

6.2 More detail on small-y behavior of crossed vs. sequential

There are some interesting qualitative features about the small-y behavior of crossed vs.
sequential diagrams. Figure 19 shows various different elements that went into the previous
small-y numerics of figure 18.

First, as noted originally in ref. [18], the N = ∞ crossed and sequential results indi-
vidually behave like ln(y−1)/y3/2 even though their sum just behaves like 1/y3/2. Because
of the log dependence of the individual contributions, we have chosen to plot the contribu-
tions to

π2xy3/2

ln(y−1)

[
∆ dΓ
dx dy

]
(6.3)

here instead of the normalization (6.2) used for figure 18.
Notice that the absolute size of the 1/N2 correction to sequential diagrams (green

circles in figure 19) is quite small compared to that for crossed diagrams (blue diamonds).
43Readers may wonder if one could instead divide the 1/N2 corrections by a positive complete g → ggg

rate instead of dividing by just the (varying sign) correction ∆Γ/dx dy from overlap effects. Section 1.1 of
ref. [18] explains why it is not meaningful to talk about such a “complete” rate of double splitting in an
infinite medium. It has to do with the fact that one way to achieve g → ggg is via two independent single
emissions g → gg that are abitrarily far separated in time.

44The “double log” behavior referred to above arises from y−1 ln y behavior in the combined real and
virtual rates, producing a double logarithm when integrated over y. This is in contrast to the more divergent
y−3/2 infrared behavior shown in figure 18 for the real rate by itself. The fact that the soft behavior is
y−1 ln y when virtual corrections to single splitting are included has been known since the early work of
refs. [12–14] on energy loss in the soft-y approximation. The lack of N dependence of those double-log
results appears in their calculations as a special feature of the dynamics of the soft gluon emission limit.
(An explicit calculation showing in detail the cancellation of y−3/2 divergences between real and virtual
diagrams for the case N = ∞ may be found in ref. [21], which is focused on generic-y results but also
extracts their small-y behavior.)
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Figure 18. A plot for x = 0.37 of the y dependence of the total ∆ dΓ/dx dy, multiplied by π2xy3/2

[and in units of Nαs
√
q̂A/E, but remember that Nαs is held fixed as N → ∞]. The plot shows

(solid curve) the N = ∞ value and (squares) the N = ∞ value plus the 1/N2 correction. The
horizontal dashed line shows the limiting y → 0 behavior of the N = ∞ result, and the nearby
horizontal dotted line shows the limiting behavior of the corrected result.

This means that, in absolute terms, the total 1/N2 correction is overwhelmingly dominated
by crossed diagrams. [Sequential diagrams play a role in the size of relative corrections
shown in figure 17 because they affect the N =∞ denominator of (6.1) even though they
do not noticeably affect the 1/N2 numerator.]

Figure 20, where the normalization of the verical axis is returned to (6.2), shows that
the crossed and sequential 1/N2 corrections are different in another way as well. From
this plot, we find numerically that the crossed diagram correction behaves like 1/y3/2 for
small y, with no ln(y−1) enhancement. This is why the corresponding blue diamonds in
figure 19 approach zero, due to the additional normalization factor 1/ ln(y−1) in that plot.
In contrast, we find that the sequential diagram correction has an even milder dependence
on small y, behaving like 1/y1/2. When integrated over y in applications, this means that
the 1/N2 correction from crossed diagrams will contribute to infrared (IR) divergences
(similar to the IR divergences of the N = ∞ results discussed in ref. [21]), but the 1/N2

correction from sequential diagrams will be IR finite.

6.3 Comparison of size of 1/N2 corrections to related work

In this paper, we have been focused on the problem of overlapping formation times for the
double splitting process g → ggg. For simplicity, we have followed previous N = ∞ work
on this problem [16, 18, 21] and only considered rates ∆ dΓ/dx dy that have been integrated
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Figure 19. A plot for x = 0.37 of the y dependence of the different contributions to
∆ dΓ/dx dy, multiplied by π2xy3/2 and then divided by ln(y−1). The dotted line shows the to-
tal crossed+sequential N = ∞ result, corresponding to the solid curve in figure 18. Note that
the vertical axis is normalized differently here than in figure 18, but still presented in units of
Nαs

√
q̂A/E. [The intended purpose of this plot is qualitative. See figure 20 if interested in the

precise values corresponding to the 1/N2 data points.]
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E
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time

xE

Figure 21. Similar to figure 1(a) for the rate of single splitting g → gg, but here including later
time-evolution of the daughters (shaded region) that must be included in order to study the p⊥
distribution of the daughters. In the shaded region, the above interference term contains four gluon
lines which, in the language we have used in this paper, requires treating 4-gluon color singlet
dynamics in the medium.

over the (small) transverse momenta p⊥ of all three daughters. For technical reasons,45

studying p⊥-integrated rates allows one to ignore what happens to any daughter after it has
been emitted in both the amplitude and conjugate amplitude. It’s the reason, for example,
why the dynamics of the y gluon is no longer relevant after the first conjugate-amplitude
(red) vertex in figure 3 for xyȳx̄ interference diagram.

However, there is a different type of problem (not about overlapping formation times)
where similar issues of 4-gluon color-singlet dynamics also arise: the un-integrated p⊥
distribution dΓ/dx d2p⊥ for single splitting g → gg in the medium. Unlike figure 1 for the
p⊥-integrated g → gg rate, one must instead follow the color dynamics for a time after
the splitting has taken place in both amplitude and conjugate amplitude, corresponding to
the shaded region of figure 21. During this time, one must treat the color dynamics of the
four gluons shown in the shaded region.46 Refs. [23, 24, 34] have investigated how to treat
this problem beyond the N = ∞ limit. Unlike our work (on our different problem), their
calculations approximate the trajectories of the high-energy particles as perfectly straight
lines. So they only include color dynamics and not the dynamics of particle trajectories.
In this rigid geometry approximation (also known as the “antenna” approximation), they
are able to more easily treat finite or expanding media.

For our specific purposes here, ref. [34] is interesting because the authors explicitly
calculate the 1/N2 correction to the N =∞ limit (using a different approach to calculate
1/N2 corrections than we have). In their numerics, they study a medium of length L

with constant q̂. Their results will depend on L, and they study the case where the
dimensionless ratio L

√
q̂/E (which parametrically is the ratio of L to what the formation

length Lf would be in an infinite medium) is ' 0.55. In this particular case, they find that

45See, for example, the argument in section 4.1 of ref. [16].
46The color dynamics of the two daughters decouple after a time of order the formation time, often

referred to in this context as the color decoherence time.
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the 1/N2 correction to the N =∞ distribution for g → gg can be as large as 16%. Direct
comparison to our roughly 17% correction should not be taken too seriously, however, since
(i) the process we study is very different, and (ii) their numerics hold quark q̂F fixed as
they vary N , whereas we hold gluon q̂A fixed.

7 Conclusion

With two caveats, we have found that 1/N2 corrections to N =∞ results for overlapping
double gluon splitting (g → ggg) can be as large as approximately 17% for N = 3 (QCD).
One caveat is the technical one explained in section 6.1 that measurements of relative
corrections become meaningless when the leading (N = ∞) answer goes through zero at
small y ∼ 0.01, and so we have focused on the size of corrections for not-small y. Also,
small-y emission is not the case where large-N techniques were necessary to simplify the
problem, since previous work on overlapping formation times with a soft emission [12–14]
(which included the effects of virtual emissions) was done without resorting to the large-N
approximation. Our interest here has been to estimate the reliability of using N = ∞
results specifically for the case where y is not small.

The other caveat is that, in this exploratory analysis, we have not included diagram-
matic contributions to g → ggg that involve 4-gluon vertices nor, in Light-Cone Pertur-
bation Theory, instantaneous longitudinal gluon exchange. Nonetheless, our provisional
take-away is that the N = ∞ limit taken in previous analysis is likely a moderately good
approximation. Work on using the N = ∞ approximation to answer the ultimate ques-
tion about the effect of overlapping non-soft emission on in-medium shower development
is ongoing (using results for N = ∞ rates from ref. [21] and the framework suggested
by ref. [17]).

Ultimately, a complete analysis of 1/N2 effects on energy loss should also include
calculation of virtual diagrams for g → gg, as discussed for N =∞ in ref. [21].

Calculating virtual diagrams through order 1/N2 may also be interesting for better
understanding soft radiative corrections to hard single splitting g→ gg. Such radiative
corrections give rise to IR double logarithms [12–14] and sub-leading IR single logarithms.
The single logarithms have been calculated for N = ∞ (for infinite medium in the q̂

approximation) in refs. [35, 36]. We do not know for sure whether those single logarithms
have any non-trivial dependence on N . It would be interesting to be able to explicitly
check at order 1/N2.

Finally, to answer a question proposed in the introduction, we note that our roughly
17% corrections for N = 3 are roughly consistent with (e.g. within a factor of 2 of) the
naive, merely parametric guess of O(1/N2) ∼ 10%.
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A More on (s, t, u) channel color singlet states

A.1 Sign conventions and conversions

The overall sign conventions for u-channel states in this paper were set by how we translated
the s-channel results for the potential V (C12,C34) in eqs. (4.3) and (3.12a) of ref. [22] to
the u-channel version shown here in (2.8). The translation is to simply relabel the particles
(1, 2, 3, 4) there as (4, 1, 2, 3) here. We take our basis of color states (2.7) to be similarly
permuted:

(1, 2, 3, 4) −→ (4, 1, 2, 3) [for s→ u] (A.1)

to go from s-channel |R〉s to u-channel |R〉u. Because we have used the same permutation
to define our u-channel states, our formulas (2.10) here for the matrices Su and T u are the
same as the corresponding s-channel versions in eq. (5.6) of ref. [22].

However, (A.1) is not how u-channel states were defined in ref. [22]. There, t-channel
states were first defined by47

2↔ 3 [for s→ t], (A.2)

and then u-channel states were defined in terms of t-channel states by48

3↔ 4 [for t→ ū], (A.3)

where we will use ū to denote the u-channel conventions of ref. [22]. Performing (A.2)
followed by (A.3) gives

(1, 2, 3, 4) −→ (1, 4, 2, 3) [for s→ ū] (A.4)

The difference between our u-channel convention on the right-hand side of (A.1) and
the convention on the right-hand side of (A.4) is

1↔ 4 [for u→ ū], (A.5)

The effect of this is to negate states that involves an anti-symmetric combination of particles
1 and 4. From (2.6), that’s |Aaa〉u and |“10 + 10”〉u out of our u-channel states (2.7). We
can summarize this as

|1〉ū
|Aaa〉ū
|Ass〉ū

|“10+10”〉ū
|“27”〉ū
|“0”〉ū


= P



|1〉u
|Aaa〉u
|Ass〉u

|“10+10”〉u
|“27”〉u
|“0”〉u


with P ≡



+1
−1

+1
−1

+1
+1


. (A.6)

47See, for example, eqs. (2.14) vs. (2.15) of ref. [22].
48See eq. (2.9) of ref. [22].
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The matrix that converts (for any N) between s-channel and t-channel versions of the
original basis states is given by refs. [22, 23, 27] as49



|1〉s
|Aaa〉s
|Ass〉s

|“10+10”〉s
|“27”〉s
|“0”〉s


= V



|1〉t
|Aaa〉t
|Ass〉t

|“10+10”〉t
|“27”〉t
|“0”〉t


(A.7)

with

V =



1
N2−1

√
1

N2−1

√
1

N2−1

√
N2−4

2(N2−1)
N

2(N+1)

√
N+3
N−1

N
2(N−1)

√
N−3
N+1

1
2

1
2 0 −1

2

√
N+3
N+1

1
2

√
N−3
N−1

N2−12
2(N2−4) −

√
2

N2−4
N

2(N+2)

√
N+3
N+1 − N

2(N−2)

√
N−3
N−1

1
2 −

√
(N−2)(N+3)
8(N+1)(N+2) −

√
(N+2)(N−3)
8(N−1)(N−2)

(symmetric) N2+N+2
4(N+1)(N+2)

1
4

√
N2−9
N2−1

N2−N+2
4(N−1)(N−2)



. (A.8)

(Note that V = V> = V−1.) As explained in ref. [22], the conversion between the s-channel
and the u-channel basis of that paper is correspondingly



|1〉s
|Aaa〉s
|Ass〉s

|“10+10”〉s
|“27”〉s
|“0”〉s


= PV



|1〉ū
|Aaa〉ū
|Ass〉ū

|“10+10”〉ū
|“27”〉ū
|“0”〉ū


. (A.9)

Using (A.6), the conversion between the s-basis and u-basis in our paper here is given
by (5.2a) with U = PVP, which equals (5.2b). For some purposes, it is useful to have the

49This specific conversion is adapted from table IV of ref. [22], which provides the entries of our (A.8)
and whose last column provides the signs P in our (A.9). See footnote 13 of ref. [22] for discussion of how
those results are related to refs. [23, 27].
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N =∞ limit of this matrix, which is

UN=∞ =



0 0 0 − 1√
2

1
2

1
2

0 1
2 −

1
2 0 1

2 −1
2

0 −1
2

1
2 0 1

2 −1
2

− 1√
2 0 0 1

2
1

2
√

2
1

2
√

2

1
2

1
2

1
2

1
2
√

2
1
4

1
4

1
2 −1

2 −
1
2

1
2
√

2
1
4

1
4



. (A.10)

A.2 Alternative descriptions for N =∞

Here, we will justify the N = ∞ identifications made in (2.15). One relatively simple
method is to start with a form where the potential V is written directly in terms of the
transverse positions (b1, b2, b3, b4) of the four individual particles instead of in terms of
reduced variables such as the (C41,C23) of (2.8b). This more direct expression is [22]50

V (b1, b2, b3, b4) = iq̂A
4CA

{
T1 · T2

[
(b1−b2)2 + (b3−b4)2]

+ T1 · T3
[
(b1−b3)2 + (b2−b4)2]

+ T1 · T4
[
(b1−b4)2 + (b2−b3)2]}. (A.11)

(This expression only assumes the q̂ approximation and not that the medium is itself weakly
coupled.) Now we can use the expressions (2.9)51 for the Ti · Tj in terms of Su and T u.
Then remember that for N =∞ our basis states (1,A+,A−,A×, 1×+, 1×−) are simultaneous
eigenstates of Su and T u with eigenvalues given by the corresponding diagonal entries
of (2.14). All together, we can then write the explicit 4-particle potential for each of our
basis states.

For example, for |A−〉, eq. (2.14) indicates that (Su, Tu) =
(

1
2 ,−

1
4

)
for N = ∞.

Using (2.9), the corresponding potential (A.11) is then

V N=∞
(A−) (b1, b2, b3, b4) = − iq̂A

8
[
(b1−b2)2 + (b2−b3)2 + (b3−b4)2 + (b4−b1)2

]
. (A.12)

This is exactly the large-N behavior that we characterized as “(1234)”, where each particle
can interact only with its neighbors going around the cylinder.

Doing the same thing with |A×〉, which has (Su, Tu) = (0, 0) for N =∞, gives

V N=∞
(A×) (b1, b2, b3, b4) = − iq̂A

8
[
(b1−b2)2 + (b2−b4)2 + (b4−b3)2 + (b3−b1)2

]
, (A.13)

which corresponds to what we called (1243).
50Specifically, see eq. (3.10) of ref. [22].
51See also footnote 14.
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As another example, |1×−〉 has (Su, Tu) =
(
0,−1

2

)
for N =∞, which gives

V N=∞
(1×−) (b1, b2, b3, b4) = − iq̂A

4
[
(b1−b2)2 + (b3−b4)2

]
, (A.14)

where particles 1 and 2 interact only with each other, and similarly particles 3 and 4
interact only with each other. This corresponds to what we called (12)(34). One may
similarly check all of the other identifications in (2.15).

B Numerical method

Here, we give a few comments about our numerical method. We have not tried to figure
out the most efficient method but have adopted a brute-force approach implemented in
Mathematica [37]. But there are issues, which we think may be useful to briefly summarize.

First, because of round-off errors caused by subtractive cancellations, we find that we
typically need to do intermediate calculations with much more than machine precision in
order to succeed in a brute force approach. We therefore do our calculations with higher
precision arithmetic in Mathematica.

Some of our formulas, like (3.34), involve derivatives such as ∂j1∂j2 [· · · ]
∣∣∣
j1=j2=0

. After
some experimentation, we decided to implement these derivatives numerically as

∂j1∂j2f(j1, j2)
∣∣∣
j1=j2=0

' f(+ε,+ε)− f(+ε,−ε)− f(−ε,+ε) + f(−ε,−ε)
(2ε)2 (ε small)

(B.1)
rather than doing the derivatives analytically (or using a more sophisticated numerical
estimate of the derivative).52

We let Mathematica handle the numerical evaluation of matrix inverses and determi-
nants in our formulas.

We found that naive use of canned, adaptive integration routines took too much CPU
time and caused a host of problems. Rather than working out how to tweak adaptive
integration to do what we needed, we just did all of our integrals as simply as possible by
using midpoint Riemann sums. For the ∆t integral (as opposed to the t1 and t2 integrals),
we found it convenient to change variables as

∫∞
0 d(∆t)f(∆t) =

∫∞
−∞ dze

zf(ez). In practice,
we then replace the infinite z integration region (−∞,+∞) by a finite region (zmin, zmax)
carefully chosen to cover everywhere the integrand is non-negligible [a choice which must
be adjusted to study small values of y].

52If one wished to take the derivatives analytically, one could make use of small-j expansions such as

U−1 = U−1
0 + U−1

0 (j1R1+j2R2)U−1
0 + j1j2U−1

0 (R1U−1
0 R2+R2U−1

0 R1)U−1
0 +O(j2

1) +O(j2
2)

and

det(U−1) = det(U−1
0 )
{[

1 + j1 tr(U−1
0 R1)

][
1 + j2 tr(U−1

0 R2)
]

+ j1j2 tr(U−1
0 R1U−1

0 R2)
}

+O(j2
1) +O(j2

2),

where we have promoted the 2×2 matrices R1 and R2 to 4×4 block-diagonal matrices by defining R1 ≡(
R1

0

)
and R2 ≡

(
0
R2

)
. However, this leads to more complicated formulas, which take extra CPU time

to evaluate.
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The cost of our brute-force method is that, because it is not adaptive, there are an
annoying number of numerical approximations one must check to be sure that results are
accurate, e.g. the size of ε in the numerical derivatives, the number of Riemann intervals
for the (t1, t2, z) integrals, and the cut-offs (zmin, zmax).

Finally, we should mention the strategies we used to attempt to avoid human error in
our analysis and coding. The result (3.24) for the 1/N2 correction δ2G to the 4-particle
propagator was initially derived independently, and implemented numerically, by each of
us in very different ways. One way was the method presented in the text. The other
way did not use any tricks for packaging the transverse-position integrations into higher-
dimensional vectors and matrices like eqs. (3.4), (3.19) and (3.22) but instead did the
Gaussian integrals separately and explicitly, resulting in very long mathematical expressions
for δ2G. Once the two methods agreed numerically, we then both switched to the method
and code that most quickly produced results for δ2G, which was the method based on (3.24).
Now using the same code for δ2G, we each independently produced or spot checked the
various results in this paper. Since we consulted with each other on general methods
and development [e.g. equations like (3.29)], and helped each other to ferret out sources of
numerical discrepancy, our work was not completely independent, but the most error-prone
aspects of our numerical work were done independently.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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